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Abstract

We are interested in the approximation of partial di↵erential equations
on domains decomposed into two (or several) subdomains featuring non-
conforming interfaces. The non-conformity may be due to di↵erent meshes
and/or di↵erent polynomial degrees used from the two sides, or even to a
geometrical mismatch. Across each interface, one subdomain is identified as
master and the other as slave. We consider Galerkin methods for the dis-
cretization (such as finite element or spectral element methods) that make
use of two interpolants for transferring information across the interface: one
from master to slave and another one from slave to master. The former is
used to ensure continuity of the primal variable (the problem solution), while
the latter for the dual variable (the normal flux). In particular, since the
dual variable is expressed in weak form, we first compute a strong represen-
tation of the dual variable from the slave side, interpolate it, transform the
interpolated quantity back into weak form and assign it to the master side.
In case of slightly non-matching geometries, we use a radial-basis function
interpolant instead of Lagrange interpolant.

We name the proposed method INTERNODES (INTERpolation for
NOnconforming DEcompositionS). It can be regarded as an alternative to
the mortar element method and it is much simpler to implement in a numeri-
cal code. We show on two dimensional problems that by using the Lagrange
interpolation we obtain at least as good convergence results as with the
mortar element method with any order of polynomials. When using low or-
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der polynomials, the radial-basis interpolant leads to the same convergence
properties as the Lagrange interpolant. We conclude with a comparison be-
tween INTERNODES and a standard conforming approximation in a three
dimensional case.

Keywords:
domain decomposition, non-conforming discretization, interpolation, finite
element method, spectral element method, mortar method

1. Introduction

In this paper we propose a new approach for numerically solving el-
liptic partial di↵erential equations by Galerkin methods on computational
domains that are split into two (or several) subdomains featuring “non-
conforming interfaces”. By this we mean that either a priori independent
grids and/or local polynomial degrees are used to discretize each subdomain.
More in particular, we refer to these two cases as “grid non-conformity” and
“polynomial non-conformity”, respectively. A third possible case of non-
conforming interfaces that our approach can cover is that of subdomains
that face each other through two interfaces that geometrically do not fully
agree one another, meaning that the two subdomains may either slightly
overlap and/or featuring tiny holes between them (see Figure 3). We name
this latter situation of geometrical mismatch as “geometric non- confor-
mity”. It may arise when using CAD to generate the two subdomains, e.g.
in fluid structure interaction problems in hydrodynamics or aerodynamics
[14, 15], or else when generating the computational geometries of lumen and
vessel walls from DYCOM images for arterial blood flow dynamics [9, 19].

In all these cases of non-conforming interfaces, a very crucial issue is
the way the subdomain solutions communicate across common interfaces.
More specifically, at which extent the subdomain solutions and their normal
fluxes do match. Our approach proceeds as follows. Across each interface,
the subdomain from one side is identified as the master while that from the
opposite side as the slave. We then introduce two di↵erent interpolants for
transferring information across the interface: one from master to slave and
another one from slave to master. The former is used to ensure continuity
of the primal variable (the problem solution), while the latter for ensuring
the continuity of the dual variable (the normal flux). In particular, since
in each subdomain we are using a Galerkin projection method, the dual
variable in the slave domain is available in weak form, we first compute a
strong representation of the dual variable from the slave side, interpolate
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it, transform the interpolated quantity back into weak form and assign the
function so obtained to the master side. This is a very distinguishing feature
of our method, that we named INTERNODES. Interpolants can be either
Lagrangian or built on Radial Basis Functions (RBF). In particular, in case
of geometric non-conformity with slightly non-matching geometries, we use
RBF interpolants because of their flexibility.

INTERNODES can be regarded as an alternative to the mortar element
method, formerly introduced by [3, 4] (see also [2, 16, 22]). It shares simi-
lar properties of accuracy and is much simpler to implement in a numerical
code. We show on two dimensional problems that using the Lagrange inter-
polation, INTERNODES attains at least as good convergence results as the
mortar element method, for any order of polynomials. When using low order
polynomials, the radial-basis functions interpolant leads to the same conver-
gence properties as the Lagrange interpolant. On the other side, our method
(being based on interpolation rather than on L2 projection at interfaces) is
far more simple to implement than the mortar method.

The paper is organized as follows. After setting up our elliptic boundary
value problem in Section 2, we introduce in Section 3 its Galerkin discretiza-
tion based on the Finite Element Method (FEM) or the Spectral Element
Method (SEM) using non-conforming interfaces. In Section 4 we introduce
our slave-to-master and master-to-slave interface intergrid operators (either
Lagrangian or RBF based). In Section 5 we formulate our numerical method
that makes use of the two intergrid operators: we first formulate it in al-
gebraic terms, then we provide a variational interpretation as a non con-
forming generalized Galerkin approximation to the original elliptic boudary
value problem. In the same Section we show that the mortar method can be
recast in the general form of our method and therefore regarded as a spe-
cial case of it. Section 6 is devoted to an analysis of the numerical results
that we obtain for FEM-FEM, FEM-SEM and SEM-SEM couplings when
approximating the Dirichlet problem in a 2D domain. The same problem
is addressed in Section 7 for the case of geometric non-conformity. More
realistic applications are addressed in Sections 8 and 9 where we consider
very severe non-conformity for the simulation of near field and far field solu-
tions of di↵usion processes around a chimney in two dimensions and a fluid
flow past a three dimensional cylinder, respectively. Finally, conclusions are
drawn in Section 10.
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2. Problem setting

Let ⌦ ⇢ Rd, with d = 2, 3, be an open domain with Lipschitz boundary
@⌦. @⌦N and @⌦D are suitable disjoint subsets of @⌦ such that @⌦D[@⌦N =
@⌦ . Given suitable functions f, µ, and ↵ defined on ⌦, and g defined on
@⌦N , we look for the solution u of the second order elliptic self-adjoint
equation

8
><

>:

Lu ⌘ �r · (µru) + ↵u = f in ⌦,
u = 0 on @⌦D,

µ
@u

@n
= g on @⌦N ,

(1)

being n the outward unit normal vector to @⌦1.
If f 2 L2(⌦), g 2 H�1/2(@⌦N ), µ,↵ 2 L1(⌦) such that 9µ0 > 0, µ � µ0

and ↵ � 0, and by setting V = H1
@⌦D

(⌦) = {v 2 H1(⌦) : v|@⌦D = 0}, the
weak form of problem (1) reads

find u 2 V : a(u, v) = (f, v)⌦ 8v 2 V, (2)

where

a(u, v) =

Z

⌦
(µru ·rv + ↵uv)d⌦, (3)

while (·, ·)⌦ denotes the inner product in L2(⌦).
For the sake of exposition we partition ⌦ into two non-overlapping sub-

domains ⌦1 and ⌦2 such that ⌦ = ⌦1 [ ⌦2; we call one master (say ⌦1) and
the other slave (say ⌦2).

Two possible instances of subdomain partitions are shown in Figure 1,
where we set � = ⌦1 \ ⌦2.

3. Discretization

A-priori independent discretizations of either finite element type (FEM)
or spectral element type (SEM) are designed in ⌦1 and ⌦2 [5, 17]. SEM will
be equivalently named hp�FEM (see [21]).

We denote by Th,k (for k = 1, 2) the meshes induced by the discretization
in ⌦k and we assume that they satisfy standard regularity requirements (see
[17]).

1The more general situation with non-homogeneous Dirichlet conditions can be for-
mulated as in (1) by using a suitable lifting operator of the Dirichlet datum (see, e.g.,
[17]).
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Figure 1: Two possible instances of subdomains partitions in the case d = 2. The gray
thick curve denotes the Dirichlet boundary @⌦D.
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2. Problem setting

LetΩ ⊂ Rd, with d = 2, 3, be an open domain with Lipschitz
boundary ∂Ω. ∂ΩN and ∂ΩD are suitable disjoint subsets of ∂Ω
such that ∂ΩD ∪ ∂ΩN = ∂Ω . Given suitable functions f , ν, and
α defined on Ω, and g defined on ∂ΩN , we look for the solution
u of the second order elliptic self-adjoint equation
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Lu ≡ −∇ · (ν∇u) + αu = f in Ω,
u = 0 on ∂ΩD,

ν
∂u
∂n
= g on ∂ΩN ,

(1)

being n the outward unit normal vector to ∂Ω.
The more general situation with non-homogeneous Dirich-

let conditions can be formulated as in (??) by using a suitable
lifting operators of the Dirichlet datum (see, e.g., [? ]).

If f ∈ L2(Ω), g ∈ H−1/2(∂ΩN), ν,α ∈ L∞(Ω) such that ∃ν0 >
0, ν ≥ ν0 and α ≥ 0, and by setting V = H1

∂ΩD
(Ω) = {v ∈

H1(Ω) : v|∂ΩD = 0}, the weak form of problem (??) reads

find u ∈ V : a(u, v) = ( f , v)Ω ∀v ∈ V (2)

where
a(u, v) =

∫

Ω

(ν∇u · ∇v + αuv)dΩ, (3)

while (·, ·)Ω denotes the inner product in L2(Ω).
For the sake of exposition we partition Ω into two non-

overlapping subdomains Ω1 and Ω2 such that Ω = Ω1 ∪ Ω2;
we call one master (say Ω1) and the other slave (say Ω2).

Two possible instances of subdomain partitions are shown in
Figure ??, where we set Γ = Ω1 ∩ Ω2.

3. Discretization

A-priori independent discretizations of either finite element
type (FEM) or spectral element type (SEM) are designed in Ω1
and Ω2 [? ? ]. SEM will be equivalently named hp−FEM (see
[? ]).

We denote by Th,k (for k = 1, 2) the meshes induced by the
discretization in Ωk and we assume that they satisfy standard
regularity requirements (see [? ]).
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Figure 1: Two possible instances of subdomains partitions in the case d = 2
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Figure 2: Conforming (at left) and non-conforming (at right) grids at the inter-
face when d = 2

On the interface Γ, we allow that the meshes Th,1 and Th,2
induce either conforming grids (see Fig. ??, left) or non-
conforming grids (see Fig. ??, right).

In some situations while discretizing Γ, we could even end
up with two non-matching interfaces Γ1 ! Γ2. We refer to
this situation as non-matching interfaces or geometrically non-
conforming partitions.

A possible instance is when Γ is a curved line that is dis-
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Figure 3: A situation with non-matching interfaces Γ1 and Γ2 in the case d = 2
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Figure 2: Conforming (at left) and non-conforming (at right) grids at the interface when
d = 2.

On the interface �, we allow the meshes Th,1 and Th,2 to induce either
conforming grids (see Figure 2, left) or non-conforming grids (see Figure 2,
right).

In some situations, while discretizing �, we could even end up with two
non-matching interfaces �1 6= �2. We refer to this last situation as non-
matching interfaces or geometrically non-conforming partitions. A possible
instance is when � is a curved line that is discretized by piecewise straight
segments, see Figure 3. Another instance may occur when using isogeometric
analysis (see [6]).

In order to unify our theory for both the cases of matching and non-

Γ

Γ1

Γ2

Th,1

Th,2

Figure 1: A situation with non-matching interfaces Γ1 and Γ2 in the case d = 2.

1

Figure 3: A situation with non-matching interfaces �1 and �2 in the case d = 2.
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matching interfaces, from now on we will refer to �1 and �2 separately,
understanding that �1 = �2 = � in the geometrically conforming case.

In both ⌦k (k = 1, 2) we introduce the finite elements approximation
spaces

Xpk
hk

= {v 2 C0(⌦k) : v|T 2 Qp, 8T 2 Th,k}, (4)

where Qp = Pp in the simplicial case and Qp = Qp � F

�1
T for quads, being

FT the C1 di↵eomorphism that maps the reference element T̂ into T ([17]).
Another situation we would like to address is that when di↵erent polyno-

mial degrees are used on the two subdomains (polynomial non-conformity).
Finally, we would also like to address the case in which one couples FEM
on simplicials from one side with SEM on quads from the other side, with
di↵erent polynomial degrees.

Generally speaking, we call non-conforming a situation where one (or
several) of the previous cases (non-conforming grids, non-matching inter-
faces, polynomial non-conformity) arises.

For k = 1, 2, we introduce the finite dimensional subspaces Vk,� of Vk =
H1

@⌦D\@⌦k
(⌦k), where � stands for discretization, more precisely

Vk,� = Xpk
hk

\ Vk. (5)

We identify the Lagrange basis of Vk,� as {�(k)
i }i, for k = 1, 2. Then, we

define the subspaces of V

V̊k,� = {v 2 V : v|⌦k 2 Vk,� and v|⌦\⌦k
= 0}, Nk = dim(V̊k,�). (6)

Notice that the restriction on � of any v 2 V̊k,� is null.

4. Intergrid operators

Let us introduce the discrete trace functional spaces

⇤k,� = {' = v|�k , v 2 Vk,�}, nk = dim(⇤k,�), (7)

and identify a basis of ⇤k,� as {�(k)
j }nk

j=1. We introduce two linear operators

⇧12 : ⇤2,� ! ⇤1,�, ⇧21 : ⇤1,� ! ⇤2,� (8)

that realize the intergrid transfer. We consider two di↵erent instances:

1. Lagrange interpolation,

2. Radial Basis Function (RBF) interpolation, in particular RL-RBF [7].
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For reader’s convenience, we define here the interpolation operators. For

k = 1, 2 and i = 1, . . . , nk, let x

(�k)
i 2 �k denote the degrees of freedom

associated with the Lagrange basis functions �(k)
i .

The Lagrange interpolation operator ⇧21 is characterized as follows. Let
us consider a function ⌘1,� 2 ⇤1,�, then ⇧21⌘1,� can be written w.r.t. the

basis {�(2)
i } of ⇤2,� as

(⇧21⌘1,�)(x) =
n2X

i=1

(⇧21⌘1,�)(x
(�2)
i )�(2)

i (x), 8x 2 �2. (9)

By expanding ⌘1,� with respect to the basis functions �(1)
j of ⇤1,� we have

⌘1,�(x) =
n1X

j=1

⌘1,�(x
(�1)
j )�(1)

j (x) 8x 2 �1,

and then, for any x 2 �2,

(⇧21⌘1,�)(x) =
n2X

i=1

0

@
n1X

j=1

⌘1,�(x
(�1)
j )(⇧21�

(1)
j )(x(�2)

i )

1

A�
(2)
i (x).

Finally, denoting by ⌘1 the array in Rn1 whose components are the nodal

values ⌘1,�(x
(�1)
i ), for i = 1, . . . , n1, and by

(R21)ij = (⇧21�
(1)
j )(x(�2)

i ), i = 1, . . . , n2, j = 1, . . . , n1, (10)

the entries of the matrix associated with the operator ⇧21, we can write

(⇧21⌘1,�)(x
(�2)
i ) = (R21⌘1)i, i = 1, . . . , n2.

By proceeding in a similar way for ⇧12, we denote the entries of the
matrix associated with the operator ⇧12 by

(R12)ij = (⇧12�
(2)
j )(x(�1)

i ), i = 1, . . . , n1, j = 1, . . . , n2, (11)

so that
(⇧12⌘2,�)(x

(�1)
i ) = (R12⌘2,�)i, i = 1, . . . , n1.

The RL-RBF interpolation operators are defined as in [7] and they read

(⇧21⌘1,�)(x) =

Pn1
i=1 �

⌘1,�
i �(kx� x

(�1)
i k, ri)

Pn1
i=1 �

1
i �(kx� x

(�1)
i k, ri)

, (12)

(⇧12⌘2,�)(x) =

Pn2
i=1 �

⌘2,�
i �(kx� x

(�2)
i k, ri)

Pn2
i=1 �

1
i �(kx� x

(�2)
i k, ri)

, (13)
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where � is the locally supported radial basis function, ri 2 R is the local
support of the basis function, and �fi are the weights of the interpolant of
the function f (f ⌘ 1 denotes the constant function f(x) = 1) and they are
determined by imposing the interpolation constraints at either the nodes

x

(�2)
i (i = 1, . . . , n2) for ⇧21, or at x

(�1)
i (i = 1, . . . , n1) for ⇧12.

Then, we define two linear and continuous extension operators Ek :
⇤k,� ! Vk,�, for k = 1, 2. The simplest choice is to use the interpolation

operator that extends �
(k)
j 2 ⇤k,� by setting to zero its values at all nodes

of ⌦k not belonging to �k.
The interface space is defined as

V�1 = {' 2 L2(⌦) : 9�1 2 ⇤1,� : '|⌦1 = E1�1,
'|⌦2 = E2(⇧21�1)}. (14)

Note that its elements are functions defined in the whole ⌦. We denote
a basis of V�1 as {�e

j}n1
j=1, where “e” stands for “extension”. There is a

one-to-one map between �
(1)
j (the jth basis function of ⇤1,�) and �e

j , and �e
j

satisfies �e
j |⌦1 = E1�

(1)
j and �e

j |⌦2 = E2(⇧21�
(1)
j ).

Then we set
V� = V̊1,� � V̊2,� � V�1 . (15)

Notice that V� 6⇢ V in general.

5. Non-conforming formulation

For k = 1, 2, we define the bilinear forms

ak : Vk ⇥ Vk ! R : ak(u, v) =

Z

⌦k

(µru ·rv + ↵uv)d⌦, (16)

the matrices

(Akk)ij = ak(�
(k)
j ,�(k)

i ), i, j = 1, . . . , Nk,

(Ak,�k
)ij = ak(Ek�

(k)
j ,�(k)

i ), i = 1, . . . , Nk,

j = 1, . . . , nk,

(A�k,k)ij = ak(�
(k)
j , Ek�

(k)
i ), i = 1, . . . , nk,

j = 1, . . . , Nk,

(A�k,�k)ij = ak(Ek�
(k)
j , Ek�

(k)
i ), i, j = 1, . . . , nk.

(17)
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(note that (A�1,1)ij = a1(�
(1)
j ,�e

i )) and the vectors

fk = (f,�(k)
i )⌦k , i = 1, . . . , Nk,

f�k = (f,Ek�
(k)
i )⌦k , i = 1, . . . , nk.

(18)

In the special case of fully conforming discretizations (that is both grid
and polynomial conformity, with �1 = �2 = � and n1 = n2), the well-known
algebraic domain decomposition form of the weak original problem (2) reads
([18])

2

4
A1,1 0 A1,�1

0 A2,2 A2,�2

A�1,1 A�2,2 A�1,�1 +A�2,�2

3

5

2

4
u1

u2

u�

3

5 =

2

4
f1

f2

f�1 + f�2

3

5 , (19)

where uk 2 RNk is the array of the nodal values of uk,� = u�|⌦k\�k
,

for k = 1, 2, while u� 2 Rn1 is the array of the nodal values of u�|�, and
u� 2 V� ⇢ V is the solution of the conforming Galerkin problem a(u�, v�) =
(f, v�)⌦ for any v� 2 V�.

In the non-conforming case we need further matrices: M�k 2 Rnk , that
is the mass matrix associated with the interface �k, and the matrices R12 2
Rn1⇥n2 and R21 2 Rn2⇥n1 defined in (10) and (11), respectively.

Finally, by setting

Q21 = R21, Q12 = M�1R12M
�1
�2

, (20)

the non-conforming generalization of (19) reads

2

4
A1,1 0 A1,�1

0 A2,2 A2,�2Q21

A�1,1 Q12A�2,2 A�1,�1 +Q12A�2,�2Q21

3

5

2

4
u1

u2

u�1

3

5

=

2

4
f1

f2

f�1 +Q12f�2 .

3

5 . (21)

Notice that, in the fully conforming case, Q12 and Q21 coincide with the
identity matrix of size n1 = n2 (and (21) returns (19)).

5.1. Variational formulation
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System (21) represents the algebraic counterpart of the following varia-
tional problem: find u1,� 2 V1,� and u2,� 2 V2,� such that

a1(u1,�, v1,�) = (f, v1,�)⌦1 8v1,� 2 V̊1,�

a2(u2,�, v2,�) = (f, v2,�)⌦2 8v2,� 2 V̊2,�

u2,�|�2 = ⇧21(u1,�|�1)

a1(u1,�, w�) + a2(u2,�, w̃�) = (f, w�)⌦1 + (f, w̃�)⌦2

8w� 2 V�1 , w̃� = E2(⇧⇤
12w�|�1),

(22)

where ⇧⇤
12 : ⇤1,� ! ⇤2,� is the adjoint operator of ⇧12 w.r.t. the L2 product,

i.e., for any ⌘1,� 2 ⇤1,� and ⌘2,� 2 ⇤2,�, it satisfies

(⇧⇤
12⌘1,�, ⌘2,�)L2(�2) = (⌘1,�,⇧12⌘2,�)L2(�1). (23)

More precisely, (22)1,2 correspond to the first two equations of the system
(21); (22)3 follows directly by the definition of the space V�1 and yields
u�2 = Q21u�1 . Finally, (22)4 corresponds to the last equation of system (21).

To prove this statement, let us choose ⌘2,� = �
(2)
j (for any j = 1, . . . , n2) and

⌘1,� = �
(1)
i (for any i = 1, . . . , n1) in (23), thus by (9) it holds

(⇧12�
(2)
j )(x) =

n1X

`=1

(⇧12�
(2)
j )(x(�1)

` )�(1)
` (x) 8x 2 �1,

and

(⇧12�
(2)
j ,�

(1)
i )L2(�1) =

Z

�1

n1X

`=1

(⇧12�
(2)
j )(x(�1)

` )�(1)
` (x)�(1)

i (x)d�

=
n1X

`=1

(⇧12�
(2)
j )(x(�1)

` )

Z

�1

�
(1)
` (x)�(1)

i (x)d�

=
n1X

`=1

(R12)`j(M�1)i` = (M�1R12)ij .

At the same time, if we expand ⇧⇤
12�

(1)
i w.r.t. the basis function in ⇤2,� as

(⇧⇤
12�

(1)
i )(x) =

n2X

k=1

(⇧⇤
12�

(1)
i )(x(2)

k )�(�2)
k (x) 8x 2 �2, (24)

10



and we denote by P the associated matrix such that Pji = (⇧⇤
12�

(1)
i )(x(�2)

j ),
we have

(⇧⇤
12�

(1)
i ,�

(2)
j )L2(�2) =

Z

�2

n2X

k=1

(⇧⇤
12�

(1)
i )(x(�2)

k )�(2)
k (x)�(2)

j (x)d�

=
n2X

k=1

(⇧⇤
12�

(1)
i )(x(�2)

k )

Z

�2

�
(2)
k (x)�(2)

j (x)d�

=
n2X

k=1

Pki(M�2)jk = (M�2P )ji.

Then, the algebraic counterpart of (23) reads

(M�1R12)ij = (M�2P )ji = (P TM�2)ij ,

for any i = 1, . . . , n1 and j = 1, . . . , n2, or equivalently

P T = M�1R12M
�1
�2

(= Q12 by (20)).

This means that the matrix associated with ⇧⇤
12 is P = QT

12.
Now, let us write

u1,�(x) =
N1X

j=1

u1,�(x
(1)
j )�(1)

j (x)

+
n1X

j=1

u1,�(x
(�1)
j )E1�

e
j(x) 8x 2 ⌦1,

u2,�(x) =
N2X

j=1

u2,�(x
(2)
j )�(2)

j (x)

+
n1X

j=1

u1,�(x
(�1)
j )E2(⇧21�

e
j)(x) 8x 2 ⌦2,

set
uk = [uk,�(x

(k)
j )]Nk

j=1 (k = 1, 2), u�1 = [u1,�(x
(�1)
j )]n1

j=1,

and choose w� = �e
i , i = 1, . . . , n1.

Then (22)4 reads

N1X

j=1

u1ja1(�
(1)
j , E1�

e
i ) +

N2X

j=1

u2ja2(�
(2)
j , E2(⇧

⇤
12�

e
i ))

+
n1X

j=1

u�1j [a1(E1�
e
j , E1�

e
i ) + a2(E2(⇧21�

e
j), E2(⇧

⇤
12�

e
i ))

= (f,E1�
e
i )⌦1 + (f,E2(⇧⇤

12�
e
i ))⌦2 .

11



Recalling that �e
i |⌦1 = E1�

(1)
i , �e

i |⌦2 = E2(⇧⇤
12�

(1)
i ), and thanks to both (17)

and (24), it holds

a2(�
(2)
j , E2(⇧⇤

12�
e
i )) =

n2X

k=1

(⇧⇤
12�

e
i )(x

(�2)
k )a2(�

(2)
j , E2�

(2)
k )

=
n2X

k=1

(QT
12)ki(A�2,2)kj = (Q12A�2,2)ij ,

a2(E2(⇧21�
e
j), E2(⇧⇤

12�
e
i )) =

=
n2X

k=1

(⇧⇤
12�

e
i )(x

(�2)
k )

n2X

`=1

(⇧21�
e
k)(x

(�2)
` )a2(E2�

(2)
` , E2�

(2)
k )

=
n2X

k=1

n2X

`=1

(QT
12)ki(A�2,2)k`(Q21)`j = (Q12A�2,2Q21)ij .

and
(f,E2(⇧

⇤
12�

e
i ))⌦2 = (Q12f�2)i,

thus (21)3 is the algebraic counterpart of (22)4.
Equation (22)4 (or equivalently (21)3) expresses the balance of residuals

in strong form. Algebraically, this becomes more evident once we reformu-
late (21)3 as

�Q12r2 = �M�1R12M
�1
�2

r2 = r1, (25)

where
rk = fk �A�k,kuk �A�k,�ku�k . (26)

In eq. (25), we notice that M�1
�2

r2 is an approximation of the strong form

of the normal stresses on �2; R12M
�1
�2

r2 is an interpolation of the normal

stresses on �1, still in strong form, andM�1R12M
�1
�2

r2 returns the weak form
of the normal stresses but now on �1. Note that the order of magnitude of
the entries of r2 depend on the mesh size used to discretize ⌦2, that of the
entries of r1 depend on the mesh size of ⌦1, while the order of magnitude
of those of both M�1

�2
r2 and R12M

�1
�2

r2 are independent of the mesh size.

Remark 5.1. In the conforming case, by setting ⇧12 = ⇧21 = I, Eq. (22)3
returns the well known two-domain formulation associated with the Galerkin
finite element method, see [18].
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By defining the spaces

V ⇤
�1

= {'⇤⇤ 2 L2(⌦) : 9�1 2 ⇤1,� : '⇤|⌦1 = E1�1,

'⇤|⌦2 = E2(⇧⇤
12�1)}. (27)

and
V ⇤
� = V̊1,� � V̊2,� � V ⇤

�1
, (28)

the variational statement (22) can be written in compact form as a non-
conforming Petrov-Galerkin problem: find u� 2 V�:

a1(u�, v
⇤
� ) + a2(u�, v

⇤
� ) = (f, v⇤� )⌦1 + (f, v⇤� )⌦2 , 8v⇤� 2 V ⇤

� . (29)

In order to reformulate (29) as a (more convenient) non-conforming gener-
alized Galerkin problem, for any w� 2 V� we define

a2,�(w�, v�) =

(
a2(w�, v�), if v� 2 V̊1,� � V̊2,�

a2(w�, E2(⇧⇤
12v�|�1)), if v� 2 V�1

(f, v�)2,� =

(
(f, v�)⌦2 , if v� 2 V̊1,� � V̊2,�

(f,E2(⇧⇤
12v�|�1))⌦2 , if v� 2 V�1 .

(30)

Then (22) is equivalently reformulated as a non-conforming generalized
Galerkin problem: look for u� 2 V�:

a1(u�, v�) + a2,�(u�, v�) = (f, v�)⌦1 + (f, v�)2,�, 8v� 2 V�. (31)

Remark 5.2 (Dirichlet condition on � \ @⌦D). The special case where
a Dirichlet condition is set at a point P 2 � \ @⌦D (e.g. the case of Fig.
1, right) has to be treated with a grain of salt. Equation (31) tested on the
basis function v� = �e

P needs to be completed as follows:

a1(u�,�
e
P ) + a2,�(u�,�

e
P ) = (f,�e

P )⌦1 + (f,�e
P )2,� +

Z

@⌦D

µ
@u�
@n

�e
P . (32)

5.2. On the mortar method

In spite of the fact that the mortar method is a projection (rather than
an interpolation-based) method, we are still able to cast it into the general
form (21). For that, it is enough to replace Q21 with the matrix associated
with the mortar projection (named ⌅ in [16, Sect. 11.4]) and Q12 with QT

21.
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Similarly, the variational formulation of the mortar method (see [4]) can
be retrieved from (31) by replacing V� with the mortar space

V M
� = {v� 2 L2(⌦), vk,� = v�|⌦k 2 Vk,� for k = 1, 2 and

v2,� = ⇧M
21v1,� on �}, (33)

where ⇧M
21 is the L2�projection from the master to the slave on the interface,

and by identifying ⇧⇤
12 with ⇧M

21 in (30).
We warn the reader that our method does not coincide with the pointwise

matching presented in [4, eq. (3.7)] (which is notoriously sub-optimal).
The implementation of mortar based methods (in particular in 3D) is

rather involved. This is due for instance to the need of numerically evaluat-
ing either cross-grid mass-matrices and, in case of non-conforming interfaces,
normal projections between meshes. This is not the case for the proposed
method; in particular, the RL-RBF can treat the case of geometrically non-
conforming interfaces.

6. Numerical solution of an elliptic problem

In the first preliminary test, we consider the numerical solution of the
Poisson problem

��u(x, y) = f(x, y) in ⌦ = (0, 2)⇥ (0, 1), (34)

u(x, y) = g(x, y) on @⌦,

in two-dimensions and we show the orders of convergence of INTERNODES
when non-conforming meshes and/or non-conforming discretizations (based
on the coupling of finite elements with spectral elements) are used.

In (34) the functions f(x, y) and g(x, y) are chosen such that u(x, y) =
arctan(4(y�0.5)) cos(⇡x). We decompose the domain ⌦ in two subdomains:
⌦1 = (0, 1)⇥ (0, 1) and ⌦2 = (1, 2)⇥ (0, 1).

6.1. Coupling of non-conforming FEM-FEM discretizations

In this Section we solve problem (34) by considering non-conforming
finite elements discretizations at the subdomains interface �. The non-
conformity may come from the use of di↵erent mesh-sizes and/or di↵erent
orders of finite elements basis functions between the master and slave do-
mains. In our numerical experiments we considered P1,P2 and P3 finite
elements, using structured grids that feature an aspect ratio of 1 or 2 across
the interface. Furthermore, the method proposed is tested using both the
Lagrange and the RL-RBF interpolants as intergrid operator.

14



Figure 4: Solution u(x, y) = arctan(4(y � 0.5)) cos(⇡x) of problem (34).

In Figure 5 we show the rate of convergence obtained by INTERNODES
for some of the simulations performed using the Lagrange interpolant and
for an aspect ratio between the master and slave grids roughly equal to 2:
the pictures in the left column refer to the case of a fine-master and coarse-
slave meshes, while those in the right column to the opposite case. The
results reported are the H1-norms of the errors computed in each individual
subdomain, i.e., ku� u1,�kH1(⌦1) and ku� u2,�kH1(⌦2).

By comparing the left and right plots in the first and fourth rows of
Figure 5 (obtained with non-conforming meshes but same polynomial degree
in the master and slave domains) we observe that, as expected, the most
accurate results are always obtained on the subdomain triangulated with
the finer mesh, independently whether this is a master or a slave. When the
master domain is discretized using a polynomial degree lower than the one
of the slave (compare the left and right plots of the second row in Figure
5) we notice that it is better, in terms of accuracy, to use the finer mesh
on the master domain. In the opposite case, i.e. when the master domain
is discretized using a polynomial degree that is higher than the one of the
slave (compare the left and right plots of the third row in Figure 5) we
observe that more precise results are obtained using the finer mesh on the
slave domain.

In Table 1 we summarize the orders of convergence obtained by IN-
TERNODES using non-conforming meshes and the Lagrange interpolant,
while in Table 3 those using matching grids but non-conforming polynomial
degrees. Let us denote by p1 and p2 the polynomial degrees used in ⌦1

and ⌦2, respectively. As shown in Table 1, if |p1 � p2|  1, the use of the
Lagrange interpolant yields rates of convergence that are optimal in each in-
dividual subdomain, in fact they behave as hpii , independently of the choice
of which domain plays the role of the master or slave. In the case where
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(b) Master P2, slave P2
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(c) Master P2, slave P3
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(d) Master P2, slave P3
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(e) Master P3, slave P1
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(f) Master P3, slave P1
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(g) Master P3, slave P3
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(h) Master P3, slave P3

Figure 5: FEM-FEM coupling: orders of convergence obtained using Lagrangian inter-
polants and non-conforming meshes with aspect ratio 2. Left: master with finer mesh,
slave coarser; right: vice versa.
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Master \ Slave P1 P2 P3

P1
1-1 1-1 1-2 1-2 1-1 1-1
1-1 1-1 1-2 1-2 1-1 1-1

P2
2-1 2-1 2-2 2-2 2-3 2-3
2-1 2-1 2-2 2-2 2-3 2-3

P3
2-1 2-1 3-2 3-2 3-3 3-3
2-1 2-1 3-2 3-2 3-3 3-3

Table 1: Orders of convergence in H1 norm obtained using non-conforming meshes and
the Lagrange interpolation. In the top row we report the results obtained using aspect
ratio roughly equal to 1 between the master and slave grids while in the bottom those with
aspect ratio roughly equal to 2. On the left column a finer mesh is used in the master
domain and a coarse one in the slave domain while on the right column it is the opposite.

Master \ Slave P1 P2 P3

P1
1-1 1-1 1-2 1-2 1-2 1-2
1-1 1-1 1-2 1-2 1-2 1-2

P2
2-1 2-1 2-2 2-2 2-3 2-3
2-1 2-1 2-2 2-2 2-3 2-3

P3
2-1 2-1 3-2 3-2 3-3 3-3
2-1 2-1 3-2 3-2 3-3 2-2

Table 2: Orders of convergence in H1 norm obtained using non-conforming meshes and
the RL-RBF interpolation. The cells are organized as in Table 1.

p1�p2 > 1, for instance using P3-P1 finite elements, the rate of convergence
behaves like hp1�1

1 in ⌦1 and like hp22 in ⌦2 (or, if p2 � p1 > 1, as hp11 in ⌦1

and as hp1+1
2 in ⌦2).

In Table 2 the results obtained on non-conforming meshes using the RL-
RBF interpolant are reported. We notice that, if |p1 � p2|  1, the method
leads to optimal rates of convergence in all the numerical experiments per-
formed a part from the case of the P3-P3 discretization with grids featuring
aspect ratio roughly equal to 2. This may be due to the fact that, as shown
in Eq. (12), the construction of the RL-RBF interpolant does not take into
account the polynomial degree of the trace of the finite element basis func-
tions at the interface since it only depends on the values at the interface
grid points.

However, this makes RL-RBF a flexible interpolation tool to deal with
problems in which the subdomains feature geometrically non-conforming
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M \ S P1 P2 P3

P1 1-1 1-1 1-2 1-2 1-2 1-2

P2 2-1 2-1 2-2 2-2 2-3 2-3

P3 2-1 2-1 3-2 3-2 3-3 3-3

Table 3: Orders of convergence in H1 norm obtained using conforming meshes but non-
conforming Finite Element discretizations. In each cell of the table, on the left we and
the on the right we report the results computed using the Lagrange and the RL-RBF
interpolant, respectively. M stands for master while S for slave domain.

interfaces (as in the case of Figure 3). In fact, due to the use of a local radius
of support of the radial basis functions [7], the geometrically non-conforming
case can be easily handled without any additional projection that is typically
used in this case to retrieve geometrically conforming interfaces, cf. [8, 13].

6.2. Coupling of non-conforming SEM-SEM discretizations

In this Section we consider SEM discretization in both master and slave
domains and we compare the errors obtained by INTERNODES (using the
Lagrange intergrid operator) with those generated by the mortar approach.
As in the previous subsection, we plot the errors in H1-norm, i.e., ku �
u1,�kH1(⌦1) and ku� u2,�kH1(⌦2).

Pictures in the left column of Figure 6 refer to INTERNODES, while
those in the right column to the mortar approach.

Let p1 and p2 denote the polynomial degrees used in ⌦1 and ⌦2, respec-
tively. The errors displayed by the two methods are comparable; moreover,
for i = 1, 2, they decay as hpii if |p1�p2|  1, while the order of convergence
is downgraded when |p1 � p2| > 1, as we can see in the last row of Figure 6,
where p1 = 5 and p2 = 2. In fact, in the latter case, the error in the master
domain behaves like h31 for both the methods and not as h51.

More precisely, the plot in the first row refers to a test case with poly-
nomial conformity and mesh non-conformity with aspect ratio h1/h2 ' 2;
the one in the second row to a case with both polynomial and mesh non-
conformity, with h1/h2 ' 1/2 and p1 = p2 + 1; that in the third row again
to a case with both polynomial and mesh non-conformity, with h1/h2 ' 1/2
and p1 = p2�1; finally the last row to a situation with p1�p2 > 1, h1 < h2,
and h1/h2 ' 1.

In Tables 4 and 5 we show the rates of convergence with respect to h both
for our method and the mortar approach, respectively, when considering
di↵erent non-conforming situations, as those in Tables 1 and 2.
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First of all we notice that INTERNODES is accurate as well as the
mortar and does not su↵er of sub-optimal convergence as the pointwise
matching presented in [4, eq (3.7)]. Furthermore, the trend observed for the
FEM discretization (and anticipated by the convergence curves of Figure 6)
holds also for SEM case.

M \ S Q2 Q3 Q4 Q5

Q2
2-2 2-2 2-3 2-3 2-2 2-3 2-2 2-3
2-2 2-2 2-3 2-3 2-2 2-3 2-2 2-3

Q3
3-2 3-2 3-3 3-3 3-4 3-4 3-3 3-4
3-2 3-2 3-3 3-3 3-4 3-4 3-4 3-4

Q4
4-2 3-2 4-3 4-3 4-4 4-4 4-5 4-5
3-2 3-2 4-3 4-3 4-4 4-4 4-5 4-5

Q5
4-2 3-2 5-3 4-3 5-4 5-4 5-5 5-5
3-2 3-2 5-3 5-3 5-4 5-4 5-5 5-5

Table 4: SEM-SEM coupling: orders of convergence of INTERNODES using non-
conforming meshes. M stands for master domain while S for slave domain. The cells
are organized as in Table 1.

M \ S Q2 Q3 Q4 Q5

Q2
2-2 2-2 2-3 2-3 2-2 2-3 2-2 2-3
2-2 2-2 2-3 2-3 2-2 2-3 2-2 2-3

Q3
3-2 3-2 3-3 3-3 3-4 3-4 3-3 3-4
3-2 3-2 3-3 3-3 3-4 3-4 3-4 3-4

Q4
4-2 3-2 4-3 4-3 4-4 4-4 4-5 4-5
3-2 3-2 4-3 4-3 4-4 4-4 4-5 4-5

Q5
4-2 3-2 5-3 4-3 5-4 5-4 5-5 5-5
3-2 3-2 5-3 5-3 5-4 5-4 5-5 5-5

Table 5: SEM-SEM coupling: orders of convergence of the mortar approach using non-
conforming meshes. M stands for master domain while S for slave domain. The cells are
organized as in Table 1.

In Table 6 the orders of convergence in H1 norm versus the mesh size h
are shown in the case of conforming meshes and di↵erent (but also equal)
polynomial degrees.
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(a) Master Q5, slave Q5
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(b) Master Q5, slave Q5
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(c) Master Q5, slave Q4
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(d) Master Q5, slave Q4
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(e) Master Q3, slave Q4
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(f) Master Q3, slave Q4
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Figure 6: Convergence history w.r.t. h for INTERNODES (left) and mortar (right) ap-
proaches. SEM discretization. Top line: h1/h2 ' 2; second line: h1/h2 ' 1/2; third line:
h1/h2 ' 1/2; fourth line: h1 < h2, h1/h2 ' 1. Left: master coarse, slave fine; right: vice
versa.
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M \ S Q2 Q3 Q4 Q5

Q2 2-2 2-2 2-3 2-3 2-2 2-2 2-2 2-2

Q3 3-2 3-2 3-3 3-3 3-4 3-4 3-4 3-4

Q4 4-2 4-2 4-3 4-3 4-4 4-4 4-5 4-5

Q5 4-2 4-2 5-3 5-3 5-4 5-4 5-5 5-5

Table 6: SEM-SEM coupling: orders of convergence with respect to h, using conforming
meshes. In each cell of the table, on the left and on the right we report the results
computed using INTERNODES and mortar approach, respectively.

6.3. Coupling of FEM-SEM discretizations

We consider now the coupling of FEM-SEM discretizations. We set ⌦1 =
(0, 1) ⇥ (0, 1), ⌦2 = (1, 2) ⇥ (0, 1) and the function u(x, y) = arctan(4(y �
0.5)) cos(⇡(x� 0.1)) as exact solution of the problem (34).

Polynomial non-conformity. In Table 7 we show the convergence orders
w.r.t. the mesh size h when the master domain ⌦1 is discretized by P1

finite elements and the slave domain ⌦2 by Qp spectral elements with p =
2, 3, 4 and vice versa. h denotes the diameter of the structured and regular
triangular mesh, that coincides with the diameter of the spectral elements.
In this first test case we consider mesh conformity and interpolation by
either Lagrange and RL-RBF. Finally we compare the results obtained by
INTERNODES with those generated by the mortar method.

The advantage of using RL-RBF instead of Lagrange interpolation is
clear when the master discrete space is the poorest one, i.e. when it is
discretized by P1. More precisely, when using Lagrange interpolation, the
first order of convergence driven by P1 in ⌦1 is observed in ⌦2 as well, even
if in ⌦2 a higher degree, p � 2, is used. Conversely, when using RL-RBF,
the order of convergence in the slave domain is equal to 2, thus reflecting
the more accurate discretization used. In any case, even when p > 2 the
order of convergence in ⌦2 is still 2.

When the master domain is discretized more finely by Qp (p � 2) and
P1 are used in the slave, the rates of convergence are 2 and 1 in the master
and the slave domain, respectively, for both the approaches.

Mesh non-conformity. We consider now non-conforming meshes and, as
in the previous sections, four di↵erent situations, characterized by a varying
aspect ratio between the mesh sizes h1 and h2, as well as by the refinements
of the grids. In Tables 8 and 9 the convergence orders w.r.t. the mesh size
h are shown. As for the mesh conforming case, when the master domain is
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Master - Slave Lagrange RL-RBF mortar

P1 �Q2 1-1 1-2 1-1.6
P1 �Q3 1-1 1-2 1-1.7
P1 �Q4 1-1 1-2 1-1.7

Q2 � P1 2-1 2-1 2-1
Q3 � P1 2-1 2-1 2-1
Q4 � P1 2-1 2-1 2-1

Table 7: FEM-SEM coupling: orders of convergence w.r.t. the mesh-size h when using
conforming meshes.

discretized by P1, the Lagrange interpolation downgrades the higher approx-
imation degree of the slave domain, while the RL-RBF interpolation always
provides convergence order 1 in the master domain and 2 in the slave one.
On the contrary, when the master domain is discretized by SEM, the con-
vergence orders w.r.t. h are 2 in the master domain and 1 in the slave one
for all the considered approaches.

Master - Slave Lagrange RL-RBF mortar

P1 �Q2
1-1.5 1-2 1-2 1-2 1-2 1-2
1-2 1-1.5 1-2 1-2 1-2 1-2

P1 �Q3
1-1 1-2 1-2 1-2 1-1.5 1-2
1-1 1-1.5 1-2 1-2 1-2 1-2

P1 �Q4
1-1 1-2 1-2 1-2 1-1.5 1-2
1-1 1-1 1-2 1-2 1-2 1-2

Table 8: FEM-SEM coupling: orders of convergence w.r.t. the mesh-sizes h1 in ⌦1 and
h2 in ⌦2 when using non-conforming meshes. The cells are organized as in Table 1.

It is clear that the higher accuracy of the SEM discretization is down-
graded by that of the P1 FEM approximation. To validate such conjecture,
we fix now the discretization in ⌦1 (master domain) by using 6⇥6 quads Q4,
while we refine the P1 mesh in ⌦2 by choosing h2 = 1/8, 1/16, 1/32, 1/64,
1/128. In Figure 7, the H1 norm of the errors with respect to the exact so-
lution are shown versus h2. The error in ⌦1 decays as h22 until the accuracy
prescribed by global Q4 discretization is reached, while the error in ⌦2 is
O(h2). In Figure 8 we show the meshes used and contours of the computed
solutions when h2 = 1/8 and h2 = 1/32. The rough approximation around
the interface is evident when h2 = 1/8.
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Master - Slave Lagrange RL-RBF mortar

Q2 � P1
2-1 2-1 2-1 2-1 2-1 2-1
2-1 2-1 2-1 2-1 2-1 2-1

Q3 � P1
2-1 2-1 2-1 2-1 2-1 2-1
2-1 2-1 2-1 2-1 2-1 2-1

Q4 � P1
2-1 2-1 2-1 2-1 2-1 2-1
2-1 2-1 2-1 2-1 2-1 2-1

Table 9: SEM-FEM coupling: orders of convergence w.r.t. the respective mesh-sizes h1 in
⌦1 and h2 in ⌦2 when using non-conforming meshes. The cells are organized as in Table
1.

6.4. On the orders of convergence of INTERNODES

All the numerical convergence results reported before can be summarized
by the following empirical formula: if both h1, h2 ! 0

ku� ui,�kH1(⌦i)  Ci(p1, p2)h
min(qi,si�1)
i kukHsi (⌦i) for i = 1, 2, (35)

where

q1 = min(p1, p2 + 1),

q2 =

⇢
p2 if p2  p1 + 1
p1 if p2 > p1 + 1.

In (35), Ci are positive constants independent of hi, while si > 1 is the order
of the Sobolev regularity of the exact solution in ⌦i.

The convergence analysis w.r.t. the polynomial degrees pi is more in-
volved and it is under investigation. Here, we only remark that the errors
ei = ku�ui,�ikH1(⌦i) reflect the typical behaviour observed by SEM approx-
imation (i.e. exponential dependency on the regularity of the exact solution)
if both pi increase and hi vanish in a comparable way, and provided that
the interpolation error across the interface does not a↵ect the consistency
error. Furthermore, we notice that in general the errors ei in each subdo-
main are not independent, but they a↵ect mutually: in particular we observe
that the worst discretization used may be responsible for the sub-optimality
convergence in the other domain.

7. Coupling of geometrically non-conforming subdomains

To assess the robustness of INTERNODES with respect to the geo-
metrically non-conforming case, we solve problem (34) with exact solution
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u(x, y) = sin((x � 1.2)(y � 1.2)2⇡) + 1 in the domain ⌦ = (�0.5, 0.5) ⇥
(�0.5, 0.5), decomposed as shown in Figure 9. The inner circle is centered
at point (0, 0) and has radius R = 0.35.

�

⌦1

⌦2

@⌦D

Figure 9: Domain decomposition considered for the example with geometrically non-
conforming interfaces.

In Figure 10 we show the results obtained using P1 finite elements in
both the slave and the master domains. Although many gaps and over-
laps are present at the interface between the subdomain grids (see bottom
row in Figure 10), we observe that the quality of the numerical solutions
obtained does not worsen. In Figure 11 the results obtained using first or
second order polynomials in the master and slave domains are reported.
From Figure 11(a) we observe that when using first order basis functions,
INTERNODES leads to first order rate of convergence in both the master
and the slave subdomains. Finally, as shown in Figure 11(b), we notice that
quadratic convergence is obtained with P2 finite elements only for su�ciently
small mesh sizes for which the gaps and overlaps between the master and
slave subdomains tend to become imperceptible (see bottom-right picture
of Figure 10).

8. Di↵usion of the pollutant around an industrial chimney

We consider now the 2D numerical simulation of the di↵usion of the pol-
lutant concentration u(x) in a bounded region around an industrial chim-
ney. To this aim we solve the problem (1) in ⌦ = (0, 1)2, with con-
stant di↵usion coe�cient µ = 10�3, null reaction coe�cient ↵ and chim-
ney discharge f = �!, being �! the characteristic function of the set
! = {x 2 R2 : |x�xc| < 0.02} and xc = (0.5, 0.5). Homogeneous boundary
conditions are set on the boundary @⌦.
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Figure 10: Solutions obtained using P1-P1 finite elements for the master and slave domains
using meshes of increasing refinement that are geometrically non-conforming. In the top
row we show the numerical results on the whole domain while in the bottom row a zoom
of the solution close to the interface.
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Figure 11: Rates of convergence in H1 norm using geometrically non-conforming inter-
faces.
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Since the largest variation of the solution occurs in a small region around
the set !, the computational domain ⌦ is split into the subsets ⌦2 =
(0.45, 0.55)2 and ⌦1 = ⌦ \⌦2, then independent meshes are designed there,
with the aim to better approximate the solution in proximity of the chimney
position. More precisely, 5⇥ 5 quads Q8 are used in ⌦2 (for a total amount
of 1681 degrees of freedoms) and P1 FEM with hmax = 1/20 in ⌦1 (711 d.o.f
and 1331 triangles).

INTERNODES is used to compute the numerical solution, using either
the Lagrange or the RL-RBF interpolants as intergrid operators.

We set the external domain ⌦1 to play the role of master, since the other
choice (⌦2 master) would yield a singular problem, in view of the fact that
the reaction coe�cient ↵ is null and @⌦2 = �2 is sctrictly internal to ⌦.

In Figure 12 we plot both the mesh (top) and the pollutant concentration
(bottom left) obtained by solving problem (1) by INTERNODES method
with Lagrange interpolation at the interfaces. The plot at bottom right of
Figure 12 refers to the numerical solution obtained by conforming SEM on
a uniform mesh of 8 ⇥ 8 quads in ⌦ with polynomial degree p = 32. The
range of the color bars used to plot the two numerical solutions is the same,
the black box marks the interface � between the two subdomans.

In Figure 13 we plot the traces along � of the numerical solutions u1,� and
u2,� shown in Figure 12 bottom-left, as well as the trace of the monodomain
SEM solution uSEM of Figure 12 bottom-right. The curves are plotted
versus the curvilinear abscissa s that starts from the point (0.45, 0.45) and
moves counterclockwise along �.

9. Numerical solution of a fluid flow past a cylinder

In this Section we consider the numerical simulation of a fluid flow past
a cylindrical obstacle at two di↵erent Reynolds numbers, that are Re = 20
and Re = 100, see [20].

We model the flow dynamics by the Navier-Stokes equations for an in-
compressible fluid. The equations are discretized in space by means of the
Finite Element method and in time by Finite Di↵erences. More specifically,
we use P1-P1 finite elements for the spatial approximation of the fluid veloc-
ity and pressure variables (stabilized by SUPG), respectively, while a second
order backward di↵erentiation formula is used for the time discretization.
The nonlinear convective term in the fluid momentum equation is linearized
by means of a second order temporal extrapolation [10, 11].

In order to compare the numerical results obtained by INTERNODES
with those available in literature we compute the drag and lift coe�cients
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Figure 12: At top, the mesh used in the simulation of the di↵usion of pollutant concen-
tration (the right picture is a zoom of the left one). At bottom, the numerical solution
obtained by both the INTERNODES with Lagrange interpolant as intergrid operator (at
left) and by monodomain conforming SEM Q32 on the whole ⌦ (at right)

of the cylinder. To this end, we introduce a unit vector directed as the

incoming flow v̂1 =
v1
kV1k , and a unit vector n̂1 orthogonal to v̂1. The

aerodynamic drag and lift coe�cients for the cylinder read:

CD(u, p) = � 1

q1S

I

S
(�f (u, p) n̂) · v̂1 d�, (36)

CL(u, p) =
1

q1S

I

S
(�f (u, p) n̂) · n̂1 d�, (37)

where u and p are the velocity and pressure variables, �f is the Cauchy
stress tensor of the fluid, q1 = 1

2⇢V
2
1 is the dynamic pressure, ⇢ is the

density of the fluid and S is the surface area of the cylinder.
It is well known that for an accurate estimation of the aerodynamic

coe�cients, the use of a boundary layer refinement of the computational
mesh around the cylinder is mandatory. Among the possible strategies to
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Figure 13: Traces of the numerical solutions plotted in Figure 12 versus the curvilinear
abscissa s that starts from the point (0.45, 0.45) and moves counterclockwise along �.

generate such a refinement, one consists in gradually decreasing the mesh
element size in the domain while approaching the cylinder, as shown in Fig-
ure 14(a). An alternative strategy relies in splitting the computational fluid
domain into two sub-domains with independent (non-conforming) meshes,
see Figure 14(b): the finer mesh is used to represent the boundary layer
around the cylinder while the coarse one for the far field. In the latter case,
after space and time discretization of the Navier-Stokes equations, the alge-
braic form of the linear system to be solved assumes the form of Eq. (21)
(in which the matrices Ai,j and the right hand sides fi are those associated
with the fully-discretized Navier-Stokes equations).

The values of the physical parameters for the fluid as well as the bound-
ary conditions used in our simulations are those described in [20]. The
essential boundary condition on the fluid velocity at the cylinder surface is
imposed in weak form [1, 12].

In Table 10 we report the drag and lift coe�cients of the cylinder ob-
tained using di↵erent fluid meshes in which the boundary layer refinement
was obtained like in Figure 14(a). In Table 11 we report the number of
degrees of freedom used when two non-conforming fluid meshes are used: a
coarser mesh is used to represent the far field while a finer one around the
cylinder. In this example, the mesh-size used for the coarser mesh is the one
of Mesh Level 1 while the one of the finer mesh coincides with the mesh-size
of Mesh level 4 (see Table 10). Furthermore, the far field domain is consid-
ered as slave domain while the one around the cylinder is the master. In
this way the interface degrees of freedom of the master (finer) domain are
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(a) Boundary layer refinement obtained by progressive reduc-
tion of the mesh size.

(b) Independent meshes for the far field and the boundary
layer zones.

Figure 14: Two di↵erent strategies to realize boundary layers mesh refinements.

Mesh level DOF CD CL % error CD % error CL

1 149’004 6.39269 0.003331 3.35 64.56
2 250’400 6.26037 0.005431 1.21 42.22
3 531’992 6.20392 0.006838 0.31 27.26
4 1’209’060 6.17584 0.009412 0.15 0.11

Table 10: Numerical results obtained for the benchmark problem at Re = 20. The
reference drag and lift coe�cients are CD = 6.18533 and CL = 0.009401, respectively.

Domain Degrees of Freedom
Master 373’068
Slave 103’768

Table 11: Number of degrees of freedom for the master and the slave domains.
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Figure 15: Zoom of the meshes and the velocity fields in the region close to the cylinder
on a cut plane at z = 0.205m: in the first row we show the meshes used for the numerical
simulations. In the second row we plot the velocity fields obtained.

primal unknowns of the problem (see Eq. (21)). We remark that the ratio
between the mesh size of the far field and the one in the boundary layer is
approximately 6.

The numerical simulation performed using two non-conforming meshes
yields a lift coe�cient CL = 0.009487 and a drag coe�cient CD = 6.19713.
The errors with respect to reference values are 0.91% and 0.19% on the
estimation of the lift and the drag coe�cients, respectively. To analyze
the computational costs, we compare the average time to complete a single
time step and the number of linear solver iterations on the simulations with
Mesh level 4 of Table 10 and the one by INTERNODES with non-conforming
meshes. The approach based on the use of non-conforming meshes leads to
a reduction of the 50% of the time to perform a time step (mainly due to
the fact that the number of degrees with non-conforming meshes is roughly
half of the one of Mesh level 4). Furthermore, we observe that the number
of linear solver iterations is about 25 in both cases.

Finally, we report the results obtained for Re = 100. In Figure 16 we
show the fluid meshes considered for the region close to the obstacle and the
far field. In this unsteady case, the geometry in which we use a finer mesh
is extended to embed also the wake region behind the cylinder. We consider
the far field domain as the slave domain, while the one near the cylinder as
master. The computational meshes yield 281’393 degrees of freedom in the
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Figure 16: Horizontal view of the meshes used for the numerical example at Reynolds 100.

slave domain while 844’179 in the master. We remark that the aspect ratio
between the mesh sizes of the master and slave domains at their interface is
approximately 3.

In Figure 17 we show the numerical results computed at di↵erent times
on a cut plane parallel to the z axis (located at at z = 0.205m): we notice
that both the velocity and pressure solutions obtained in the master and
slave domains are in very good agreement at their interface. To better
assess the behavior of the solution across the interface, in Figure 18 we plot
the fluid velocity along a vertical line passing through both the master and
slave sub-domains.

Finally, in Table 12, we compare the aerodynamic coe�cients of the
cylinder computed numerically with those available in literature:

Maximum CD Maximum CL Minimum CL

Computed 3.3017 0.0029 -0.011017

Reference 3.2978 0.0028 -0.010999

Table 12: Comparison of the aerodynamic coe�cients computed with reference values
available in literature [20].

10. Conclusions

In this work we proposed INTERNODES, an accurate and easy to imple-
ment interpolation based method for coupling the solutions of PDEs on sub-
domains that feature non-conforming discretizations. We considered each
individual subdomain discretized by either the finite element or the spectral
element method.

The non-conforming problem was formulated in variational form as a
generalized Galerkin problem in which the intergrid operator for the data
transfer across the non-conforming subdomain interfaces is based on inter-
polation. The Lagrange and RL-RBF interpolants were considered in this

32



Figure 17: Visualization of the numerical solution obtained at times t = 2 s (top row),
t = 4 s (middle row) and t = 6 s (bottom row). On the left column we report the fluid
velocity while on the right the fluid pressure.

33



0 0.4 0.8 1.2 1.6 2 2.4 2.80

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Velocity [m s

�1

]

Y
c
o
o
r
d
i
n
a
t
e
[
m
]

(b) Time t = 2 s.

0 0.4 0.8 1.2 1.6 2 2.4 2.80

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Velocity [m s

�1

]

(c) Time t = 4 s.

0 0.4 0.8 1.2 1.6 2 2.4 2.80

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Velocity [m s

�1

]

(d) Time t = 6 s.

Figure 18: Plot over line, between points P1 = (0.5,0,0.205) and P2 = (0.5,0.41,0.205), of
the flow velocity at di↵erent times.

work.
We extensively investigated the convergence properties of INTERNODES

by solving numerically an elliptic problem in which the subdomains were dis-
cretized by non-conforming FEM-FEM, SEM-SEM and SEM-FEM (even in
the presence of geometrically non-matching interfaces).

A comparative study with the mortar method was carried out and we
showed that the orders of convergence obtained by INTERNODES compare
successfully with those generated by mortar.

Finally, we tested the method proposed by solving the benchmark prob-
lem of the fluid flow past a cylinder at di↵erent Reynolds numbers in which
independent (non-conforming) meshes for the boundary layer and the far
field parts of the domain were considered.
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