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Abstract

Subsurface flow is influenced by the heterogeneity of the porous medium
and in particular by the presence of faults and large fractures which act as
preferential paths for the flow. In this work we present a robust numerical
method for the simulation of two-phase Darcy flows in heterogeneous media
and propose a possible treatment of fractures by means of the extended
finite element method, XFEM, and the coupling with a reduced model for
the flow inside the fracture. The use of extended finite elements allows to
handle fractures that are non conforming with the underlying mesh, thus
increasing the applicability of the proposed scheme to the simulation of
realistic problems such as oil migration in fractured basins, CO2 storage or
pollutant dispersion in groundwater flows.

1 Introduction

The study of underground flow is of great interest for its application to envi-
ronmental studies, CO2 sequestration, and oil field exploration and assessment.
These problems are characterized by the flow of water and other fluid phases in
a porous medium. Despite the high complexity of the physical phenomena, un-
der suitable assumptions subsurface flows can be modeled as multiphase Darcy
flows, [1]. In this paper we will consider a two phase Darcy model that is suit-
able for the simulation of oil migration, where the two immiscible phases are
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oil and water, and CO2 sequestration where the non-wetting phase is the super-
critical CO2 injected in the reservoir. One of the main difficulties in realistic
simulations of Darcy flow in geophysical applications is associated to the het-
erogeneity of the medium. The domain of interest is indeed composed by layers
of different sediments that have accumulated over millions of years and which
have experienced a complex history of compaction and stress induced deforma-
tions, resulting in a strong variability of the permeability. To approximate the
problem we use the mixed finite elements method with Raviart-Thomas basis
functions [2], since they are robust in the presence of jumps in the permeability
and they can accurately describe the velocity of the two fluids ensuring local
mass conservation.

The complex stress state experienced during burial history often cause frac-
turing in the rocks, and fractured regions can be regarded as strongly localized
heterogeneities that are very relevant for the flow. Fractures may be broadly
divided into two main classes: microfractures, whose scale length is of the order
of 1m, and large fractures, or faults, that extend for 100 − 1000m, with widths
of some meters. While the presence of microfractures may be accounted for by
averaging or homogenization techniques, leading to a change in the effective per-
meability [3, 4], faults may influence the flow, acting as barriers or preferential
pathways, in a way that cannot be easily reproduced by a simple modification
of the permeability tensor. A similar behaviour is associated to the interface
between two different sedimentary layer, say a coarse sand layer and an imper-
meable clay layer: the surface of discontinuity, called horizon, can become a
preferential path for the flow of the lighter phase thanks to buoyancy.

One possibility to address this problem is the use of a reduced model in which
the fractures are represented as interfaces immersed in the porous medium, with
proper coupling conditions between the fracture and the medium. The reduced
model was first introduced in [5], with the assumption that the fractures behave
only as preferential paths (i.e. they have a high permeability). Later in [6]
the method was extended to handle the case of fractures acting as barriers. In
[7] the relevant case of interfaces that are entirely contained in the domain is
addressed. Other works on this subject are [8, 9, 10] and [11] where the two
phase flow reduced model is presented for the first time.

In all the works discussed above, the fracture and the computational grid of
the medium have to match, i.e. the fracture is a conforming interface between
two mesh blocks. In realistic cases with numerous and complex fractures, mesh
conformity can be a rigid constraint and even affect the quality of the mesh,
with a decrease in accuracy.

In [12] the authors extend the work of [6] allowing for non matching grids
between the porous domain and the fracture, increasing the flexibility of the
method. Another important aspect of non matching grids is the possibility to
run multiple simulations with different fractures configuration, without meshing
each time the domain. Some possible fields of application are the quantification
of uncertainty on geophysical parameters or multiple scenario analyses.
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In this work we want to assess the effectiveness and accuracy of the reduced
model for realistic problems. To this end we will evaluate the error associated
with the model reduction comparing the results with those provided by the fully
resolved model extending the approach presented in [12] to the case of multiple
fractures with properties that can change in space. A comparison of the fully
resolved model and the reduced (non-matching) approach applied to a three
dimensional problem with realistic permeabilities will be made to prove that
reasonably accurate results can be obtained with a coarser grid if we replace
thin regions such as faults with two-dimensional interfaces.

The paper is structured as follows. In section 2 the governing equations for
two-phase flow are presented together with the splitting strategy and the finite
element method employed for the numerical solution. In section 3 we present
the reduced model for flow along fractures and discuss the numerical method,
based on the XFEM, used to solve the coupled problem with non-matching grids.
Section 4 is dedicated to the discussion of numerical simulations of two phase
flows in the presence of impermeable layers resolved by the grid and single phase
problems with the reduced model for fractures. Finally, section 5 is devoted to
conclusions.

2 Governing equations for two phase flows

In this section we introduce the equations governing the flow of two immiscible
phases in a saturated porous medium, namely the wetting phase w and the non-
wetting phase n. From now on we will indicate with the subscript α quantities
related to one of the two phases, i.e. α ∈ {w, n}. The standard set of equations,
derived in [13], for the two-phase flow in a porous medium describes the evolution
of the saturation

Sα = Sα(x, t) =
volume of phase α in REV

volume of void space in REV
, (1)

for each phase and in each representative elementary volume (REV) centered in
x [14], the phase velocity uα = uα(x, t) and the phase pressure pα = pα(x, t).
From the definition (1) follow the constraints 0 ≤ Sα ≤ 1 and Sn+Sw = 1. The
system of equations that describes two-phase flow reads





∂ (ΦραSα)

∂t
+∇ · (ραuα) = ραqα ,

uα = −
krα
µα

K (∇pα − ραg) ,

Sw + Sn = 1 ,

pn − pw = pc(Sw) ,

in Ω× [0, T ) (2)

where Ω is a bounded and regular domain in R
d, with d = 2 or 3, and [0, T )

denotes the interval of time of interest. The system must be completed with
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initial data for uα and Sα and appropriate boundary conditions, which will
be discussed later. We assume the following quantities to be given functions
of space and time: the porosity Φ = Φ(x, t) with 0 ≤ Φ ≤ 1, the density
ρα = ρα(x, t), the absolute permeability tensor K = K(x), the dynamic vis-
cosity µα = µα(x, t) and the gravity acceleration g. Furthermore, qα = qα(x, t)
indicates a possible source term. The relative permeabilities krα = krα(Sα), and
the capillary pressure pc = pc(Sw) are modeled as functions of the saturation.
The first equation in (2) expresses mass conservation, while the second equation
is the generalized Darcy equation, which is an approximation of the law for the
conservation of momentum, see [15]. The last two equations represent the con-
straint on the saturations and the relation among the phase pressures and the
capillary pressure respectively.
In [16] the authors propose a transformation that enables to rewrite system (2)
in a more standard way, i.e. one parabolic equation for the saturation coupled
with an elliptic equation for the pressure. This formulation is usually called
global pressure formulation or fractional flow formulation. To derive the new set
of equations we introduce two artificial variables: the total velocity u,

u(x, t) = uw(x, t) + un(x, t) , (3)

and the global pressure p,

p(x, t, Sw) = pn(x, t)− πw(Sw) , (4)

where

πw(S) =

∫ S

S0

krw (ξ) /µw

krw (ξ) /µw + krn (ξ) /µn

dpc
dSw

(ξ) dξ + π0 .

It is also convenient to introduce the phase mobilities λα = krα/µα, the total
mobility λ = λw + λn, the fractional flow fα = λα/λ and the modified gravity
acceleration G = (λwρw + λnρn) g/λ. After some manipulations, we can rewrite
the system 2 in the fractional flow formulation





∇ · u = −
∂Φ

∂t
−

∑

α=n,w

[
ρ−1
α

(
ΦSα

∂ρα
∂t

+∇ρα · uα

)
− qα

]
,

u = −λK (∇p−G) ,
∂ (ΦρnSn)

∂t
+∇ · (ρnun) = ρnqn ,

un = fnu− λwfnK

[
dpc
dSn

∇Sn + (ρw − ρn)g

]
,

(5)

in Ω × [0, T ). The first two equations are called pressure equations, while the
last two are called saturation equations. In many groundwater applications it is
normal to assume that the phase density ρα is constant, see for instance [17, 18],
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as a consequence, a simplified version of the above system can be obtained. If we
introduce also the assumption that the porosity Φ is constant the system reads





∇ · u = qw + qn ,

u = −λK (∇p−G) ,

Φ
∂Sn

∂t
+∇ · un = qn ,

un = fnu− λwfnK

[
dpc
dSn

∇Sn + (ρw − ρn)g

]
.

in Ω× [0, T ) (6)

The choice of the curves for capillary pressure pc and relative permeabilities krα
depends on the physical properties of the two phases and the rock. In typical
applications the wetting phase is water while the non-wetting phase is a liquid
or a gas. We are mostly interested in a water-liquid system, so we can use
the Brooks-Corey model, introduced in [19]. The expressions of the capillary
pressure and the relative permeabilities thus are

pc(Sw) = pdS
− 1

λ

w and





krw(Sw) = S
2+3λ

λ

w ,

krn(Sn) = S
2
n

[
1−

(
1− Sn

) 2+λ

λ

]
,

(7)

where λ is a parameter related to the pore size distribution, pd is the entry
pressure for the porous medium, Swr = Swr(x) is the residual saturation and Sα

is the effective saturation defined as

Sα =
Sα − Sαr

1− Swr − Snr
.

In the case of a water-gas system instead, one could instead use the Van Genuchten
model, introduced in [20]. More details on capillary pressure and relative per-
meabilities can be found in [14, 21].

2.1 The IMplicit Pressure Explicit Saturation method

In this section we present the numerical method employed to solve the system
of equations (6). Since the pressure and saturation equations are coupled the
solution relies on the IMPES splitting (IMplicit Pressure Explicit Saturation),
[13], that splits the solution of the system (6) in two subsequent steps. At each
time step we first solve the pressure equation. As the permeability depends on
saturation in the two-phase case, we evaluate it using the saturation computed
at the previous time step, obtaining a classic elliptic equation for pressure. The
second steps consists in solving the parabolic equation for saturation where the
advection velocity depends on the total Darcy velocity computed in the first step
of the splitting and kept ”frozen” for the time interval.

Standard continuous finite elements are not a suitable choice neither for the
pressure nor the saturation equation, being designed for problems with smooth

5



solutions, whereas in groundwater simulations the solutions may develop sharp
fronts due to convection effects. Another drawback of standard finite elements
in these applications is that the velocity of the two fluids, which is critical for the
coupling of the equations, is poorly approximated. More precisely, the constraint
on the sum of the saturations is better satisfied if the velocity field fulfills local
mass conservation. Finally the typical permeability in the equations may differ of
several orders of magnitude from one grid cell to the neighboring ones, resulting
in a loss of accuracy if the standard finite element method is employed. For these
reasons we adopted mixed finite elements, [22], for both the pressure equation
and the saturation equation, with an operator splitting technique for the latter
to split its advection and diffusion part.

2.1.1 The pressure equation

The first two equations in the system (6), form a linear elliptic problem in mixed
form for the global pressure p and the total velocity u.

To solve this problem in the IMPES framework we consider a subdivision of
the time interval [0, T ] into N + 1 sub-intervals, [tk, tk+1) with 0 = t0 < t1 <
. . . < tN+1 = T , and we indicate with the superscript k quantities at time tk.
To solve the pressure equation we treat the total mobility λ and the modified
gravity acceleration G explicitly, thus u and p are computed by solving

{
uk+1 = −λ

(
Sk
n

)
K

[
∇pk+1 −G

(
Sk
n

)]
,

∇ · uk+1 = qw + qn ,
in Ω (8)

for k = 1, 2, . . . N . Dividing the boundary of the domain ∂Ω into three disjoint
parts ΓD, ΓN and ΓR such that ∂Ω = ΓD ∪ ΓN ∪ ΓR, we can impose boundary
conditions of Neumann, Dirichlet and Robin type:





pk+1 = pN on ΓN ,

uk+1 · n = uD on ΓD ,

αuk+1 · n− pk+1 = uR on ΓR ,

where pN ∈ H1/2 (ΓN ), uD ∈ H−1/2 (ΓD) and uR ∈ L2 (ΓR) are given functions.
To write the weak formulation of (8) we introduce the functional spaces

Q = L2 (Ω) ,

Vm =
{
τ ∈ Hdiv (Ω) : τ · n = m on ΓD and τ · n ∈ L2 (ΓR)

}

and V = VuN
, and define the following bilinear forms and functionals

a (u, τ ) =

∫

Ω

[
λ
(
Sk
n

)
K

]−1
u · τ +

∫

ΓR

u · nτ · n ,

b (u, v) = −

∫

Ω
∇ · u v , F (v) =

∫

Ω
(qw + qn) v ,

G(τ ) =

∫

Ω
λ
(
Sk
n

)
KG

(
Sk
n

)
· τ +

∫

ΓR

uRτ · n−

∫

ΓN

pNτ · n .

6



The weak formulation reads: find
(
uk+1, pk+1

)
∈ V ×Q such that

{
a
(
uk+1, τ

)
+ b

(
τ , pk+1

)
= G(τ ) ∀τ ∈ V0 ,

b
(
uk+1, v

)
= −F (v) ∀v ∈ Q .

(9)

Under regularity assumptions on the data the problem is well posed, see [22].
Raviart-Thomas and discontinuous polynomial finite elements, with degree r,
are used for the space approximation of velocity and pressure respectively, in
particular we choose

Qh =
{
vh ∈ Q : vh|K ∈ Pr(K) ∀K ∈ Th

}
,

Vh =
{
τh ∈ V : τh|K ∈ RTr(K) ∀K ∈ Th

}
,

where Th is a regular and conforming tessellation of Ω. The resulting discrete
system is a saddle-point problem where the global matrix is symmetric but non-
defined. To recover the positivity of the matrix we use the hybridization and
static condensation techniques, see [22].

2.1.2 The saturation equation

Let us now consider the saturation equations, i.e. the last two equations of
the system (6), which constitute a non-linear and degenerate parabolic problem
written in mixed form. Non-linearities are contained in the transport and in
the diffusion terms, moreover the latter can also be degenerate if Sn = Snr or
Sn = 1−Swr. In the IMPES framework in each time interval [tk, tk+1) from the
pressure equation (8) we obtain the total velocity uk+1. Then, the saturation
equation, valid in Ω× [tk, tk+1), reads





Φ
∂Sn

∂t
+∇ · un = qn ,

un = fnu
k+1 − λwfnK

[
dpc
dSn

∇Sn + (ρw − ρn) g

]
.

(10)

Dividing the boundary of the domain ∂Ω into three disjoint parts ΥD, ΥN

and ΥR such that ∂Ω = ΥD ∪ ΥN ∪ ΥR, we impose the following boundary
conditions





Sn = SN on ΥN ,

un · n = un,D on ΥD ,

βun · n− Sn = un,R on ΥR ,

(11)

where SN ∈ H1/2 (ΥN ), un,D ∈ H−1/2 (ΥD) and un,R ∈ L2 (ΥR) are given
functions. In typical groundwater applications the transport term is often domi-
nant, so if we want to solve the equation accurately we need to use a stabilization
technique. There are several possibilities, for example upwinding techniques or

7



operator splitting. The latter is a common approach to this type of problems,
[23, 24, 25]. It is based on the splitting of the advection and diffusion opera-
tors leading to a non-linear purely hyperbolic equation and a non-linear purely
diffusive parabolic equation.

The first order splitting consists in solving the hyperbolic equation first,
obtaining an intermediate saturation that we call S̃n, then the parabolic equation
with initial condition S̃n. The hyperbolic step has to be solved first for several
reasons. First of all when we solve the hyperbolic step, we have to use boundary
conditions compatible with the hyperbolic problem, i.e. just inflow and outflow
type conditions, while the parabolic step uses the full set of boundary conditions
of our problem. Furthermore the typical choice is to use an explicit scheme for
the hyperbolic equation and an implicit scheme for the non-linear parabolic
equation. With this splitting we obtain a global scheme which is conditionally
stable and converges to the stationary solution of the problem for sufficient small
time step, [26].

Based on this consideration, at each time step we first solve the hyperbolic
problem, which reads




Φ
∂S̃n

∂t
+∇ ·

[
fnu

k+1 − λwfnK (ρw − ρn) g
]
= 0 ,

S̃k (t
n) = Sn

(
tk
)
,

(12)

obtaining S̃n at time tk+1. The boundary conditions are imposed only on the
inflow part of ΥN , defining the flux as

F(S) = fn(S)u
k+1 − λw(S)fn(S)K (ρw − ρn) g ,

then S̃n = SN on Υinflow
N =

{
ΥN ∩F

(
S̃n

)
· n > 0

}
. Setting

Q̃ =
{
S ∈ Q : S = SN on Υinflow

N

}
,

the weak formulation of the problem (12) can be written as: find S̃n ∈ Q̃ such
that

d

dt

(
ΦS̃n, v

)
L2(Ω)

−
(
F

(
S̃n

)
, ∇v

)
L2(Ω)

= 0 ∀v ∈ C∞
0 (Ω) ,

where (·, ·)L2(Ω) is the scalar product in L2(Ω). The study of the well posedness
of the problem is complicated and not completely solved, we refer to [27] and
contained references for a preliminary analysis in the relevant case of a flux
function discontinuous in space.

To solve the hyperbolic part we use the Discontinuous Galerkin method with
degree r, see [28], with a suitable numerical flux. In particular, due to the
heterogeneity of the medium, the flux function is discontinuous between one
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grid cell and the neighboring one, so we have to carefully choose the numerical
flux to satisfy the entropy condition. We refer to [29, 30, 31] for more details.

The second step of the splitting consists in solving the parabolic equation,
which reads





Φ
∂Sn

∂t
+∇ · ũn = qn ,

ũn = −λwfnK
dpc
dSn

∇Sn ,
in Ω×

[
tk, tk+1

)
(13)

with initial data Sn(t
k) = S̃n(t

k+1). The boundary conditions are defined in
(11). To write the weak formulation of (13) we introduce the functional spaces

Wm =
{
τ ∈ Hdiv (Ω) : τ · n = m on ΥD and τ · n ∈ L2 (ΥR)

}
,

and W = Wun,N
, and a nonlinear form and two functionals

w(u, Z, τ ) =

∫

Ω

[
λw(Z)fn(Z)K

dpc
dS

(Z)

]−1

u · τ +

∫

ΥR

u · nτ · n ,

FS(v) =

∫

Ω
qnv , GS(τ ) =

∫

ΥR

un,Rτ · n−

∫

ΥN

SNτ · n .

The weak formulation then reads: find (Sn, ũn) ∈ Q×W such that




w (ũn, Sn, τ ) + b (τ , Sn) = GS(τ ) ∀τ ∈ W0 ,

b (ũn, v)−
d

dt
(ΦSn, v)L2(Ω) = −FS(v) ∀v ∈ Q .

For the numerical solution we use the same finite element method as the pres-
sure equation, so that, in the case of the lowest order Raviart-Thomas elements,
the basis functions for the saturation Sn are the same as the basis functions
for the intermediate saturation S̃n. We handle the non-linearity in the diffusion
coefficient using a quasi Newton method and employ an inconditionally stable
BDF scheme for the time discretization, [32].

Since the time step for the hyperbolic part my be limited by a CFL condition,
we allow for sub-iteration, see for instance [24, 33], by taking in the hyperbolic
problem a time step which is a sub-multiple of the one used in the parabolic
problem.

3 A reduced model for the flow along faults and hori-

zons

In subsurface flow faults, horizons and large fractures can represent preferen-
tial paths for the flow. For instance during migration from the source rock to
the reservoir oil tends to flow, due to buoyancy, along the interfaces between
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coarse layers and the overhanging impermeable layers, or along faults. Sealed
fault can also act as barriers for the flow. Although faults and fractures are
often represented as surfaces they are indeed three dimensional regions with fi-
nite thickness, characterized by physical properties that differ from those of the
surrounding porous medium, and should be accurately resolved by the computa-
tional grid to achieve realistic simulations. However, being the typical size of a
basin 200Km× 200Km× 10Km the mesh is usually too coarse to capture these
features, whose characteristic dimension is of the order of some meters, unless
an extreme refinement is employed, leading to unreasonably high computational
times.

The alternative approach we adopt to account for these localized hetero-
geneities is a reduced model in which the fracture is represented by an interface
immersed in the three dimensional domain. The original Darcy problem is re-
placed by two coupled problems for the flow within the fracture and in the
surrounding domain.

In [5, 6, 7] the fracture flow equations and the proper interface conditions
across the fracture were identified and mixed finite element schemes for the
coupled porous medium flow / fracture flow were proposed, in the context of one
phase flow. In the same framework, the authors in [12] extended the reduced
model to the case in which the porous medium mesh and the fracture mesh are
independent and non-matching.

If we consider, for the sake of simplicity, a two-dimensional domain cut by a
thin region Ωf representing the fracture, as in Figure 1-a, the single phase Darcy
flow is described by the following system of equations and boundary conditions





∇ · ui = fq in Ωi, i = 1, 2, f ,

ui +Ki∇pi = fv in Ωi, i = 1, 2, f,

pi = pi on ΓNi
, i = 1, 2, f,

ui · n = gi on ΓDi
, i = 1, 2, f,

ui · n = uf · n on γi, i = 1, 2,

pi = pf on γi, i = 1, 2 ,

(14)

where ui and pi denote the Darcy velocity and the pressure in each subdomain
respectively.

To obtain a reduced Darcy problem we replace the domain Ωf with an in-
terface Γ and obtain the domain in Figure 1-b. If we suppose that fv = 0, that
the permeability tensor is isotropic in Ω1,2, i.e. K1,2 = kI, and define η = k−1
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a) b)

d

Ω
n2

Ω

Ωf

n

n1

γ2
γ1

Ω

n

Ω

Γ
n1

n2

Figure 1: a) Two dimensional domain divided in two subdomains Ω1,2 by a thin
region Ωf . b) Two dimensional domain cut by an N − 1 dimensional interface
Γ that replaces the subdomain Ωf .

the Darcy problem in Ω can be written as




∇ · u = fq in Ω,

ηu+∇p = 0 in Ω,

p = p on ΓN ,

u · n = g on ΓD

(15)

with the addition of suitable conditions on Γ. We also assume that the permeabil-

ity tensor in Ωf is block diagonal in local coordinates, i.e. Kf =

[
Kτ 0
0 Kn

]

where the subscript τ denotes the tangential directions on Γ and n is the normal
direction. If we decompose the Darcy equations in the normal and tangential
components and integrate the tangential components along the thickness d of
Ωf we obtain the reduced Darcy problem on Γ, namely





∇τ · û = f̂q in Γ,

η̂û+∇τ p̂ = 0 in Γ,

p̂ = p on Γ
⋂
ΓN ,

û · n = g on Γ
⋂
ΓD

(16)

where û is the integral of the velocity along the thickness, p̂ is the average
pressure in the fracture and η̂ is defined as η̂ = (dKτ )

−1. The source term
f̂q now accounts for the fluxes that enter the interface, being defined as f̂q =
dfq + Ju · nΓK, where we denote by JuK = u1 − u2 the jump of a function u that
may be discontinuous across Γ. Finally, the interface conditions to couple the
flow in Ω and Γ can be obtained from the physical coupling conditions in (14)
and the normal component of the equations in Ωf introducing assumptions on
the pressure profile along the thickness of Ωf . The coupling conditions in the
most general form, see [6], read

ξu1 · nΓ + (1− ξ)u2 · nΓ = 2η−1
Γ (p1 − p̂) on Γ ,

(1− ξ)u1 · nΓ + ξu2 · nΓ = 2η−1
Γ (p̂− p2) on Γ ,

(17)
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where ξ ∈ [0, 1] is a parameter and ηΓ is defined as ηΓ = dK−1
n

. For ξ > 1
2 , these

interface conditions can be rewritten as follows,

ηΓJu · nΓK =
4

2ξ − 1
({{p}} − p̂) on Γ,

ηΓ{{u · nΓ}} = JpK on Γ,
(18)

where {{u}} = 1
2(u1+u2) is the average of a function u that may be discontinuous

across Γ.

3.1 The finite element approximation with non matching inter-

faces

The reduced model for fractures is well established in the case where the compu-
tational grid is conforming with the fractures, i.e. the discrete fracture consists
of edges of the grid, or at most in the cases in which the nonconformity can be
handled by mortaring [34]. However, the conformity of the mesh to the geom-
etry of possibly many fracture can represent a severe constraint and affect the
quality of the mesh in particular for three-dimensional realistic cases. Moreover
in geophysical applications the geometry of the interfaces is often uncertain: in
this framework a method that allows for nonconformities is convenient since it
allows to simulate different scenarios without remeshing. We will here employ
the method proposed in [12] that exploits the extended finite elements to deal
with the case where some of the elements of the grid may be cut by the fracture.
To this aim, we adopt the approach of enriching the finite element basis on the
elements cut by the fracture with discontinuous functions. This XFEM concept,
here briefly presented for reader convenience (see [12] for details), follows from
the works by Hansbo et al. [35], [36], which however focuses on the elasticity
problem in domains with fractures.

To represent solutions that are discontinuous across Γ we need to enrich the
FEM space in the simplexes (triangles or tetrahedrons) of mesh Th that are
crossed by the interface.

We consider discrete velocities vh and pressures qh made of two components,
associated to the domains Ωi, i = 1, 2. The variables are defined in the following
spaces,

Vh = V1,h × V2,h and Qh = Q1,h ×Q2,h ,

with

Vi,h =
{
vh ∈ Hdiv(Ωi) : vh|Ki

∈ RT0(Ki) ∀K ∈ Th

}
,

Qi,h =
{
qh ∈ L2(Ωi) : qh|Ki

∈ P0(Ki) ∀K ∈ Th

}
,

where for any K ∈ Th RT0(Ki) =
{
vh|Ki

: vh ∈ RT0(K)
}

is the linear space

of the restrictions to Ki of the standard RT0 local functions and P0(Ki) is
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defined analogously. The discrete variables can thus be discontinuous on Γ, being
defined on each part Ki of a cut element K ∈ Gh by independent (RT0,P0) local
functions.

3.2 Solving the coupled problem

The original Darcy problem in the strongly heterogeneous domain Ω1
⋃
Ωf

⋃
Ω2

has been replaced by two Darcy problems in Ω and Γ, coupled by the interface
conditions (18). The coupled problem can be solved either by direct solution of
the full coupled system, or with an iterative procedure. The coupled system for
the bulk and fracture flow reads




A BT 0 E
B 0 0 0

0 0 Â B̂T

ET 0 B̂ 0







u

p

û

p̂


 =




fv
−fq
f̂v

−f̃q




where the blocks E and ET account for the interface conditions. Since the two
problems are defined on different and independent meshes in general an interpo-
lation has to be performed between the bulk mesh Th covering Ω and the fracture
mesh T̂h on Γ. The numerical results presented in this work were obtained by
direct solution of the full system, however we point out that the iterative strate-
gies discussed in [12], [6] are possible choices and have the clear advantage of
allowing the use of different solvers and possible parallel implementation.

4 Numerical results

In this section we present three test cases with the aim of validating the reduced
model on realistic cases and comparing it with the traditional approach. We
first present in Section 4.1 a three-dimensional simulation of a two-phase flow
along an impermeable fault fully resolved by the grid as our target application.
In Section 4.2 we consider a synthetic two-dimensional cases and evaluate the
difference between the resolved and the reduced model and finally in Section
4.3 we reformulate the problem in the first example replacing the fault with a
two-dimensional interface.

4.1 Two-phase flow along a fracture

We present a two-phase flow for a water-liquid system, with the non-wetting
phase lighter than the water, in the presence of a fracture. The fracture, which
acts as a barrier, is resolved by the computational grid. Figure 2 represents a
section of the domain: the computational domain is obtained by its extrusion
along the y axis and has dimension 4000m×200m×2000m. The mesh, composed
by 72892 tetrahedra, is conforming with the fault and more refined therein.
At initial time the medium is completely filled with water. We impose, for
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z
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n , pbott

Figure 2: Schematic representation of the computational domain.

t < 1900 years, Sinflow
n = 0.9 in the left part (marked in blue in Figure 2) of the

bottom boundary, while it is zero on the top. We impose pressure as a natural
boundary condition at the top (ptop) and the bottom left part (pbott) of the
domain, and homogeneous boundary conditions for the flux, for both pressure
and saturation equation, on the remaining part of the boundary. The data are
listed in the Table 1. Figure 3 represent the saturation Sn at two different times.

Table 1: Data for the problem of two-phase flow along a fracture.
Km = 10−13m2 Kb = 10−18m2 µw = 10−3 Pa · s

µn = 2 · 10−3 Pa · s ρw = 980Kg/m3 ρn = 700Kg/m3

Sαr = 0 λ = 2 pd = 1200Pa

Φ = 0.4 ptop = 40MPa pbott = 10MPa

On the left, at t = 630 years the saturation is higher along the fracture and fills
the left and bottom part of the domain, under the impermeable layer. On the
right, at t = 2540 years, the inflow of saturation has stopped and light fluid has
accumulated under the two impermeable layers. It can be observed also that the
first accumulation starts slowly to flow along the barrier.

Figure 3: The saturation of the liquid at two different times: on the left at
t = 630 years, on the right at t = 2540 years. The color scale ranges from blue,
Sn = 0, to red, Sn = 1.
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4.2 Darcy flow with two fractures - 2D case

Let us now consider some numerical examples where the presence of interfaces
is accounted for with and without the reduced model.

We here consider a two-dimensional problem in a square domain cut by two
fractures characterized by different properties. Let Ω = [0, 1]2, Γ1 = {(x, y) ∈
Ω : y = 0.27}, Γ2 = {(x, y) ∈ Ω : y = 0.5x + 0.34}, ΓD = {0, 1} × [0, 1], and
ΓN = [0, 1] × {0, 1}. The bulk flow and the flow in the fracture are described
by equations (15) and (16), with p = y, and d = 0.05. We consider no flux as
boundary conditions for the fractures. The source term fq is

fq =

{
10 if (x− 0.75)2 + (y − 0.5)2 < 0.04 ,

0 otherwise .

The first fracture, represented by Γ1, is characterized by the same tangential
permeability as the porous medium in Ω, thus, if k = 1 then η̂1 = d−1, while the
normal permeability is variable along the fracture,

ηΓ1
=

{
10d if x < 0.5 ,

100d if x ≥ 0.5 .

The second fracture, represented by Γ2, is instead characterized by the same
normal permeability as the porous medium in Ω, ηΓ2

= d, and a high tangential
permeability, thus η̂2 = 0.01d−1. Figure 4 shows the computational domain.

x
y

γ1

γ2

q = 10

u
·
n
=

0

p

u
·n

=
0

p

Figure 4: Computational domain cut by two interfaces.

Figure 5 shows the pressure field in Ω, Γ1 and Γ2, computed with the reduced
model, compared to the pressure obtained with a grid that resolves the fractures.
Due to the small normal permeability of Γ1 there is a jump in the pressure across
this fracture, and the gap changes along the line according to ηΓ1

. While Γ1 acts
as a barrier for the flow Γ2 is a preferential path thanks to its high tangential
permeability. The results are in good agreement even if the computational grid
used with the reduced approach is very coarse (about 1000 triangles instead of
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Figure 5: On the left the solution with the reduced model, with ξ0 = 0.25 and
using 952 triangles and 100 elements for each fracture. On the right the reference
solution with 125769 triangles.

105 for the refined case). Figure 6 shows the model error, i.e. the difference
between the reduced model and a reference solution, taking as reference the
solution of the true problem with a fine grid. Due to the model reduction
the major errors are localized near the fractures, in particular when a pressure
jumps occurs across a fracture. The global relative error, i.e. the L2 norm of

Figure 6: Model error for d = 0.05 and ξ0 = 0.25.

the model error divided by the norm of the reference solution, decreases if we
reduce the width of the fractures: with d = 0.05 the error is 0.0687755 while with
d = 0.02 the error is 0.0279828. Varying the shape parameter ξ0, with a fixed
fracture thickness d = 0.05, the relative error does not change significantly: with
ξ0 = 0.25 the error is 0.0687755, with ξ0 = 0 the error is 0.0683489 while with
ξ0 = 0.5 the error is 0.0691853, showing that the assumptions on the pressure
profile inside the fracture has little influence on the solution outside the fracture
itself.
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Figure 8: On the left, the pressure field of the problem in Section 4.1 at time
t = 0. On the right, the pressure field computed with a coarse mesh and the
reduced model for the fault. The domain is clipped at y = 100 to visualize the
pressure in the medium surroinding the fault.

gravity, yielding

ηΓJu · nΓK =
4

2ξ − 1
({{p}} − p̂) on Γ,

ηΓ{{u · nΓ}}+ {{G · nΓ}} = JpK on Γ.

Results are shown in Figure 8. The pressure field obtained with the fine mesh
is well reproduced with the coarse mesh and the reduced model for the flow along
the fault. There is a slight mismatch at the top and bottom boundary, where
the imposition of the natural boundary condition is less precise with a coarse
grid since pressure is approximated as piecewise constant on each tetrahedron.

The reduced model has been, so far, applied only in the single-phase case,
therefore a complete comparison of the resolved and reduced approaches is not
possible, nevertheless the pressure fields computed at given saturation in an IM-
PES framework are in good agreement. These results suggest that the presented
XFEM approach could be a valuable choice for realistic problems especially if
suitably extended to the multiphase case.

5 Conclusions and future works

The reduced model for flow along fractures and faults presented in this paper
is an effective strategy to handle complex heterogeneous media with affordable
computational cost. Nevertheless the method needs further improvement to be
suitable for realistic simulations of multiphase flows. First of all the solution
strategy developed for the saturation equation has to be extended to the case
of a fractured porous medium. Since the solution of the saturation equation is
based on a splitting of the hyperbolic and diffusive parts a reduced model has to
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be developed for the hyperbolic part of the saturation equation in the fracture,
together with a solver for the coupled hyperbolic problem in the matrix allowing
for non matching grids, i.e. cut cells. Moreover the fault and the porous matrix
are characterized by different absolute and relative permeabilities, resulting in
a flux function that is discontinuous in space: numerical schemes that yield the
correct entropy solution in this case are currently under study.
In realistic applications the domain is usually characterized by the presence of
several faults, fractures or horizons that may intersect. These configurations,
as well as the case of fractures completely immersed in the domain require an
enrichment of the XFEM space with additional basis functions.

To solve real problems with complex geometries, in the high performance
computing framework, we should develop scalable and robust preconditioners
suitable for problems characterized by high contrast, [37].

In this paper we have presented the application of the reduced model to
large scale fractures, like faults and horizons. The model is still applicable if we
consider, looking at a smaller scale, a portion of the basin with micro-fractures
that influence the permeability of the porous medium. The reduced model could
be applied in this framework to obtain an equivalent permeability tensor in the
presence of a network of fractures, as an alternative approach to be compared
with the classical methods such as homogenization.
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