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Abstract

We introduce a new numerical method denoted byCORSING(COmpRessed Solv-
ING) to approximate one-dimensional advection-di�usion-reaction problems, moti-
vated by the recent developments in the sparse representation �eld, and particularly
in Compressed Sensing. The object ofCORSINGis to lighten the computational cost
characterizing a Petrov-Galerkin discretization by reducing the dimension of the test
space with respect to the trial space. This choice yields an underdetermined linear
system which is solved by exploiting optimization procedures, standard in Compressed
Sensing, such as thè 0- and `1-minimization. A Matlab R
 implementation of the
method assesses the robustness and reliability of the proposed strategy, as well as its
e�ectiveness in reducing the computational cost of the corresponding full-sized Petrov-
Galerkin problem. Finally, a preliminary extension of CORSINGto the two-dimensional
setting is checked on the classical Poisson problem.

1 Introduction

Purpose of this work is to present a novel technique for approximating elliptic Partial
Di�erential Equations (PDEs) taking advantage of a method typically used in the signal
processing �eld, i.e., Compressed Sensing. This technique was developed by D.L. Donoho
[11] and E.J. Candès, J.K. Romberg and T. Tao [5], and allows one to sample a signal using
far fewer measurements than those required by the Nyquist-Shannon sampling theorem.

The main idea used to link the �eld of signal processing and the one of numerical
methods for PDEs is really simple: why not identifying the solution of a PDE with a
signal? In particular, we focus on a discretization method based on the Petrov-Galerkin
formulation, popularized during the 1970's by A.K. Aziz and I. Babu²ka [3]. This is a
general framework, including Finite Elements, Finite Volumes, Spectral approximations,
where the PDE in a variational form is tested against several test functions. This process is
analogous to the measurement of a signal in the sampling phase of the Compressed Sensing,
with the only di�erence that the tests are performed using a bilinear form in place of an
inner product.
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Petrov-Galerkin method: Sampling:
solution of a PDE () signal

tests (bilinear form) measurements (inner product)

Figure 1: Analogy between the Petrov-Galerkin method and the Compressed Sensing sampling procedure.

Inspired by this parallelism, we coin the new word, COmpRessed SolvING, in short
CORSING, to refer to the methodology proposed in this paper.1 Figure 1 helps illustrating
this parallelism.
In practice, CORSINGaims at reducing the computational cost associated with the standard
Petrov-Galerkin approximation, by reducing the size, N , of the associated square linear
system, selecting just some rows,m < N , of the sti�ness matrix and load vector. This
selection amounts to picking a subset of the whole test functions. We propose either a
deterministic or a random selection strategy, i.e., we can pick, say, the �rstm tests with
respect to a prede�ned ordering, or we can extract them after assigning a probability
distribution on the test space. Either way, we are led to an underdetermined system, which
we solve via the tools of Compressed Sensing, minimizing thè0- or the `1-norm of the
solution vector. Ideally, we would like to pick m � N in order to maximize the expected
computational advantage of CORSING.

An important issue related to CORSINGis choosing the trial and test functions. The
choices proposed in this paper are essentially empirical. In general, the main idea consists
of picking a trial space with good sparsity properties in the spatial domain, and a test space
able of dealing with the frequency domain, or vice versa. The actual choice so far is hat vs
sine functions.

The main e�ort of this work is to set the new method without claiming of being ex-
haustive from a theoretical viewpoint. We have decided to �rst check, through an extensive
numerical assessment, theCORSINGaccuracy, computational burden, and robustness. A
comparison with the full Petrov-Galerkin method (m = N ), and with the best m-term
approximation theory enriches the whole paper and corroborates the results provided by
CORSING.

An earlier attempt to apply Compressed Sensing to the approximation of a PDE can
be found in [17]. The authors focus on a Galerkin formulation of the Poisson problem,
where the trial and test spaces coincide with piecewise linear �nite elements. The proposed
technique is fully deterministic and relies on the successive re�nement of the solution on dif-
ferent hierarchical levels and on a suitable error estimator. Only thè 1-norm minimization
is applied and it appears that m is very close toN .

The outline of the paper is the following. Section 2 provides a brief introduction to the
variational setting for an advection-di�usion-reaction equation, and to the Petrov-Galerkin

1We have chosen the wordCORSINGalso due to its assonance with the verb coarsen, in reference to the
roughening of the standard Petrov-Galerkin method.
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method. Then, we introduce the main concepts underlying Compressed Sensing in Section 3
and present theCORSINGapproach in Section 4. Section 5 is the main core of this work:
two particular choices of trials and tests are proposed and investigated and theCORSING
approach is applied to a 1D model problem. In Section 6 a preliminary generalization to
the 2D case is proposed andCORSINGis tested on the classical 2D Poisson problem. Some
concluding remarks are collected in Section 7.

2 Problem setting

We focus on the standard scalar advection-di�usion-reaction problem
(

� div( � r u) + b � r u + �u = f in 


u = 0 on @
 ;
(1)

where � , b, � , and f are given functions de�ned on a su�ciently smooth open domain

 � Rd, with d = 1 ; 2, and u is the unknown scalar �eld de�ned on 
 .

Problem (1) admits the generalized weak formulation

�nd u 2 U : a(u; v) = F (v); 8v 2 V ; (2)

whereU and V are suitable Hilbert spaces, a priori distinct,a : U � V ! R and F : V ! R
are the bilinear and the linear forms de�ned by

a(u; v) = ( � r u; r v) + ( b � r u; v) + ( �u; v ); F (v) = ( f; v ); 8u 2 U;8v 2 V;

(�; �) denoting the L 2(
) -inner product. Standard notation is employed for all the Lebesgue
and Sobolev spaces and their norms [20]. The particular choiceU = V in (2) identi�es the
classical weak formulation whose well-posedness is guaranteed by Lax-Milgram's Lemma
(see, e.g., [27]). The more general choice,U 6= V , yields a non-standard formulation for
(1). This approach was formalized during the early 1970's by A.K. Aziz and I. Babu²ka [3].

We now �x the notation used throughout the paper. Given N; m 2 N, the weak formu-
lation (2) is discretized by approximating U and V with two �nite-dimensional subspaces,
UN � U and Vm � V . These two spaces are assumed to be generated by a basis oftrial
functions f  1; : : : ;  N g and test functions f ' 1; : : : ; ' m g, respectively. In this article, we
consider U = V = H 1

0 (
) , but UN and Vm , in general, do not coincide, this yielding a
Petrov-Galerkin formulation.

Thus, the discrete version of problem (2) is

�nd uN
m 2 UN : a(uN

m ; vm ) = F (vm ); 8vm 2 Vm ; (3)

i.e., sinceVm = spanf ' i g,

�nd uN
m 2 UN : a(uN

m ; ' i ) = F (' i ); for i = 1 ; : : : ; m: (4)
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If we expand uN
m 2 UN as a linear combination of the trial functions f  j g, problem (4) can

be written as the linear system
Au N

m = f ; (5)

whereA 2 Rm� N is the generalized sti�ness matrix that represents the bilinear form a(�; �)
with respect to the basesf  j ; ' i g, and f 2 Rm is the generalized load vector, namely,

[A ]i;j = a( j ; ' i ); [f ]i = F (' i ); (6)

with i = 1 ; : : : ; m and j = 1 ; : : : ; N . The unknown vector uN
m 2 RN contains the coe�cients

of the discrete solutionuN
m expressed in terms of the trial basisf  j g.

We denote formulation (3) when m = N by full-PG. Goal of this work is to provide a
computationally e�cient technique to approximate the full-PG solution by picking m � N ,
i.e., using far fewer tests than trials. The resulting approximation is denoted bycorsed-PG.
This new approach leads us to deal with the highly underdetermined system (5), where
standard algebraic solvers cannot be employed. Moreover, at this stage, we cannot assume
the sti�ness matrix A to have a particular sparsity pattern, A being possibly a full ma-
trix. To de�ne a corsed-PGapproximation, we exploit ideas and techniques inspired by
Compressed Sensing.

3 Towards Compressed Solving

Compressed Sensing (CS) is a novel research area in the signal processing �eld, which
provides an e�ective way to acquire a signal by means of a small number of measurements,
less than required by the Nyquist-Shannon sampling theorem. CS was proposed in 2006 in
the pioneering works by D.L. Donoho [11] and by E.J. Candés, J.K. Romberg, and T. Tao
[5]. An exhaustive review about CS can be found, e.g., in [6, 12, 13, 16, 19], and also in the
online repository by the Rice University [31].

In this section, we outline the concepts and results about CS useful for �xing the com-
pressed solving approach.

3.1 Sensing and Recovery

Suppose we have an unknown discrete signals 2 CN that we want to sample, and asparse
basis of CN , f  1; : : : ;  N g, identifying the columns of the matrix 	 2 CN � N . Moreover,
we assume thats has a sparse representation in terms of 	 , i.e., there exists a vector
u 2 CN such that

s = 	u and kuk0 � N;

where kuk0 = # f i : u i 6= 0g is the so-called`0-norm of u. A less restrictive and often
adopted hypothesis is to assumeu to be compressibleinstead of sparse, i.e., that thebest
k-term approximation error in the `p-norm k � kp, for any interger p � 1,

� k (u)p = inf fk u � zkp : z 2 CN ; kzk0 � kg
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decays quickly in terms ofk (for all k � N ), following, e.g., a power law of the formCk� r ,
where C and r are positive constants.2

Now, given a set of test vectorsf ' 1; : : : ; ' m g � CN , with m � N , the measurement
process is performed in a linear and nonadaptive way by computing the inner products

hs; ' i i = f i ; for i = 1 ; : : : ; m;

with h�; �i the standard Euclidean inner product. If we consider the matrix that collects
these vectors as columns,� = ( ' i ) 2 CN � m , whose transpose� t is usually denoted by
sensing (or measurement) matrix , the whole measurement process can be recast in the
linear system

Au = f ; (7)

where A = � t 	 2 Cm� N is the global sensing matrix. The measurement process is often
called sensingor encoding. We notice that the case of a signals that is trivially sparse, i.e.,
sparse in the canonical basis, is a simple subcase of this general framework, with	 = I ,
the identity matrix, and A = � t .

Now, the problem is how to recoveru from (7). This system is highly underdetermined
(m � N ) and, as a consequence, it may have no solution or in�nite solutions. To overcome
this limit, a recovery (or decoding) algorithm is employed. The basic idea is to �nd the
sparsest solution to (7), i.e., to solve the nonlinear optimization problem

(P0) min
u2 CN

kuk0 s.t. Au = f : (8)

This problem has been proved to be NP-hard by S. Muthukrishnan in [23]. Nevertheless,
several algorithms have been devised in order to approximate (8). The most well-known
method is the Orthogonal Matching Pursuit (OMP), an iterative greedy algorithm intro-
duced in [25] as an improvement over theMatching Pursuit [22]. The OMP algorithm has
been implemented in a very e�cient way in [29] through the Matlab R
 packageomp-box
[28].

An alternative idea, originally proposed in [8] (before CS was born), is to relax the
`0-norm in (P0) with the `1-norm, yielding the convex optimization problem

(P1) min
u2 CN

kuk1 s.t. Au = f : (9)

(P1) can be solved using classical tools of convex optimization. In fact, it turns out to
be a linear programming problem whenA is a real matrix, while it can be reduced to a
second-order conic programming problem when the entries ofA are complex. A very fast
and stable Matlab R
 package for the`1-minimization is spgl1 (see [33, 32]).

2Actually, the `0-norm is not a norm, since k� uk0 = kuk0 , 8� 6= 0 . Moreover, there exist other measures
of the sparsity of a given vector, e.g., the `p -norm, with 0 < p < 2, as done in [11].
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3.2 RIP and Recovery Results

A deeper understanding of problems (P0) and (P1) requires more conceptual results. These
optimization problems raise some fundamental questions: when do (P0) and (P1) admit
a unique solution? When the solutions of (P0) and (P1) do coincide? For a certain vec-
tor u, with k non-zero entries, what is the minimum number of measurements needed to
successfully recoveru?

A fundamental tool to answer these questions is theRestricted Isometry Property (RIP),
�rst introduced in [5].

De�nition 3.1. A matrix A 2 Cm� N satis�es the RIP of order s < m and constant
� 2 [0; 1) if

(1 � � )kuk2
2 � k Au k2

2 � (1 + � )kuk2
2; 8u 2 CN s.t. kuk0 � s:

If A satis�es this de�nition, we say that A is RIP(s; � ). Essentially, we are requiring that
A be an isometry on all thes-sparse vectors.

We brie�y browse some well-known �RIP-based� results. Nonetheless, we do not address
other settings where, e.g., the RIP is replaced by the concept ofcoherence[13, Chapter 5].

We start with a fundamental recovery result about (P0).

Proposition 3.2. Let A 2 Cm� N , u 2 CN , with kuk0 � s, and Au = f . If there exists
� 2 [0; 1) such that A 2 RIP(2s; � ), then (P0) recovers u exactly.

Proof. Let u � be a solution to (P0). Then, thanks to its optimality, we have ku � k0 � k uk0.
This condition, together with the hypothesis kuk0 � s, implies ku � u � k0 � 2s. Finally,
using that A is RIP(2s; � ), we get

(1 � � )ku � u � k2
2 � k A (u � u � )k2

2 = kAu � Au � k2
2 = kf � f k2

2 = 0 ;

henceu = u � .

In practice, this proposition states that, for any �xed s-sparse signalu, with associated
measurement vectorf , problem (P0) yields a unique solution, coinciding with u.

An original and slightly improvement over Proposition 3.2 is given in terms of a suitable
inf-sup property in the following

Proposition 3.3. Let A 2 Cm� N , u 2 CN , with kuk0 � s, and Au = f . If A satis�es

inf
x 2 CN ; x 6= 0

kx k0 � 2s

sup
z2 Cm ; z6= 0

zt Ax
kzk2kxk2

= 
 > 0;

then (P0) recovers u exactly.
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Proof. We mimic the proof of Proposition 3.2. The only variant is that, for each solution
u � of (P0), there exists az 6= 0 such that


 ku � u � k2
2 �

zt A (u � u � )
kzk2

= 0 ;

henceu = u � .

Remark 3.1. The inf-sup condition in Proposition 3.3 is equivalent to the property

kAx k� � 
 kxk2 8x 2 CN ; kxk0 � 2s;

where

kyk� = sup
z2 Cm ; z6= 0

zt y
kzk2

is the dual norm of y 2 Cm . The proof of this statement is a consequence of [4, Proposition
3.4.4].

The following recovery result holds for the (P1) problem, and the proof is provided in
[12, Theorem 3.4].

Proposition 3.4. Let A 2 Cm� N , u 2 CN and Au = f . If A 2 RIP(3s; � ), with
� 2

�
0; 1

3

�
, and u � is a solution to (P1), then there exists a constantC = C(� ) > 0 such

that the `2-norm error estimate holds

ku � u � k2 � C
� s(u)1p

s
;

where � s(u)1 is the bests-term approximation error of u with respect to the`1-norm.

An immediate consequence of Proposition 3.4 is the following exact recovery result.

Corollary 3.5. Let A 2 Cm� N , u 2 CN , with kuk0 � s, and Au = f . If there exists
� 2

�
0; 1

3

�
such that A 2 RIP(3s; � ), then (P1) recovers u exactly.

An example: Haar vs Fourier

We provide here a particular choice for	 and � that is very popular in CS, namely 	
collects the Haar wavelets basis and� the Fourier basis. This pair of bases has been a
strong inspiration for the development of CORSING. For further details we refer to [18].

Fix p 2 N and set N = 2 p. Then, the univariate Haar orthonormal basis H of CN is
built as follows. Let c be the constant vector ofCN whose components are equal to2� p=2.
De�ne the step function h0;0 = h as

[h]j =

(
2� p=2 if 1 � j � 2p� 1

� 2� p=2 if 2p� 1 < j � 2p;
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where j 2 Z, with 1 � j � 2p and build the corresponding dyadic translationsh `;k as

[h `;k ]j = 2
`
2 [h]2` j � 2p k =

8
><

>:

2
` � p

2 if k2p� ` < j � (k + 1
2)2p� `

� 2
` � p

2 if (k + 1
2)2p� ` < j � (k + 1)2 p� `

0 otherwise,

where (`; k ) 2 N2, with 0 < ` < p , 0 � k < 2` and j 2 Z, for 1 � j � 2p. Then, the Haar
basis ofCN is given by

f cg [ f h `;k : 0 � ` < p; 0 � k < 2`g:

For example, the Haar basis ofC4 is

H =

2

6
6
4

1=2 1=2 1=
p

2 0
1=2 1=2 � 1=

p
2 0

1=2 � 1=2 0 1=
p

2
1=2 � 1=2 0 � 1=

p
2

3

7
7
5 :

The classical Fourier basisF of CN is

[f r ]j = 1p
N

ei 2�jr=N

with r 2 Z and � N=2 < r � N=2, and i =
p

� 1.
Now, we identify 	 = H , and build � as a random selection ofm Fourier vectors from

F, drawn according to the following probability density

P(' i = f r ) = CN min
�

C0;
1
jr j

�
;

whereCN is a normalization constant andC0 is introduced to avoid the singularity at r = 0 .
Then, as a direct consequence of Theorem 1 and Lemma 1 in [18], the global sensing matrix
A = � t 	 satis�es the RIP(�; s ) with overwhelming probability provided that

m & � � 2s log3(s) log2(N ); s & log(N );

and by assuming a suitable preconditioning forA . The main concept underlying this result
is the local coherence[18, Section 5], that will not be discussed here.

4 CORSING : COmpRessed SolvING

Let us now enter the core of this article: the explanation of the proposed approximation
strategy, referred to as COmpRessed SolvING or, more brie�y,CORSING. It consists of
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two distinct phases: the o�ine and the online phase, mimicking the well known reduced
basis approach [21]. The �rst one is a pre-computation stage, usually not included in the
overall computational cost, while the second one deals with the actual computation of the
corsed-PGsolution, outcome of theCORSINGapproach. We now describe the two phases
in detail.

O�ine phase The o�ine phase essentially forms the generalized sti�ness matrix and
load vector in (6). In turn, this phase is divided in three steps:

1. choose two sets ofN independent vectors inH 1
0 (
) for the full-PG formulation: the

trial functions f  1; : : : ;  N g, and the test functions f ' 1; : : : ; ' N g;

2. choose an integerm < N (desirably m � N ) and select a subset ofm test functions
f ' � 1 ; : : : ; ' � m g, where � i 2 f 1; : : : ; N g for i = 1 ; : : : ; m;

3. build the generalized sti�ness matrix A 2 Cm� N and load vector f 2 Cm , de�ned as

[A ]ij = a( j ; ' � i ) [f ]i = F (' � i ):

The o�ine phase is, in general, the most costly one (see Section 5.1).

Online phase Goal of the online phase is to compute thecorsed-PGsolution uN
m to the

underdetermined linear systemAu = f (i.e., the corsed solution uN
m of (1) via the basis

f  j g). The solution is computed through either problem (P0) or (P1), de�ned in (8) and
(9), respectively.

Notice that the global sensing matrix characterizing the standard CS approach is here
replaced by the generalized sti�ness matrix associated with the Petrov-Galerkin formulation
(3). Concerning the selection of the trial functions at the step 1. of the o�ine phase, one
should essentially try to get a discrete solution as sparse as possible or, at least, compressible
with respect to that basis, namely the sparsity prior for the corsed solutionuN

m should
be guaranteed. As for the test functions, at the step 2., the choice of the test indices
f � 1; : : : ; � m g can be carried out in either a deterministic or a randomized way. We denote by
D-CORSINGthe �rst approach, and by R-CORSINGthe randomized strategy. In particular,
we adopt the two following extraction procedures:

� D-CORSING: set � i = i for i = 1 ; : : : ; m;

� R-CORSING: by using Algorithm 4.1, this procedure selectsm di�erent numbers
f � 1; : : : ; � m g out of the set f 1; : : : ; N g, each numberi having a probability propor-
tional to a given weight wi of being drawn without repetitions.
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Algorithm 4.1
1: procedure TestSelection (N; m; f w1; : : : ; wN g)
2: U  f 1; : : : ; N g . The urn initially contains all the indices
3: T  ; . The selected indices set is initially empty
4: for i = 1 ; : : : ; m do
5: de�ne P(k) = wk

. X

k02U

wk0, 8k 2 U . Probability distribution on U

6: randomly select � i 2 U according to P
7: U  U n f � i g . Remove� i from the urn
8: T  T [ f � i g . Add � i to the selected indices
9: end for

10: return T
11: end procedure

Notice that R-CORSINGrequires a more involved numerical assessment due to the random-
ized nature of the approach. Indeed, to analyze the results using statistical tools, we need to
perform multiple runs of the same experiment. Numerical experiments show that a uniform
random selection of the� i 's (i.e., wi = const, 8i in Algorithm 4.1) does not correctly work,
in general. Vice versa, as shown in Section 5, a non-uniform randomization can improve the
performance of theCORSINGor even become crucial to get a reliable solution in particular
cases.3

In the full-PG case noCORSINGoccurs and we solve the square system (5) form = N ,
via the the Matlab R
 \ (backslash) command.

5 CORSING in action

The choice of the trial and test functions in the o�ine phase may be quite arbitrary, in
principle, except for ensuring the well-posedness of (3). In particular, we select hat and
sine functions. We explore their role as both trials and tests. These two bases have been
chosen in order to ful�ll two main requirements. On the one hand, they both are able
to capture sparsity in H 1

0 (
) , this being the function space associated with problem (1).
On the other hand, and this is a more heuristic motivation, they belong to qualitatively
di�erent �worlds�, namely, the hat functions are sparse in the spatial domain, the sines are
sparse in thefrequencydomain. This duality between space and frequency is a key concept

3To our knowledge, Algorithm 4.1, despite being already known in the literature, is not given an
identifying name. The o�cially acknowledged most similar algorithm that we have found so far is
the Independent Chip Model (ICM), used in poker tournaments. See also the MathOver�ow question
http://mathoverflow.net/questions/160738 .
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to CS, and it has been widely used since its discovery [5].

The CORSINGsetting poses more contraints with respect to the standard CS. First, CS
is usually cast inCN , whereasCORSINGrelies onH 1

0 (
) . About in�nite dimensional spaces,
CS has been recently extended to the sampling of a continuous signal that is sparse in a
wavelet basis, by resorting to few random Fourier measurements [2, 1]. In these works, the
sampling problem takes place in a Hilbert space. Second, in theCORSINGcase, a generic
bilinear form a(�; �), not necessarily symmetric, replaces the Euclidean inner product and
the boundary conditions have to be included in the sampling problem. The choice of the
hat and sine functions matches these requirements as shown below.

We start with the simple 1D case, by choosing
 = (0 ; 1).

Hat functions. The �rst basis, corresponding to the spatial domain, is the hierarchical
multiscale basis over the interval[0; 1], consisting of the mother hat function

�( x) =

8
><

>:

x if 0 � x < 1
2

1 � x if 1
2 � x < 1

0 otherwise;

and of its scaled dyadic translations� `;k (x) = 2 � `=2 �(2 `x � k), de�ned for ` 2 N and
k = 0 ; : : : ; 2` � 1 [9]. The normalization constant guarantees all these functions to have a
unit H 1(
) -seminorm. Moreover,� `;k is locally supported on the interval (k2� ` ; (k+1)2 � ` ).
We denote the hierarchical basis of levelL � 0 with H L = f � `;k : 0 � ` � Lg.

It can be checked that

span(H L ) �
�

u 2 X 1
2� ( L +1) : u(0) = u(1) = 0

	
; (10)

with dim(span(H L )) = 2 L +1 � 1, and whereX 1
h is the space of continuous piecewise linear

functions over the grid of uniform step h on the interval [0; 1].

Remark 5.1. The �rst order derivative (in a weak sense) of� is the Heaviside step function

H(x) =

8
<

:

1 if 0 � x < 1
2

� 1 if 1
2 � x < 1

0 otherwise:

Moreover, the functions H`;k (x) = � 0
`;k (x) = 2 `=2 H(2`x � k), together with the constant

function identically equal to 1, form the well known Haar wavelet basis ofL 2(
) . This
property will be useful when approximating the one-dimensional Poisson problem.

Sine functions. The second basis, associated with the frequency domain, is given by

sr (x) =

p
2

�r
sin(�rx ); x 2 [0; 1];
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Figure 2: The function u�
� for di�erent values of � .

for r 2 N n f 0g, where the normalization constant ensures thatsr has a unit H 1(
) -
seminorm. The sine basis of dimensionR, for some integerR � 1, is denoted bySR = f sr :
1 � r � Rg.

Remark 5.2. The set S1 is a complete orthonormal system ofH 1
0 (0; 1) with respect to the

inner product
R1

0 u0v0dx. This property can be proved by exploiting the completeness of
f ei�rx gr 2 Z in L 2(� 1; 1) and using the odd extension from[0; 1] to [� 1; 1].

Remark 5.3. Boundary conditions di�erent from Dirichlet's lead to a di�erent choice of the
trial and test functions.

5.1 The model Poisson problem

In order to show the reliability and the robustness of CORSING, we consider both the
constrained minimization problems (P0) and (P1). In particular, we resort to the Matlab R


packagesomp-box [28, 29] andspgl1 [33, 32], respectively.4

We focus on the 1D Poisson problem
(

� u00= f in 


u(0) = u(1) = 0 ;
(11)

where the source termf is chosen such that the exact solution be

u�
� (x) = ( e�x � 1)(1 � x); 8x 2 
 ;

with � a positive parameter. The shape ofu�
� can be tuned simply by varying � , i.e., u�

�
exhibits a thinner and thinner boundary layer as � increases (see Fig. 2).

Before dealing with the numerical validation of CORSING, we provide the asymptotic
best approximation error estimates foru�

� in the spaces spanned by the basesH L and SN .

4All the experiments have been performed using Matlab R
 R2013a 64-bit (version 8.1.0.604) on a
MacBook Pro equipped with a 3GHz Intel Core i7 processor and 8GB of RAM.
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Proposition 5.1. The following estimates hold:

inf
v2 span(H L )

kv � u�
� kL 2 (
) = O(N � 2); inf

v2 span(SN )
kv � u�

� kL 2 (
) = O(N � 2:5);

inf
v2 span(H L )

jv � u�
� jH 1 (
) = O(N � 1); inf

v2 span(SN )
jv � u�

� jH 1 (
) = O(N � 1:5);

with N = 2 L +1 � 1.

Proof. Let us start with the estimates related to span(H L ). Due to (10), we exploit the
interpolation error estimate in [26, Theorem 4.2] to get, fork = 0 ; 1,

j� 1
N v � vjH k (
) . jvjH 2 (
) N � 2+ k ; 8v 2 H 2(
) ;

with � 1
N : H 2(
) ! X 1

1=(N +1) the standard piecewise linear Lagrange interpolation opera-

tor, H 0(
) = L 2(
) , and it is understood that . hides a constant independent ofN . We
observe that the interpolation error associated withv = u�

� grows as� increases. Indeed
we have

ju�
� jH 2 (
) =

q
5
2 �e 2� � � (� 2 � 3� + 5

2)

and, consequently, forN ! + 1 , we get

inf
v2 span(H L )

jv � u�
� jH k (
) � j � 1

N u�
� � u�

� jH k (
) = O(N � 2+ k ); for k = 0 ; 1;

where the asymptotic constant behaves like
p

�e � , for � � 1.
Concerning the approximation in the spaceSN , we notice that the set f �k skgk� 1 is

an orthonormal complete system ofL 2(
) with respect to the L 2(
) -scalar product. Em-
ploying Parseval's identity, the squaredL 2(
) -norm of the best approximation error in SN

associated withu�
� is











u�

� �
NX

k=1

(u�
� ; �k sk )�k sk












2

L 2 (
)

=












+ 1X

k= N +1

(u�
� ; �k sk )�k sk












2

L 2 (
)

=
+ 1X

k= N +1

j(u�
� ; �k sk )j2:

In order to estimate this series, it can be checked, via a symbolic computation, that the
k-th Fourier coe�cient is

j(u�
� ; �k sk )j2 =

2� 2
�

� 3 � 2 � 2 k2 + � 2 � k 2 + 2 ( � 1)k � 2 k2 e�
� 2

� 2 k2 (� 2 + � 2 k2)4 ;

i.e., for k ! + 1 , we get j(u�
� ; �k sk )j2 = O(k� 6). Thanks to the monotonicity of the

function x � 6 for x > 0, the series with generic termk� 6 can be bounded from above by

+ 1X

k= N +1

k� 6 �
Z + 1

N
x � 6 dx = O(N � 5):
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Finally, we have
inf

v2 span(SN )
kv � u�

� kL 2 (
) = O(N � 2:5);

where the constant is asymptotic to�e � , for � � 1.
In order to estimate the best approximation error in the H 1(
) -seminorm, we observe

that since u�
� 2 C1 (
) \ H 1

0 (
) , its odd extension u� ;odd
� to [� 1; 1] belongs to C1

p;2

�
�
[� 1;1) ,

where, for a generick 2 N, we de�ne

Ck
p;2 = f g 2 Ck (R) and g(x + 2) = g(x) 8x 2 Rg: (12)

Moreover, its second derivative is (at least) absolutely integrable. Consequently, the Fourier
series of(u� ;odd

� )0, that is obtained as the even extension of(u�
� )0 to [� 1; 1], is convergent in

L 2(� 1; 1) and coincides with the term-by-term derivative of the Fourier series of the even
extension to [� 1; 1] of (u�

� )0 (see [30, Section 5.8, Theorem 2]). Thus, we have

inf
v2 span(SN )

jv� u�
� j2H 1 (
) =











(u�

� )0�
NX

k=1

(u�
� ; �k sk )�k s0

k












2

L 2 (
)

=












+ 1X

k= N +1

(u�
� ; �k sk )�k s0

k












2

L 2 (
)

:

Using the orthonormality and completeness of the systemf
p

2 cos(k�x )gk� 0 in L 2(
) and
with computations similar to the L 2(
) -analysis, we obtain

inf
v2 span(SN )

jv � u�
� jH 1 (
) = O(N � 1:5);

where the constant behaves like�e � , for � � 1.

Remark 5.4. An alternative (and more general) proof of the estimates in the spaceSN

can be based on the decay of the Fourier coe�cients with respect to their frequency index.
Actually, it can be proved that, for any piecewise periodicC1

p;2-function, say g, with at
most a �nite number of jumps on [� 1; 1), the corresponding Fourier coe�cients, bgk , satisfy
jbgk j = O(1=k).5 Since(u� ;odd

� )00enjoys the properties ofg, the Fourier coe�cients of u� ;odd
�

behave like O(1=k3). This in turn yields that the L 2(� 1; 1)-norm of the approximation
error due to truncation of the Fourier series ofu� ;odd

� is O(N � 5=2).
Alternatively one could rely on [7, Theorem 1.1] involving the Sobolev spacesH s(� 1; 1)

of non-integer order. Nevertheless,u� ;odd
� 2 H s(� 1; 1) for 0 � s < 2:5. Thus we would

obtain suboptimal convergence rates, in comparison to the ones in Proposition 5.1.

�
5See Paul Garrett's answer to the MathOver�ow question http://mathoverflow.net/questions/

182684.
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After providing the best-approximation results, we now consider thefull-PGformulation
in the spaces,span(SN ) and span(H L ), with N = 2 L +1 � 1, and we prove that it is well-
posed. To show this, we employ theinf-sup condition (see [4]), which turns out to be very
suited in a Petrov-Galerkin setting. This property implies the existence and uniqueness of
the solution uN

N of the full-PG method applied to (11) with the sine functions as trials and
the hat functions as tests, as stated in the following

Proposition 5.2. The �nite dimensional spaces UN = span(SN ) and VN = span(H L ),
with N = 2 L +1 � 1, satisfy the inf-sup condition with respect to the bilinear forma(�; �)
associated with problem(11). Namely, there exists a constant
 > 0, not depending onN ,
such that

8u 2 UN n f 0g; 9v 2 VN n f 0g s.t. a(u; v) � 
 jujH 1 (
) jvjH 1 (
) ; (13)

with a(u; v) =
R1

0 u0v0dx and 
 = 2=� .

Proof. We recall that UN = spanf  j : 1 � j � N g and VN = spanf ' i : 1 � i � N g, with

 j (x) = sin( �jx ); 8x 2 [0; 1]

and

' i (x) =

8
><

>:

(x � x i � 1)=h if x 2 [x i � 1; x i )

(x i +1 � x)=h if x 2 [x i ; x i +1 ]

0 otherwise;

where h = 1=(N + 1) and x i = ih . First, we notice that both f  j g and f ' i g are not
normalized since 
 in (13) is independent of any scaling of bothu and v. Moreoevr,
condition (13) is equivalent to the algebraic condition

8u 2 RN n f 0g; 9v 2 RN n f 0g s.t. v t Au � 
 (u t Du )
1
2 (v t Tv )

1
2 ; (14)

where [u]j = uj with u(x) =
NX

j =1

uj  j (x), [v ]i = vi with v(x) =
NX

i =1

vi ' i (x), [D ]ij =

� ij (�j )2=2, with � ij the Kronecker symbol,A is the sti�ness matrix, i.e., [A ]ij = a( j ; ' i ),
and

[T ]ij =

8
><

>:

2=h if i = j

� 1=h if ji � j j = 1

0 otherwise:

For every u 2 RN n f 0g, we show that the ansatz

v = Su; (15)
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where [S]ij = sin( ij�h ), represents the good candidate for satisfying the inf-sup condition.
Observe that it holds

A = TS : (16)

Indeed, we have that

[A ]ij = a( j ; ' i ) =
1
h

(� sin(�jx i � 1) + 2 sin( �jx i ) � sin(�jx i +1 ))

=
1
h

(� [S]i � 1;j + 2[S]ij � [S]i +1 ;j ) = [ T ]i;i � 1[S]i � 1;j + [ T ]i;i [S]i;j + [ T ]i;i +1 [S]i +1 ;j

= [ TS ]ij ;

where it is understood that these equalities formally hold also fori; j 2 f 1; N g, by letting
[S]0;j = [ S]N +1 ;j = 0 for j = 1 ; : : : ; N .

Now, employing (15) and (16), (14) can be equivalently written as

u t (St TS )u � 
 2u t Du ; 8u 2 RN n f 0g: (17)

In order to determine 
 > 0, we �rst exploit the symmetry of S and the property that
the columns of S form a basis of eigenvectors of the matrixT , to show that the ma-
trix eD = St TS = STS on the left-hand side of (17) is diagonal. In particular, [ eD ]ij =
� ij 2=h2 sin2(h�j= 2). Then, we consider the minimization problem


 2 = min
u2 RN nf 0g

u t eDu
u t Du

:

This is equivalent to �nding the minimum generalized eigenvalue associated with the pencil
eD � � D , i.e.,


 2 � minf � 2 R : det( eD � � D ) = 0 g = min
1� j � N

[ eD ]jj
[D ]jj

= min
1� j � N

�
sin

�
h�j

2

�
=

�
h�j

2

�� 2

=
�
sin

�
N

(N + 1)
�
2

�
=

�
N

(N + 1)
�
2

�� 2

�
4
� 2 ;

where the last inequality follows from the observation thatg(t) = sin( t)=t, for t 2 (0; �= 2)
can be bounded from below byg(�= 2) = 2=� .

An analogous result holds by swapping the trial and test spaces.

Proposition 5.3. The inf-sup condition in Proposition 5.2 holds also forUN = span(H L )
and VN = span(SN ), with N = 2 L +1 � 1, with the same value of
 .

Proof. The proof of Proposition 5.2 can be mimicked, working onA t .

Now, we will test the CORSINGprocedure described in Section 4 using the basesH L

and SN .
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Figure 3: full-PG error analysis on the model problem (11) in the HS case for di�erent values of � .

5.1.1 Hats vs sines

First, let us consider the functions inH L as trials and the functions in SR as tests, in short
the HS setting. We adopt the lexicographic ordering over the setH L

(`; k ) (0; 0) (1; 0) (1; 1) (2; 0) (2; 1) (2; 2) (2; 3) � � �
l l l l l l l l � � �
j 1 2 3 4 5 6 7 � � �

de�ned by the relation j (`; k ) = 2 ` + k and with inverse mapping

(`; k )( j ) = ( `(j ); k(j )) =
�

blog2(j )c; j � 2blog2 (j )c
�

;

b�c denoting the �oor function. With this convention, and according to the notation intro-
duced in Section 4, the �rst combination of trials and tests assessed is

 j = � ` (j );k(j ) ; ' i = s i :

Convergence of full-PG . We numerically check the convergence and robustness of the
full-PG method. Actually, we reach the best approximation error as stated in Proposition
5.1. We solve (11) for �ve di�erent choices of the maximum level, i.e.,L = 3 ; 4; 5; 6; 7,
corresponding to the linear system (5) of dimensionN = 15; 31; 63; 127; 255. In particular,
this system is solved using theMatlab R
 \ (backslash) command. Moreover, the four
values of the parameter� = 1 ; 5; 10; 15 are considered. For any combination of values forL
and � , we show in Figure 3 the relative error associated withuN

N with respect to the L 2(
) -
norm and the H 1(
) -seminorm. The errors follow the behavior predicted in Proposition
5.1 with respect to N , exhibiting the expected trend as a function of� as shown in the
proof of the proposition.
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Figure 4: Numerical performance of D-CORSINGin the HS case on the model problem (11) with exact
solution u�

5 . Maximum level L = 5 (a) and L = 9 (b). Relative error (left) and computing times of the
online phase (right).
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Assessment of D-CORSING. We check the performance ofD-CORSINGon the model
problem (11) with exact solution u�

5. In order to quantify the compression level of the
discretized model, we de�ne a new index, i.e., theTest Savings

TS = 100
N � m

N
%:

With a view to a computationally e�cient approximation of (11), a large value of TS is of
course desirable. We carry out two numerical experiments, setting the maximum levelL
to 5 in the �rst case, and 9 in the second case. In both cases, the maximum levelL (and,
consequently, the number of trials equal toN = 63 and N = 1023, respectively) is kept
�xed, while the number m of tests decreases such thatTS varies from5% (low compression)
to 95% (high compression). For each value ofm, the underdetermined system (5) is solved
by means of both (P0) and (P1), using the solversomp-box and spgl1 , respectively. The
results are shown in Figure 4. We evaluate the relative errors associated with the corsed
solution uN

m with respect to the L 2(
) -norm and H 1(
) -seminorm. The relative errors of
the (P0) and (P1) approaches are comparable. Indeed, in both cases, the error follows the
trend characterizing the full-PGasTS approaches0% (compare the left panel of Fig. 4 with
Fig. 3). The loss of accuracy with respect to thefull-PG error is particularly small (less
than one order of magnitude) forTS . 60%.

The online computing times of omp-box are lower than those required byspgl1 for
small sized problems (L = 5 ), whereas for larger problems (L = 9 ) the opposite occurs, up
to a maximum TS value. This behaviour is supported by further choices ofL not shown in
this work.

5.1.2 Sines vs hats

In the second set of experiments, we set

 j = s j ; ' i = � ` (i );k(i ) ;

and we denote this framework bySH.

Convergence of full-PG . Analogously to Section 5.1.1, the �rst test that we perform
aims at checking the convergence offull-PG applied to the model problem (11) with exact
solution u�

1; u�
5; u�

10; u�
15 and for N = 15; 31; 63; 127; 255. The results are shown in Figure 5.

The theoretical results in Proposition 5.1 are con�rmed, as the relative errors measured in
the L 2(
) -norm and the H 1(
) -seminorm exhibit the expected trend and sensitivity to� .

Assessment of D-CORSING. Numerical testing shows thatD-CORSINGis not robust in
the SH case. This is due to the massive presence of thealiasing phenomenon. In Figure 6,
we have a clear example of such an issue: the number of trials isN = 63, while the two
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Figure 5: full-PG error analysis on the model problem (11) in the SH case for di�erent values of � .
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Figure 6: Aliasing phenomenon for D-CORSING(left); R-CORSING(right) in the SH case: exact solution
(dashed line), corsed solution (solid line).
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(b) ESP as a function of TS

Figure 7: Statistical analyisis of R-CORSINGin the SH case: histograms of the relative error with respect
to the L 2(
) -norm for N = 63 and for di�erent values of m (a); sensitivity of the quantity ESP to TS for
di�erent values of N (b), and for the omp-box (left) and spgl1 (right) approach.

values m = 29 and m = 30 are considered. In the case ofomp-box , surprisingly, u63
29

is a good approximation of u�
5, while u63

30 is totally noisy. This shows that a sequential
selection of the levels ofH L does not necessarily capture the high frequency components of
the solution. On the contrary, if we apply R-CORSING, the quality of the corsed solution
highly increases for the same choices ofN and m, and the aliasing phenomenon completely
disappears (see Figure 6, right). In particular, we plot ten corsed solutions corresponding to
ten random experiments. The same behavior holds for thespgl1 solver, whose performance
is even worse than in theomp-box case (see Figure 6, bottom-left).

Assessment of R-CORSING. Due to the results of the last paragraph, hereafter we
employ the R-CORSINGfor the SH case. The weights used in Algorithm 4.1 are

wi =
1

4` (i )
: (18)

So far, this is an empirical choice suggested by an extensive numerical trial-and-error pro-
cedure. The automatic selection of the weights is still a challenging open issue.

It turns out that, for big values of TS, the behavior of R-CORSINGis quite chaotic. In
particular, we detect the presence of aclusterization phenomenon. For example, if we run
200 random experiments forN = 63 and m = 3 ; 9; 15; 22; 28, we get the results in Figure 7
(a), where a histogram representing the relative error foruN

m with respect to the L 2(
) -
norm, for each random test, is provided. The numbers on top of the histograms indicate
how many experiments are contained in the corresponding cluster. The green number
is associated with successful experiments, i.e., the cluster with the lowest relative error,
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whereas the red numbers count the failed experiments. We notice that, for the smallest
values of m, the relative error tends to cluster in separate groups. The number of these
groups decreases, as expected, asm gets higher and higher, until it narrows down to one.
Notice that the number of experiments in Figure 7, (a)-top, does not sum to 200 since some
of the results are out of box.

In order to better analyze these results, we compute theEmpirical Success Probability
index, de�ned as

ESP =
# experiments in the �rst cluster

# experiments
;

whose desirable value is1. This quantity is plotted as a function of TS in Figure 7, (b). In
particular, we select four values ofN , i.e., 63; 127; 255; 511, and we compare the performance
of omp-box , (b)-left, with spgl1 , (b)-right, for TS ranging from 60% to 95%. For each
value of TS and N , 1000 random experiments are performed. The range ofTS starts
from 60% since we have observed thatESP = 1 for TS . 60%, for every N . For a �xed
TS, ESP increases monotonically withN . This behavior is what usually occurs in the CS
setting. Thus, larger values ofN allow one to obtain a higher compression. Overall, the
performance of the two solvers is comparable, althoughspgl1 is slightly better. Notice
that, for example, for this range of TS, the value ESP = 0 is never reached byspgl1 .

Now, we focus on the performance ofR-CORSINGon the model problem (11), with
exact solution u�

5, by duplicating the two experiments of the HS framework, �xing N = 63
and N = 1023 (see Figure 8, (a) and (b), respectively). The number of testsm varies
such that TS ranges from 5% to 95%. For each combination of N and m, we perform
200 random experiments, using bothomp-box and spgl1 , and computing the relative
error associated with the L 2(
) -norm and the H 1(
) -seminorm. The relative errors are
represented as marked strips: the markers identify the mean of the errors which belong to
the cluster of the successful experiments, the thickness represents the corresponding95%
con�dence interval, while the numbers provide the value ofESP (they are not printed twice
since the values are the same for both norms). Qualitatively,omp-box and spgl1 exhibit
similar performances, althoughomp-box is slightly better in capturing the exact solution
u�

5, especially forN = 63. Concerning the values ofESP, both solvers ensure probability
1 for a large range ofTS, i.e., TS . 55% for N = 63, and TS . 85% for N = 1023.
Analogously to the HS setting, spgl1 tends to be much faster than omp-box for big
values ofN and asTS decreases (see Figure 8, right).

Convergence of full-PG and R-CORSING for regular exact solutions. The CORS-
ING approach in the SH case turns out to be really e�ective when the odd extension of the
solution has high regularity. Consider, for example, the function

w(x) = x3(1 � x)3; (19)
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Figure 8: Numerical performance of R-CORSINGin the SH case on the model problem (11) with exact
solution u�

5 : error strips for N = 63 (a), and N = 1023 (b), using omp-box (left) and spgl1 (center);
corresponding computing times (right).
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Figure 9: full-PG error analysis in the SH case on the model problem (11) with exact solution w de-
�ned in (19): L 2(
) -norm (a) and H 1(
) -seminorm (b). The light lines refer to the trends predicted in
Proposition 5.1.

and set W = w odd its odd extension. It is easy to check thatW 2 C3
p;2, de�ned in (12).

Moreover, the fourth-order derivative W (4) of W is in�nitely di�erentiable except for a �nite
set of jumps on [� 1; 1). Di�erentiating four times the Fourier series of W term-by-term,
we get that the Fourier coe�cients satisfy

j \(W (4) )k j � j cWk j j kj4:

Exploiting the same argument as in Remark 5.4 onW (4) , we have that j \(W (4) )k j � j kj � 1

and, henceforth, jcWk j � j kj � 5. With considerations analogous to the ones in the proof of
Proposition 5.1, we obtain

inf
v2 span(SN )

kw � vkH k (
) = O(N � 4:5+ k ) for k = 0 ; 1;

thus predicting a convergence rate higher than those in Proposition 5.1.
In Figure 9, we numerically check that full-PG ensures this best-approximation trend,

by computing the relative error with respect to the L 2(
) -norm and H 1(
) -seminorm on
problem (11) with exact solution w. The order of convergence isO(N � 4:5) for the L 2(
) -
norm and O(N � 3:5) for the H 1(
) -seminorm (marked lines in Figure 9).

As expected, the regularity of W positively a�ects the performance of R-CORSING
as well, as shown in Figure 10, where the same quantities as in Figure 8 are shown. In
particular, we chooseN = 63, and we carry out 200 runs for each value ofTS.

These results can be carried over to the more general case wherew in (19) is replaced
by

w(x) = x � (1 � x) � ;

and W = w odd is its odd extension, for any integer� . It can be checked that the i -th
order derivative of w vanishes atx = 0 and x = 1 , for i � � , whereas it is non-zero when
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Figure 10: Numerical performance of R-CORSINGon the model problem (11) with exact regular solution w
de�ned in (19): error strips for N = 63 using omp-box (left) and spgl1 (center); corresponding computing
times (right).

i > � . Thus, W 2 C�
p;2 if � is odd and W 2 C� � 1

p;2 if � is even. The resulting convergence
rates are O(N � (� +1 :5� k) ) for � odd, and O(N � (� +0 :5� k) ) for � even, with respect to the
H k (
) -norm, with k = 0 ; 1.

5.1.3 D-CORSING HS vs R-CORSING SH

We now compareD-CORSINGand R-CORSING, under some special conditions. We �rst
consider the case when the solution to the di�erential problem is exactly sparse, i.e., it
coincides with an element of the trial space, and is a linear combination of few trial functions.
Although this case rarely occurs in actual situations, it is very useful for assessing a sort of
consistency ofCORSING. Then, we check the performance ofCORSINGwhen the solution
to the di�erential problem is characterized by a minimal regularity, i.e., it is only in H 1(
) .
Finally, we assess the accuracy ofCORSING, namely, the dependence of the approximation
error on m, in comparison with the best m-term approximation error in the trial space.

CORSING robustness on sparse solutions. We assess theCORSINGability to recover
sparsesolutions. For this purpose, we �x N = 255 and we denote bys the sparsity of the
solution to problem (11), namely, the number of trial functions involved in the de�nition
of u. Successively, we vary independentlym and s between1 and N . For each pair, (m; s),
we perform 100 runs of CORSINGwith an s-sparse randomly generated exact solution.
In particular, the indices of the non-zero coe�cients are picked via a uniform probability
while the values of these coe�cients follow a standard normal distribution. In the case of
R-CORSING, for each pair, (m; s), the m test functions are randomly selected once for each
run, according to the weights in (18). For both CORSINGapproaches, we employ only the
(P0) solver.
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Figure 11: ESP as a function of m=N and s=N.

We expect that, for m < s , CORSINGis hardly able to provide us with the exact solution.
The number of measurements has to match at least the number of non-zero components.
CORSINGrobustness is assessed by computing the ESP index, shown in Figure 11, where
the white cells are associated with the value1, whereas black boxes correspond to the
value 0. Ideally, the black and white regions should be separated by the diagonal of the
square with an optimal value of the white area equal to0:5. By comparing D-CORSING
with R-CORSING, we can appreciate the bene�ts due to the randomization of theCORSING
procedure. In fact, the area of the white zone is0:1319 in Figure 11, (a), while it reaches
the value 0:2482in Figure 11, (b).

CORSING robustness on low regular solutions. Let us consider problem (11) with
exact solution

u(x) =

8
>>>><

>>>>:

11x � 7 if
7
11

� x <
8
11

�
11
2

x + 5 if
8
11

� x <
10
11

0 otherwise;

(20)

which belongs only to the spaceH 1(
) . We compare the performance ofD-CORSINGHS
and R-CORSINGSH, paying particular attention to the coe�cients of the corsed solution.
Besides computing the errors with respect to theL 2(
) -norm and H 1(
) -seminorm, we are
also interested in assessing how the vectoruN

m approximates vectoru in RN .
We take N = 255, TS = 50% (corresponding tom = 127), and consider the minimiza-

tion (P 0) only. In the R-CORSINGcase, only one single run is carried out. We consider
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Figure 12: Comparison between u255
127 and u for a low regular exact solution.

Method s ku � uN
m kL 2 (
) ju � uN

m jH 1 (
) ku � uN
m k2

D-CORSINGHS 106 6.1e-04 6.6e-01 3.5e-01
R-CORSINGSH 127 3.9e-03 1.5e+00 1.5e+00

Table 1: Comparison between D-CORSINGHS and R-CORSINGSH with u de�ned in (20).

the parameter s = kuN
m k0 as furnished in output by the omp-box package, based on the

sparse Matlab R
 format. Actually, s is computed via the commandnnz. This value can
be assumed as a measure of the computational cost of theCORSINGprocedure, because it
corresponds to the number of components ofuN

m activated by the greedy algorithm OMP.
The results are shown in Figure 12 and in Table 1. Since the exact solution (20) has low
regularity, the best approximation error in SN decays slowly [7] and the resulting vector
u is poorly compressible. In fact, the largest components in absolute value ofu are well
captured by the R-corsedsolution, whereas the long tail of the smaller coe�cients is not
captured at all, and causes some noise in the high frequencies of the corsed solutionuN

m
(Figure 12, (b)). On the contrary, the low regularity of u does not a�ect the performance
of D-CORSINGHS. The main components of the sparse vectoru are almost perfectly
captured by uN

m , as highlited in Figure 12, (a).
Table 1 also con�rms that D-CORSINGHS outperforms R-CORSINGSH. We point out

that even though the number, s, of components activated by OMP is similar in the two
cases, the number of meaningful components ofuN

m , i.e., with absolute value grater than
10� 3, is very di�erent, being 38 in the HS case, and119 in the SH case.
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CORSING vs best m-term approximation error. We assess the behavior ofCORSING
with respect to the best m-term approximation error. For this purpose, we recall some
results on the best approximation theory following [10].

Let U = spanf  j gj 2 N, and

� s(u)H 1 = inf
ws 2 Us

ju � wsjH 1 (
) (21)

be the bests-term approximation error in the H 1(
) -seminorm, where

Us =
[

J � N; jJ j� s

spanf  j gj 2 J

is the set of vectors that are linear combinations of at mosts trials. In the case when the
trials f  j g are orthonormal with respect to a scalar product, the �inf � in (21) turns out
to be a �min� and is realized byws, the vector associated with thes largest coe�cients of
u, expanded in terms off  j g. Without the orthonormality of the basis, the computation
of the best s-term approximation error could be a challenging issue [10]. Exploiting the
orthonormality property in CORSING, � s(u)H 1 is easily computable identifying the spaceU
with H L or SN , for L; N ! 1 , since the basis functionsf  j g are orthonormal with respect
to the inner product,

R

 u0v0dx, inducing the H 1(
) -seminorm.

To actually compare CORSINGwith the best m-term approximation error, we consider
problem (11) with exact solution u�

1. To estimate � m (u)H 1 , we compute the �rst N coef-
�cients of u�

1 with respect to the basis f  j g for someN � N , and then we evaluate the
H 1(
) -seminorm of the di�erence betweenu�

1 and the function spanned by them trials
associated with them largest coe�cients out of the N . The coe�cients with respect to the
hat trial functions are computed symbolically, while those associated with the sine functions
through the Matlab R
 command dst .

We assumeN = 255 and m = 7 ; 15; 31; 63; 127; 255, and employ the (P0) solver. In the
R-CORSINGcase,100 runs of the same test are performed for each value ofm. The error
juN

m � ujH 1 (
) is compared with � s(u)H 1 with s = m. This choice is due to the fact that, as
it can be checked numerically, the sparsity,s = kuN

m k0, of the corsed solutionuN
m is always

very close tom. In this particular test case, for D-CORSING, kuN
m k0 = m for every value

of m, whereas withR-CORSINGthe mean values ofkuN
m k0 (rounded to the nearest integer)

are 7; 15; 30; 60; 118; 255 for m = 7 ; 15; 31; 63; 127; 255, respectively.
In Figure 13, we comparejuN

m � ujH 1 (
) with � m (u)H 1 . We observe that theCORSING
error reaches the bestm-term approximation error only for m = N in both CORSING
approaches. However, the decay rate ofjuN

m � ujH 1 (
) is faster than � m (u�
1)H 1 , especially

in the HS case.

5.1.4 Comparison with an SVD-based approach

In order to certify, to some extent, the new proposed approach, we compareCORSING
with a reduction strategy based on the SVD factorization [14], hereafter denoted bySVD-
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Figure 13: Error analysis of CORSINGand comparison with the best m-term approximation error.

Reduction. Like CORSING, this approach is split into an o�ine and an online phase. The
�rst phase essentially coincides with the o�ine phase of CORSING, setting m = N (i.e.,
we build the full-PG sti�ness matrix A ) followed by a further step, where we compute the
SVD factorization of such a matrix, A = U�V t with U ; V 2 CN � N unitary matrices and
� = diag( � 1; � 2; : : : ; � N ) 2 CN � N collecting the singular values� i of A , in decreasing
order. We �nally compute the m-th order truncation of the SVD factorization, i.e., we
replaceA with

eA = eU e� eV t ;

where eU ; eV 2 CN � m contain the �rst m columns of U and V , respectively, and e� is the
leading principal m � m submatrix of � . As an alternative procedure for the o�ine phase,
we refer to [24, 15].

The online phase aims at computing an approximationeuN
m to the full-PG solution uN

N ,
by resorting to the Moore-Penrose pseudo-inverseeA + of eA as

euN
m = eA + f = eV e�

+ eU t f ;

where f 2 CN is the full load vector, e�
+

= diag( � +
1 ; : : : ; � +

m ) with � +
i = 1=� i if � i 6= 0 and

zero otherwise [14].
We apply both CORSINGand SVD-Reductionto problem (11) with exact solution u�

5,
considering both the HS and SH settings and by employingomp-box and spgl1 . The
results are shown in Table 2, where we gather the relative error in theL 2(
) -norm, the
value of ESP for R-CORSING, and the online computing time ton, for di�erent levels of test
savings, and forN = 1023.
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TS
omp-box spgl1 SVD

error ESP ton error ESP ton error ton tsvd

HS (D-CORSINGvs SVD-Reduction)
5% 7.0e-06 - 4.9e-01 7.9e-06 - 1.3e-01 2.1e-06 6.5e-02

8.5e-01
25% 8.3e-06 - 4.8e-01 8.2e-06 - 1.2e-01 2.1e-06 5.3e-02
45% 8.7e-06 - 4.3e-01 3.1e-05 - 9.7e-02 2.2e-06 6.2e-02
65% 3.5e-05 - 7.2e-02 1.4e-04 - 9.1e-02 2.9e-06 2.8e-02
85% 1.4e-03 - 3.3e-02 1.1e-03 - 5.5e-02 1.7e-05 1.3e-02

SH (R-CORSINGvs SVD-Reduction)
5% 6.1e-07 1.00 2.2e+00 3.9e-07 1.00 7.9e-02 2.0e-07 6.5e-02

8.7e-01
25% 2.3e-06 1.00 1.0e+00 1.4e-06 1.00 8.8e-02 3.0e-07 4.9e-02
45% 7.2e-06 1.00 3.9e-01 4.4e-06 1.00 8.2e-02 6.4e-07 6.8e-02
65% 2.4e-05 1.00 1.1e-01 2.2e-05 1.00 7.2e-02 2.0e-06 4.4e-02
85% 2.3e-04 1.00 2.9e-02 4.4e-04 1.00 6.9e-02 1.6e-05 1.8e-02

Table 2: Quantitative comparison between CORSINGand SVD-Reduction.

TS
CORSING SVD-Reduction

A f A f SVD
HS (D-CORSINGvs SVD-Reduction)

5% 8.7e-02 5.3e-04

9.5e-02 6.2e-04 8.5e-01
25% 6.8e-02 6.2e-04
45% 5.2e-02 3.7e-04
65% 3.2e-02 3.2e-04
85% 1.6e-02 3.6e-04

SH (R-CORSINGvs SVD-Reduction)
5% 9.7e-02 3.0e-03

1.3e-01 3.0e-03 8.7e-01
25% 8.2e-02 2.3e-03
45% 5.9e-02 1.8e-03
65% 3.8e-02 1.3e-03
85% 2.3e-02 8.4e-04

Table 3: Computing times for CORSINGand SVD-Reductionfor the o�ine phase.
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The SVD reduction leads to the most accurate results in all cases thanks to the e�ective
low-rank approximation properties of the SVD decomposition, and it seems to be less
sensitive to the compression level. On the other hand, the online computing times are
in general comparable; in particular, spgl1 performs more similarly to the SVD, with
respect toomp-box . Nonetheless, the bottleneck of the SVD is the computing time of the
factorization (denoted by tsvd in Table 2), despite it is o�ine (the times in the table refer
to the Matlab R
 command svd). In particular, the asymptotic trend of tsvd is O(N 3), on
the order of minutes already forN ' 4000. In Table 3, we investigate in more detail the
computing time of the whole o�ine phase, by comparing CORSINGwith SVD-Reduction.
The times required by the assembling ofA and f is substantially comparable for all the
approaches. However,SVD-Reductionhas a non-neglibile computational burden (i.e., at
least one order larger with respect to the assembling times ofA and f ) due to the SVD
algorithm.

Moreover, the memory needed bySVD-Reductionto store eU ; eV ; e� is even double with
respect to the memory requirement ofCORSING, which stores only matrix A 2 Rm� N .
Finally, we notice that CORSINGcan be implemented in a matrix-free version, because the
solversomp-box and spgl1 only require a matrix-vector multiplication. On the contrary,
this is not the case of theSVD-Reduction.

5.2 An advection-di�usion problem

We are now interested in testingCORSINGon the following advection-di�usion problem
(

� �u 00+ bu0 = 0 in 


u(0) = 0 ; u(1) = 1 ;
(22)

completed with non-homogeneus boundary conditions, and studying the behavior of the
corsed solutionuN

m in the presence of a high global Péclet numberPe = b=(2� ) � 1, with b
the advective �eld. In particular, the solution to (22) exhibits a layer of thickness O(�=b )
at the boundary x = 1 . The non-homogeneous condition atx = 1 is dealt with a standard
lifting, which allows us to employ both the HS and the SH settings, in a straightforward
way.

The results are shown in Figure 14 for two choices ofN and m (i.e., of TS) for Pe = 25,
where a zoom in on the numerical solution in the range0:9 � x � 1 is highlighted. In all
cases, the methodspgl1 is used. D-CORSINGin the HS case is considered in (a), while
in (b) we show, for the SH case, a strip delimited by the minimum and the maximum for
every x of the R-CORSINGsolution over 200 random runs, along with the associated mean.
The D-CORSINGsolution exhibits a quite standard behaviour according to the chosen
discretization step h = 1=64. On the other hand, the strip related to the R-CORSING
solution is rather thin, despite the high value of the test savings (70%). This corroborates
the reliability of the R-CORSINGapproach even for a large compression level and for an
advection-dominated problem.
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Figure 14: CORSINGvalidation on the advection-di�usion problem (22): D-CORSINGin the HS framework
(a), R-CORSINGin the SH setting (b).

6 Extension to the 2D case

The generalization of CORSINGto the 2D case is not straightforward. In particular, we
shall tackle in more detail the selection of the trial and test functions.

We focus on the Poisson problem over the unit square
 = (0 ; 1)2, with Dirichlet
homogeneous boundary conditions

(
� � u = f in 


u = 0 on @
 ;
(23)

with
f (x) =

1
15

[x1(1 � x1) + x2(1 � x2)]:

The exact solution to (23) is the bubble function

u� (x) = 1
30(x1 � x2

1)(x2 � x2
2) (24)

plotted in Figure 15 (a). This example is taken from [17].
Analogously to the 1D case, we select two distinct bases, one associated with the space

domain, the other with the frequency domain.

Pyramids. In order to discretize the spatial domain, we consider a hierarchical multi-
scale basis of pyramids, de�ned as follows. The reference pyramid is
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Figure 15: The exact solution u� (a); the basis P 1 (b).

�( x) :=

8
>>>>>>>>>>><

>>>>>>>>>>>:

x1 if x 2 E1

x2 if x 2 E2
1
2 � x1 + x2 if x 2 E3
1
2 + x1 � x2 if x 2 E4

1 � x2 if x 2 E5

1 � x1 if x 2 E6

0 otherwise:

E1

E2

E3

E4

E5

E6

0 0.5 1

0.5

1

The dyadic translation of level ` and multi-index k = ( k1; k2) is the pyramid

� `;k (x) = �(2 `x � k);

for ` 2 N and k 2 1
2Z2, such that 0 � k1; k2 < 2` with (f k1g; f k2g) 6= ( 1

2 ; 1
2), where f � g

denotes the fractional part of � 2 R. We notice that j � `;k jH 1 (
) = 1 , 8`; k .
For a �xed maximum level L , we denote this basis byPL = f � `;k : 0 � ` � Lg. The
cardinality of PL is equal to (2L +1 � 1)2, after discretizing the domain 
 with a three-
directional structured mesh of uniform sizeh = 1=2L +1 . Each level` containsjP ` j�jP ` � 1j =
22`3 � 2`+1 elements. In Figure 15, (b), we show the elements ofP1.
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2D Sines. The basis associated with the frequency domain consists of the tensor product
of sinusoidal functions, i.e.,

sr (x) =
2

� kr k2
sin(r1�x 1) sin(r2�x 2);

with r = ( r1; r2) 2 N2, and 1 � r1; r2 � R for some integerR � 1. The normalization
constant ensures thatj sr jH 1 (
) = 1 . This basis is denoted bySR .

In the 2D case, the ordering of the basis functions plays a crucial role. Indeed, this
choice a�ects theD-CORSINGand the R-CORSINGstrategies, that both depend on how the
trials  j and the tests ' i are ordered.
For PL , we adopt the lexicographic ordering on the multi-index(`; k) = ( `; k1; k2), i.e.,

(0; 0; 0); (1; 0; 0); (1; 1
2 ; 0); (1; 1

2 ; 1); (1; 1; 0); : : : ; (L; 2L � 1; 2L � 1):

For SR , we use a diagonal arrangement onr = ( r1; r2), i.e.,

(1; 1); (1; 2); (2; 1); (1; 3); (2; 2); (3; 1); : : : ; (R; R):

In practice, the multi-index (r1; r2) is ordered such that the sumr1 + r2 is increasing, and,
for a �xed sum, lexicographic order is used.

We now apply the CORSINGprocedure as described in Section 4. Analogously to the
1D case, we castD-CORSINGin a PS (Pyramid vs Sine) setting, i.e., we pick

 j = � ` (j );k (j ) and ' i = s r (i ) ;

whereas, due to aliasing,R-CORSINGis employed in aSP (Sine vs Pyramid) setting such
that

 j = s r (j ) and ' i = � ` (i );k (i ) :

In the R-CORSINGcase, the weights for the test selection procedure are empirically chosen
as

wi =
1

`(i )2

to favour the lower levels.

Remark 6.1. The Matlab R
 implementation of the 2D CORSINGrequires some care, espe-
cially in assembling the sti�ness matrix A . For this purpose, we employ a symbolic-numeric
approach where explicit formulas for[A ]ij are �rst computed via the symbolic toolbox and
then evaluated using a vectorization programming to avoid loops which are known to slow
down the performance of theMatlab R
 scripts.

�
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Figure 16: Numerical performance of D-CORSING in the PS case: L 2(
) -norm and H 1(
) -seminorm
relative errors, and color plot of the corsed solution using omp-box (top), and spgl1 (bottom).

6.1 Numerical experiments

In Figure 16, we show some results ofD-CORSINGapplied to problem (23) in the PS case.
The number of trials is �xed to N = 961, corresponding toL = 4 maximum hierarchical
levels. Then, the numberm of tests is chosen such thatTS varies between 80% and 95%.
For each combination ofN and m, both spgl1 and omp-box are used. The color plots of
the resulting corsed solutions are provided along with the values of the relative errors with
respect to theL 2(
) -norm and H 1(
) -seminorm. The results are promising, especially for
spgl1 , considering the high level of compression. Indeed, we have a su�ciently accurate
approximation of the true solution for TS . 90%, that corresponds to using at leastm = 96
tests out of 961 available functions. The omp-box solver is also able to capture the main
features ofu� , except for some localized noise. As expected, the error increases asTS grows,
with respect to both norms, and it is larger in the case ofomp-box .

We check now the performance ofR-CORSINGin the SP setting, resorting to SR with
R = 31, and with N = 312 = 961 trials (see Figure 17). In order to assess the in�uence of
randomization, we carry out three random experiments for each choice ofTS in the range
[80%; 95%]. omp-box shows the best performance, whereasspgl1 seems more sensitive
to randomization as well as to the compression level. Moreover,omp-box provides more
accurate corsed solutions thanspgl1 does.

A possible justi�cation of the di�erent results in Figures 16 and 17 is the di�erent
sparsity of the coe�ents of the exact solution (24) with respect to the pyramid or sine
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Figure 17: Numerical performance of R-CORSINGin the SP case: L 2(
) -norm and H 1(
) -seminorm
relative errors, and color plot of the corsed solution using omp-box (top panel), and spgl1 (bottom panel).
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Figure 18: Absolute value of the �rst 100 coe�cients of uN
N , with N = 961: PS approach with L = 4

(top); SP formulation with R = 31 (bottom).

basis. If the trials are the sine functions, the resulting vectoruN
N , with N = 961, associated

with the SP approach is much sparser than the vector characterizing thePS expansion
(see Figure 18).

7 Conclusions

We have shown how sparse recovery techniques which are basic Compressed Sensing tools,
such as̀ 0- and `1-minimization, can be applied to reduce the computational cost associated
with a Petrov-Galerkin approximation of a PDE.

We have proved that the full-PG approach is well-posed by showing that it satis�es
the inf-sup condition with respect to the spaces used inCORSING. Then, the extensive
numerical analysis of the 1D case shows that theCORSINGprocedure is accurate and
robust, both in terms of classical error measures, such as theL 2(
) -norm and the H 1(
) -
seminorm, as well as with respect to statistical tools, such as the indicesTS and ESP.
The preliminary extension to the two-dimensional case is also promising. Moreover, the
results of the thorough numerical comparison against bothfull-PG and the best m-term
approximation analysis provide an additional con�rmation of the reliability of CORSING.

A more complete theoretical analysis of the method, e.g., the well-posedness and con-
vergence with respect tom, is ongoing and will be the subject of a next work. We are
con�dent that Proposition 3.3 in Section 3 provides the theoretical tool on which founding
this analysis.

Of course, many questions are still open at this stage: What other choices of trials and
tests can we make? How does this method perform in the case of non-constant coe�cient
problems? Is it possible to optimize the linear algebra operations involving the generalized
sti�ness matrix, such as matrix-vector multiplications? Is it possible to automatically select

37



the m test functions?
As a thoughtful wish, we do hope that the CORSINGapproach can catch the scienti�c

community's interest as a valuable and e�ective numerical method to reduce the computa-
tional cost of solving a PDE.
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