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Abstract

Steering a system towards a desired target in a very short amount of time is a challenging task from a
computational standpoint. Indeed, the intrinsically iterative nature of optimal control problems requires
multiple simulations of the state of the physical system to be controlled. Moreover, the control action needs
to be updated whenever the underlying scenario undergoes variations, as it often happens in applications.
Full-order models based on, e.g., the Finite Element Method, do not meet these requirements due to the
computational burden they usually entail. On the other hand, conventional reduced order modeling tech-
niques such as the Reduced Basis method, despite their rigorous construction, are intrusive, rely on a linear
superimposition of modes, and lack of efficiency when addressing nonlinear time-dependent dynamics. In
this work, we propose a non-intrusive Deep Learning-based Reduced Order Modeling (DL-ROM) technique
for the rapid control of systems described in terms of parametrized PDEs in multiple scenarios. In particular,
optimal full-order snapshots are generated and properly reduced by either Proper Orthogonal Decomposi-
tion or deep autoencoders (or a combination thereof) while feedforward neural networks are exploited to
learn the map from scenario parameters to reduced optimal solutions. Nonlinear dimensionality reduction
therefore allows us to consider state variables and control actions that are both low-dimensional and dis-
tributed. After (i) data generation, (ii) dimensionality reduction, and (iii) neural networks training in the
offline phase, optimal control strategies can be rapidly retrieved in an online phase for any scenario of in-
terest. The computational speedup and the extremely high accuracy obtained with the proposed approach
are finally assessed on different PDE-constrained optimization problems, ranging from the minimization of
energy dissipation in incompressible flows modelled through Navier-Stokes equations to the thermal active
cooling in heat transfer.

Keywords: optimal control, PDE-constrained optimization, parametrized systems, reduced order modeling,
deep learning, fluid flows, heat transfer

1. Introduction

Controlling dynamical systems is one of the most challenging and widespread tasks in Applied Sciences
and Engineering. For instance, reducing energy consumption, ensuring system stability, or attaining a
desired configuration, are just three examples of problems that can be cast in the framework of Optimal
Control Problems (OCPs). In order to steer the dynamics of a physical system towards a desired target,
a suitable control action has to be properly selected and tuned. The optimal control strategy is typically
found as a minimum point of a loss or cost functional. Minimization has to be constrained by the governing
equation driving the considered dynamics in order to narrow the space of possible solutions on those that
are physically admissible [44]. The governing equations may be, in general, algebraic systems, ordinary
differential equations or, as considered in the following, Partial Differential Equations (PDEs). Specifically,
we take into account PDEs parametrized by a vector of input (or scenario) parameters µs. Indeed, our
main goal is to conceive an efficient numerical strategy to determine optimal controls in multiple scenarios of
interest as fast as possible. OCPs governed by PDEs are traditionally solved by exploiting high-fidelity full-
order models (FOMs) based on discretization techniques such as, e.g., the Finite Element Method (FEM).
Despite their ubiquitous use – from fluid flows, backs to the 90s [26, 30, 25] to more recent applications in
robotic swarms [68, 67, 69, 66] and acoustic and thermal cloaking [16, 14, 70, 63] – relying on FOMs becomes



unfeasible in the case of multiple scenarios, since an iterative optimization procedure and thus several PDE
solves would be required for each new scenario.

Reduced Order Modeling (ROM) techniques [28, 54, 10, 43], such as the Reduced Basis (RB) method
relying on Proper Orthogonal Decomposition (POD), have been largely exploited to reduce the dimension-
ality of optimality equations and thus enable faster resolutions [38, 39, 49, 5, 2, 70]. In the context of Model
Predictive Control (MPC), POD and system identification techniques, such as Dynamic Mode Decomposi-
tion (DMD) [64], Sparse Identification of Nonlinear Dynamics (SINDy) [12, 13] or Eigensystem Realization
Algorithm (ERA), have been employed to replace the physical constraint by a low-rank surrogate model
[34, 29, 52]. Similar strategies are exploited to describe the dynamics of usually low-dimensional observables
measured by sensors, that is, an approximation of the Koopman operator [51, 36, 37]. However, the linear
and intrusive nature of the RB method does not make it suitable, or computationally affordable, whenever
(i) the finite element matrices are not accessible, (ii) if the physical laws are nonlinear, or (iii) if the problems
are not affine with respect to the scenario parameters.

In addition to ROM strategies, neural networks have been more recently considered in the literature to
speed up the resolution of OCPs. For instance, in the MPC framework, the differential equations appearing
as constraints are often approximated through neural network-based surrogate models [19, 15, 7, 50, 3], such
as Recurrent Neural Networks, Physics-Informed Neural Networks or Input Convex Neural Networks, which
replicate the dynamics of the available data, achieving a remarkable computational speedup. However, since
no reduction techniques have been systematically applied in these cases, only low-dimensional states and
controls can be taken into account to deal with feasible input and output neural networks dimensions.

To overcome the limitations of the previous ROM frameworks and thus allowing for greater flexibility
and speedup, in this work we exploit non-intrusive ROM strategies to develop a framework able to solve any
high-dimensional parametrized OCP in real-time for multiple scenarios. Differently from the RB method,
non-intrusive techniques compress the available data through POD [27], deep convolutional autoencoders
[21, 20], or a combination thereof [22], while the map going from scenarios to the reduced optimal solution can
be modeled through a deep feedforward neural network. A combination of linear dimensionality reduction
and neural networks has also been considered by [41] in the context of robust control, while convolutional
autoencoders are taken into account, for instance, by [32] to reduce the dimensionality of uncontrolled state
snapshots. In this work, instead, we properly reduce also high-dimensional control variables and we focus
on controlled snapshots in order to avoid costly optimization procedures when computing optimal actions
related to new scenarios.

OCPs have been increasingly addressed with Physics-Informed Neural Networks (PINNs) [57] modeling
the space-time dependence of state variables. In addition to the misfit between model outputs and experi-
mental data, PINN also encode the residuals of the physical equations in the loss function to be minimized
as regularizing terms to achieve more consistent results. For example, [75, 31] solve OCPs approximat-
ing the control-to-state map through Physics-Informed Deep Operator Networks (PI-DeepONets [76, 40]).
Moreover, all-at-once strategies based on PINNs, where optimal control, state, and adjoint variables are
estimated with neural networks properly trained, generally speaking, minimizing the residuals of first-order
optimality conditions, have been also investigated [47, 4, 18, 77]. Notably, akin to our approach, [18, 77]
consider parametrized PDEs to quickly retrieve parameter-specific optimal control strategies: however, in
contrast to our approach, the lack of dimensionality reduction techniques and a data-driven approach result
in expensive training phases.

Another interesting and promising method to solve control problems is represented by Reinforcement
Learning [71] and, more recently, Deep Reinforcement Learning (DRL). This framework aims to learn an
optimal policy, that is, an optimal state-to-control map, in order to control a physical system from sensor-
based measurements or simulated snapshots. This is achieved thanks to an iterative interaction between
the agent – which has to decide the best possible control action to apply – and the environment, which is
the dynamical system under investigation, possibly described by differential equations. At every episode,
the agent applies a time-dependent action on the environment and receives the corresponding state and
reward values: thanks to this information, it is possible to improve the policy towards the optimum trying
to maximize the reward, i.e., to minimize the cost. This strategy has been exploited in several applications
such as, e.g., flow control problems [60, 72, 55] or metamaterial design and cloaking [65, 45]. DRL algorithms
usually deal only with low-dimensional variables due to sample inefficiency and computationally demanding
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training phases. To restrict the number of agent-environment interactions, [78] exploit SINDy to build
efficient and interpretable surrogate models for the environment, the reward and the policy, however only
addressing low-dimensional dynamical systems and without considering systems described in terms of PDEs.
[42], instead, handle high-dimensional observations through autoencoders in order to jointly reduce the
problem dimensionality and learning an optimal policy more quickly in the context of fluid jets control for
ball games. In this work, we consider similar reduction strategies to deal with high-dimensional state and
control variables. Moreover, we focus on parametrized PDEs to easily handle state variability, as recently
proposed by [8] in the context of DRL, and we exploit an offline-online decomposition as done by [62].
However, we do not consider feedback signals; rather, we only require to select the new scenario parameters
to infer the corresponding optimal pair, with no need of state measurements online. For a complete overview
on DRL see, e.g., [23, 73, 56] while, for a general introduction on hybrid approaches that combine machine
learning techniques into physical problems, see, e.g., [11, 61, 74, 59].

The paper is organized as follows. Section 2 reviews parametrized optimal control problems and intrusive
dimensionality reduction techniques, such as the RB method. Section 3 proposes a nonlinear and non-
intrusive reduced order modeling strategy based on deep learning to solve optimal control problems of
parametrized PDEs in real-time. Section 4 shows the performances of the proposed approach on three
different applications ranging from flow control to active thermal cooling. Section 5 discusses some future
development ideas about possible extensions of the proposed tool.

2. Optimal control of parametrized partial differential equations

This section briefly introduces the formulation of parametrized OCPs, the high-fidelity full-order model
based on the finite element method, and standard dimensionality reduction techniques taken into account
to speed up the resolution of OCPs.

2.1. Mathematical formulation of parametrized optimal control problems
Optimal control problems aim at finding the best control action capable of steering the dynamics of a

(state) system as close as possible to a target configuration. This task is usually achieved by minimizing a cost
functional subject to the constraint expressed by the state equation – this latter consisting of a differential
problem – as follows:

Given µs, find Jh(xh;µs) → min s.t. Gh(xh;µs) = 0, xh ∈ Xad (1)

where xh = (yh,uh) ∈ RNy
h × RNu

h are the optimization (state and control) variables, possibly subject to
additional constraints (here Xad = Yad × Uad). For the sake of simplicity, we directly take into account
the discrete state and control variables, obtained by discretizing the state problem by means of a high-
fidelity full-order model (FOM) built through, e.g., the finite element method (FEM). In practice, the
infinite-dimensional state y and control u are approximated by yh ∈ Yh and uh ∈ Uh, where Yh and Uh are
finite-dimensional spaces spanned by a basis of Ny

h and Nu
h elements, respectively – here h > 0 denotes the

discretization parameter related to the mesh size, so that the smaller h, the larger Ny
h and Nu

h and the more
accurate and computational expensive the FEM approximation. In this way, we can retrieve the algebraic
formulation of the differential equations in terms of yh ∈ RNy

h and uh ∈ RNu
h , that are the basis expansion

coefficients of yh and uh. Notice that, whenever a nodal basis is chosen, yh and uh corresponds to the state
and control values at the mesh nodes. For a complete presentation of FEM and optimal control problems,
see, e.g., [53, 44]. In particular:

1. State equation. The governing equation Gh(xh;µs) = 0, with Gh ∈ RNy
h , encodes the physical

law describing the state dynamics in a region of interest Ω and, possibly, over a time interval (0, T )
for a given final time T > 0. In this work, we focus on (nonlinear and/or time-dependent) PDEs
parametrized by a vector of p scenario parameters µs belonging to a parameter space P ⊂ Rp. For
example, µs may (i) represent physical or material properties appearing in the equation, (ii) account
for the geometrical variability of the region where the phenomenon takes place, or (iii) appear as
a result of the parametrization of a given term in the PDE. Note that, in case of time-dependent
problems, the time variable t is regarded as an additional scenario parameter. The considered PDEs
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are thus affected by both the control action uh and the vector of parameters µs. The former is the
quantity to tune in order to steer the dynamics towards the target, the latter represents the scenario
variability that we want to address. Indeed, we aim to control the dynamics for multiple scenarios
as fast as possible. The governing equation also includes suitable boundary and initial conditions on,
respectively, ∂Ω× (0, T ] and Ω× {t = 0}, in order to deal with well-posed problems and to ensure the
existence and uniqueness of an optimal solution that depends continuously on the problem data.

2. Cost functional. Jh(xh;µs) : RNy
h × RNu

h → R is a function encoding the objective to be achieved.
The minimum point of Jh corresponds to the optimal state and control variables, also referred to as
optimal pair. To guarantee the OCP well-posedness and avoid control strategies that are unfeasible
from an energetic standpoint, additional regularization terms are typically added in the cost functional
like, e.g., the L2-norm of the control and its gradient [44]. Note that, since the information on the state
of the system is often incomplete, a partial observation zh = Chyh ∈ RNz

h , with Ch : RNy
h → RNz

h , can
replace the state in the definition of Jh.

2.2. Parametrized optimal control problems: from full-order models to reduced order models
Solving PDE-constrained optimization problems is a challenging task due to the interplay between the

optimization workflow and the approximation of the underlying PDE. In the unconstrained case (when no
constraints are set on xh, that is, Xad is the entire space) a set of Karush-Kuhn-Tucker (KKT) optimality
conditions can be obtained through the Lagrange multipliers’ method, and reads as follows:

Fh(xh,ph;µs) =

[
gh(xh;µs) + C⊤

h (xh;µs)ph

Gh(xh;µs)

]
= 0 (2)

where ph ∈ RNp
h is the discrete adjoint vector,

C⊤
h (xh;µs) = [∂yGh(xh;µs) ∂uGh(xh;µs)] ∈ RNp

h×(Ny
h+Nu

h )

is the state operator Jacobian, whereas

gh = [∇yJh(xh;µs) ∇uJh(xh;µs)]
⊤ ∈ RNy

h+Nu
h

is the gradient of Jh with respect to xh = (yh,uh). Assuming that the same space is used to discretize both
state and adjoint variables, we have Np

h = Ny
h . To better highlight the structure of the KKT optimality

conditions and the role of the adjoint equation, we can equivalently rewrite system (2) as follows:
∇yJh((yh,uh);µs) + (∂yGh((yh,uh);µs))

⊤ph = 0 (adjoint equation)
∇uJh((yh,uh);µs) + (∂uGh((yh,uh);µs))

⊤ph = 0 (optimality condition)
Gh ((yh,uh);µs) = 0 (state equation).

(3)

The optimality system (3) is usually a coupled, nonlinear (and possibly time-dependent) system that
can in principle be solved through the Newton method – this corresponds to the so-called direct method
in optimal control. Alternatively, the indirect method takes into account a two-step process where (i) the
solution of the state and the adjoint problems and (ii) the minimization of the cost functional by means of
a descent method are considered iteratively until convergence.
Remark. In the simplest case where a quadratic cost functional

Jh(yh,uh;µs) =
1

2
(yh − yd)

⊤Mh(yh − yd) +
β

2
u⊤
hMhuh

and a linear, stationary state problem

Gh(yh,uh;µs) = Ah(µs)yh − fh(µs)− Bh(µs)uh
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Figure 1. Test 1.1. Indirect approach for a PDE-constrained optimization problem in the case of steady fluid flow control.
Here u

(k)
h is the suboptimal boundary control at the k-th iteration of the optimization loop; y

(k)
h denotes the corresponding

flow velocity computed by solving the steady Navier-Stokes equations; p(k)
h is the corresponding adjoint variable, resulting from

the adjoint equation; u(k+1)
h is the boundary control updated through the steepest descent method with step size η.

are considered, with yd standing for the target state, (3) becomes a linear system featuring a saddle-point
structure, of the following form:  Mh 0 A⊤

h

0 βMh −Mh

Ah −Mh 0


︸ ︷︷ ︸

Kh(µs)

yh

uh

ph


︸ ︷︷ ︸
qh(µs)

=

Mhyd

0
fh


︸ ︷︷ ︸

sh(µs)

. (4)

where Ah denotes the stiffness matrix, Mh the mass matrix, Bh the control-to-state matrix, fh the source
term.

Figure 1 shows the rationale behind indirect approaches, focusing on the control problem we will tackle
in Section 4.1.1 for a steady flow past an obstacle. Starting from an initial control strategy, here expressed
as a boundary datum on the obstacle, the flow field is computed together with the adjoint variables in order
to compute the gradient ∇uJh(yh(uh),uh) and then update the control values toward the minimum of the
loss function in case, e.g., a steepest descent method is employed. These steps have to be repeated iteratively
until a suitable convergence criterion is met.

The loop sketched in Figure 1 thus requires a PDE solve at every optimization step in order to compute the
state yh starting from the current control uh. When considering the algebraic formulation obtained through
the FEM approximation, this is equivalent to solve a (possibly, nonlinear and/or time-dependent) system
of Ny

h equations. Similarly, the adjoint problem requires the solution of a linear (possibly time-dependent)
system of Np

h equations. Especially when taking into account challenging small-scales dynamics, Ny
h (and Np

h)
can be rather large, ultimately entailing a huge computational burden. Even more importantly, whenever
optimal control strategies must be determined for different scenarios of interest, the entire optimization
procedure has to be repeated almost from scratch. For these reasons, as usually suggested in many-query
contexts, smart reduction strategies are strongly suggested to shrink the problem dimension and to speed
up the OCPs resolutions.

The Reduced Basis (RB) method [28, 54] relying, e.g., on Proper Orthogonal Decomposition (POD),
may be exploited to speed up computations when solving parametrized OCPs [49, 48, 54]. Thanks to the
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RB method, the dimensions of state, control, and adjoint variables can be reduced through a projection onto
linear subspaces of dimensions Ny, Nu, and Np, that is, we express

yh(µs) ≈ VyyN (µs), uh(µs) ≈ VuuN (µs), ph(µs) ≈ VppN (µs) (5)

where the projection matrices Vy ∈ RNy
h×Ny , Vu ∈ RNu

h×Nu , and Vp ∈ RNp
h×Np collect the basis elements

spanning the low-dimensional RB subspaces. These latter are obtained through the Singular Values De-
composition (SVD) of the matrices collecting optimal state, control, and adjoint snapshots computed for
suitably sampled scenarios {µ(1)

s , . . . ,µ
(Ns)
s } ∈ PNs and, in case of time-dependent problems, on a time

grid discretizing the interval [0, T ]. In particular, RB subspaces for parametrized OCPs are the left singular
vectors associated to the Ny, Nu, Np largest singular values, respectively. On the other hand, the reduced
coordinates are usually obtained through a (Petrov-)Galerkin projection of each equation of (3) onto the
corresponding subspace Vy, Vu, and Vp. See, e.g., [58, 33, 6, 43] for some examples on the use of POD-based
ROM techniques in the case of optimal control problems.

Compared to an indirect approach, in which each equation appearing in the system (3) is usually reduced
independently, a suitable compatibility condition must be ensured between state and adjoint reduced sub-
spaces when a direct approach is used. In particular, if a Galerkin projection is employed to generate the
ROM, an aggregated trial space Vyp made of both state and adjoint basis functions is introduced to preserve
the stability of the resulting ROM. This latter would read as follows:

V⊤Fh(VqN (µs))︸ ︷︷ ︸
FN (VqN (µs))

= 0 with qN (µs) =

yN (µs)
uN (µs)
pN (µs)

 , V =

Vyp 0 0
0 Vu 0
0 0 Vyp

 , Vyp = [Vy Vp]

(6)

Remark. In the case of a linear-quadratic OCP, the RB method would yield the following reduced order
model: given µs, solve

V⊤Kh(µs)V︸ ︷︷ ︸
KN (µs)

qN (µs) = V⊤sh(µs)︸ ︷︷ ︸
sN (µs)

.

See, e.g., [49, 48] for a series of applications of direct OCP solvers exploiting the RB method in the case
of either advection-diffusion problems or Stokes flows, and a thorough discussion on the construction of RB
spaces in those cases.

A direct OCP solver exploiting the RB method is summarized in Figure 2. For any new scenario, the
optimal state, adjoint and control can be computed all-at-once by solving the reduced Karush-Kuhn-Tucker
(KKT) system, that is obtained through a Galerkin projection. Thanks to the RB method, it is therefore
possible to retrieve, online, the optimal solution corresponding to a new unseen scenario µnew

s faster through
the resolution of a smaller KKT system. The use of a direct approach, aiming at solving the parametrized
KKT system through the RB method, can be found instead in [49, 48, 35].

Despite several results featuring a wide range of applications, the RB method lacks of efficiency whenever
aiming at the rapid control of systems in multiple scenarios. Indeed, the RB method relies on the linear
superimposition of modes: hence, the ROM dimension can become moderately large to ensure accuracy in
case of more complex problems, therefore avoiding a very rapid solution of the ROM problem for any new
parameter instance. This might happen, e.g., if the parameter-to-solution dependence is rather involved, or
in the case of complex physical behaviors of the state system (e.g., in presence of strong nonlinearities or
dominated advection regimes). Moreover, the intrinsic coupling between state, adjoint, and control variables
adds a further, strong difficulty, requiring to reduce all the three fields involved in the system of optimal-
ity conditions. Furthermore, a projection-based ROM is an intrusive technique since the FOM structures,
such as the matrix and the right-hand side of the KKT system appearing in (2), must be directly modified
and projected to obtain the ROM structures appearing in (6). This operation is not always feasible since
the arrays appearing in (2) may be not directly accessible; on the other hand, the use of hyper-reduction
strategies in presence of either non-affine parameter dependencies or nonlinearites is almost out of reach for
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Figure 2. Test 1.1. Offline-online decomposition required to solve PDE-constrained optimization problems faster exploiting a
reduced basis solver, in the case of steady flow control. Offline: generation of optimal state, adjoint and control snapshots for
random scenarios and reduction of the first-order optimality conditions in the KKT system. Online: resolution of the reduced
KKT system to compute the optimal state, adjoint and control for a new scenario of interest. In general, the reduced KKT
system is solved through the Newton method with reduced Jacobian matrix JFN

and right-hand side FN properly approximated.

OCPs given the coupled nature of these problems. Last, but not least, the inclusion of either control or state
constraints is not straightforward in a ROM obtained through the RB method.

All these difficulties led us to draw an alternative ROM strategy to tackle the rapid solution of param-
eterized OCPs in multiple scenarios leveraging on deep learning algorithms, focusing in particular on deep
learning-based reduced order models, as detailed in the following section.

3. Deep learning-based reduced order modeling for parametrized optimal control problems

This section presents a nonlinear and non-intrusive ROM strategy that allows to retrieve optimal states
and controls in real-time for a given problem in multiple scenarios. Nonlinear and non-intrusive ROMs
have been recently introduced – see, e.g., [27, 21, 22] – in order to overcome the limitations of the RB
method highlighted in Section 2.2. In particular, instead of considering linear approximations relying on
POD subspaces, snapshots can be compressed onto a low-dimensional space through nonlinear maps such
as, e.g., autoencoders (AEs), that must be learnt. This allows to achieve the task of learning a reduced trail
manifold in a much more effective way. Indeed, an autoencoder is a neural network architecture consisting
of an encoder that compresses the available snapshots (to reach a very low-dimensional representation in the
so-called latent space) and a decoder that recovers the full input information. The composition of the encoder
and the decoder somehow approximates the identity map – imposing that the reconstructed data are as close
as possible to the original ones. Differently from POD where the encoding and decoding actions are performed
through multiplications by the matrices V⊤ and V, the nonlinear activation functions within the hidden layers
of the autoencoder network result in a nonlinear dimensionality reduction. For instance, [21, 20] propose a
Deep Learning-based Reduced Order Model (DL-ROM) which exploits convolutional autoencoders to take
advantage of the spatial structure of PDE solutions prioritizing the dependencies of nearby values. [22],
instead, presents the so-called POD-DL-ROM framework where (i) the snapshots are initially compressed
through POD and (ii) the resulting POD coefficients are further reduced by an autoencoder – see also [9] for
further details. The reduction combining POD and autoencoders will henceforth be referred to as POD+AE.
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Observe that, whenever POD is enough to retrieve an acceptable low-dimensional latent representation of
the data, nonlinear reduction schemes may be avoided, as proposed by [27] with the POD-NN framework.

Another key ingredient to achieve flexible and efficient ROMs is non-intrusiveness. Specifically, instead
of projecting, assembling and solving a reduced system of equations as in the case of the RB method, the
solutions related to new scenarios are rather retrieved by means of surrogate models. For instance, deep
feed-forward neural networks may be taken into account to generate the reduced solution in the latent space
starting from the input parameters µs (and, in case of time-dependent problems, the time variable t). For
example, regarding the POD-NN framework, a neural network is exploited to approximate non-intrusively
the map from µs (and possibly time) to the projected snapshots data in the POD subspace, thus avoiding
the (usually, intrusive) assembling of a reduced problem. Note that the reduction step is crucial to deal
with low-dimensional neural networks, allowing for lighter training and faster evaluations. By doing so, after
training the solution associated with a new time instant tnew and a new scenario µnew

s may be computed
inexpensively, through a forward pass of the parameter-to-solution map and the decoder.

To rapidly solve a wide range of OCPs for multiple scenarios of interest, it is therefore possible to adapt
and exploit the workflow of DL-ROMs introduced in [21, 20]. Specifically, we propose a deep learning-
based ROM technique in the context of parametrized OCPs, as outlined in the following offline-online
decomposition.

3.1. Offline (training) phase
During the offline phase, the neural network architectures – i.e., the autoencoder for the sake of di-

mensionality reduction, and the feedforward neural network representing the parameter-to-solution map –
must be trained. Prior to this task, a set of snapshots representing optimal (state and control) solutions
for selected values of the input parameters µs must be computed exploiting a high-fidelity solver. More in
detail, we perform the following steps.

• We compute Ns full-order optimal state and control snapshots by solving the system of first-order
optimality conditions (3) for different random scenario parameters sampled in the parameter space P,
i.e.

{yh(µ
(1)
s ), ...,yh(µ

(Ns)
s )}

{uh(µ
(1)
s ), ...,uh(µ

(Ns)
s )}

where the number of snapshots Ns strongly depends on several factors such as the scenario parameters
dimension as well as the complexity of the parameter-to-solution map and the physics at hand. In case
of time-dependent problems, for each sampled scenario, the optimal snapshots are computed on a time
grid {tj}Nt

j=1 discretizing the interval [0, T ], that is

{yh(t1,µ
(1)
s ), ...,yh(tNt ,µ

(1)
s ), ...,yh(t1,µ

(Ns)
s ), ...,yh(tNt ,µ

(Ns)
s )}

{uh(t1,µ
(1)
s ), ...,uh(tNt

,µ(1)
s ), ...,uh(t1,µ

(Ns)
s ), ...,uh(tNt

,µ(Ns)
s )}

To generate controlled pairs, in this work we exploit high-fidelity OCP solvers based on a finite element
discretization of the system of optimality conditions. Note that either direct or indirect approaches
can be used to generate snapshots, in case a direct approach yields an algebraic problem hard to solve.
Note also that optimal (state and control) snapshots are useful to restrict optimization procedures
offline and thus to achieve real-time control capabilities in the subsequent online stage.

• We reduce the dimensionality of optimal state snapshots and, in case of high-dimensional controls, of
optimal control snapshots, too. To reach this goal either POD, an autoencoder, or a combination of
the two strategies (POD+AE), can be employed. If POD is taken into account, the reduction results
in the matrix multiplications between snapshots and projection matrices, that is

yN = V⊤
y yh, uN = V⊤

u uh
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When considering DL-ROMs involving autoencoders on full-order snapshots, namely

yN = φy
E(yh); yh = φy

D(yN )

uN = φu
E(uh); uh = φu

D(uN )

where φy
E , φ

y
D, φu

E and φu
D denotes the encoding and decoding networks applied respectively to state

and control, the following mean squared errors are taken into account as training losses

Jy
AE = ∥yh − yh,rec∥2 = ∥yh − φy

D(φy
E(yh))∥

2

Ju
AE = ∥uh − uh,rec∥2 = ∥uh − φu

D(φu
E(uh))∥2

where ∥·∥ stands for the Euclidean norm. Instead, in the context of POD-DL-ROM where a POD+AE
reduction is performed, the autoencoder is applied on the projection of the snapshot data onto a
(potentially larger) POD space, namely

yN = φy
E(V

⊤
y yh); yh = Vyφ

y
D(yN )

uN = φu
E(V⊤

u uh); uh = Vuφ
u
D(uN )

and the training is performed with respect to the loss functions

Jy
POD+AE =

∥∥V⊤
y yh − V⊤

y yh,rec

∥∥2 =
∥∥V⊤

y yh − φy
D(φy

E(V
⊤
y yh))

∥∥2
Ju
POD+AE =

∥∥V⊤
u uh − V⊤

u uh,rec

∥∥2 =
∥∥V⊤

u uh − φu
D(φu

E(V⊤
u uh))

∥∥2 .
• We build and train a deep feed-forward neural network φ mapping the scenario parameters µs – and,

in case of unsteady problems, the time t – onto the latent representations of optimal state and control,
that is [

ỹN

ũN

]
= φ(t,µs).

In particular, the loss function employed to train φ is

Jφ =
Ny

Ny +Nu
∥yN − ỹN∥2 + Nu

Ny +Nu
∥uN − ũN∥2

where the two weighting coefficients equally leverage state and control data reconstruction at the latent
level.

Figure 3 visually represents the proposed architecture when taking into account a POD-DL-ROM. Note
that, in general, we select the most efficient non-intrusive reduced order model – among POD-NN, DL-ROM,
and POD-DL-ROM – for every specific OCP balancing lightweight and accuracy. In addition, according
to the dynamics under investigation and the control action chosen, optimal state and control snapshots
may be compressed exploiting two different reduction strategies. Moreover, yh and uh may be reduced
independently, as done in the applications detailed in Section 4, or together with, e.g, a single autoencoder.
The dimensionality reduction step is crucial to deal with high-dimensional state variables and distributed
control fields, as of interest in the applications presented in Section 4: indeed, it allows to consider parameter-
to-solution maps with compressed output sizes that are lighter to train and faster to evaluate online.
Remark. Note that, despite a set of solutions of the adjoint problem are generated while solving the system
of optimality conditions during the snapshots’ calculation, these data are discarded and no reduction is
operated on the adjoint field, in the proposed workflow. This also represents a major difference compared to
projection-based ROMs for optimal control problems, that must include the evaluation of the adjoint solution,
thus yielding higher complexity and costs. Nevertheless, in case the adjoint solution is also required as a
specific requirement of the application at hand, the workflow discussed so far can be easily adapted to
generate the adjoint field, too.
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Figure 3. Test 1.2. Deep learning-based reduced order model architecture to solve parametrized optimal control problems in
real-time. Optimal state and control snapshots are generated and reduced through a combination of POD and autoencoders.
Moreover, the map φ from time and scenario parameters to reduced optimal pair is modeled through a feed-forward neural
network. After properly training the networks in the offline phase, the full-order optimal pair corresponding to a new time
instant tnew and a new scenario µnew

s is retrieved online by a forward pass through φ and the decoders.

3.2. Online phase
During the online phase, once the proposed architecture has been trained, it is possible to evaluate

the optimal (state and control) solution for new scenarios. In particular, we can retrieve the optimal pair
associated with a new scenario µnew

s and, in case of time-dependent problems, a new time instant tnew

through a forward pass of the trained neural networks, that is[
ỹh,new
ũh,new

]
= φD

([
ỹN,new
ũN,new

])
= φD(φ(tnew,µnew

s ))

where, for the sake of compactness, φD combines the state and control decoders. Specifically, depending on
the reduction technique taken into account, φD results in

φD

([
ỹN,new
ũN,new

])
=



[
Vy 0

0 Vu

][
ỹN,new

ũN,new

]
in case a POD-NN is used[

φy
D (ỹN,new)

φu
D (ũN,new)

]
in case a DL-ROM is used[

Vy 0

0 Vu

][
φy
D (ỹN,new)

φu
D (ũN,new)

]
in case a POD-DL-ROM is used.

The proposed architecture is extremely flexible thanks to its non-intrusive data-driven nature and the inde-
pendence of the surrogate models on the particular problem faced. Indeed, it can be applied to a wide range
of parametrized OCPs, as demonstrated throughout Section 4, and can be extended to deal with different
data sources, such as sensors or recordings.
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4. Numerical results

This section is devoted to the numerical results obtained with the proposed architecture when tackling
three distinct parametric OCPs in two spatial dimensions. Section 4.1 focuses on nonlinear OCPs involving
the minimization of the energy dissipated by a fluid flow passing an obstacle in a channel considering both
steady and time-dependent Navier-Stokes equations to model its dynamics. Section 4.2, instead, takes into
account an active thermal cooling problem where the temperature of an object has to be kept equal to a
reference value. To perform error analysis and fairly assess the performance of the proposed machinery,
we consider a test dataset {yh(tj ,µ

(i)
s ),uh(tj ,µ

(i)
s )}(i,j)∈Itest where Itest ⊂ {1, ..., Ns} × {1, ..., Nt} and

|Itest| ≈ 0.2NtNs. In particular, the following mean relative errors are considered for evaluation purposes:

εyrel,L2 =
1

|Itest|
∑

(i,j)∈Itest

√√√√∫
Ω
∥yh(tj ,µ(i)

s )− ỹh(tj ,µ
(i)
s )∥2dΩ∫

Ω
∥yh(tj ,µ(i)

s )∥2dΩ

εurel,L2 =
1

|Itest|
∑

(i,j)∈Itest

√√√√∫
Ω
∥uh(tj ,µ

(i)
s )− ũh(tj ,µ

(i)
s )∥2dΩ∫

Ω
∥uh(tj ,µ

(i)
s )∥2dΩ

where yh and uh are the ground truth finite element functions associated with the coefficients yh and uh.
Instead, ỹh and ũh are the corresponding approximations associated with yh,rec and uh,rec when evaluating
the ability of the chosen reduction technique, while they are linked to ỹh and ũh when interested in the
prediction errors committed by the proposed architecture. Notice that the Euclidean norm ∥·∥ is useful to
take into account both scalar and vector functions.

4.1. Flow control problems
In this section, we test the proposed real-time OCP solver in the case of nonlinear Navier-Stokes equations,

which are resumed in the following system:

∂v(x, t)

∂t
− ν∆v(x, t) + (v(x, t) · ∇)v(x, t) +∇p(x, t) = 0 in Ω× (0, T )

div v(x, t) = 0 in Ω× (0, T )

v(x, t) = u(x, t) on Γc × (0, T ]

v(x, t) = 0 on Γobs × (0, T ]

v(x, t) = vin(µs) on Γin × (0, T ]

v(x, t) · n(x) = 0 on Γwalls × (0, T ]

(ν∇v(x, t)− p(x, t))n(x) · t(x) = 0 on Γwalls × (0, T ]

(ν∇v(x, t)− p(x, t))n(x) = 0 on Γout × (0, T ]

v(x, 0) = 0 in Ω× {t = 0}.

(7)

In the equations above, ν denotes the kinematic viscosity, while n and t are the unit vectors normal and
tangential to the domain boundary, respectively. We consider a rectangular channel Ω = [0, 25]× [0, 20] with
an obstacle inside, inspired to configurations already explored in the literature several times [17, 48, 44]. The
domain discretization in Figure 4 is generated through gmsh utilities [24] and consists of 3716 vertices and
7203 elements. The state variable in Equation (7) includes both the velocity vector v(x, t) (ms−1) and the
pressure p(x, t) (Pa). However, for simplicity, only the velocity is considered in the following, disregarding
the pressure field – although also this latter field could be retrieved by means of a slight adaptation of the
proposed framework.

When dealing with the full-order model, the state is discretized with P2 − P1 finite elements, resulting
in Nv

h = 29270 degrees of freedom for the velocity. The control action is instead represented by the time-
dependent Dirichlet velocity datum u on the rounded edge of the obstacle boundary Γc, which can be
interpreted as fluid injection or absorption. u is thus a boundary control depending on Nu

h = 98 degrees of
freedom at the high-fidelity level when discretized through FEM. As far as boundary and initial conditions
are concerned, the following are taken into account: homogeneous Dirichlet conditions on the right portion
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Figure 4. Test 1. Flow control. Mesh exploited to generate high-fidelity snapshots both in steady and time-dependent flow
control test cases, along with the boundaries considered in Navier-Stokes equations. In particular, Γin in red is the inflow
boundary where the fluid enters the channel, Γout in blue is the outflow, Γwalls in black are the walls bounding the channel
from the top and the bottom, Γobs in green and the control region Γc in magenta are the two portions of the obstacle boundary.

of the boundary Γobs, homogeneous Neumann boundary conditions on the outflow Γout, free-slip boundary
conditions on the upper and lower walls Γwalls, and homogeneous initial conditions for t = 0 seconds. On
the inflow boundary Γin, Dirichlet boundary conditions are imposed with velocity datum given by

vin = ∥v∥in [cos(αin), 0.01x2(20− x2) sin(αin)]
⊤

where αin (radians) denotes the angle of attack and ∥v∥in (ms−1) the inflow intensity.
In this setting, we aim to minimize the energy dissipated by the fluid, that can be expressed as the L2

norm of the velocity gradient. The loss function is enriched by two regularizing terms dealing with the L2

norm of u and its gradient, in order to stabilize the control problem and to avoid extremely expensive and
energetic optimal control strategies. In the end, the selected loss function is

J(v(x, t),u(x, t)) =

∫ T

0

∫
Ω

∥∇v(x, t)∥2 dΩdt+ β

∫ T

0

∫
Γc

∥u(x, t)∥2 dΓcdt+ βg

∫ T

0

∫
Γc

∥∇u(x, t)∥2 dΓcdt

where the time integrals are considered only for time-dependent settings and the coefficients β and βg are
introduced to balance the integrals in the cost functional that may have different magnitudes. In particular,
β = βg = 10−2 in order to prioritize the minimization of energy dissipation. Note that, after discretizing
Equation (7) through FEM, it is possible to obtain the discretized cost functional Jh introduced in Section 2.

4.1.1. Flow control for steady Navier-Stokes equations
We first consider the steady Navier-Stokes equations, reported here for the sake of completeness

−ν∆v(x) + (v(x) · ∇)v(x) +∇p(x) = 0 in Ω

div v(x) = 0 in Ω

v(x) = u(x) on Γc

v(x) = 0 on Γobs

v(x) = vin(µs) on Γin

v(x) · n(x) = 0 on Γwalls

(ν∇v(x)− p(x))n(x) · t(x) = 0 on Γwalls

(ν∇v(x)− p(x))n(x) = 0 on Γout

with ν = 10m2s−1. The two parameters characterizing the inflow are regarded as scenario parameters, that
is µs = [αin, ∥v∥in]⊤. Following the procedure detailed in Section 3, we generate Ns = 50 optimal pairs re-
lated to random inflow intensities and angles of attack uniformly sampled in the intervals (10.0, 130.0)ms−1
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Figure 5. Test 1.1. Steady flow control. Optimal control, velocity and pressure obtained for ∥vin∥ = 31.16ms−1 and
αin = −0.53 radians through the high-fidelity OCP solver. The velocity on Ω is depicted through a scalar field with colours
corresponding to its norm, while the control on Γc is represented through a vector field.

and (−1.0, 1.0) radians, respectively. The Reynolds number is thus very low and varies between 3 and 39.
The forward resolution of Equation (7) is performed through the Newton method implemented in fenics
[1], while optimal state and control snapshots are calculated with an OCP solver based on finite elements
and the adjoint method implemented in dolfin-adjoint [46]. In particular, the high-fidelity solver takes,
on average, 11 minutes to retrieve every snapshot. Out of all simulated data, 40 optimal pairs are exploited
for dimensionality reduction and to train neural networks (training set), while the remaining ones are used
for testing purposes (test set). The optimal snapshot generated for ∥vin∥ = 31.16ms−1 and αin = −0.53
radians is shown in Figure 5.

To build a faster but still reliable OCP solver following the architecture presented in Section 3, we
start reducing the snapshots dimensionality through POD. In particular, when reducing vector fields, POD
is applied component-wise, i.e. the x1 and x2 components of the velocity are reduced separately, while
considering the same number of modes for the two components. In this test case, nonlinear reduction
strategies based on autoencoders are not necessary thanks to a fast singular value decay that allows to
achieve acceptable reduction errors with few POD modes. Specifically, considering Nu = 6 and Nv = 10,
the L2 mean relative error committed when trying to reconstruct test data is 0.73% on the state and 0.70%
on the control. Top rows of Figure 6 and Figure 7 display the ground truth and the reconstructed velocity
fields, that are the snapshots compressed and reconstructed through POD, related to two different choices
of scenario parameters in the test set.

To rapidly retrieve the optimal state and control values for different inflow velocities and angles of attack,
here we must learn the map from the scenario parameters onto the POD coefficients of the optimal pairs,
thus following a POD-NN strategy. This is done considering a feed-forward neural network φ having 3 hidden
layers with, respectively, 50, 100, 50 neurons and exploiting leaky Relu as activation function. After building
and training the neural network in 26.84 seconds through pytorch utilities taking into account the L-BFGS
optimization algorithm, the predicted test data are accurate up to a L2 mean relative error equal to 1.53%
for the optimal state and 1.81% for the optimal control. The bottom rows of Figure 6 and Figure 7 display
the ground truth optimal solutions related to two different choices of scenario parameters in the test set and
the corresponding POD-NN predictions given by[

ṽh

ũh

]
=

[
Vy 0
0 Vu

]
φ(αin, ∥v∥in)

To emphasize the importance of dimensionality reduction when tackling high-dimensional problems, we
fit a neural network mapping the scenario parameters directly into the high-fidelity optimal state and control
variables, resulting in an output dimension equal to Nv

h +Nu
h = 29368. To achieve a L2 mean relative error

of about 4% for both state and control, which is acceptable but higher than the one obtained with POD-NN,
a neural network involving 135 times more weights, resulting in a training time 400 times longer, with respect
to the one required for POD-NN shall be required.
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Figure 6. Test 1.1. Steady flow control. First row: high-fidelity optimal snapshot, POD reconstruction and reconstruction
error corresponding to the test scenario parameters ∥vin∥ = 114.79ms−1 and αin = −0.17 radians. Second row: POD-NN
prediction and prediction error corresponding to the test scenario parameters ∥vin∥ = 114.79ms−1 and αin = −0.17 radians.
The velocity on Ω is depicted through a scalar field with colors corresponding to its norm, while the control on Γc is represented
through a vector field.

Figure 8 proposes a comparison between the reconstruction errors offered by POD and the prediction
errors committed by POD-NN for different latent dimensions, while keeping fixed the other hyperparameters
such as the φ architecture and the training set dimension. The decay of the POD reconstruction errors on
test data, both for the state and the control, are superlinear. The POD-NN errors on test data are higher
than those provided by POD due to the approximation given by the neural network φ, while keeping similar
superlinear decays with respect to the latent dimension both for the control and for the state approximation.
Furthermore, it is possible to assess a saturation in the POD-NN performance for large latent dimensions.

The POD-NN architecture is then exploited to solve the parametric OCP for new values of scenario
parameters unseen during the data generation and training phases. In particular, we consider ∥vin∥ =
100ms−1 and several angles of attack in a grid spanning (−1, 1) radians. Figure 9 shows the results obtained
for three different angles of attack considered. Each result is computed online in less than 0.002 seconds
thanks to a forward pass through the neural network φ and the POD decoding in order to predict full-order
optimal pairs.

Figure 10 presents, instead, two different analyses that are helpful in understanding the benefits and
behavior of the proposed method. In particular, the left panel investigates the trend of L2 mean relative test
error for different training set dimensions Ntrain keeping fixed the other hyperparameters, while a similar
analysis is repeated in the right panel for different φ complexities, i.e. for different number of neural network
weights Nweights. The superlinear decay obtained in the first case suggests that an increase in the number
of training data has an higher impact on the goodness of fit of the proposed model rather than an increase
of the number of φ weights, which entails a sublinear decay.

4.1.2. Flow control for time-dependent Navier-Stokes equations
We now consider the time-dependent case detailed in Equation (7) with kinematic viscosity ν = 1m2s−1

and ∥vin∥ = 10ms−1 in order to focus on a low Reynolds number (Re = 30). The scenario parameters
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Figure 7. Test 1.1. Steady flow control. First row: high-fidelity optimal snapshot, POD reconstruction and reconstruction
error corresponding to the test scenario parameters ∥vin∥ = 112.71ms−1 and αin = −0.88 radians. Second row: POD-NN
prediction and prediction error corresponding to the test scenario parameters ∥vin∥ = 112.71ms−1 and αin = −0.88 radians.
The velocity on Ω is depicted through a scalar field with colours corresponding to its norm, while the control on Γc is represented
through a vector field.

are therefore the inflow angle αin and, as always happens in time-dependent settings, the time variable
t. We generate 22 time-dependent optimal trajectories through the full-order OCP solver based on FEM
implemented in dolfin-adjoint, solving the forward problem in Equation (7) with the incremental Chorin-
Temam projection method. Every trajectory considers a constant angle of attack randomly sampled in the
interval (−1.0, 1.0) radians and it is recorded in 10 different time steps uniformly distributed in the interval
[0.05, 0.5] seconds, i.e. the final time is T = 0.5 seconds and the time step is equal to 0.05 seconds. The
snapshots are then shuffled and divided into training set (180 snapshots) and test set (40 snapshots). Every
optimal trajectory, which consists of 10 different snapshots in time, is computed solving the nonlinear time-
dependent full-order OCP requiring on average a computational time of 20 minutes. An example of optimal
control, velocity and pressure related to αin = 0.45 radians and t = 0.5 seconds is provided in Figure 11:
for visualization purposes, the scale considered for the control vectors is 10 times bigger with respect to the
figures in Section 4.1.1.

In this setting, the L2 mean relative test errors entailed when reconstructing state and control through
POD shows an exponential decay, as visible in Figure 12. However, due to a slow decay in correspondence of
small latent dimensions, we need a higher number of POD modes with respect to the test case in Section 4.1.1
to achieve the same accuracy: specifically, with Nu = 10 and Nv = 18, the L2 mean relative reconstruction
errors on test data are equal to 0.26% on the state and 0.63% on the control.

Nonlinear reduction strategies may be therefore considered to further reduce the problem dimensionality
and allow for a lighter, more accurate and easily trainable neural network φ with smaller output dimensions.
As proposed by [22] and resumed in Section 3, it is possible to combine an initial linear reduction step
through POD and a nonlinear autoencoder to further compress the data. In particular, we consider 80 and
140 POD modes for the control and the state variables, respectively, which returns very low reconstruction
errors on test data. Thanks to the nonlinear reduction provided by fully-connected autoencoders, the latent
dimensions are then shrunk down to Nu = Nv = 6. The encoder responsible for the reduction of the state
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Figure 8. Test 1.1. Steady flow control. Left: L2 mean relative error on v committed by POD (reconstruction error)
and POD-NN (prediction error) for different latent dimensions Nv. Right: L2 mean relative error on u committed by POD
(reconstruction error) and POD-NN (prediction error) for different latent dimensions Nu. The latent dimensions selected in
the numerical example are highlighted with dashed markers.

Figure 9. Test 1.1. Steady flow control. Optimal state and control provided by POD-NN corresponding to the scenario
parameters ∥vin∥ = 100ms−1 and αin = −0.75, 0, 0.75 radians. The velocity on Ω is depicted through a scalar field with colours
corresponding to its norm, while the control on Γc is represented through a vector field.

Figure 10. Test 1.1. Steady flow control. Left: L2 mean relative test error decay with respect to training set dimension Ntrain.
Right: L2 mean relative test error decay with respect to the number of φ weights Nweights. The hyperparameters selected in
the numerical example are highlighted with dashed markers.
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Figure 11. Test 1.2. Time-dependent flow control. Optimal control, velocity and pressure obtained for αin = 0.45 radians
and t = 0.5 seconds through a high-fidelity full-order OCP solver. The velocity on Ω is depicted through a scalar field with
colours corresponding to its norm, while the control on Γc is represented through a vector field.

POD modes has 1 hidden layer with 50 neurons, while the corresponding decoder exploits 2 hidden layers
with 50 neurons each. As far as the compression of control POD modes is concerned, the same number of
hidden layers are considered, but the number of neurons per layer is decreased to 25 thanks to the smaller
input-output dimensions. Thanks to the joint reduction provided by POD and autoencoders, it is possible to
achieve a very low-dimensional latent representation of the system variables with high-accuracy: indeed, the
L2 mean relative reconstruction errors on test data are 0.32% for the state and 0.70% for the control. The
first rows of Figure 14 and Figure 15 display the ground truth and the reconstructed optimal pair related
to two different test scenarios, confirming the high precision of the reduction procedure. The first row of
Figure 12 shows, instead, the L2 mean relative errors committed when reconstructing test data by POD and
POD+AE, that is the combination of POD and autoencoders, for different latent dimensions, while keeping
fixed the other hyperparameters. It is possible to assess that a nonlinear reduction technique allows to
achieve more accurate results while considering smaller latent dimensions, entailing a lighter φ architecture
that is faster to train and to evaluate online.

To rapidly compute the optimal state and control for different time instants and inflow velocities, we
model the map from these parameters onto the reduced optimal pairs through a feed-forward neural network
φ, thus considering a POD-DL-ROM approach. In particular, φ consists of 2 hidden layers with 150 neurons
each, and leaky Relu is exploited as activation function. After training the neural network with the L-
BFGS optimization algorithm, the L2 mean relative errors on test data are equal to 0.37% for the optimal
state and 0.85% for the optimal control. The computational time required to train the autoencoders and
the neural network φ amounts to 4 minutes and 11.52 seconds. The second row of Figure 12 compares
the L2 mean relative errors committed when predicting test data through POD-NN and POD-DL-ROM
for different latent dimensions: coherently with the corresponding reconstruction errors, a POD-DL-ROM
allows to obtain more accurate results with smaller latent dimensions. Moreover, Figure 13 shows the
reconstruction and prediction errors of POD-DL-ROM: while both show a superlinear decay with respect
to the latent dimension, the prediction errors are slightly higher than the reconstruction ones due to the
approximation of the parameter-to-solution map through the neural network φ. The second rows of Figure 14
and Figure 15 display, instead, the predictions obtained by POD-DL-ROM compared to the ground truth
optimal solutions related to two different choices of test scenario parameters: both the control and the
velocity are retrieved with high accuracy and no substantial differences can be assessed between ground
truth data and POD-DL-ROM predictions.

The POD-DL-ROM architecture is then exploited to solve the time-dependent parametrized OCP for
new and unseen time instants and angles of attack sampled in the intervals [0.05, 0.5] seconds and (−1.0, 1.0)
radians, respectively. Figure 16 shows the time-dependent optimal pairs computed via POD-DL-ROM when
considering αin = 0.5 radians at three different time instants. Note that, in order to find each of these
solutions, we just need a forward pass of the neural network φ and a decoding step through the autoencoders
and POD that lasts at most 0.01 seconds. Note also that, the forward pass φD(φ(tnew,µnew

s )) infers the
time-dependent optimal pair – i.e. the minimizer of the loss function computed in the interval (0, T ) with
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Figure 12. Test 1.2. Time-dependent flow control. Top: L2 mean relative reconstruction error on v and u committed by POD
and POD+AE for different latent dimensions Nv and Nu. Bottom: L2 mean relative prediction error on v and u committed
by POD-NN and POD-DL-ROM for different latent dimensions Nv and Nu. The latent dimensions selected in the numerical
example are highlighted with dashed markers.

Figure 13. Test 1.2. Time-dependent flow control. Left: L2 mean relative error on v committed by POD+AE (reconstruction
error) and POD-DL-ROM (prediction error) for different latent dimensions Nv. Right: L2 mean relative error on u committed
by POD+AE (reconstruction error) and POD-DL-ROM (prediction error) for different latent dimensions Nu. The latent
dimensions selected in the test case are highlighted with dashed markers.
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Figure 14. Test 1.2. Time-dependent flow control. First row: high-fidelity optimal snapshot, POD+AE reconstruction and
reconstruction error corresponding to the test scenario parameters t = 0.25 seconds and αin = 0.34 radians. Second row:
POD-DL-ROM prediction and prediction error corresponding to the test scenario parameters t = 0.25 seconds and αin = 0.34
radians. The velocity on Ω is depicted through a scalar field with colours corresponding to its norm, while the control on Γc is
represented through a vector field.

fixed final time T – evaluated at t = tnew.

4.2. Active thermal cooling
This section presents the numerical results obtained by applying the proposed real-time OCP solver to

an active thermal cooling problem. We consider a square domain Ω = (−1, 1)× (−1, 1) properly discretized
thanks to gmsh utilities with the presence of a circular obstacle centered at (0, 0) with radius equal to 0.15.
The physical system under investigation is described by the steady heat equation, that is

−ν∆y(x) = s(x;µs) + u(x)1Ωc
in Ω

−ν∇y(x) · n(x) = y(x) on Γd

−ν∇y(x) · n(x) = γ(y(x)− yext) on Γobs

(8)

where ν = 1m2s−1 is the fixed material-specific thermal diffusivity and n is the unit vector normal to the
domain boundary. The state variable y is a scalar-quantity denoting the temperature (Kelvin degrees) at
every domain location: since linear finite elements are considered, the vector yh collects the temperature
values at these mesh nodes and in this case the dimension of the state space is Ny

h = 51665. The obstacle is
heated by an external source s (Ks−1) modeled through the Gaussian function

s = 5000 exp{−40[(x1 − xs
1)

2 + (x2 − xs
2)

2]}

centered at the point (xs
1, x

s
2). To allow heat exchange between the obstacle and the surrounding environment,

the Newton’s law of cooling is taken into account as boundary condition on the obstacle boundary Γobs, where
yext = 125K is the external temperature, that is proportional to the product between the intensity and the
variance of s, and γ = 1ms−1 is the fixed heat transfer coefficient multiplied by the volumetric heat capacity.

19



Figure 15. Test 1.2. Time-dependent flow control. First row: high-fidelity optimal snapshot, POD+AE reconstruction and
reconstruction error corresponding to the test scenario parameters t = 0.45 seconds and αin = 0.85 radians. Second row:
POD-DL-ROM prediction and prediction error corresponding to the test scenario parameters t = 0.45 seconds and αin = 0.85
radians. The velocity on Ω is depicted through a scalar field with colours corresponding to its norm, while the control on Γc is
represented through a vector field.

Moreover, a homogeneous Robin boundary condition is applied on the external boundary Γd in order to
approximate an unbounded domain to first-order, as proposed by [70]. The problem setting is visible in the
left panel of Figure 17.

In this context, our objective is to keep the temperature on the obstacle constant and equal, for simplicity,
to the reference value 0K while considering different locations of the external heat source s. The scenario
parameters are therefore the coordinates of the source center: for convenience, the polar coordinates are taken
into account, that is µs = [ϑs, rs]

⊤, where xs
1 = rs cos(ϑs) and xs

2 = rs sin(ϑs). To solve this parametric OCP,
we consider an active control action, that may be interpreted as a cooler. In particular, u is a space-varying
source term taking values in Ωc, that is the annular region with inner and outer radius equal respectively to
0.2 and 0.3, as visible in the left panel of Figure 17. The control variable is strongly high-dimensional since
Nu

h = 7721 degrees of freedom are exploited to discretize the control region. In order to achieve the target
temperature on Γobs while considering feasible and regular control actions, the cost function is defined as

J(y(x), u(x)) =

∫
Γobs

|y(x)|2 dΓobs + β

∫
Ωc

|u(x)|2 dΩc + βg

∫
Ωc

∥∇u(x)∥2 dΩc

where the coefficients β and βg are set equal to 1e−8. To better understand the problem at hand, Figure 17
shows a comparison between the uncontrolled and the controlled temperature fields for a particular scenario:
it is possible to assess that an optimal space-varying control strategy allows to cool the obstacle and keep
its temperature equal to the reference value.

As far as the data generation process is concerned, 100 optimal snapshots are computed through the OCP
high-fidelity solver based on FEM provided by dolfin-adjoint considering random source coordinates ϑs, rs
uniformly sampled in the intervals (−π

2 ,
π
2 ) radians and (0.4, 0.9). The full-order solver requires, on average, 4

minutes and 22 seconds to retrieve one optimal snapshot while exploiting L-BFGS as optimization algorithm
and a tolerance equal to 1e−10. The data are then divided into training set (80 snapshots) and test set (20
snapshots) for model evaluation purposes.
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Figure 16. Test 1.2. Time-dependent flow control. Optimal state and control provided by POD-DL-ROM corresponding to
the scenario parameters αin = 0.5 radians and t = 0.159, 0.276, 0.453 seconds.

In this context, dimensionality reduction is strongly recommended due to the huge dimensionality of
state and control variables. In particular, a linear reduction scheme based on POD is enough to reduce the
optimal control: indeed, considering Nu = 7, the L2 mean relative reconstruction error obtained on test
data results equal to 0.17%. The second row of Figure 18 displays the singular value decay and the two
most-energetic POD modes – i.e. the ones associated with the two largest singular values – that capture the
most of the control snapshots variance.

While POD is accurate to project the control snapshots in a low-dimensional latent space, the same
is not true for state snapshots compression. Indeed, due to a slower singular values decay, as visible in
Figure 18, more than 37 POD modes would be necessary in order to achieve acceptable reconstruction
errors. Therefore, following the POD-DL-ROM strategy, 72 POD modes are initially computed and then
compressed thanks to a nonlinear autoencoder into a six-dimensional latent representation, that is Ny = 6.
The encoder consists of 2 layers with, respectively, 70 and 30 neurons, while 3 layers having 30, 50 and 70
neurons are considered in the decoder architecture, with leaky Relu as activation function. After training the
autoencoder with the L-BFGS optimization algorithm, the L2 mean relative reconstruction error committed
on test data is equal to 2%. The first row in Figure 19 displays the ground truth and the reconstructed
temperature field corresponding to the test scenario parameters ϑs = −0.22 radians and rs = 0.44. The first
row of Figure 20 shows, instead, the ground truth and the corresponding optimal control compressed and
reconstructed through POD related to the same choice of scenario parameters.

As detailed in Section 3, the last ingredient required to obtain a non-intrusive real-time optimal solver for
this parametric OCP is the parameter-to-solution map φ. Specifically, φ is modeled through a feed-forward
neural network having 2 layers with 50 neurons each and exploiting leaky Relu as activation function. The
input layer of φ is augmented considering, in addition to the scenario parameters ϑs and rs, meaningful
quantities such as rs cosϑs and rs sinϑs. POD-DL-ROM is able to achieve a L2 mean relative error on test
data equal to 3.83% for the optimal state and 1.10% for the optimal control. The overall training of φ
and the autoencoder lasts 4 minutes and 41 seconds. Instead, the evaluation time required to predict the
optimal pair related to a new scenario of interest is equal to, on average, 0.007 seconds, thus providing a
solver 40000 times faster with respect to the full-order one. The bottom rows of Figure 19 and Figure 20
display a comparison between the ground truth optimal solutions yh,uh and the POD-DL-ROM predictions
obtained by [

ỹh

ũh

]
= φD(φ(ϑs, rs))

related to two different choices of scenario parameters in the test set, where φD resumed the decoding actions
applied separately to state and control.

The POD-DL-ROM architecture is then tested online with respect to new scenario parameters unseen
during training. Figure 21 displays the results obtained for rs = 0.65 and three different values of ϑs. On
average, the temperature on the obstacle is equal to 0.0011K, thus very close to the target value (0K).
The left panel of Figure 22 shows, instead, the optimal values of the loss function Jh(ỹh, ũh;µs) evaluated
at optimal states and controls computed for several scenarios in a uniform 100 × 100 grid covering the
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Figure 17. Test 2. Active thermal cooling. Left: subdomains and boundaries considered in the active thermal cooling problem.
In particular, Γd in black is the external boundary, Γobs in green is the obstacle boundary and Ωc in magenta is the annular
region around the obstacle where the control source takes place. Center: temperature fields computed in absence of control
action (top) and considering optimal control values (bottom) with thermal source located at (0.75, 0.0). Top right: comparison
of the temperature profiles at the obstacle boundary points (0.15 cos(β), 0.15 sin(β)) for different angles β in the controlled (y∗

obs)
and uncontrolled (yobs) setups. Bottom right: space-varying optimal control action considering the thermal source located at
(0.75, 0.0).

parameter space. Note that, since 10000 optimal pairs are required in order to perform this parametric
analysis, a full-order solver would need approximately 30 days of computation. Instead, thanks to our
fast-evaluable architecture, all the optimal solutions are computed in 2.14 seconds. From the loss function
behaviour in the parameter space, it is clear that the closer the heat source to the obstacle – i.e. the smaller
rs – the higher the loss due to more energetic control terms required. The same analysis is performed looking
at the optimal L2 norm of the temperature on the obstacle boundary, that is

||ỹh(µs)||L2(Γobs) =

√∫
Γobs

ỹ2h(x;µs)dΓobs

where ỹh is the function associated with the FEM coefficients ỹh. As visible in the right panel of Figure 22,
the control strategies predicted by POD-DL-ROM allow to attain obstacle temperatures close to the target
in the whole parameter space and, thus, to properly cool the obstacle. In particular, since the loss function is
a sum of terms being minimized, slightly higher obstacle temperatures are naturally obtained corresponding
to more energetic control strategies.

5. Conclusions

In this work we propose an efficient and reliable non-intrusive data-driven method to solve parametrized
OCPs. Indeed, in all applications we considered, the mismatch between the predicted optimal solutions
and the corresponding ground truth is always less than 4% when taking into account new unseen scenarios.
Moreover, the online stage is really fast – it lasts at most 0.01 seconds – regardless of the problem complexity
and dimension. Along with speed and accuracy, another key feature of the presented approach is its extreme
versatility: in fact, as demonstrated throughout the numerical results in Section 4, it is possible to handle
a broad spectrum of parametrized OCPs, ranging from scalar to vector, from linear to nonlinear and from
steady to time-dependent problems.
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Figure 18. Test 2. Active thermal cooling. Left: decay of the singular values computed through SVD applied to the state
(top) and control (bottom) snapshots matrices. Center: POD mode associated with the highest singular value of the state
(top) and control (bottom). Right: POD mode associated with the second highest singular value of the state (top) and control
(bottom).

Figure 19. Test 2. Active thermal cooling. First row: high-fidelity optimal snapshot, POD+AE reconstruction and recon-
struction error corresponding to the test scenario parameters ϑs = −0.22 radians and rs = 0.44. Second row: POD-DL-ROM
prediction and prediction error corresponding to the test scenario parameters ϑs = −0.22 radians and rs = 0.44.
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Figure 20. Test 2. Active thermal cooling. First row: high-fidelity optimal snapshot, POD reconstruction and reconstruction
error corresponding to the test scenario parameters ϑs = −0.22 radians and rs = 0.44. Second row: POD-DL-ROM prediction
and prediction error corresponding to the test scenario parameters ϑs = −0.22 radians and rs = 0.44.

Figure 21. Test 2. Active thermal cooling. Optimal state and control provided by POD-DL-ROM corresponding to the
scenario parameters rs = 0.65 and ϑs = −1.42, 0.03, 1.13 radians.
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Figure 22. Test 2. Active thermal cooling. Left: optimal loss function values computed online considering 10000 different
scenario parameters in the parameter space. Contour lines of the loss function surface are available on the ϑs-rs plane. Right:
L2 norm of the obstacle temperatures computed online considering 10000 different scenario parameters in the parameter space.

An additional key point of the proposed strategy is the dimensionality reduction step that, differently
from several control strategies available in the literature, allows us to easily deal with high-dimensional state
variables and boundary or distributed controls. Furthermore, different non-intrusive reduced order models,
including POD-NNs, DL-ROMs, and POD-DL-ROMs, can be taken into account in order to exploit the most
effective reduction strategy for each OCP at hand, extending the current state-of-the-art on non-intrusive
ROMs to control problems.

Several extensions of the proposed framework can be considered, even if they are left to future works. For
instance, instead of dealing with high-dimensional states simulated through FEM solvers, it is in principle
possible to exploit sensor data or images representing the underlying dynamics. A further, interesting
enhancement of the proposed framework is to consider data-driven or physics-informed surrogate models
approximating the forward problem to speed up the data generation process, which can be computationally
intensive, although necessary only once during the offline phase. Moreover, uncertain parameters can be
incorporated into the parameterized PDE to enable real-time robust control strategies. Feedback signals
may also be considered if additional measurements are available online, as well as attention mechanisms may
be integrated into the parameter-to-solution map in order to achieve better results when extrapolating in
time.
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