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Abstract

We analyze the spike train data by means of the k-mean align-
ment algorithm in a double perspective: data as non periodic and
data as periodic. In the first analysis, we show that alignment is not
needed to identify paths. Indeed, without allowing for warping, we
detect four clusters strongly associated to the four possible paths. In
the second analysis, by exploiting the circular nature of data and al-
lowing for shifts, we detect two clusters distinguishing between spike
trains presenting higher or lower neuronal activity during the bottom-
left/bottom-right movement respectively. In this latter case, the align-
ment procedure is able to match the four movements across paths.

1 Introduction

We here analyze the spike train data presented in Wu et al. (2013) with
the aim of detecting spike trains associated to different paths or movements.
This manuscript is divided in two sections: in the first one we analyze the
240 spike trains as functions defined on a common domain along the real
axis (i.e., the interval [0,5]); in the second section, given the circularity of the
four possible paths, we analyze the 240 spike trains as periodic functions.
All analyses have been performed using the fdakma R package downloadable
from CRAN (Patriarca et al. (2013)).

2 Non-periodic Data Analysis

To look for clusters among spike trains we applied the k-mean alignment
algorithm, detailed in Sangalli et al. (2010) and summarized in Sangalli
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et al. (2013), to the 240 spike trains. Since a null value of intensity in
a spike train means no neuronal activity, we used a similarity index that
considered vertical shifts of the function as informative of a higher or lower
neuronal activity. Therefore, we shall use the following similarity index:

ρ(fi, fj) =

∫

fi(t)fj(t)dt
√

∫

fi(t)2dt
√

∫

fjp(t)2dt
. (1)

Note that this similarity index assigns similarity equal to 1 (its maximal
value) to couples of curves that differ only for a positive multiplying factor:

ρ(fi, fj) = 1 ⇔ ∃a ∈ R
+ : fi(t) = afj(t) . (2)

We performed the k-mean alignment algorithm allowing for affine warping
functions, being the group of affinity the maximal group compatible with the
index. We tested also the subgroups of shifts, dilations, and the degenerative
identity subgroup:

Haffine = {h : h(t) = mt+ q with m ∈ R
+, q ∈ R} ,

Hshift = {h : h(t) = t+ q with q ∈ R} ,

Hdilation = {h : h(t) = mt with m ∈ R
+} ,

Hidentity = {h : h(t) = t} .

Figure 1: Performance of the k-mean alignment algorithm when data are
not assumed as periodic. The plot shows the mean similarity obtained with
different values of k and different classes of warping functions.

Figure 1 shows the results of the k-mean alignment algorithm applied
with different choices for the number k of clusters and the group H of warp-
ing functions. For each couple (k,H) the mean similarity between the aligned
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curves and their respective templates is reported. The first dot on the left
represents the mean similarity between the unaligned curves and their mean
which acts as a lower bound for the algorithm performance. The mean
similarities achieved by using Haffine, Hshift, Hdilation, and Hidentity are re-
ported in orange, blue, green, and black, respectively. Note that, as already
pointed out in Sangalli et al. (2010) and in Sangalli et al. (2013), running
the k-mean alignment without allowing for warping (i.e, choosing Hidentity)
is equivalent to perform a simple functional k-mean clustering, while setting
k = 1 is equivalent to perform a simple continuous alignment with just one
template. As described in Sangalli et al. (2010) and in Sangalli et al. (2013),
being the curves not defined on the entire real axis, the integrals in (2) are
computed over the intersection of the domains of fi and fj , and the cluster
templates are estimated by means of local polynomial regression.

Figure 2: Clusters and templates identified by setting k = 4 and the group of
warping functions equal to Hidentity when data are not assumed as periodic.
Each panel refer to a different cluster. Spike trains are colored according to
their respective path. Templates are black colored.

The similar values and patterns of the four curves suggests the absence
of phase variability. The low mean similarities achieved are instead evi-
dence of an important residual amplitude variability in the data set that is
not captured by the templates. All four curves present an elbow for k = 4
suggesting the presence of four clusters. In Figure 2 the four clusters ob-
tained when no warping is allowed are reported. Almost the same clusters
are obtained if groups Haffine, Hshift, or Hdilation are used instead. The four
clusters turn out to be strongly associated to paths. In the left table of
Figure 3 we classify indeed the 240 spike trains according to both clusters
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Figure 3: The left panel displays the confusion matrix between paths and
clusters identified by setting k = 4 and the group of warping functions equal
to Hidentity when data are not assumed as periodic. The right panel displays
the confusion matrix between paths and clusters identified by setting k = 2
and the group of warping functions equal to Hshift when data are assumed
as periodic.

and paths showing a 92.5% agreement between the two classifications. This
analysis shows that to assign each spike train to the correct path no align-
ment is needed. If the target of the analysis were instead to detect the four
movements in each spike train, alignment would be of course needed. This
latter issue is explored in the next section.

3 Periodic Data Analysis

Since the trajectories of the monkey right hand should be ideally close curves,
always the same across paths, and with just the starting points differing
across paths, we here analyze the 240 spike trains as periodic functions and
apply the k-mean alignment with a similarity measure similar to that used
in the previous section:

ρ(fi, fj) =

∫ 5

0
fi(s)fj(s)ds

√

∫ 5

0
fi(s)2ds

√

∫ 5

0
fjp(s)2ds

. (3)

The only difference is that integrals are not defined over the real axis but
just on a single period (i.e., [0,5]) and that the functions are here assumed
to be periodic. Then we tested Hshift and Hidentity as possible groups of
warping functions being dilations non-coherent with the similarity measure
in the case of periodic function. From an algorithmic point of view, the only
difference, with respect to the analysis presented in the previous section, is
that the similarity between the template and the candidate warped functions
is not computed on the common domain but always on the interval [0,5].
Indeed, being the functions periodic, what exceeds one interval extreme is
considered at the other interval extreme.
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Figure 4: Performance of the k-mean alignment algorithm when data are
assumed periodic. The left panel shows the mean similarity obtained with
different values of k and different classes of warping functions.

In Figure 4 the mean similarities between the aligned curves and their
relative templates are reported as functions of k (i.e., the number of clusters).
The plot clearly suggests the use of shifts and two templates to align and
cluster data. Thus we chose to set k = 2 and the group of warping functions
equal to Hshift.

In Figure 5 the two obtained clusters are reported. The first cluster (left
panel) is made of 181 spike trains presenting a symmetric activity pattern
around the higher activity peak. The second cluster (right panel) is instead
made of 59 left-skewed spike trains characterized by a certain rate of activity
also the higher activity peak. This classification, as shown by the confusion
matrix reported in the right panel of Figure 3, is not simply related to paths

Figure 5: Clusters and templates identified by setting k = 2 and the group
of warping functions equal to Hshift when data are assumed periodic. Each
panel refer to a different cluster. Spike trains are colored according to their
respective path. Templates are black colored.
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Figure 6: Warping shifts by setting k = 2 and the group of warping functions
equal to Hshift. Each panel is associated to one of the four possible paths.

Figure 7: Warping shifts by setting k = 2 and the group of warping functions
equal to Hshift. Each panel is associated to one of the two clusters.

and thus it is worth further investigation in a biological perspective.
On the contrary, the warping functions (i.e., shifts) result to be strongly

associated to paths. Indeed, to effectively visualize the warping performed
by the k-mean alignment algorithm on the 240 periodic curves, in Figure 6,
we report, separately for each path, the 240 corresponding shifts as planar
rotations. With the exception of a reduced number of spike trains, warping
functions are clustered according to paths: all spike trains associated to
the same path are shifted nearly the same way as if the algorithm were
trying to match the movements across curves. If this is so, the spike trains
assigned to the first cluster will be the ones characterized by a very high
neuronal activity during the movement from button four to button one (i.e.,
bottom-right/top-right), while those assigned to the second cluster will be
the ones characterized by high neuronal activity also during the movement
from button three to button four (i.e., bottom-left/bottom-right).

Finally, in order to check for any relation between the two clusters and
the warping functions, in Figure 7 we report the warping shifts separated
according to cluster assignment. The picture clearly shows that there is no
relation between warping functions and clusters. As a final comment, it is
important to note that the choice of a proper similarity measure (i.e., eq. (3)
in a periodic setting) and a proper group of warping functions (i.e., shifts)
has been the key to unveil an hidden clustering structure in the signal shape
that was completely masked by clusters in the phase directly related to the
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four path types and which are here captured by the warping functions.

4 Discussion

In the non-periodic data analysis we pointed out that alignment was not
needed for the identification of clusters associated to paths. This finding is
supported by the analysis presented in Lu and Marron (2013). Indeed, they
show that the first two principal components of the unaligned data clearly
point out four groups of data associated to paths while these groups are
confounded if data are aligned. Instead, in the periodic data analysis we
found a strong association between phase variability (i.e., periodic shifts)
and paths. This kind of association has also been pointed out by Wu and
Srivastava (2013).
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