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Abstract

We analyze geo-referenced high-dimensional data describing the use over time

of the mobile-phone network in the urban area of Milan, Italy. Aim of the analy-

sis is segmenting the metropolitan area of Milan into subregions sharing a similar

pattern along time, possibly related to activities taking place in specific locations

and/or times within the city. To tackle this problem, we develop a non-parametric

method for the analysis of spatially dependent functional data, named Bagging

Voronoi Treelet Analysis. Indeed, this novel approach integrates the treelet de-

composition with a proper treatment of spatial dependence, obtained through a

Bagging Voronoi strategy. The latter relies on the aggregation of different repli-

cates of the analysis, each involving a set of functional local representatives asso-

ciated to random Voronoi-based neighborhoods covering the investigated area. In

the presence of spatial dependence the method appears to be both computation-

ally and statistically efficient. Indeed results clearly point out some interesting
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temporal patterns interpretable both in terms of population density and mobility

(e.g., daily work activities in the tertiary district, leisure activities in residential

areas in the evenings and in the weekend, commuters movements along the high-

ways during rush hours, and localized mob concentrations related to occasional

events). Moreover we perform two simulation studies, aimed at investigating the

properties and performances of the method.

1 Introduction

The metropolitan area of Milan is located in Northern-Italy and, with its 7.4 million

inhabitants, is the fifth largest metropolitan area in Europe after the Ruhr, Moscow,

Paris, and London. It includes the nine provinces of Milan, Bergamo, Como, Lecco,

Lodi, Monza-e-Brianza, Novara, Pavia, and Varese. It is characterized by a very high

concentration of working activities (nearly 10% of the entire national Italian gross do-

mestic product comes from this area, providing a per-capita GDP 50% higher than the

national average) but also of residential activities (the province of Milan is the most

populated in Italy, with more than 1000 inhabitants per km2, more than five times the

national average). The municipality of Milan, located in the center of the metropolitan

area, and quite identifiable with the area included within the highway ring-road, is of

course the main attractor of the region. Nearly 1.3 million persons live there but every

working day its population increases nearly 50% since 600 thousand persons commute

from the metropolitan area. This large number of commuters is mainly due to the lack

of housing within the municipality; this, together with lack of important investments

in improving the transport system in the last decades, has generated a critical situation

in terms of mobility. Indeed most roads connecting the municipality of Milan with the

metropolitan area have reached their saturation level with peaks of the traffic/capacity

ratio up to 150% during rush hours (OECD 2006a,b).

Indeed the OECD identifies housing, transport, and congestion as the bottlenecks

for the future growth of the Milan metropolitan area. These factors seem to badly affect

the well-being of the city from many perspectives: (i) pollution (Milan is the second

most air-polluted city in Europe after Moscow), (ii) economy (the difficulty in mobility

of people and goods is estimated to damp the output of the area of more than 4%), and,

of course, (iii) demography (while the population of the metropolitan area is growing

the population of the municipality of Milan is decreasing; in 1971 nearly 1/2 of the

population of the province of Milan lived within the municipality, in 2001 only 1/3).

In recent years a congestion charge has been introduced, the regional railway net-

work has been fully integrated, three new highways and two new subway lines are under

construction, and a few bike- and car-sharing initiatives have been promoted. The Green

Move project, which the present research is part of, is among these initiatives. Green

Move is an interdisciplinary research project financed by Regione Lombardia involving

different research groups at the Politecnico di Milano and focused on the development

of a vehicle sharing system based on the concept of “little, electric and shared vehicles”.

This work is a first attempt to gather information about population density and mobility

in the metropolitan area of Milan from mobile network data belonging to the Telecom
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Italia database. In a long term perspective this information will be used to optimally lo-

cate vehicles and docking stations of the car-sharing network. The possible use of this

information is of course much wider. Large scale quantitative information on human

mobility is of extreme interest to the urban planner, the traffic flow being functionally

related to the porosity and the permeability of the urban texture. The same information

may, of course, help the city manager, for instance to locate ambulances and police pa-

trols at a certain time in the most suited locations, or to maximize the public exposition

of alerts relevant to the well-being of the community.

In the Telecom Italia database, the metropolitan area of Milan is partitioned into

a uniform lattice S0 of 97 × 109 sites. In each site, the average number of mobile

phones simultaneously using the network for calling is provided every 15 minutes for

14 days. This quantity is called Erlang and, at a first approximation, can be considered

proportional to the number of active people in that site at that time, thus providing

information about people density and mobility. Technically the Erlang Ex j relevant to

the site x ∈ S0 and to the jth quarter of an hour is computed as

Ex j =
1

15
ΣQ

q=1|T
q

x j| , (1)

where T
q

x j indicates the time interval (or union of intervals) in which the qth mobile

phone is using the network for calling while moving within site x and during the jth

quarter of an hour; |T q
x j| indicates its length in minutes. The number of potential phones

using the network is indicated with Q. Equation (1) represents the formula actually in

use by the mobile company for computing Ex j, but its meaning is better captured by the

equivalent representation

Ex j =
1

15

∫ 15 j

15( j−1)
Nx(t)dt , (2)

which shows that Ex j is the mean over the jth quarter of an hour of the number Nx(t)
of mobile phones using the network within site x at time t, measured in minutes. The

equivalence of representations (1) and (2) is easily proved through the following iden-

tities

1

15
ΣQ

q=1|T
q

x j|=
1

15
ΣQ

q=1

∫ 15 j

15( j−1)
1{T

q
x j}
(t)dt =

1

15

∫ 15 j

15( j−1)
ΣQ

q=11{T
q

x j}
(t)dt =

1

15

∫ 15 j

15( j−1)
Nx(t)dt.

The Erlang data we deal with are recorded every quarter of an hour, from March

18th, 2009, 00:15, till March 31st, 2009, 23:45. Indeed, in some sites of the lattice

the entire temporal profile of the Erlang values is missing, while in other sites only

some values are missing or non-admissible since they are negative (and they are treated

as missing values). Hence, we restrict the analysis to a non-uniform time grid with

p = 1308 elements, each element of the time grid being relative to a quarter of an hour

for which an Erlang measurement has been observed in at least one site of the lattice.
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Figure 1: In the top panel, the aggregated Erlang of the investigated area as a function of

time. The solid vertical lines are drawn at midnight of each day, and the dotted vertical

lines at noon. The first day is Wednesday March 18, 2009. In the bottom panel, a map

of the region covered by the lattice of the Telecom dataset.

The lattice S0 covers an area of 757 km2, reported in the bottom panel of Figure 1,

and included between latitude 45.37◦ and 45.57◦ North and longitude 9.05◦ and 9.35◦

East. It is divided in |S0| = N = 10573 approximately rectangular sites of size 232m

× 309m. Overall, 13·829·484 records are available, among which 110·475 are missing.

The data set at hand can be genuinely considered an instance of spatially-dependent

functional data, because of the high within-unit sample size and the very high signal-to-

noise ratio. To have a first idea of these data, in the top panel of Figure 1 the aggregated
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Erlang for the investigated area, ∑x∈S0
Ex j, is reported as a function of time, measured in

minutes. A first inspection shows some global features such as the day/night effect and

working/weekend day effect. The aim of the analysis is indeed to identify these global

features together with the local ones, more subtle to detect and possibly associated to

particular subregions of the investigated area.

The Erlang data are progressively arousing the urban planner community to enthu-

siasm (Becker et al. 2011; Calabrese et al. 2011). In this work we aim at using Erlang

data for segmenting the metropolitan area of Milan into subregions that share the same

activity pattern along time in terms of population density and mobility. To our knowl-

edge, this is a first attempt at the exploration of Erlang data with the methods provided

by Functional Data Analysis (Ramsay and Silverman 2005), and their extension to the

case of spatially dependent data sets.

The rest of the paper is structured in five sections. In Section 2 the methodology

used to perform dimensional reduction of spatially dependent functional data is pre-

sented: in particular we propose to integrate a treelet analysis (Lee et al. 2008) with a

Bagging Voronoi strategy for the exploration of spatial dependence (Secchi et al. 2012).

In Section 3 the site-wise temporal smoothing of time-varying Erlang data through a

suitable Fourier expansion is described. In Section 4 the results of the analysis of the

Telecom Italia database are shown. In Section 5 we describe a simulation study con-

ducted to address some specific methodological issues. Finally, in Section 6, we draw

some conclusions and we trace possible directions for future research.

2 Data Analysis: Methodology

The prerogative of Erlang data is they can give insight on different aspects of the ur-

ban area they are referred to, and their analysis can be developed with various scopes:

the segmentation of the area into districts characterized by homogeneous telephonic

patterns; the identification of a set of “reference signals” able to describe the different

temporal patterns of use of the mobile phone network; the description of the influence

of each detected telephonic pattern in each site of the lattice.

Let {Ex(t)}x∈S0
be the collection of time profiles of the Erlang data, along the sites

of the lattice S0. Details on the smoothing preprocessing of these functional data are

described in Section 3. We claim that a few time-varying functions – let us say K –

coupled with surfaces are sufficient to capture all information carried by the Erlang pro-

files. Moreover, they are apt to the segmentation of the area under investigation in terms

of subregions sharing the same pattern along time with respect to mobile phone activity,

which in turn depends on population density and mobility. The K surfaces express the

impact in the area of the coupled time-varying functions, each describing a time profile

for mobile phone activity. The other way round, the K time-varying functions express

the evolution in time of the coupled surfaces, which provide a segmentation of the area

into homogeneous subregions with respect to mobile phone activity. More precisely,

these considerations can be formalized in the following model for the exploration of
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Erlang data

Ex(t) =
K

∑
k=1

dk(x)ψk(t)+ εx(t), (3)

for x ∈ S0, t ∈ [0,T ], and where εx(t) is a noise term such that E[εx(t)] = 0 and

Var[εx(t)] = σ2 independently from spatial or time coordinate. The set {ψ1(t), . . . ,
ψK(t)} is that of the time-varying functions while {d1(x), . . . ,dK(x)} represent their

coupled surfaces. Estimation and interpretation of these two sets of functions is of

interest to the urban planner, since they jointly describe both people behavior in time

and people mobility in space. In the following subsections we will describe a possible

strategy for the identification of these two sets of functions. It is worth stressing that

model (3) inevitably implies that the functions ψ and the surfaces d are identifiable

only up to a multiplicative factor, exactly like loadings and scores in functional princi-

pal component analysis. Indeed this fact is not relevant to our analysis, whose aim is

exclusively focused on the segmentation of the area into homogeneous subregions, and

on the identification of their activation profiles along time.

2.1 Dimensional reduction: a short tutorial on Treelet Analysis (TA)

We first consider the problem of estimating the set of functions {ψ1(t), . . . ,ψK(t)}. This

means finding a parsimonious description of the sample of Erlang profiles {Ex(t) }x∈S0

via a finite set of reference profiles. For the moment we are not considering the spatial

dependence which is intrinsic in our data set: we will deal with it in the next subsection.

A possible approach to dimensional reduction of functional data is the use of a

treelet basis, introduced in Lee et al. (2008). This data-driven basis seems the most

suited to the analysis of Erlang data, which present extremely localized functional fea-

tures. Treelets have been originally designed and developed for treating sparse un-

ordered data. Their property is to have a hierarchical structure, since they are a multi-

scale orthonormal basis indexed on a hierarchical tree. Indeed, as in multi-resolution

analysis, treelets provide a set of “scaling functions” defined on the nested subspaces

R
J =V0 ⊃V1 ⊃ ·· · ⊃VJ , and a set of orthogonal “detail functions” defined on residual

spaces {Wj}
J
j=1, where Vj ⊕Wj =Vj−1 for all j = 1, . . . ,J. We remark that treleets are

very close to wavelets, even though they are not a wavelet basis. Indeed, in treelet com-

putation, the wavelet approach is mixed with principal component analysis, which is

hierarchically performed on the couple of most correlated variables at any given level.

At each level of the tree, these are identified and replaced by a coarse-grained sum vari-

able, and by a residual difference variable: the new variables are computed by a local

principal component analysis in two dimensions. Difference variables are then stored,

and only sum variables are processed at higher levels of the tree.

More precisely, consider a generic functional sample χ1, . . . ,χN and J time in-

stances t1, . . . , tJ . The algorithm described in Lee et al. (2008) is initialized with the

sample design matrix X ∈ R
N×J . In our functional specification, X is the evaluation

matrix obtained by setting Xi j = χi(t j), for i= 1, . . . ,N and j = 1, . . . ,J. In the language

of treelet analysis, for each j = 1, . . . ,J, we interpret χ1(t j), . . . ,χN(t j) as a sample from
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the variable χ(t j). Note that in most functional data analyses, each function χ is ob-

served only at discrete time points, often with error. It is thus common to identify the

set of functions χ1, . . . ,χN by properly smoothing these discrete data and then evaluat-

ing each function on the same suitable time grid t1, . . . , tJ. We will give more details on

this preprocessing of our Erlang data in Section 3.

After initializing the set of sum variables with the original variables χ(t1), . . . ,χ(tJ),
the algorithm proceeds in the construction of the tree by removing at each iteration the

two most correlated variables from the set of sum variables, and by replacing them

with the associated first principal component. The second principal component, i.e., the

difference variable, is stored along iterations. The algorithm is stopped when the set of

sum variables is empty, thus returning the set of difference variables {ϕ1, . . . ,ϕJ}, each

represented by a vector in R
J . In our functional specification, the vectors of this set are

interpreted as the evaluation of a set of functions {ϕ1(t), . . . ,ϕJ(t)} at time instances

t1, . . . , tJ . For further details on treelet decomposition see Lee et al. (2008).

The output of the algorithm allows for the choice of any subset of difference vari-

ables, which in turn will generate a proper linear subspace of RJ . For instance, the first

L ≤ J difference variables generate the space W1 ⊕ . . . ,⊕WL. In our application, the es-

timation of the set of functions {ψ1(t), . . . ,ψK(t)} is indeed accomplished by using the

complete treelet basis {ϕ1(t), . . . ,ϕJ(t)}, according to a criterion detailed in the next

subsections.

2.2 Bagging Voronoi Treelet Analysis (BVTA)

The model expressed in equation (3) relates the observed functional signal to a linear

combination of a set of time-varying functions, each time-varying function contributing

to the signal observed in a specific site of the lattice according to the value assumed in

that site by a coupled surface. We can exploit the strategy described in the previous sub-

section and based on treelet decomposition for decoupling observed functional data into

their constitutive parts. Indeed, we can directly apply the treelet basis decomposition to

the N-dimensional sample of Erlang data {Ex(t)}x∈S0
, and then select a K-dimensional

subset of the complete treelet basis as an estimate for {ψ1(t), . . . ,ψK(t)}. The coupled

surfaces {d1(x), . . . ,dK(x)} will then be obtained by site-wise projection of the Erlang

data on the estimates of {ψ1(t), . . . ,ψK(t)}. In the rest of the paper, we will refer to this

strategy as Treelet Analysis (TA).

The drawback of this approach is that it does not take into account spatial depen-

dence, neither in the estimation of {ψ1(t), . . . ,ψK(t)}, nor in that of {d1(x), . . . ,dK(x)}.

Due to the continuity in space of the phenomenon they capture, spatial dependence is

intrinsic to our Erlang data. Hence, we develop a novel approach for the identification

of the functions ψ and the coupled surfaces d by integrating the treelet decomposition

with a proper treatment of spatial dependence. A comparison between this novel ap-

proach and TA for dimensional reduction of functional data indexed by a lattice, will

be discussed in Section 5 in the light of the results of simulation studies.

We will take into account spatial dependence by following a Bagging Voronoi strat-

egy along the lines depicted by Secchi et al. (2012). The rationale beyond this strategy
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is simple, but effective: (i) replace the original data set with a reduced one, composed

by local representatives of subsets of data belonging to neighborhoods covering the

entire investigated area; (ii) analyze the local representatives; (iii) repeat the previous

analysis many times for different reduced data sets associated to different randomly

generated systems of neighborhoods, thus obtaining many different weak formulations

of the analysis; (iv) finally, bag together the weak analyses to obtain a conclusive strong

analysis.

At each iteration of the first part of the algorithm, called Bootstrap Step, we gen-

erate a partition of the considered region in random neighborhoods, which are used to

compute local representatives. Each representative is a summary of the data belonging

to the same element of the partition, and it is computed as a weighted mean with Gaus-

sian isotropic weights (Secchi et al. 2012), even though other strategies are conceivable.

The sample of functional local representatives exploits a specific structure of spatial de-

pendence, and it is usually less noisy and less spatially dependent. By applying the TA

strategy to the sample of local representatives, one obtains a coarse estimate of a refer-

ence basis. The coarse estimate of the coupled surfaces is then obtained by projecting

each local representative on the estimated basis, and by assigning the corresponding

scores to all sites of the lattice belonging to the element of the partition associated to

the considered representative. After B replicates of this weak analysis, the intermediate

output of the algorithm consists of:

• a collection of reference bases {ϕb
1 (t), . . . ,ϕ

b
J (t)}

B
b=1;

• a collection of sets of surfaces {db
1(x), . . . ,d

b
J (x)}

B
b=1.

The second part of the algorithm, the Aggregation Step detailed in the next subsection,

bags together this intermediate output obtaining a final reference basis, estimate of

the time-varying functions {ψ1(t), . . . ,ψK(t)}, and an estimate of the coupled surfaces

{d1(x), . . . ,dK(x)}. Larger values of B imply a higher accuracy of the final estimate.

The proposed procedure is sketched in the pseudocode scheme in Figure 2. Note

that one has to fix some parameters in advance: n, the dimension of the random partition

and of the sample of functional local representatives; B, the number of bootstrap repli-

cates; d(·, ·), the most proper metric to measure distances in the considered region. We

named this procedure Bagging Voronoi Treelet Analysis (BVTA), since it is based on

bagging, it uses Voronoi tessellations to compute random partitions of the considered

area, and it uses treelets to perform dimensional reduction.

2.3 Aggregation step: 1-median alignment for bases matching

We will here give the details of the Aggregation Step in the BVTA algorithm sketched

in Figure 2, whose aim is to bag together the B coarse results obtained in the Bootstrap

Step. In the context of the present analysis, this means aggregating sets of treelet ba-

sis functions and of their coupled surfaces. The aggregation strategy illustrated in the

following lines is a discrete variation of the Procrustes alignment procedures described

for instance in Ramsay and Li (1998); James (2007); Kaziska and Srivastava (2007);

Sangalli et al. (2009).
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Figure 2: Pseudocode scheme of the BVTA algorithm.

If the functional basis used for dimensional reduction of the sample of local repre-

sentatives were fixed along replicates of the algorithm (e.g. a wavelet basis, or a Fourier

basis), one could compute the final reference basis as the output of a proper method for
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estimating the centroid of a set of functional data. For instance, one could simply av-

erage the B bases component by component, or take their functional median. However,

the BVTA algorithm is centered on data-driven bases, i.e., treelets. Hence a matching of

the elements of the B different bases generated by the Bootstrap Step of the algorithm

is in order before computing the final reference basis.

Different approaches to bases matching are possible. We develop a procedure for

1-median basis alignment, which jointly computes the reference basis from the B coarse

bases, while also reordering their elements. This procedure is inspired by the joint clus-

tering and alignment method described in Sangalli et al. (2010), where a Procrustes

continuous alignment is integrated in a k-mean clustering strategy, to jointly meet the

two tasks of assigning curves to a group, while simultaneously aligning them to the

corresponding group prototype. In the context of bases matching, each object is a mul-

tivariate functional data (one of the coarse bases), and we look for the unique prototype

(the reference basis) which best describes the set of functional objects, while also align-

ing their components, by permutations in the order of basis functions.

Consider the collection of all bases obtained in the Bootstrap Step,
{

ϕb
1 , . . . ,ϕ

b
J

}B

b=1
,

and choose a proper measure d̃(·, ·) for the distance (or dissimilarity) between two

bases, which in our application will be the L1([0,T ];RJ) distance.

The 1-median basis alignment is an iterative algorithm, which is initialized by ran-

domly selecting a reference basis {ϕ̃ [0]

1 , . . . , ϕ̃ [0]

J }, among the B coarse bases generated

by the Bootstrap Step of the BVTA algorithm. The following two basic steps are then

iterated until convergence (consider the l-th iteration, l > 0):

1. Alignment step. For each of the B coarse bases, by permutation of their com-

ponents, find the best matching to the reference basis {ϕ̃ [l−1]

1 , . . . , ϕ̃ [l−1]

J } according

to the measure d̃(·, ·). For b = 1, . . . ,B, let {k
b,[l]
1 , . . . ,kb,[l]

J } be the permutation of

the order of the elements in the basis {ϕb
1 , . . . ,ϕ

b
J } minimizing the distance to the

current reference basis;

2. Estimation step. Given the B reordered bases, let the new reference basis be that

whose j-th element is

ψ̃ [l]

j = argmin
ϕ∈L1(T )

B

∑
b=1

d̃(ψb

k
b,[l]
j

,ϕ), j = 1, . . . ,J.

Since d̃(·, ·) is the L1([0,T ];RJ) distance, the reference basis {ϕ̃ [l]

1 , . . . , ϕ̃
[l]

J } is the

functional median of the B reordered bases.

The algorithm is stopped at iteration l̄ after two subsequent iterations with no re-

ordering of the basis elements, for all bases. The final reference basis is thus identified

as {ϕ̃1, . . . , ϕ̃J} ≡ {ϕ̃ [l̄]

1 , . . . , ϕ̃
[l̄]

J }.

For b = 1, . . . ,B, set {πb
1 , . . . ,π

b
J } to be the final permutation {k

b,[l̄]
1 , . . . ,kb,[l̄]

J } and

let {d̃b
1(x), . . . , d̃

b
J (x)} ≡ {db

πb
1

(x), . . . ,db
πb

J

(x)}, for x ∈ S0. For j = 1, . . . ,J, we now

compute the sample variance s̃2
j of the dataset {d̃b

j (x)}x∈S0,b=1,...,B, whose size is N×B.
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Figure 3: A random selection of 100 Erlang data, drawn at random among the sites of

the lattice, as a function of time. The solid vertical lines are drawn at midnight of each

day, and the dotted vertical lines at noon. The first day is Wednesday March 18, 2009.

For estimating the time-varying functions {ψ1, . . . ,ψK} we take the K elements of the

basis {ϕ̃1, . . . , ϕ̃J} associated to the K largest variances among {s̃2
1, . . . , s̃

2
J}, and we call

these elements {ψ̂1, . . . , ψ̂K}.

Indeed, for each given x ∈ S0, the same indexes identifying {ψ̂1, . . . , ψ̂K} among

the elements of the basis {ϕ̃1, . . . , ϕ̃J}, also point to a collection of K data sets among

the sequence of data sets {d̃b
1(x)}

B
b=1, . . . ,{d̃b

J (x)}
B
b=1; let d̂k(x) be the mean of the k-th

selected data set, for k = 1, . . . ,K. We take the surface {d̂k(x)}x∈S0
to be an estimate of

the surface {dk(x)}x∈S0
coupled with the time-varying function ψk(t).

Note that only K < J basis functions in the reference basis are finally selected.

Indeed, in practical applications, one follows a Goldilocks approach that finds the “just

right” value for K by inspecting the scree-plot generated by the sequence of variances

s̃2
1, . . . , s̃

2
J . In our application, only treelets characterized by high values of s̃2 have a

pretty neat interpretation, and are therefore included in the analysis.

3 Data Analysis: Preprocessing

The Erlang data described in Section 1 are an instance of spatially dependent functional

data, indexed by the sites of a spatial lattice. In each given site, the discrete sequence

of Erlang values can be considered as a sampling of a continuous process in time,

describing the average number of mobile phones using the network in that site (see

equation 2). An example of the observed Erlang profiles along time is shown in Figure

3: 100 sites have been randomly selected in the lattice, and the Erlang measurements

recorded in each selected site have been plotted as a function of time. It can be observed

in the picture that, beside a periodic behavior due to night/day alternation in the average

use of mobile phone, Erlang data present strongly localized features. Moreover, the

average intensity of the Erlang profile can be very different from one site to another.

Indeed, in each site of the lattice we observe a discrete version of the Erlang contin-

uous process, recorded approximately every quarter of an hour: due to discontinuities

in the information provided by the network antennas, the Erlang measure is missing at

some time instances, and hence the time grid of Erlang measurements is non-uniform.

Moreover, some Erlang recordings are negative due to measurement errors, and should

11



be treated as missing values. We thus need to choose a proper basis expansion to re-

construct the functional form of the time-varying Erlang data, and to evaluate them

on a common uniform grid of time values of dimension J = 200, before applying the

methodology presented in Section 2.

For an extensive description of smoothing procedures for functional data we refer

to Ramsay and Silverman (2005). In our application, we perform a site-wise smoothing

of the Erlang data via a Fourier basis expansion, due to the evident seasonality in the

Erlang profiles. We set the period of the Fourier basis equal to 1 week: hence, the

reconstructed functional form of the Erlang profile for site x ∈ S0 is a function Ex(t)
such that

Ex(t) =
cx

0

2
+

H

∑
h=1

[ax
h cos(hωt)+bx

h sin(hωt)] , (4)

where t ∈ [0;T ], ω = 2π/T and T = 60 · 24 · 7 is the period expressed in minutes. In

the following, the periodic terms in the Fourier basis expansion oscillating at frequency

ω,2ω,3ω, . . . will be referred to as first, second, third, . . . harmonic, respectively. The

coefficients cx
0, ax

h and bx
h, are estimated by means of least squares.

The basis dimension H should be carefully tuned: it has to be chosen large enough

to ensure that the very localized features (sudden peaks, oscillations, . . .) which charac-

terize this kind of data (see Figure 3) are properly caught by the smoothing procedure.

To select the basis dimension, we analyze the power spectrum associated to the site-

wise smoothing of the Erlang data with a Fourier basis of large dimension H = 200.

The power spectrum of the Fourier expansion of a signal represents the amplitude of

the signal as a function of the frequency, and at the h-th frequency it is related to the

amplitude of the h-th harmonic

Px(h) =
√

(ax
h)

2 +(bx
h)

2. (5)

Hence, the more the h-th harmonic is relevant in the explanation of features occurring

in the data, the more Px(h) will be large. A local maximum in the power spectrum

detects the frequency of an harmonic explaining relevant features in the data. When

the power spectrum vanishes towards zero, there is no need to include higher frequency

harmonics.

In each site we thus obtain a power spectrum from the site-wise smoothing of the

Erlang measurements. We choose the most proper value of H by inspecting the shape

of the average power spectrum over all the sites of the lattice, i.e. P(h) = 1
N ∑x∈S0

Px(h).
The average power spectrum of the Telecom Italia database is reported in Figure 4. A

graphical inspection of the plot makes it clear that the frequencies significantly con-

tributing to the Erlang time variation are the smaller ones (all less than 7), capturing

differences among days or blocks of days (e.g., the working and weekend days varia-

tion), and the multiples of 7, capturing the recurring daily dynamics. Due to the huge

dimension of the Telecom Italia database, we choose a basis of very high dimension, in

order to be reasonably sure to catch all relevant localized features. The picture indicates

that, for frequencies higher than 100ω , the average power spectrum is negligible: we

thus set H = 100 for subsequent analyses.

12
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Figure 4: Average power spectrum P(h) obtained via site-wise smoothing of the Erlang

measures with a Fourier basis of dimension H = 200. Only the values of P(h) for

h = 1, . . . ,100 are shown in the plot. Dotted vertical lines are drawn for multiples of 7.

4 Data Analysis: Results

The smooth functions obtained by the preprocessing of the Erlang data are then an-

alyzed along the method presented in Section 2. In particular, the analysis has been

performed for different values of the dimension n of the Voronoi tessellation, ranging

from 50 to 2500 elements. For each value of n, B = 50 random Voronoi maps have been

used in the Bootstrap Step of the BVTA algorithm. The metric d(·, ·) for generating the

random Voronoi maps is the Euclidean distance on the plane, after having flattened

the inspected area using the international WGS84 UTM 32N geographical system map.

Local representatives are identified as weighted means with Gaussian isotropic weights.

Choosing the right value for n is a more delicate issue, since the optimal value of this

parameter is strongly related to the spatial dependence occurring between data recorded

in different sites. Smaller values of n are associated to bigger elements of the Voronoi

tessellation, and thus provide a strong reduction of noise together with the aggregation

of possibly non-homogeneous data. On the contrary, larger values of n are associated

to smaller elements of the Voronoi tessellation: noise is not significantly reduced, but,

on the other hand, aggregated data are expected to be more homogeneous. In Secchi

et al. (2012), the choice for n is driven by the idea that a good value for n would be

the one providing stable results of the performed analysis across bootstrap replicates.

In that work a cluster analysis is performed, and thus the concept of bootstrap stability

refers to cluster assignment of each site across replicates. To measure stability the

authors introduced an entropy criterion, which averages over the entire area a pixel-

wise measure of the uncertainty of the cluster assignment distribution along bootstrap

replicates.

Analogously to Secchi et al. (2012) we define a measure of bootstrap stability co-

herent with the aims of the present analysis. An intermediate output of the BVTA

algorithm consists of the collection of the B surface sets {d̃b
1(x), . . . , d̃

b
J (x)}

B
b=1, each

surface being coupled with an element of the reference basis {ϕ̃1(t), . . . , ϕ̃J(t)}. In-

deed the final estimates of the time-varying functions {ψ1(t), . . . ,ψK(t)} and of their

coupled surfaces {d1(x), . . . ,dK(x)} are exclusively based on this intermediate output,

that we therefore require to be stable with respect to the choice of n. To measure sta-

bility, for each site x ∈ S0 and j = 1, . . . ,J, we compute the bootstrap variance of the

13
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Figure 5: Total average variance (log scale) for the BVTA of the Erlang data as a func-

tion of n.

data set {d̃b
j (x)}

B
b=1. We then average over x ∈ S0, and sum over j = 1, . . . ,J. We call

this quantity total average variance (TAV): its minimization is the criterion driving the

choice for n. A small value of TAV implies that for each site and for each element of

the reference basis we attain stable scores across bootstrap replicates.

In Figure 5 the logarithm of TAV is reported as a function of n. A minimum is

observed for n = 850, that is thus the dimension of the Voronoi tessellation used to run

the BVTA algorithm for the analysis of the Erlang data. This dimension of the Voronoi

tessellation is associated to an average area of the Voronoi elements equal to 0.77 km2,

that corresponds to the area of a circle of diameter nearly equal to 1 km. This indicates

that spatial dependence is relevant up to this distance, and thus reveals 1 km to be the

practical spatial range of our data.

The Goldilocks approach described at the end of Subsection 2.3 selects K = 23

as the “just right” dimension for the reference basis output of the BVTA algorithm.

Quite surprisingly, the time-varying functions thus selected, and their coupled surfaces,

are also easily interpretable. We here discuss just four of them, that we deem to be

particularly interesting for illustrating the peculiar properties of the analysis conducted

by means of the BVTA algorithm:

• the population average density function ψ̂1;

• the working/non-working time function ψ̂2;

• the rush-hour function ψ̂4;

• the Milan design week function ψ̂9.

The first two functions correspond to static activities, the third one to mobility-related

activities, and the fourth one to a spot event concentrated in space and time.
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Figure 6: Some selected elements of the reference basis (from top to bottom: ψ̂1, ψ̂2,

ψ̂4, and ψ̂9) output of the BVTA algorithm analyzing the Erlang data.

Figure 6 reports the temporal pattern of the basis elements {ψ̂1(t), ψ̂2(t), ψ̂4(t), ψ̂9(t)}
over a week-period starting from Wednesday 00:00 and ending with Tuesday 24:00.

Full vertical lines separate different days while dotted lines are reported every two hours

to help the reader. Their coupled surfaces {d̂1(x), d̂2(x), d̂4(x), d̂9(x)} are represented in

Figure 7. A value close to 0 in a particular site of the map means that the corresponding

reference basis element does not significantly contribute to the Erlang signal measured

in that site. On the contrary, a positive/negative large value on the map means that the

corresponding reference basis element significantly contributes to the Erlang signal in

that site, with sign coherent to the score sign. The 0-level contour lines are traced in

bold. Figure 8 zooms on the city center of the previous maps. In the remaining part of

the Section, we give more details on the interpretations of {ψ̂1(t), ψ̂2(t), ψ̂4(t), ψ̂9(t)}
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and of their coupled surfaces, with the aim of illustrating the type of information about

the city dynamics that can be drawn from our analysis.

Population Average Density Function ψ̂1. The population average density function

is the most important in terms of magnitude, in the sense that it is the one presenting

the largest contribution to the Erlang signals of many highly active sites. It can be

indeed detected even through much simpler analyses, that do not take into account

spatial dependence, or even by simply looking at a random sample of curves (e.g.,

Figure 3). As it is evident by inspection of Figure 6 (top panel), this reference basis

element is always switched on with positive sign with significant values between 7:00

am and 2:00 am in working days and between 8:00 am and 2:00 am in weekend days.

It describes daily and weekly periodicity. In particular it points out a larger activity

during day-time with respect to night-time, a bi-modal behavior of the daily signal, and

confirms Milan to be an attractor during the day-time of working days. This is clear

from the lower level observed during the weekend. In the top-left panel of Figure 7

the estimated coupled surface is reported. This map catches the urbanization of the

area, clearly pointing out day-time low-density population areas and day-time highly-

populated areas. We thus relate this reference basis element to the population average

density.

Working/non-working Time Function ψ̂2. Looking at Figure 6 (second panel from

the top), we notice that this function contrasts working-time (i.e., from 8:30 am to 8:00

pm of working days) against non-working time (i.e., from 7:00 am to 8:30 am and

from 8:00 pm to 2:00 am of working days, and day-time of week-end days). Positive

values on the relevant map (top-right panel in Figure 7) indicate high activity during

non-working-time and a reduced activity during working-time, and viceversa for neg-

ative values. The map clearly spots the historical center connected with a northeast

offshoot toward the Central Railway Station, areas mostly devoted to tertiary activi-

ties, and where the resident population density is very low. Then, a donut-shaped area

around the city center, mostly covering residential or leisure areas, emerges with high

positive values. Moving further from the city center, the values of d̂2 tend to vanish

except for some non-working hours spots corresponding to satellite towns right outside

the city of Milan. Moreover, one can observe a working hours spot in the north direc-

tion corresponding to the Bicocca neighborhood, that is a renewed area in the outskirts

of Milan mostly devoted to tertiary and to university-related activities. This basis ele-

ment presents the city center as an attractor during the working hours and the outskirts

and the satellite towns as attractors during the non-working hours. This can possibly be

explained by the daily mobility of working people from their residence to their working

place and backward.

Rush-hour Function ψ̂4. Positive scores with respect to this function point out areas

where an high activity is present between 8:00 am to 10:00 am and 5:00 pm to 9:00 pm,

which correspond to the morning and evening rush hours (see the second panel from

16



Figure 7: From top to bottom, and then from left to right, maps of the estimated surfaces

{d̂1(x), d̂2(x), d̂4(x), d̂9(x)} coupled to the reference basis elements reported in Figure

6. The 0-level contour lines are reported in bold.

the bottom in Figure 6). Inspection of the coupled surface d̂4 in the bottom-left panel of

Figure 7, shows that areas particularly active during rush hours are concentrated around

the third ring-road within the city (Circonvallazione Esterna), at the Central Railway

Station, along arteries connecting the city with the satellite towns, along some segments

of the highway ring-road, and in Linate Airport (the eastern spot on the map). It is

also interesting to note the hole in the very city center corresponding to the congestion

charge area, which is restricted only to local traffic during weekdays.

Milan Design Week Function ψ̂9. This function contrasts the Saturday activity car-

ried on between 10:00 am and 8:00 pm and everyday dinner time (see the bottom panel

17



Figure 8: Zooms on the city center of the maps already shown in Figure 7.

in Figure 6), and seems strongly related to the activity, during non-working time, con-

nected to the Milan Design Week. This event has been held between the 18th and the

23rd March, 2009, at the Fiera Milano Exhibition Complex North-West of the city; the

activities related to this occasional but highly attractive event clearly affect the Erlang

measurements in the time period covered by our data. Indeed, in the bottom-right panel

of Figure 7, the Fiera Milano Exhibition Complex can be easily located by the positive

peak in d̂9, while a corresponding negative peak is observed in the city center. This

is possibly explained in the light of the interpretation given to d̂2, by a flow of people

spending Saturday at the Exhibition site and dinner and after-dinner in the city center.
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5 Simulation Study

In this Section we describe a simulation study conducted to address some open issues

related to the proposed method. The simulations are aimed at supporting the following

claims:

(i) minimization of TAV is a good criterion for selecting the optimal value nopt of

the Voronoi tessellation dimension n;

(ii) the best estimate {ψ̂1(t), . . . , ψ̂K(t)} of the time-varying functions {ψ1(t), . . . ,
ψK(t)} is obtained for n = nopt ;

(iii) the estimate {ψ̂1(t), . . . , ψ̂K(t)} of the set of time-varying functions {ψ1(t), . . . ,
ψK(t)} obtained via BVTA algorithm with n= nopt is better than the one obtained

via standard TA, which does not take into account spatial dependence.

We analyze a set of functional data {Yx(t)}x∈S0
, indexed by the sites of a square

bidimensional lattice S0 of 50×50 sites. The functional signal observed in each site is

generated by the following model

Yx(t) =
3

∑
k=1

dk(x)ψk(t), x ∈ S0, t ∈ [0,T ], (6)

where T = 5, {ψ1(t),ψ2(t),ψ3(t)} is a set of three time-varying components, {d1(x),
d2(x),d3(x)} is the set of their coupled surfaces. Model (6) aims at generating smooth

data analogous to the data generated by the preprocessing phase of our analysis, as

described in Section 3.

The time-varying components are selected to have patterns similar to those in the

estimated final reference basis for Erlang data (see Figure 6), in order to support our

claims (i)-(iii) in a simulated scenario as close as possible to the case study at hand.

Moreover, each time-varying component is orthogonal to the others, to ensure coher-

ence between the set {ψ1(t),ψ2(t),ψ3(t)} and the estimates {ψ̂1(t), ψ̂2(t), ψ̂3(t)} pro-

vided by the TA and the BVTA strategies, which are both based on orthogonal basis

decompositions. Finally, we aim at functional patterns generating data Yx(t) complex

enough to be untractable with standard parametric models. The time-varying compo-

nents ψ1(t),ψ2(t),ψ3(t) are shown in the top panels of Figures 12, 13 and 14, respec-

tively. The function ψ1(t) (top panel in Figure 12) is represented by the sinusoidal

function

ψ1(t) = 2+
1

2
· sin(2πt), for t ∈ [0,T ], (7)

and it can be interpreted as an average profile across the lattice. The second and third

components, ψ2(t) and ψ3(t) (top panel in Figure 13 and 14, respectively), are continu-

ous and periodically contrast some selected time intervals, wider in the former function.
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Their analytical expressions are the following

ψ2(t) =















































10−50 · (t − i), if 0.2+ i ≤ t < 0.22+ i, for i = 0, . . . ,4,
−1, if 0.22+ i ≤ t < 0.33+ i,

or 0.67+ i ≤ t < 0.78+ i, for i = 0, . . . ,4,
50 · (t − i)−17.5, if 0.33+ i ≤ t < 0.37+ i, for i = 0, . . . ,4,

1, if 0.37+ i ≤ t < 0.63+ i, for i = 0, . . . ,4,
32.5−50 · (t − i), if 0.63+ i ≤ t < 0.67+ i, for i = 0, . . . ,4,

50 · (t − i)−40, if 0.78+ i ≤ t < 0.8+ i, for i = 0, . . . ,4,
0, otherwise;

(8)

ψ3(t) =











































































50 · (t − i), if i ≤ t < 0.02+ i, for i = 0, . . . ,4,
1, if 0.02+ i ≤ t < 0.08+ i,

or 0.92+ i ≤ t < 0.98+ i, for i = 0, . . . ,4,
5−50 · (t − i), if 0.08+ i ≤ t < 0.12+ i, for i = 0, . . . ,4,

−1, if 0.12+ i ≤ t < 0.18+ i,
or 0.82+ i ≤ t < 0.88+ i, for i = 0, . . . ,4,

50 · (t − i)−10, if 0.18+ i ≤ t < 0.2+ i, for i = 0, . . . ,4,
40−50 · (t − i), if 0.8+ i ≤ t < 0.82+ i, for i = 0, . . . ,4,
50 · (t − i)−45, if 0.88+ i ≤ t < 0.92+ i, for i = 0, . . . ,4,
50−50 · (t − i), if 0.98+ i ≤ t < 1+ i, for i = 0, . . . ,4,

0, otherwise.

(9)

The coupled surfaces {d1(x),d2(x),d3(x)} are generated according to a Hidden

Markov Random Field model (see Kunsch et al. (1995) for details). More precisely,

in each site x ∈ S0 we generate, independently from one another, three latent labels

Λ1(x),Λ2(x) and Λ3(x) from three different Ising Markov Random fields Λ1,Λ2,Λ3 :

S0 → {−1,1} with parameters β1,β2,β3, respectively. The parameter β of an Ising

Markov Random field controls the strength of spatial dependence: higher values of β

imply a stronger spatial dependence, and hence generate a field characterized by large

macro-areas of the lattice assigned to the same label. We fix β1 = β2 = 2 and β3 =
1
2
:

in this way, fields generated by Λ1 and Λ2 will show a smoother pattern than the patchy

one we expect from Λ3. This choice reflects a situation in which a spiky behavior in

time, that described by ψ3(t), is associated to very localized areas in space. Three re-

alizations of Λ1,Λ2 and Λ3 are shown in Figure 9 (top panels: left, center, and right

respectively). Given these three realizations, the surfaces {d1(x),d2(x),d3(x)} are site-

wise and independently generated according to the following distributions

d1(x)|(Λ1(x) = l) ∼ χ2(pl),

d2(x)|(Λ2(x) = l) ∼ N(µl,σ
2
2 ),

d3(x)|(Λ3(x) = l) ∼ N(νl,σ
2
3 ),

where p−1 = 3 and p1 = 8, µ−1 =−1 and µ1 = 1, ν−1 = 0.5 and ν1 = 1, σ2 = 1 and σ3 =
0.25. These choices are related to the desired behavior for functional data associated to
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Figure 9: In the top panels, three realizations of the Ising Markov Random fields used

to generate {d1(x),d2(x),d3(x)} for the first simulation study: from left to right, Λ1,Λ2

and Λ3. For each site x ∈ S0, Λ1(x),Λ2(x), and Λ3(x) respectively give the label to

determine the distribution of d1(x), d2(x), and d3(x), shown in the central panels (from

left to right). In the bottom panels, from left to right, the three estimates d̂1(x), d̂2(x),
and d̂3(x) obtained via the BVTA algorithm with n = nopt , are reported.

different labels: in each site x∈ S0, d1(x) determines the higher or lower intensity of the

average time pattern ψ1(t), d2(x) determines the sign and the size of the contrast ψ2(t),
while d3(x) determines the higher or lower intensity of the peaks in ψ3(t). The central

panels of Figure 9 represent three realizations of the surfaces {d1(x),d2(x),d3(x)}x∈S0

corresponding to the three realizations of the fields Λ1,Λ2 and Λ3 shown in the top

panels. Finally, we obtain the synthetic functional data via the generating model (6), and

we evaluate the so obtained functional data on p = 200 equally spaced time instances

in the interval [0,T ]. An example of the generated synthetic data is shown in Figure 10,

where 50 synthetic profiles, randomly selected among the sites of the lattice, have been

plotted as a function of time.

This set of synthetic data is analyzed with two different strategies: the TA strategy

described in Subsection 2.1, and the BVTA algorithm described in Section 2.2. We fix
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Figure 10: A random selection of 50 synthetic data obtained according to the generating

model (6) in the first simulation study. The functions have been drawn at random among

the sites of the lattice, and they are shown as a function of time.
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Figure 11: Total average variance (TAV) for different values of n, for three replicates of

the BVTA algorithm on three different datasets generated according to model (6) in the

first simulation study.

the parameters controlling the BVTA algorithm as follows: B = 50, d(·, ·) is the Eu-

clidean metric in R
2 and n ∈ {5,10,25,50,125,250,500,1000} . The n representatives

are identified as weighted means with Gaussian isotropic weights.

In Figure 11 we plot the TAV for different values of n, and for three replicates of

the BVTA analysis conducted on three different synthetic data sets generated according

to model (6): the presence of a value of n minimizing TAV can be appreciated in all

panels of the picture, thus proving this to be a good criterion to choose n, and addressing

our first claim. Moreover, the value of nopt is equal to 50 in all cases, supporting the

robustness of our approach.

Figure 12 shows the estimates of ψ1(t) when the surfaces {d1(x),d2(x),d3(x)} are

those represented in the central panels of Figure 9; these estimates are generated by the

TA algorithm, and by the BVTA algorithm initialized with different values of n. The

estimate ψ̂1(t) most similar to ψ1(t) is that obtained by the BVTA with n = nopt . In

the second panel from the top of Figure 12, the estimate of ψ1(t) obtained by the TA is

pictured; it clearly mixes up some features characterizing ψ2(t) and ψ3(t). Furthermore,

these confounding coming from different time-varying components is also observed in

the third and fifth panels from the top of Figure 12: these are the estimates obtained by

the BVTA with a non optimal n. Notice the similarity between the estimate generated

by TA and that produced by BVTA for a value of n much larger than nopt . Indeed, at
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Figure 12: In the top panel, the first time-varying component ψ1(t) used to generate the

synthetic data for the first simulation study according to model (6). From the second

panel from top towards the bottom, estimates of the first time-varying component ψ1(t)
obtained with the TA strategy, and with the BVTA strategy for different values of n:

n = 5 < nopt , n = nopt , and n = 1000 > nopt , respectively. The solid vertical lines are

drawn for t = 0,1,2,3,4,5.

least for the first time-varying component, our second and third claim are supported.

Figure 13 reports the estimates ψ̂2(t) of the second time-varying component ψ2(t)
for the same scenarios considered in Figure 12. It is evident that a pattern quite similar

to the true function is obtained by both the TA and the BVTA algorithm with n ≥
nopt . Indeed, the estimate given by BVTA algorithm with n = nopt is the closest to the

true function. BVTA fails to reconstruct the true pattern for values of n smaller than

the optimal, mixing up features of both ψ2 and ψ3: this can be due to the fact that

larger Voronoi elements imply a stronger bias for local representatives, thus making the

estimate of ψ̂2(t) less reliable.

23



0 1 2 3 4 5

−
1.

0
0.

5
Second time−varying component

t

ψ
2(

t)

0 1 2 3 4 5

−
0.

20
0.

05

TA

t

ψ̂
2(

t)

0 1 2 3 4 5

−
0.

15
0.

05

BVTA   n < nopt

t

ψ̂
2(

t)

0 1 2 3 4 5

−
0.

15
0.

05

BVTA   n = nopt

t

ψ̂
2(

t)

0 1 2 3 4 5

−
0.

20
0.

05

BVTA   n > nopt

t

ψ̂
2(

t)

Figure 13: In the top panel, the second time-varying component ψ2(t) used to generate

the synthetic data for the first simulation study according to model (6). From the second

panel from top towards the bottom, estimates of the second time-varying component

ψ2(t) obtained with the TA strategy, and with the BVTA strategy for different values of

n: n = 5 < nopt , n = nopt , and n = 1000 > nopt , respectively. The solid vertical lines are

drawn for t = 0,1,2,3,4,5. The dotted vertical lines are drawn at the discontinuities of

the true component ψ2(t), reported in the top panel.

Finally, Figure 14 shows the estimates ψ̂3(t) obtained in the same scenarios con-

sidered in the previous two figures. All estimates seem quite far from the true function

ψ3(t), except for the one generated by BVTA with n = nopt , which is very close to the

true function ψ3(t).
Thus, the best estimates of the set of time-varying functions {ψ1(t),ψ2(t),ψ3(t)}

are obtained by the BVTA strategy with n= nopt , which properly exploits spatial depen-

dence to improve the estimation of the model components, supporting claims (i)-(iii).

The three estimates d̂1(x), d̂2(x) and d̂3(x) generated by the BVTA with n= nopt are

reported in the bottom panels of Figure 9 (from left to right): they refer to the data set
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Figure 14: In the top panel, the third time-varying component ψ3(t) used to generate

the synthetic data for the first simulation study according to model (6). From the second

panel from top towards the bottom, estimates of the third time-varying component ψ3(t)
obtained with the TA strategy, and with the BVTA strategy for different values of n:

n = 5 < nopt , n = nopt , and n = 1000 > nopt , respectively. The solid vertical lines are

drawn for t = 0,1,2,3,4,5. The dotted vertical lines are drawn at the discontinuities of

the true component ψ3(t), reported in the top panel.

shown in the central panels. The latent fields of labels are clearly detectable from the

corresponding estimates of the surfaces: the segmentation of the area into subregions

homogeneous with respect to the strength and sign of the signal represented by the

corresponding time-varying function ψ appears to be quite effective.

We finally describe the result of a second simulation study, conducted to test the

robustness of the BVTA strategy when the set of time-varying components is no longer

a set of orthogonal functions. In this second study, we analyze a set of functional data

generated using the same model described in equation (6), where the new set of coupled

surfaces {d1(x),d2(x),d3(x)}x∈S0
is obtained according to the same HMRF previously
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described (a realization of the surfaces is shown in Figure 15, central panels). The

only modification to the scenario introduced for the first study affects the new set of

time-varying components {ψ1(t),ψ2(t),ψ3(t)}: while the first two components have

been only slightly modified, the third component is instead a function that we do not

expect to be completely captured via our BVTA algorithm, since it is not orthogonal to

the space spanned by the first two. It is included in model (6) to check for stability of

the estimates of the first two components, when a third non–orthogonal component is

present.

The time-varying components for the second simulation study are shown in the

top panels of Figures 17, 18 and 19, respectively. The new function ψ1(t) (top panel in

Figure 17) is the same function represented in equation (7). The new second component

ψ2(t) (top panel in Figure 18) periodically contrasts some selected time intervals, and

is quite similar to the old one in equation (8)

: ψ2(t) =







−1, if 0.25+ i < t < 0.33+ i or 0.7+ i ≤ t < 0.9+ i, for i = 0, . . . ,4,
1, if 0.33+ i ≤ t < 0.7+ i, for i = 0, . . . ,4,
0, otherwise.

(10)

Finally, the third component ψ3(t) (top panel in Figure 19) is not a contrast, and shows

a periodic and positive spiky behavior, quite different from the previous one in equation

(9)

: ψ3(t) =

{

1, if 0.33+ i ≤ t < 0.4+ i, or 0.65+ i ≤ t ≤ 0.8+ i, for i = 0, . . . ,4
0, otherwise

(11)

Note that, while ψ1(t) and ψ2(t) are (almost) orthogonal, ψ3(t) is not orthogonal to

ψ1(t).
The functional synthetic data obtained in the second scenario are again analyzed

using both the TA and the BVTA strategies. We fix the parameters controlling the

BVTA algorithm as previously described. In Figure 16 we plot the TAV for different

values of n, and for three replicates of the BVTA analysis conducted on three different

synthetic data sets generated according to model (6) in the second simulation scenario:

the presence of a value of n minimizing TAV can be again appreciated, with the value

of nopt being equal to 25 in all cases.

Figure 17 shows the estimates of ψ1(t) when the surfaces {d1(x),d2(x),d3(x)} are

those represented in the central panels of Figure 15; these estimates are generated by

the TA algorithm, and by the BVTA algorithm initialized with different values of n. The

estimate ψ̂1(t) most similar to ψ1(t) is that obtained by the BVTA with n = nopt . Both

the estimate of ψ1(t) obtained by the TA, and the ones obtained by BVTA with a non

optimal n, clearly mix up some features characterizing ψ2(t) and ψ3(t). Indeed, at least

for the first time-varying component, the BVTA estimates are robust with respect to the

absence of orthogonality.

Figure 18 reports the estimates ψ̂2(t) of the second time-varying component ψ2(t)
of the second simulation study, for the same scenarios considered in Figure 17. It
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Figure 15: Three realizations of the Ising Markov Random Fields used to generate

{d1(x),d2(x),d3(x)} for the second simulation study, and their estimates via BVTA:

from left to right, Λ1,Λ2, and Λ3 are shown in the top panels, d1, d2, and d3 are shown

in the central panels, and the three estimates d̂1, d̂2, and d̂3, obtained via the BVTA

algorithm with n = nopt , are reported in the bottom panels.

is evident that a pattern quite similar to the true function is obtained by the BVTA

algorithm with n ≥ nopt , and also by the TA algorithm.

The third time-varying component ψ3(t) is not orthogonal to the space spanned by

ψ1(t) and ψ2(t). Hence, we do not expect to estimate it efficiently neither with the TA

strategy, nor with the BVTA strategy. Figure 19 shows the estimates of ψ3(t) obtained

in the same scenarios considered in the previous two figures. Indeed all estimates seem

quite far from the true function ψ3(t), even though the best estimate appears to be the

one generated by BVTA with n = nopt . This supports our claim that the BVTA strategy,

provided an optimal value of n is selected, is quite robust to violations of orthogonality.

Note that both TA and BVTA aim at estimating ψ3(t) with a function almost orthogonal

to ψ̂1(t) and ψ̂2(t), and are thus not able to capture the positive spike pattern of ψ3(t),
far from being orthogonal to ψ1(t).
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Figure 16: Total average variance (TAV) for different values of n, for three replicates of

the BVTA algorithm on three different datasets generated according to model (6) in the

second simulation study.

The three estimates d̂1(x), d̂2(x) and d̂3(x) generated by the BVTA with n = nopt

are reported in the bottom panels of Figure 15 (from left to right): they refer to the data

set shown in the central panels. Similarly to the results of the first simulation study,

the latent fields of labels are clearly detectable from the corresponding estimates of the

surfaces.

We shall remark that we do not expect a perfect matching between the function

ψi(t) of the second simulation study, and its treelet estimate ψ̂i(t), for i = 1,2,3, due to

the fact that treelet decomposition looks for an orthonormal set of basis functions, while

the selected set of time-varying functions (shown in the top panels of Figures 17, 18 and

19, respectively) is clearly non-orthogonal. Nevertheless, we decided to test the BVTA

strategy also in this synthetic scenario, in order to check its robustness in a situation

possibly arising in applications. A possible future research direction goes towards the

use of dimensional reduction techniques which remove the orthogonality assumption.

6 Conclusions

In this work, a real case study concerning the dimensional reduction of spatially de-

pendent functional data, describing the average number of mobile phones simultane-

ously using the Telecom Italia mobile network for calling at a given time, has been

described. This work is a first innovative attempt to gather information about popula-

tion density and mobility in Milan from mobile network data belonging to the Telecom

Italia database. We believe that the applicability and impact of the proposed analysis are

broad, both to the purposes of the Green Move project and, more generally, for future

urban planning and development.

The methodology developed to perform dimensional reduction of spatially-dependent

functional data is an innovative integration between a treelet analysis (see (Lee et al.

2008)) and the Bagging Voronoi strategy for the exploration of spatial dependence (see

(Secchi et al. 2012)), and it is thus named Bagging Voronoi Treelet Analysis. We exploit

the potentialities of both techniques, improving on the results that can be obtained using
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Figure 17: In the top panel, the first time-varying component ψ1(t) used to generate the

synthetic data for the second simulation study according to model (6). From the second

panel from top towards the bottom, estimates of the first time-varying component ψ1(t)
obtained with the TA strategy, and with the BVTA strategy for different values of n:

n = 5 < nopt , n = nopt , and n = 1000 > nopt , respectively. The solid vertical lines are

drawn for t = 0,1,2,3,4,5.

the original methods alone. The method is proven useful in the applicative context of

interest, and in a simulated scenario close to the real one.

Further research developments concern both the treatment of spatial dependence,

and the dimensional reduction technique. The former can be improved by considering,

either in the random generation of the set of nuclei for the tessellation, or in the distance

d(·, ·) used to compute the Voronoi elements, relevant information concerning the area

under investigation. For instance, the diffusion tensor describing the traffic mobility

could be used to define a city-adapted measure of the distances, thus obtaining Voronoi

elements capable of “following” the flow of people. For what concerns the latter as-

pect, the dimensional reduction strategy can be modified removing the assumption of
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Figure 18: In the top panel, the second time-varying component ψ2(t) used to generate

the synthetic data for the simulation study according to model (6). From the second

panel from top towards the bottom, estimates of the second time-varying component

ψ2(t) obtained with the TA strategy, and with the BVTA strategy for different values of

n: n = 5 < nopt , n = nopt , and n = 1000 > nopt , respectively. The solid vertical lines are

drawn for t = 0,1,2,3,4,5. The dotted vertical lines are drawn at the discontinuities of

the true component ψ2(t), reported in the top panel.

orthogonality among the elements of the reference basis. This assumption is indeed non

physical, and seems restrictive in the real application at hand.

References

Becker, R. A., Caceres, R., Hanson, K., Loh, J. M., Urbanek, S., Varshavsky, A., and

Volinsky, C. (2011), “A Tale of One City: Using Cellular Network Data for Urban

Planning,” IEEE Pervasive Computing, 10, 18–26.

30



0 1 2 3 4 5

0.
0

0.
6

1.
2

Third time−varying component

t

ψ
3(

t)

0 1 2 3 4 5

−
0.

2
0.

1

TA

t

ψ̂
3(

t)

0 1 2 3 4 5

−
0.

2
0.

0
0.

2

BVTA   n < nopt

t

ψ̂
3(

t)

0 1 2 3 4 5

−
0.

15
0.

10

BVTA   n = nopt

t

ψ̂
3(

t)

0 1 2 3 4 5

−
0.

10
0.

15

BVTA   n > nopt

t

ψ̂
3(

t)

Figure 19: In the top panel, the third time-varying component ψ3(t) used to generate

the synthetic data for the simulation study according to model (6). From the second

panel from top towards the bottom, estimates of the third time-varying component ψ3(t)
obtained with the TA strategy, and with the BVTA strategy for different values of n:

n = 5 < nopt , n = nopt , and n = 1000 > nopt , respectively. The solid vertical lines are

drawn for t = 0,1,2,3,4,5. The dotted vertical lines are drawn at the discontinuities of

the true component ψ3(t), reported in the top panel.

Calabrese, F., Lorenzo, G. D., Liu, L., and Ratti, C. (2011), “Estimating Origin-

Destination Flows Using Mobile Phone Location Data,” IEEE Pervasive Computing,

10, 36–44.

James, G. M. (2007), “Curve alignment by moments,” The Annals of Applied Statistics,

1, 480–501.

Kaziska, D. and Srivastava, A. (2007), “Gait-Based Human Recognition by Classifi-

cation of Cyclostationary Processes on Nonlinear Shape Manifolds,” Journal of the

American Statistical Association, 102, 1114–1128.

31



Kunsch, H., Geman, S., and Kehagias, A. (1995), “Hidden Markov Random Fields,”

The Annals of Applied Probability, 5, 577–602.

Lee, A. B., Nadler, B., and Wasserman, L. (2008), “Treelets – An adaptive multi-scale

basis for sparse unordered data,” The Annals of Applied Statistics, 2, 435–471.

OECD (2006a), OECD Territorial Reviews: Competitive Cities in the Global Economy,

OECD Publishing.

— (2006b), OECD Territorial Reviews: Milan, Italy, OECD Publishing.

Ramsay, J. O. and Li, X. (1998), “Curve registration,” J. R. Stat. Soc. Ser. B Stat.

Methodol., 60, 351–363.

Ramsay, J. O. and Silverman, B. W. (2005), Functional Data Analysis, Springer.

Sangalli, L. M., Secchi, P., Vantini, S., and A.Veneziani (2009), “A Case Study in

Exploratory Functional Data Analysis: Geometrical Features of the Internal Carotid

Artery,” J. Amer. Statist. Assoc., 104, 37–48.

Sangalli, L. M., Secchi, P., Vantini, S., and Vitelli, V. (2010), “K-mean alignment for

curve clustering,” Computational Statistics and Data Analysis, 54, 1219–1233.

Secchi, P., Vantini, S., and Vitelli, V. (2012), “Bagging Voronoi classifiers for cluster-

ing spatial functional data,” International Journal of Applied Earth Observation and

Geoinformation, DOI: http://dx.doi.org/10.1016/j.jag.2012.03.006, in press.

32



MOX Technical Reports, last issues
Dipartimento di Matematica “F. Brioschi”,

Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

43/2012 Secchi, P.; Vantini, S.; Vitelli, V.

A Case Study on Spatially Dependent Functional Data: the Analysis of
Mobile Network Data for the Metropolitan Area of Milan

42/2012 Lassila, T.; Manzoni, A.; Quarteroni, A.; Rozza, G.

Generalized reduced basis methods and n width estimates for the ap-
proximation of the solution manifold of parametric PDEs

41/2012 Chen, P.; Quarteroni, A.; Rozza, G.

Comparison between reduced basis and stochastic collocation methods
for elliptic problems

40/2012 Lombardi, M.; Parolini, N.; Quarteroni, A.

Radial basis functions for inter-grid interpolation and mesh motion in
FSI problems

39/2012 Ieva, F.; Paganoni, A.M.; Ziller, S.

Operational risk management: a statistical perspective

38/2012 Antonietti, P.F.; Bigoni, N.; Verani, M.

Mimetic finite difference approximation of quasilinear elliptic problems

37/2012 Nobile, F.; Pozzoli, M.; Vergara, C.

Exact and inexact partitioned algorithms for fluid-structure interaction
problems with finite elasticity in haemodynamics

36/2012 Canuto, C.; Verani, M.

On the Numerical Analysis of Adaptive Spectral/hp Methods for Elliptic
Problems

35/2012 Pigoli, D.; Aston, J.A.D.; Dryden, I.L.; Secchi, P.

Distances and Inference for Covariance Functions

34/2012 Menafoglio, A.; Dalla Rosa, M.; Secchi, P.

A Universal Kriging predictor for spatially dependent functional data
of a Hilbert Space


