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Abstract

We propose a novel computational method for the efficient simulation
of two-phase flow in fractured porous media. Instead of refining the grid
to capture the flow along the faults or fractures, we represent them as im-
mersed interfaces with a reduced model for the flow and suitable coupling
conditions. We allow for non matching grids between the porous matrix
and the fractures to increase the flexibility of the method in realistic cases.
We employ the extended finite element method for the Darcy problem and
a finite volume method that is able to handle cut cells and matrix-fracture
interactions for the saturation equation. The choice of a suitable flux func-
tion in the case of discontinuous flux function at the interface between the
fracture and the porous matrix is also addressed through numerical exper-
iments.

1 Introduction

It has been observed that fractures and faults in porous media can act as con-
duits or barriers for the flow. A relevant application that requires an accurate
characterization of the faults from the geo-mechanical and hydrodynamic point
of view is the study of CO2 injection and storage, see [16]. At injection condi-
tions, CO2 is buoyant relative to the ambient groundwater, so it rises toward
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the top of the formation and, in the presence of a pre-existing well or fracture,
or the activation of a fault, can leak into shallower formations.
The effect of fractures on the flow is important in many different applications
such as the study of fractured aquifers, geothermal fields, oil and gas reservoirs
and unconventional hydrocarbon sources.
In all the aforementioned applications the presence of large fractures or faults
influences the flow in a complex way that cannot be reproduced in numerical sim-
ulations by simple homogenization. The space scale of these features is usually
such that a very fine mesh is needed, leading to an extremely high computational
cost. The typical width of fractures (of the order of centimetres) and faults (of
the orders of meters) is indeed very small compared to the size of the domain of
interest that ranges from hundreds on meters for reservoir scale simulations to
hundreds of kilometres at basin scale.
One possibility to address this problem is to use a reduced model to represent
the flow in fractures, represented as immersed interfaces coupled with the rest of
the porous medium. This approach was first introduced by Alboin et al., [2] for
single-phase Darcy problems in porous media in the presence of permeable frac-
tures, and later extended by Martin et al., [17] and Angot, [3] to more general
coupling conditions and geometric configurations. In [7] this approach is further
extended to allow for non-matching grids between the porous medium and the
fracture thanks to the use of the extended finite element method (XFEM). Re-
moving the constraint of mesh conformity can be convenient in realistic cases
with numerous and complex fractures. An advantage of a non-matching method
is the possibility to run multiple simulations with different fractures configura-
tion, in the case of uncertainty on geophysical parameters or multiple scenario
analyses, without meshing the domain each time.
In this paper we present an original numerical approximation strategy for two-
phase flow in fractured media. We complement the generalized Darcy problem,
approximated as in [7], with an evolution equation for the saturation of one of
the two phases, to obtain a fractional flow formulation of the two-phase Darcy
problem. A solution strategy for the two-phase flow in fractured porous media
in the framework of reduced models was first introduced in [13]. In this work
we consider the case of negligible capillary effects and set up for the resulting
hyperbolic problem a discretization scheme that can handle non matching grids.
In particular, the finite volume scheme should deal with cut cells and account for
the interactions between the porous matrix and the fracture. As concerns the
time discretization an explicit scheme is considered and the coupling between
the Darcy problem and the saturation equation is solved via an Implicit Pressure
- Explicit Saturation (IMPES) splitting. The faults and the surrounding porous
matrix can be regarded as two different rock types characterized by different val-
ues of the absolute permeability tensor. In general, they might also be assigned
different relative permeability functions. As a result the saturation equation has
a flux function that is discontinuous at the matrix-fracture interface. In this
type of problems the choice of the numerical flux is crucial to obtain an accurate
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solution. It was shows [18] that in some cases an approximate solution of the
Riemann problem at the interface could lead not only to inaccurate solutions
but, more important, yield unphysical solutions that do not satisfy the entropy
condition. In this work we will employ the upstream mobility flux for the solu-
tion of some relevant test cases and compare the results with those obtained with
an exact Riemann solver to identify possible limits of the approximate solvers
for the problem of our interest. The paper is organized as follows. In Section
2 the governing equations for the two-phase flow are presented. The reduced
model for the flow in the fracture and the interface conditions that couple the
bulk and the fracture are discussed in Section 3. The numerical discretization
of the problem is presented in Section 4. Section 5 is devoted to some synthetic
test cases with the aim of verifying the properties of the method and assessing
its effectiveness.

2 Governing equations

We consider two immiscible fluid phases, denoted by the subscript α ∈ {w, n}
for the wetting and non-wetting phase respectively, flowing in a porous medium
crossed by fractures. The latter can be characterized by data, e.g. permeabilities,
that differ significantly from the porous matrix. We neglect the effect of capillary
pressure.
Let us consider a regular domain Ω ∈ R

n, n = 2 or 3, with boundary Γ =
ΓN ∪ ΓD, ΓN 6= ∅, and outward unit normal nΓ, cut by a thin region Ωf ⊂ Ω
of thickness d representing the fracture. Let us set, from now on, i ∈ {1, 2, f}.
Figure 1 represents the partition Ω =

⋃

iΩi into three disjoint subsets of Ω. The

Ωf

Ω2

nΓ

Ω1

d

n2

γ2
γ1

n1

Γ

Figure 1: Sketch of Ω with Ω1 and Ω2 divided by Ωf .

interfaces between Ωj , with j ∈ {1, 2}, and Ωf are denoted as γj ∈ R
n−1 and

have unit normal nj , pointing outwards with respect to Ωj . If we introduce the
interval of time IT := (0, T ) the space-time domains are defined as Qi := Ωi×IT .
The equations that describe the two-phase flow can be written in the so called
fractional flow formulation [6, 13], as a system formed by a generalized Darcy
problem and the saturation equation. The unknowns are the total velocity u

defined as the sum of the two phase velocities, the global pressure p, an artificial
variable related to the phase pressures, see [6], and the saturation of the non-
wetting phase, from now on denoted as S, with S ∈ [0, 1]. The system reads
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∇·ui = 0

ui = −λiKi (∇pi −Gi)

Φi
∂Si

∂t
+∇·vi = 0

vi = fiui + biKig

in Qi, (1a)

coupled with










uj · nj = uf · nj

pj = pf

vj · nj = vf · nj

on γj × IT , (1b)

where the subscripts i and j denotes the restriction of the variables to Qi or γj ,
respectively. Furthermore we have set

λi :=
kni
µn

+
kwi
µw

, Gi :=
kwi ρ

w/µw + kni ρ
n/µn

λi
g,

fi :=
kni
µnλi

, bi :=
kni k

w
i

µnµwλi
(ρn − ρw) .

Here Ki denotes the absolute permeability tensor which is symmetric and pos-
itive definite and Φi is the porosity. It is important to note that in realistic
situations the entries of Ki can differ of several orders of magnitude from the
neighbouring subdomains. For each phase α, kα is the relative permeability, ρα

the density and µα the dynamic viscosity. Finally g is the gravity acceleration
vector. The relative permeabilities are non-linear functions of the saturation [4]
and in principle different shapes could be associated with different rock types.
Usually, the first two equations of (1) are called pressure equations, while the
last two are called saturation equations.
Let us introduce a discretization of the time interval, dividing IT into N subin-
tervals

Im
T :=

(

tm, tm+1
)

with ∆tm := |Im
T | ,

such that IT =
⋃

m Im
T for m ∈ {0, . . . , N}. Using an IMPES type approach

[6] to solve (1) we decouple the pressure equations from the saturation equa-
tions, and we solve them in sequence at each time step Im

T . Hence the pressure
equations, with fixed saturation S(m) at Im

T , read
{

∇ · ui = 0

ui = −λi(S
(m))Ki

[

∇pi −Gi(S
(m))

] in Ωi × Im+1
T , (2a)

with the following coupling conditions
{

uj · nj = uf · nj

pj = pf
on γj × Im+1

T . (2b)
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We impose to (2) the following boundary conditions
{

pi = pi on ΓN

ui · nΓ = ui on ΓD

Once the pressure equations have been solved the saturation equations, with the

computed total velocity u
(m+1)
i at time Im+1

T , read







Φi
∂Si

∂t
+∇·vi = 0

vi = fiu
(m+1)
i + biKig

in Ωi × Im+1
T , (3a)

with the coupling conditions

vj · nj = vf · nj on γj × Im+1
T . (3b)

We impose to (3) the following boundary and initial conditions
{

Si = Si on ΓN

vi · nΓ = vi on ΓD

and Si = S0
i in Ωi × {0}

Note that the coupling conditions at the interface between two different rock
types prescribe the continuity of the normal component of the phase velocity,
i.e. the normal flux. In the case of discontinuous flux function this condition does
not imply the continuity of saturation which will be, in general, discontinuous
at the interface.

3 Reduced model for the two-phase flow

Following [13, 10], we want to employ a reduced model for problems (2) and
(3) in the fractures, replacing the region Ωf with a n − 1 dimensional interface
γ ≈ γj with unit normal n ≈ n1 ≈ −n2, as shown in Figure 2 for n = 2.

nΓ

n2

n

γ

Ω2

nΓ

Ω1

Γ

n1

Figure 2: Sketch of Ω cut by the interface γ that replaces Ωf .

If the pressure and saturation equations are decoupled with a sequential splitting
as shown in the previous section it can be observed that the generalized Darcy
problem for the global pressure and total velocity has the same structure as the
single phase Darcy problem. Thus, a reduced model can be derived as in [17].
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We report the main results for readers convenience. Given a scalar or vector
function a : Ω → R

q, q = 1 or n, let us define

JaKγ := a1 − a2 and {{a}}γ :=
a1 + a2

2

where we have indicated with

aj (x) := lim
ǫ→0±

a (x− ǫn) and x ∈ γ.

We introduce the projection matrices N := n⊗n and T := I−N so that, given
e : Ω → R and c : Ω → R

n the tangential gradient and tangential divergence are

∇τ e := T∇e and ∇τ · c := T : ∇c.

From now on we will indicate with ·̂ the reduced variables defined on γ. The
scalar unknowns p̂ and Ŝ represent the averaged values across normal sections
of Ωf , given s ∈ γ we have

ĥ (s) :=
1

d

∫ d
2

− d
2

hf (s+ rn) dr for h = p, S.

The vector unknowns û and v̂ are the tangential fluxes integrated over the
normal sections of Ωf , namely

m̂ (s) :=

∫ d
2

− d
2

Tmf (s+ rn) dr for m = û, v̂. (4)

The properties of the fracture are averaged over each cross sections of Ωf or
assumed to be invariant in the normal direction. We assume thatKf = Kf,nN+
Kf,τT , with Kf,n and Kf,τ bounded and strictly positive. Equation (2) can be
written as

{

∇·uj = 0

uj = −λjKj (∇pj −Gj)
in Ωj × Im+1

T , (5a)

coupled with
{

∇τ · û = Ju · nKγ

η̂û+∇τ p̂ = Ĝ
in γ × Im+1

T , (5b)

where Ĝ is the tangential component of G integrated over each normal section of
Ωf , as in (4), and we have set η̂ := d/ (λfKf,τ ),. Introducing a shape parameter
ξ0 ∈ (0, 0.25], for model closure, see [17, 3, 8], and setting η−1

γ := dλfKf,n, the
coupling conditions can be written as







ξ0ηγJu · nKγ +
d

4
JG · nKγ = {{p}}γ − p̂

ηγ{{u · n}}γ = JpKγ + d{{G · n}}γ

on γ × Im+1
T .
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Similarly to (2) the reduced equations for (3) become






Φj
∂Sj

∂t
+∇·vj = 0

vj = fjuj + bjKjg
in Ωj × Im+1

T , (6a)

coupled with






dΦf
∂Ŝ

∂t
+∇τ · v̂ = Jv · nKγ

v̂ = ff û+ bfKf,τ ĝ

in γ × Im+1
T , (6b)

where ĝ is the tangential component of g integrated over each normal section of
Ωf , as in (4). The coupling conditions between Ωj now read

vj(Sj) · nj = vf,j(Ŝ) · nj on γ, (7)

with

vf,j(Ŝ) := ff (Ŝ)uj + bf (Ŝ)Kf,nNg.

4 Numerical approximation of the two-phase Darcy

problem

The Darcy problem (2) is solved in mixed form, with the lowest order Raviart-
Thomas finite elements enriched in the cut elements by means of the XFEM.
The finite element spaces for velocity and pressure are constructed as proposed
in [12], replicating the degrees of freedom in the cut elements and restricting
the corresponding basis functions to each of the subdomains Ωi, see [7, 9]. The
choice of mixed finite elements guarantees a locally conservative velocity field
for the subsequent solution of the saturation equation (3), which is carried out
with the finite volumes method in the porous medium and in the fracture. We
employ the same computational grids for the discretization of the Darcy problem
and the saturation equations. Therefore, the finite volume solver for the porous
medium has to allow for cut elements. Moreover, additional terms will account
for matrix-fracture exchanges due to the coupling conditions (7).
Let Th be the triangulation of the domain Ω. We define Uh ⊂ Th as the set of
element that are not cut by the fracture, and Ch ⊂ Th as the set of cut elements,
thus Th = Uh ∪ Ch. If K ∈ Ch, we denote as Kj , each of the sub-elements
generated by the cut of the fracture, i.e. Kj := K ∩ Ωj , as Figure 3 shows.
Moreover, let T̂h be the mesh of the fracture γ.
We can now define the spaces for the approximation of the saturation Sh in Ω and
of Ŝh in γ. As concerns Sh, similarly to what is done to approximate pressure in
[7, 9], we consider the discrete saturation as made of two components, associated
to the domains Ωj . The solution is then sought in Qh := Q1,h ×Q2,h, with

Qj,h :=
{

qh ∈ L2(Ωj) : qh|Kj
∈ P0(Kj) ∀K ∈ Th

}

,
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Ω1

γ

K1

K2

Ω2

Figure 3: Sketch of an element K = K1 ∪K2 cut by γ.

where, for any K ∈ Th,

P0(K ∩ Ωj) =
{

qh|Kj
: qh ∈ P0(K)

}

is the linear space of the restrictions to Kj of the standard piecewise constant
local functions. The discrete saturation can thus be discontinuous across γ
as required by the coupling conditions (7) in the case of a discontinuous flux
function, being defined on each part of a cut element K ∈ Ch by independent P0

local functions.
The approximate solution Ŝh for the saturation in the fracture is sought in the
following space

Q̂h :=
{

q̂ ∈ L2 (γ) : q̂|
K̂

∈ P0

(

K̂
)

, K̂ ∈ T̂h
}

.

In the case of uncut elements, i.e. for K ∈ Uh, the explicit finite volume approx-
imation of (6) reads

∫

K

φ
Sm+1
h − Sm

h

∆tm
dx+

∫

∂K

F (Sm
h ) · nKds = 0

where F is a suitable numerical flux and nK is the outward unit normal to ∂K.
In the cut elements the method has to be modified to account for the cut edges
and for the presence of the fracture. Each sub-element Kj indeed, as shown in
Figure 4, shares edges with the neighbouring elements in Uh, or sub-elements
contained in Ch. Moreover, one of the edges of eachKj is formed by the elements,
segments for n = 2 or triangles for n = 3, of T̂h.
Thus, for all K ∈ Ch we have

∫

K∩Ωj

φ
Sm+1
h − Sm

h

∆tm
dx+

∫

∂K∩Ωj

F (Sm
h ) · nKds+

+

∫

γ∩K
(−1)j+1F

(

Sm
h ,M(Ŝm

h )
)

· n ds = 0,

where M(Ŝm
h ) is the interpolation of Ŝm

h on Th, i.e. we have M : Q̂h → Qh. The
two meshes are indeed, in general, genuinely non matching as shown in Figure
4. Conversely, the mass balance for each element of T̂h has to account for the
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flux due to one or more elements of Ch. The discrete problem in the fracture can
be written, for every K̂ ∈ T̂h, as

∫

K̂

dφf

Ŝm+1
h − Ŝm

h

∆tm
dx+

∫

∂K̂

F̂ (Ŝm
h ) · n

K̂
ds+

−
∑

j=1,2

∫

γ∩K
(−1)j+1M∗

(

F̂
(

Sm
h ,M(Ŝm

h )
)

· n
)

ds = 0.

Here the operator M∗ : Qh → Q̂h performs the interpolation of the saturation
from Th to T̂h, which is the adjoint operator of M. We represent the operators
M and M∗ with a matrix M and its transpose respectively, its entries are given
by

Mij =

∫

K̂j∩Ki

1dx (8)

where the subscript i, j denote the i-th element of Th and the j-th element of T̂h.
The integral in (8) is approximated with a Gaussian quadrature formula. The

Th

γ
∈ Uh

∈ Ch

Figure 4: Sketch of Th cut by γ. The mesh of γ is in general non-matching with
the edges of the cut elements.

choice of the numerical flux is critical in problems characterized, like the one of
our interest, by a discontinuous flux function due to the presence of different rock
types, typically the matrix and the fracture. For two-phase flow in porous media
a numerical flux that is commonly used, in particular by petroleum engineers,
is the upstream mobility (UM) flux citeBrenier1991, which can be considered as
an approximate solution to the Riemann problems at the interfaces, based on
simple physical considerations. The upstream mobility flux F UM , for both the
medium and the fracture, is given by

F UM (α, β) = f∗u+ b∗Kg

where

f∗ =

{

f(α) if v · n > 0

f(β) if v · n ≤ 0
, b∗ =

{

b(α) if v · n > 0

b(β) if v · n ≤ 0
.

9



At the interface between two different rock types the above definition must be
adapted, as in [18]. Let us denote with v− and v+ the flux functions on the
opposite sides of the interface. The same subscript denote the values of f and
b. Moreover, we indicate with α and β the values of saturation on the two sides

of the discontinuity. The interface flux F
UM

(α, β) is computed choosing

f∗ =

{

f−(α) if v · n > 0

f+(β) if v · n ≤ 0
, b∗ =

{

b−(α) if v · n > 0

b+(β) if v · n ≤ 0
,

and is such that, for some saturation S,

F
UM

(α, S) = F UM
− (α, S) = F UM

+ (S, β).

An alternative choice for the numerical flux is the Godunov flux [11], which
corresponds to solving exactly the Riemann problems at the element interfaces,
hence we indicate it as ERS. At the interface between two rock types the Go-
dunov flux must be redefined to account for the discontinuous flux function. In
[5] the Godunov flux at the interface is defined as the unique solution F

ERS
(α, β)

satisfying

F
ERS

(α, β) = FERS
− (α, S) = FERS

+ (S, β)

for some S. Recipes for the computation of FERS are discussed in [14], and can
be summarized in the following single, easy to implement, expression [18]

F
ERS

(α, β) = min {v−(min(α, θ−)),v+(max(β, θ+))} .

Here, we have assumed that v− and v+ have only one local maximum point,
denoted by θ− and θ+ respectively. A similar expression can be derived in the
case of one local minimum. In the next sections we will consider both choices for
the numerical flux applied to some significant test case to investigate possible
advantages or shortcomings of both numerical fluxes.

5 Test Cases

In this section we present some test cases with the aim of validating the proposed
method and assessing it properties and possible advantages and limits.

5.1 Numerical validation

Let us consider a rectangular domain Ω = (0, 1)×(−4, 4) occupied by two differ-
ent rock types, denoted with the subscripts ±, for y > 0 and y < 0 respectively.
The two types of rock are characterized by different isotropic absolute perme-
abilities K±, i.e. K = K±I, while the relative permeability is the same and
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linear with saturation. We set K+ = 2, K− = 1, while kw = S and kn = 1− S
everywhere. Moreover we have

ρw |g| = 2, ρn |g| = 1, µw = µn = 1,

u = 0 and Φ = 1.

The flux function is thus discontinuous at y = 0: the shape of v± is reported in
Figure 5.

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1

|v
|

S

|v−|
|v+|

Figure 5: Flux functions at the in-
terface between two rocks with dif-
ferent K

0
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0.1

0.15

0.2

0.25

0.3

0.35

0 0.2 0.4 0.6 0.8 1

|v
|

S

|vf |

|vj |

Figure 6: Flux functions at the
matrix-fracture interface in the case
of different relative permeabilities.

We consider as the initial condition the values

Sw(t = t0) =

{

0.8 if x < 0

0.1464 if x > 0.

We want to solve the problem inserting a slanting fracture γ = {(x, y) ∈ Ω : y = 10x− 9}
with the same properties of the surrounding porous medium, i.e. Kf = K+ for
y > 0 and Kf = K− for y < 0, Φf = Φ, the same relative permeabilities and
the same initial conditions. The solution should be comparable with the one
obtained with the same data without any fractures inside the domain. Results
are shown in Figure 10. We compare the solution of a one-dimensional problem
with two rock types without fractures in the domain with the solution of the
two-dimensional problem in the presence of the fracture. For both problems the
time step is selected such that the CFL constant is 1/8. The one dimensional
solution, computed on a fine grid, can be regarded as a reference solution since
the two dimensional problem is invariant in the x direction. The two results are
in good agreement proving the consistence of the reduced model and of the ap-
proximation strategy. It can be also observed that, with respect to the solution
obtained with the Exact Riemann Solver the use of the Upstream mobility flux
produces an unphysical travelling wave for y > 0. Since the two flux functions
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do not intersect each other according to the theory [1, 18] the entropy solu-
tion consists indeed in a rarefaction from Sw = 0.8 to Sw = 0.5 and a steady
discontinuity from 0.5 to the right value.

0.2

0.4

0.6

0.8

-2 -1 0 1 2 3

Sw

y

Sw(t = t0)
ERS
UM

Figure 7: On the left: solution of the 1D problem with mesh size 0.1 with ERS
and UM at t = 1.5. Right: solution of the corresponding 2D problem with
ERS, grids of 880 triangles and 400 segments for the fracture. The black line
represents the saturation inside the fracture.

5.2 Numerical flux comparison

We present two example to compare the numerical fluxes UM and ERS in pres-
ence of a fracture. Unlike the previous example we consider the fracture as
composed by a different rock type with respect to the homogeneous surrounding
material.

5.2.1 Example 1

In the first example we impose the same absolute permeability tensor in the
porous medium and in the fracture, Ki = I and suppose that the two rock types
are characterized by different shapes of the relative permeability functions. We
replicate the numerical experiment of [18] selecting

kwf = S, knf = 1− S2, knj = 1− S2,

kwj =

{

1.75S if S ≤ 0.25

0.25S + 0.375 if S ≥ 0.25
.

Here the subscript f denotes the relative permeabilities inside the fracture. The
shape of the two flux functions is reported in Figure 6. The other parameters
are the same as in the previous example, while the initial condition is Sw(t =
t0) = 0.5 in the whole domain. The same value of saturation is imposed on the
top (inflow) boundary. The computational domain Ω = (0, 1)2 is a square cut
by a horizontal fracture γ = {(x, y) ∈ Ω : y = 0.525} of thickness d = 0.01. We
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Figure 8: Left: solution obtained with UM, constant for all t. Centre and right:
solution with ERS for t = 0.4 and t = 1, respectively. The black line represents
the saturation inside the fracture.

adopt a grid spacing h = 1/35 for Ω while hf = 1/200, and the time step is
∆tm ≈ 2.6 · 10−6, for all m, to meet the CFL condition.
The result obtained with UM flux and ERS are reported in Figure 8. It can be
observed that the solution given by UM, on the left, is the constant value Sw(t) =
0.5 for all t ∈ IT . Following [14] this solution is to be considered unphysical since
is inconsistent with the entropy definition given in [15]. The solution computed

0.45

0.55

0.65

0.425 0.45 0.475 0.5 0.525

Sw

y

t = 0
t ≈ 0.4
t ≈ 1

Figure 9: Zoom of the mono-dimensional solution with ERS for two different
times, in the fracture (0.475 < y < 0.575) and surrounding porous medium.

with the ERS, represented at two distinct time steps, centre and right in Figure 8,
evolves in time with a behaviour that is consistent with the analogous experiment
in [18]. As the heavier phase flows downwards saturation increases inside the
fracture and decreases in the porous medium with a rarefaction. Note that, since
the flux is aligned with gravity and the fracture is horizontal no flux occurs along
γ. The solution of the 2D problem along any section x = x can be compared,
since the solution is invariant in the x direction, with a one dimensional problem
with a fine grid that is able to capture the fracture. The resulting saturation
profile computed with the ERS is reported in Figure 9 for two time steps. The
rarefaction wave and the peak of saturation in the fracture are in agreement
with the results of the reduced model.
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Figure 10: Left: solution obtained with UM, right: solution obtained with ERS.
In both cases t ≈ 0.8.

5.2.2 Example 2

Although it is in principle possible to select different relative permeabilities for
the fracture and the porous matrix, the available data allow us, in most realistic
situations, to characterize the fracture only with a different value of the absolute
permeability. We want to test the behaviour of the method in this particular case
for the two different choices of the numerical flux. We will consider the absolute
and relative permeabilities introduced in section 5.1 but, this time, assigning the
higher absolute permeability to the fracture and the lower to the homogeneous
porous matrix, thus

Kj = I and Kf = 2I.

The computational domain is the unit square Ω = (0, 1)2, discretized with a grid
of about 2500 triangles. The fracture is the line of equation γ = {(x, y) ∈ Ω : y = 0.5x− 0.8},
discretized with 400 segments. We chose the time step as ∆tm ≈ 1.53 · 10−6,
for all m, such that the CFL constant is always lower or equal to 1/8. We set
Sw = 0 everywhere as the initial condition and S = 1 on part of the top bound-
ary, i.e. for y = 0 and 0.25 < x < 0.75. As in the previous problems we set u = 0
and ρw |g| = 2, ρn |g| = 1. Note that, with respect to the previous case, gravity
has an effective component in the direction of the fracture therefore we should
expect a more complex behaviour when the heavier phase, flowing downwards,
interacts with the fracture. The problem is solved numerically with the upstream
mobility and with the exact Riemann solver. Figure 10 shows the solution of the
problem for both fluxes. The two solutions exhibit a different saturation profile
since the UM computes, at the inflow, a different propagation speed from the ex-
act solution of the Riemann problem. The most relevant difference is, however,
related to the matrix-fracture interaction. We can see that the solution obtained
with the UM exhibits oscillations along the fracture, leading to oscillations also
in the surrounding medium, while the solution obtained with the ERS does not
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show any oscillation. The oscillatory solution computed by UM is due to a de-
velopment of a traveling wave inside the fracture, similar to the one observed
in section 5.1. The waves are generated at different times since the fracture is
not orthogonal to the flux, and interact generating a complex solution inside
and outside the fracture. As discussed in the analogous example this behavior is
unphysical and suggests that, even in very simple cases, the discontinuity of the
flux function could give rise to solutions that do not fulfill the entropy condition
if the Riemann problem at the interface is not solved exactly.

5.3 Flow driven by gravity

Let us consider once again a flow driven by gravity, i.e. uj ≡ û ≡ 0, in a square
domain Ω = (0, 1)2 cut by the fracture γ = {(x, y) ∈ Ω : y = −2x+ 1.4}, where
we set the initial saturation S0 = 0.5 in the circle (x−0.45)2+(y−0.15)2 < 0.42.
The properties of the fluid and the media are reported in Table 1. In this example
we want to reproduce the effect of a conductive fault/fracture on the flow of a
buoyant fluid (for instance CO2) in a porous medium.
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Figure 11: Plot of the conservation of mass over time steps. Here m is the global
mass plus the outflow and with m0 the global mass at initial time.
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Figure 12: Plot of the conservation of mass over time steps. Here m is the global
mass plus the outflow and with m0 the global mass at initial time.

To this purpose we compare, in Figure 13 the saturation of the non-wetting
(light) fluid in two scenarios. In the first case (a) we assign to γ the same
permeability of the rest of the medium, neglecting in fact the presence of the
fracture, while in the second case (b) we impose to the fracture a permeability
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kni = 1− S2 kwi = S ρw = 2 ρn = 1

g = (0,−1)⊤ µα = 1 Φi = 1 K1,2 = I

d = 0.01

Table 1: Fluid and media properties for test case 5.3.

a)

b)

Figure 13: Snapshots of the solution at t ≃ 1 in three different cases: on the left
Sh without fractures, in the centre Sh and Ŝh with γ whose properties are equal
to the bulk medium and on the right with γ more conductive in the tangential
direction. Here Ŝh is warped for the sake of visualization.

that is higher in the tangential direction, i.e. Kf,τ = 20, Kf,n = 1. We notice
that the lighter phase flows upwards due to buoyancy in both cases, but in the
case of a conductive fracture the flow inside the fracture is faster, therefore a
different saturation pattern is obtained at the outflow boundary. We verified
numerically that the method is mass conservative. We represent in Figure 12,
for case (b), the amount of the light phase present in the domain at each time
step, computed as the integral of ΦSn in Ω and γ, and the outflow through the
top boundary of Ω and γ, to show that the sum remains constant throughout the
simulation. For a more quantitative analysis in Figure 11 we represent the mass
conservation error computed as the normalized difference between the mass m
at each time step, given by the integral inside the domain and the cumulative
outflow, and its initial value m0. The observed oscillations can be regarded as
very small compared to the double machine precision indicating that the method
is mass conservative.
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Figure 14: Pressure field, in Ω and γ, at initial time step.

5.4 Fully coupled two-phase flow

In this example we consider the complete coupled two-phase flow model (5)
and (6), solved numerically with an IMPES splitting. Let us consider the same
domain Ω and fracture γ as in the previous example, but assuming this time that
the domain lays in the horizontal plane, thus no gravity effects are present. The
flow is driven, in this case, by a pressure gradient resulting from the imposition
of p = 1 at the bottom boundary and p = 0 at the top, while the left and
right boundaries are considered as impermeable. We set as the initial condition
S0 = 1 in the circle (x−0.45)2+(y−0.15)2 < 0.42 and consider a fracture that is
permeable in the tangential direction and impermeable in the normal direction
setting Kf,τ = 1 and Kf,n = 10−3. The remaining properties of the fluids and
the media are the same as in the previous test case, see Table 1. The pressure
field at t = 0 is reported in Figure 14 where the pressure jump, due to the low
normal permeability of the fracture, is clearly visible. As a consequence of the
impermeable fracture the total velocity field u will be approximately tangent to
γ in the region surrounding the fracture. Since the coefficients in (5) depend on
saturation the pressure and velocity field will be, in general, different at each time
step. Figure 15 compares the evolution of saturation obtained with a constant
velocity field, corresponding to Sn = 0, with the result of the fully coupled two-
phase problem. We notice that even if the solutions look similar in the beginning,
the real velocity field changes in time due to the effect of relative permeability
and after some time the difference between the two solutions becomes noticeable.

5.5 Two-phase flow through an opening fracture

Finally, we consider the case of a crack that propagates through an heterogeneous
domain. The computational domain Ω is crossed by a layer with a very low
permeability as sketched in Figure 16. The fracture is represented by the line of
equation

γ = {(x, y) ∈ Ω : y = −2x+ 1.4, y < 0.55 + 0.1t} ,

where t denotes a nondimensional time. The propagation of the fracture is
imposed a priori and is such that, during the simulation, the crack pierces the
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Figure 15: Comparison of Sh and Ŝh for the two strategies: on the left with a
constant velocity and on the right the coupled problem. On the top the solution
at t ≃ 0.27 and on the bottom at t ≃ 1.1.

impermeable layer. We consider a fully coupled two-phase flow in the absence
of gravity and impose the same initial and boundary conditions as in section
5.4. The permeabilities in the fracture are Kf,τ = 10 and Kf,n = 1, while the
permeability in the porous medium is isotropic and set to to 1 everywhere except
for the impermeable layer that has K = 0.01. The results are shown in Figure
17 at four different times. At t = 0 the global pressure exhibits a steep gradient
in the impermeable layer, which is not entirely cut by the fracture yet. As the
light phase starts to flow upwards it enters the fracture and flows preferably
along it thanks to the high tangential permeability. Finally, once the fracture
has propagated through the whole thickness of the impermeable layer, the light
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n
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n
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0

p = 1
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Figure 16: Domain crossed by a low-permeability layer cut by an opening frac-
ture. The initial saturation is indicated by the blue circle.
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Figure 17: Wetting phase saturation (bottom left) and global pressure (top
right) at four different times. The fractures propagates with an imposed time
law cutting the impermeable layer.

phase can flow in the top part of the domain through the fracture. At the same
time, a local drop of the global pressure can be observed in the bottom part of
the domain.

6 Conclusions

In this paper we have proposed an original method for the numerical simulation
of two-phase flows in fractured porous media, in the framework of reduced mod-
els. In particular we extended the method introduced in [7] for the simulation of
single phase Darcy flows with the XFEM to the two-phase case introducing an
additional equation for the saturation. An IMPES sequential splitting was used
to decouple the two problems. The reduced problem for the saturation inside
the fracture, and the coupling conditions between the fracture and the porous
matrix were derived following [13] in the limit of negligible capillary pressure.
As concerns the numerical approximation, the same non-conforming grid was
used for the Darcy and the saturation problem, which was solved with the fi-
nite volume method accounting for cut cells and matrix-fracture exchanges. We
have shown with numerical experiments that the results of the reduced model
are consistent with those of the original problem solved on a very fine grid that
is able to resolve the fracture. Moreover, we have shown that the method is
mass conservative. A comparison between the Godunov flux and the Upstream
Mobility flux revealed that, even in simple cases, the latter can give inaccurate or
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even unphysical solution in the presence of a discontinuous flux function. Since
the porous matrix and the fracture are typically characterized by different per-
meabilities the flux function is in general discontinuous at the matrix-fracture
interface in the problems of our interest, thus, the choice of a suitable numerical
flux is a critical issue. The method has been applied to synthetic test cases
with qualitatively correct results. Of particular interest for the problem of CO2

sequestration is the simulation of CO2 leakage through a propagating crack. In
this work we have considered an imposed evolution of the fractures, however,
thanks to the use of XFEM the method could be in the future coupled with
a suitable solver for the mechanics of the rock to predict the propagation of
fractures in the presence of overpressure.
Future work will focus on the extension of the method to realistic geometries and
values of the parameters. Moreover, capillary effects should be included in the
saturation equation. In an operator splitting framework this can be achieved
adding a diffusive step after the solution of the hyperbolic equation. Finally,
we point out that the CFL condition can represent a severe constraint for our
solution strategy even if the mesh is not refined to resolve the fractures. Indeed,
being the grid non conforming with the fracture small cut cells can form for
some configuration and limit the maximum time step size. Suitable numerical
techniques to overcome this limitation will be the subject of future study in the
view of more realistic and computationally demanding test cases.
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