
MOX-Report No. 42/2025

Deep orthogonal decomposition: a continuously adaptive neural

network approach to model order reduction of parametrized partial

differential equations

Franco, N. R.; Manzoni, A.; Zunino, P.; Hesthaven, J. S.

MOX, Dipartimento di Matematica
Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

mox-dmat@polimi.it https://mox.polimi.it

Deep orthogonal decomposition: a continuously
adaptive neural network approach to model order

reduction of parametrized partial differential equations

Nicola Rares Franco1*, Andrea Manzoni1, Paolo Zunino1, Jan S. Hesthaven2

1*MOX, Department of Mathematics, Politecnico di Milano, P.zza Leonardo da
Vinci, 32, Milan, 20133, Italy.

2Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, Karlsruhe, 76131,
Germany.

*Corresponding author(s). E-mail(s): nicolarares.franco@polimi.it;
Contributing authors: andrea1.manzoni@polimi.it; paolo.zunino@polimi.it;

president@kit.edu;

Abstract
We develop a novel deep learning technique, termed Deep Orthogonal Decomposition (DOD),
for dimensionality reduction and reduced order modeling of parameter dependent partial dif-
ferential equations. The approach involves constructing a deep neural network model that
approximates the solution manifold using a continuously adaptive local basis. In contrast to
global methods, such as Principal Orthogonal Decomposition (POD), this adaptivity allows
the DOD to mitigate the Kolmogorov barrier when dealing with space-interacting parameters,
making the approach applicable to a wide spectrum of parametric problems. Leveraging this
idea, we use the DOD to construct an adaptive alternative to the so-called POD-NN method,
here termed DOD-NN. The approach is fully data-driven and nonintrusive but, at the same
time, allows for a tight control on error propagation and remains highly interpretable thanks
to the rich structure present in the latent space. For this reason, the proposed approach
stands out as a valuable alternative to other nonlinear model order reduction techniques, such
as those based on deep autoencoders. The methodology is discussed both theoretically and
practically, evaluating its performances on problems involving nonlinear PDEs, parametrized
geometries and high-dimensional parameter spaces. Finally, we conclude with a brief dis-
cussion on potential applications of the DOD beyond DOD-NN, featuring, for instance, the
integration of our approach within intrusive reduced order models such as the Reduced Basis
Method.

Keywords: Reduced order modeling, parametrized PDEs, adaptive methods, neural networks

MSC Classification: 65N99 , 35B30 , 68T07

1

1 Introduction
Reduced Order Modeling aims at creating effective model surrogates, known as reduced order
models (ROMs), capable of mimicking the precision of traditional methods in price of a lower
computational cost. Usually, these ROMs achieve their proficiency by learning from high quality
simulations obtained by means of classical numerical solvers, commonly referred to as full order
models (FOMs), extracting essential information for replicating the behavior of complex systems.
ROMs are particularly useful in the context of parameter-dependent PDEs, applications involving
inverse problems [1–5], optimal control [6–9] or uncertainty quantification [10–13], which can easily
become prohibitive due to prolonged processing times and unbearable computational demands.
As a remedy, Reduced Order Modeling techniques [14, 15] are now gaining the attention of many
scientists and researchers.

Most ROMs are based on a common foundation, which is to rely on dimensionality reduction
techniques. The latter consists of suitable algorithms capable of compressing and reconstructing
high-fidelity simulations by mapping them to a small feature space, also known as the latent space.
To this end, researchers can rely on a large pletora of different approaches, from linear techniques
based on orthogonal projections, such as Principal Orthogonal Decomposition (POD) [15], to
fully nonlinear strategies, employing, for example, wavelet transforms [16], deep autoencoders
[17] and more. In practice, the choice between one approach or the other is typically problem-
specific: in some cases, linear projection techniques can provide a high-level of accuracy at a high
compression rate, as in the case of diffusion processes [18]; in other situations, instead, nonlinear
techniques are more favorable as, although returning much complex representations, they can
effectively capture nontrivial features such as sharp edges, moving fronts, and singularities [19, 20].
Mathematically speaking, this distinction is perfectly represented by the concept of Kolmogorov
n-width. The latter quantifies to which extent the solution manifold S can be approximated in
terms of linear subspaces of dimension n: if the Kolmogorov n-width, dn(S), decays rapidly, then
linear methods are to be favored; conversely, if the decay is slow, then nonlinear approaches may
provide an appealing alternative [21].

In this work, we would like to focus on a specific scenario that, compared to the previous ones,
is arguably somewhere in between. To illustrate the idea, consider the case of a flow around an
obstacle whose dynamics is described by the steady incompressible Navier-Stokes equations. The
problem may depend on several parameters: some of them, which we collect in the parameter
vector µ, may determine the position/orientation of the obstacle, while others, denoted as ν,
might be related to physical quantities, such as , for example, the fluid density and/or the inflow
condition. As testified by multiple works in the ROM literature, especially in the low Reynolds
regime, where the dynamics can be approximated by the Stokes equations, see, e.g., [22, 23],
linear methods can be extremely effective in capturing the variability of the fluid flow for a fixed
geometric configuration µ0 but varying physical parameters ν. However, if we allow the obstacle
location to change, that is, if we let µ vary within a suitable parameter space, then the situation
becomes notably different: linear methods begin to struggle, and the Kolmogorov n-width starts to
deteriorate, reflecting the typical behavior of parametric PDEs with space-interacting parameters
[21, 24]. This is a prototypical example of a situation in which: (i) dn(S) decays slowly, but (ii)
the solution manifold admits a decomposition into suitable submanifolds, Sµ, with fast decaying
Kolmogorov n-widths. In particular, these submanifold can be obtained by fixing the values of
the "bad" parameters, µ, while leaving the others, ν, free to change.

To address these difficulties, the ROM literature provides several alternatives, which, to our
knowledge, can be summarized as falling into one of the following categories: dictionary-based
approaches [25–29], basis interpolation methods [30–32], and time-adaptive techniques [33–35].
Here, given our focus on stationary PDEs, we shall limit our discussion to the first two classes.
Particularly, our attention will be limited to offline adaptive approaches, that is, ROMs relying
on a family of local basis that are learned during training; online adaptive schemes, in contrast,
implement suitable strategies that allow ROMs to flexibly adapt as new parametric configurations

2

are encountered, or as time flows. Thus, one of their main purposes is to anticipate unseen
behavior. We refer the interested reader to [36, 37].

Along side dictionary-based ROMs and basis interpolation methods, some researchers are
now exploring the interplay between adaptive basis methods and deep learning algorithms, see,
e.g., [38, 39]. Rather than replacing existing techniques, these efforts stem from the fact that
no universal nor comprehensive method has been developed yet, which drives the exploration
of new ideas. Our purpose for this work is to expand upon this emerging trend by presenting
a novel approach to model order reduction that can exploit the intrinsic regularity of certain
problem classes by leveraging a continuously adaptive linear subspace. Specifically, our idea is
to construct a deep neural network architecture that, to each parameter vector µ, associates a
corresponding linear subspace Vµ approximating the submanifold Sµ ⊂ S . Alternatively, our
proposal can be seen as a continuous generalization of localized POD algorithms. Given the use
of neural networks and the intimate connection with classical POD, we term our approach Deep
Orthogonal Decomposition (DOD) 1.

The paper is organized as follows. First, in Section 2, we start by setting some notation,
introducing the problem of interest, the underlying assumptions, and their consequences. Then,
in Section 3, we introduce the DOD algorithm, discussing the whole idea from the sole perspective
of dimensionality reduction; the use of DOD for reduced-order modeling, namely, the DOD-NN
method, instead, is deferred to Section 5. In both cases, we assess the proposed approaches through
numerical experiments, comparing their performance against other well-established techniques.
These results are reported in Sections 4 and 6, respectively. Lastly, we devote Section 7 to a
concluding discussion, where we underscore both the strengths and limitations of the proposed
approach, offering additional information on possible future developments.

2 Problem setup
We start by fixing some notation. Let (Vh, ∥ · ∥Vh

) be a finite-dimensional Hilbert state space,
Vh ∼= RNh , arising, for instance, from a suitable Finite Element discretization of a given stationary
PDE, so that Vh ⊂ L2(Ω) for some spatial domain Ω ⊂ Rd. Let {φi}Nh

i=1 be a basis for Vh. Given
u ∈ Vh, we write

u := [u(1), . . . ,u(Nh)]⊤

for the corresponding vector of degrees of freedom (dof), that is, the set of basis coefficients that
produce the representation of u in terms of φ1, . . . , φNh

, in the sense that

u(x) =

Nh∑
i=1

u(i)φi(x) ∀x ∈ Ω. (1)

Let ⟨·, ·⟩Vh
be the inner product associated to ∥ · ∥Vh

. We define the Gram matrix G ∈ RNh×Nh

as the symmetric positive definite matrix given by

G :=

 ⟨φ1, φ1⟩Vh
... ⟨φ1, φNh

⟩Vh

...

⟨φNh
, φ1⟩Vh

... ⟨φNh
, φNh

⟩Vh

 . (2)

1It has come to our attention that the term "Deep Orthogonal Decomposition" is not entirely new: in fact, the same
terminology can be found in [40], an unpublished work by Daniel J. Tait (2020). However, the two approaches are
entirely different, as they pursue fundamentally different goals: ours focuses on parametrized stationary PDEs, leveraging
a suitable decoupling of the parameter space for constructing a continuously adaptive basis; [40], instead, deals with
(unparametrized) time-dependent PDEs, leveraging neural networks for the construction of a memory-aware time-adaptive
local basis. In addition to this, the two approaches differ in terms of neural network architectures, training routines, and
online computations. However, given that both works share the common idea of exploiting deep learning to build an
adaptive local basis, we insist on using the same terminology.

3

When ∥ · ∥Vh
= ∥ · ∥L2 is the L2 norm, the latter is commonly referred to as the mass matrix.

The Gram matrix allows us to equip RNh with the following norm

∥u∥ :=
√
u⊤Gu,

which is nothing but the discrete equivalent of ∥ · ∥Vh
. In fact, it is easy to see that ∥u∥ = ∥u∥Vh

whenever u is the dof representation of u. Note that this norm can differ substantially from
the Euclidean norm |u| :=

√
u⊤u. In particular, the two coincide if and only if φ1, . . . , φNh

are
orthonormal with respect to ⟨·, ·⟩Vh

, in which case G = I is the identity matrix.
With this setup, let us now introduce the parametric problem. Let µ ∈ Rp and ν ∈ Rp′

be
two vectors of parameters. Ideally, we collect in µ all parameters that have a geometric or space-
varying nature; all the remaining parameters, which typically concern the physical properties
of the model at hand, are collected in ν. We allow both µ and ν to vary within a suitable
parameter space, herein assumed to be compact: we shall write µ ∈ Θ and ν ∈ Θ′. We consider
a parametrized problem of the form: given (µ,ν) ∈ Θ×Θ′ find u ∈ Vh such that

R(µ,ν, u) = 0, (3)

where R : Θ × Θ′ × Vh → R is a given parameter dependent nonlinear operator, inclusive of
external quantities such as, e.g., boundary conditions or source terms. We think of (3) as a
discretized parameter dependent stationary PDE, formulated in a weak or strong form, with R
representing the norm of the PDE residual.

By leveraging the dof representation in (1), problem (3) naturally defines a map from Θ×Θ′ →
RNh which maps every parameter combination onto the basis coefficients of the corresponding
PDE solution, namely

F : (µ,ν) 7→ uµ,ν := [u(1)µ,ν , . . . ,u
(Nh)
µ,ν]

such that uµ,ν :=
∑Nh

i=1 u
(i)
µ,νφi solves (3). Our purpose is to provide an efficient approximation

of this parameter-to-solution operator F , so that we can avoid repeated calls to the PDE solver
when a large number of evaluations are required.

In general, changes in model parameters may produce different effects on the PDE solution.
Here, we address a specific scenario, which is easily explained via the concept of Kolmogorov n-
width. Given a set S ⊂ RNh , we define its Kolmogorov n-width dn(S) as the error achieved by
its "best approximation" in terms of linear subspaces of dimension n, that is,

dn(S) := inf
V∈RNh×n

sup
u∈S

∥u− VV⊤Gu∥. (4)

Note in fact that if V is G orthonormal, meaning V⊤GV is the n×n identity matrix, then VV⊤Gu
is the projection of u onto span(V). In this work, we focus our attention on those cases in which:

A1. the solution manifold S := {uµ,ν | µ ∈ Θ,ν ∈ Θ′} ⊂ Vh exhibits a slow-decay of the
Kolmogorov n-width, e.g.,

dn(S) ≤ Cn−α

for some C > 0 and α ∈ (0, 1);

A2. the geometrical/space-varying parameters are the main cause to (A.1), in the sense that the
submanifolds Sµ := {uµ,ν | ν ∈ Θ′} ⊂ S , corresponding to µ-slices of S , have either a
uniformly fast decay,

sup
µ∈Θ

dn(Sµ) ≤ C ′n−β ,

with C ′ > 0 and β ≥ 1, or present much smaller n-widths, e.g., β ≈ α but C ′ ≪ C.

This scenario can be extremely common in parametrized problems featuring space-parameter
interaction. To illustrate this, we report below a simple, yet remarkable, example.

4

Fig. 1: Spatial domain (left) and projection error analysis (right) for the Navier-Stokes case study,
Sections 2.1 and 4.1. Left: the domain Ωµ is obtained by removing an almond-shaped object from
the unit square (0, 1)2. The parameters µ = [θ, x0, y0] determine the rotation and the position of the
obstacle. Right: decay of the projection error for increasingly larger subspaces, highlighting the differences
between the solution manifold S and its µ-slices Sµ. Here, µ1 = [0, 0.5, 0.5], µ2 = [π/4, 0.4, 0.6] and
µ3 = [π/2, 0.7, 0.3].

2.1 An instructive example
Let us consider a stationary 2D fluid flow, modeled by the steady incompressible Navier-Stokes
equations, occurring in the spatial domain depicted in Figure 1.a. The flow goes from left to
right, passing around an almond-shaped obstacle whose diameter is roughly a fifth of the channel
width. We consider a parametrized scenario depending on five scalar parameters:

• ν = [α, β], with 0 ≤ α, β ≤ 10, which parametrize the inflow condition at boundary Γin,
imposing a Dirichlet condition of the form

u(0, y) = y(1− y)
(
αe−100(y−0.25)2 + βe−100(y−0.75)2

)1/2
∀y ∈ [0, 1].

Larger values of α correspond to a stronger flow at the bottom, while larger values of β
increase the fluid velocity at the top;

• µ = [θ, x0, y0], which parametrize the rotation, 0 ≤ θ ≤ 2π, and the location of the obstacle,
0.25 ≤ x0, y0 ≤ 0.75.

For each parametric configuration (µ,ν), we discretize the parametric domain in Figure 1 using a
triangular mesh and use the Finite Element method to solve the Navier-Stokes equations. Then,
in order to embedd all PDE solutions within a common state space Vh ∼= RNh , we interpolate all
velocity fields over a uniform grid defined over the unit square Ω := (0, 1)2. For further details
on the matter, we refer the interested reader to Section 4.1.

Intuitively, it is clear that the two vectors of parameters, µ and ν, play fundamentally different
roles. The former are more geometrical in nature and can significantly affect the behavior of the
solution in multiple ways. The variability introduced by the remaining parameters is, instead,
much simpler to describe, as they can only distribute the flow intensity either at the top or at the
bottom. For example, if we fix a geometric configuration µ, and let ν vary, we can speculate that
the corresponding flow will be given, roughly speaking, by the superposition of two main modes:
one describing the flow at the top and one describing the flow at the bottom. In this sense, the

5

submanifold Sµ, which consists of all PDE solutions for fixed µ and variable ν, should be well
approximated by a small linear subspace. In contrast, if we allow µ to change, this well-structured
behavior is likely to disappear.

Indeed, this is also what we observe in practice. Figure 1.b shows the decay of the projection
error for increasingly large linear subspaces, comparing the behavior of the whole solution man-
ifold S with that of the submanifolds Sµ, computed for different values of µ. Here, in order
to estimate these trends, we relied on Proper Orthogonal Decomposition: while we refrain from
delving into technical details in this context, readers keen on a more rigorous explanation can
refer to Section 4.

Even from a qualitative point of view, it is clear that Figure 1.b confirms our intuition.
Furthermore, a more thorough examination suggests that Assumptions A1 and A2 hold true: in
fact, a least-square regression in logarithmic scale yields a decay rate of 0.686 for S , and a much
steeper slope for the submanifolds Sµ (exponent ranging from 2.119 to 2.310).

In general, despite its simplicity, this case study highlights how certain problems strongly call
for an adaptive basis approach and how common this situation can be.

3 Deep orthogonal decomposition (I): dimensionality
reduction

We devote this Section to the presentation of the DOD algorithm, first discussing its applicability
in the broader context of dimensionality reduction. A subsequent discussion on the use of DOD
for reduced order modeling will be provided in Section 5. Following the notation in Section 2, let

F : Θ×Θ′ ∋ (µ,ν) 7→ uµ,ν ∈ RNh

be a parameter-to-solution operator, where the model parameters have been subdivided into two
groups: those responsible for the slow-decay in the Kolmogorov n-width of S = F(Θ × Θ′),
collected in the vector µ, and those whose effect is rapidly captured by linear combinations, stored
in ν. The idea is to construct a deep neural network model V : Θ → RNh×n, called the DOD,
which is capable of parametrizing a suitable modal basis Vµ := V(µ) that changes adaptively
with µ in a highly efficient manner. The reason for this is that we would like to take advantage
of the nice behavior of the variables ν as much as possible, while simultaneously isolating the
difficulty of handling µ. In practice, having fixed a latent dimension n, we seek for a suitable
matrix-valued DNN architecture

V : Θ ∋ µ 7→ Vµ ∈ RNh×n, (5)

such that, for any given µ ∈ Θ, the matrix Vµ acts as a good local basis for the submanifold
Sµ = {uµ,ν}ν∈Θ′ = F(µ,Θ′). From a quantitative point of view, this boils down to requiring

uµ,ν ≈ VµV⊤
µGuµ,ν

in ∥ · ∥-norm. Then, if the projection error is sufficiently small, the n-dimensional vector of DOD
coefficients

cµ,ν := V⊤
µGuµ,ν

can be used as a proxy for the overall high-fidelity solution uµ,ν ∈ RNh . In fact, the latter can
be easily recovered via the lifting cµ,ν 7→ Vµcµ,ν .

As exemplified by the theoretical result below, this procedure is mathematically sound, and
further motivated whenever Assumptions A1 and A2 are satisfied. Hereon, we use E to denote
the expectation operator. Specifically, given two probability distributions, P and Q, defined over

6

Θ and Θ′, respectively, for any measurable map f : Θ×Θ′ → [0,+∞] we let

Eµ,ν [f(µ,ν)] :=

∫
Θ

∫
Θ′
f(µ,ν)P(dµ)Q(dν).

Similarly, given g : Θ→ [0,+∞], we set Eµ[g(µ)] :=
∫
Θ
g(µ)P(dµ).

Theorem 1. Let Θ ⊂ Rp and Θ′ ⊂ Rp′
be two compact sets, equipped, respectively, with two

probability distributions, P and Q. Let

F : Θ×Θ′ ∋ (µ,ν)→ uµ,ν ∈ RNh

be continuous. For each µ ∈ Θ, let Sµ := {uµ,ν}ν∈Θ′ ⊂ F(Θ×Θ′) be the µ-submanifold in the
image of F . Let G be the Gram matrix associated with a given inner product in RNh , and let ∥ · ∥
be the corresponding norm. Then, for every ε > 0 there exists a ReLU matrix-valued deep neural
network V : Rp → RNh×n such that

Eµ,ν∥uµ,ν − VµV⊤
µGuµ,ν∥ < ε+ Eµ [dn(Sµ)] ,

where Vµ := V(µ).

Proof. With little abuse of notation, we write | · | to indicate both the Euclidean norm and the
Frobenius norm. Fix n ∈ N. Let λ > 0 be the smallest eigenvalue of the positive definite matrix
G. We notice that, if V is a matrix whose columns are orthonormal with respect to G, then all
the entries of V must be smaller, in modulus, than 1/

√
λ. In fact, by the min-max properties of

eigenvalues, for any entry vi,j in V one has

λv2i,j ≤ λ|vi|2 ≤ v⊤
i Gvi = 1,

with vi the ith column in V. In light of this, we shall assume, without loss of generality, that λ = 1
(if not, we may always rescale). Let J : Θ× [−1, 1]Nh×n → R be the following objective functional

J(µ,V) = Eν∥uµ,ν − VV⊤Guµ,ν∥,

and fix any ε > 0. We recall that, since J is continuous and Θ × [−1, 1]Nh is compact, J is
uniformly continuous. In particular, there exists δ > 0 such that

|µ− µ′|+ |V− V′| < δ =⇒ |J(µ,V)− J(µ′,V′)| < ε.

Then, classical results on measurable selections (see, e.g., [41, Theorem 8.1.3]) show that there
exists a Borel measurable map s : Θ→ [−1, 1]Nh×n acting as

s : µ→ argmin
V∈[−1,1]Nh×n

J(µ,V).

Since s is bounded, it follows that s ∈ L1(Θ;RNh×n) in the Bochner sense. In particular, see
Lemma 1, there exists a deep ReLU neural network V : Θ→ [−1, 1]Nh×n such that E|Vµ−s(µ)| <
δ. By uniform continuity of J ,

|J(µ, s(µ))− J(µ,Vµ)| < ε ∀µ ∈ Θ.

Consequently, as Eµ,ν∥uµ,ν − VµV⊤
µGuµ,ν∥ = Eµ [J(µ,Vµ)], we have

Eµ,ν∥uµ,ν − VµV⊤
µGuµ,ν∥ ≤ Eµ∥J(µ,Vµ)− J(µ, s(µ))∥+ Eµ [J(µ, s(µ))]

7

=⇒ Eµ,ν∥uµ,ν − VµV⊤
µGuµ,ν∥ < ε+ Eµ [J(µ, s(µ))] .

Since

Eµ [J(µ, s(µ))] = Eµ

[
min
V
J(µ,V)

]
≤ Eµ

[
min
V

sup
ν
∥uµ,ν − VV⊤Guµ,ν∥

]
= Eµ [dn(Sµ)] ,

the conclusion follows.

Lemma 1. Let P be a probability distribution over Rp. Let s : Rp → [−1, 1]q be a measurable
map. Then, for every δ > 0, there exists a ReLU deep neural network v : Rp → Rq such that
E|v − s| < δ. Furthermore, v can be chosen so that v (Rp) ⊆ [−1, 1]q.

Proof. By Hornik’s Theorem [42], there exists a ReLU deep neural network v0 : Rp → Rq such
that E|v0 − s| < δ. Let now ρ denote the ReLU activation function and consider the three-layer
network L : Rq → Rq given by

L(x) = e− Iqρ(−Iqρ(Iqx+ e) + 2e),

where Iq is the q × q identity matrix, and e := [1, . . . , 1]⊤ ∈ Rq, so that, with little abuse of
notation, one has L(x) = 1− ρ(2− ρ(x+ 1)). The latter acts as follows: given any input x ∈ Rq,
it leaves unchanged all those entries lying in [−1, 1], while it squashes the rest to ±1. Then, it is
straightforward to see that v := L ◦ v0 fulfills all the desired properties. In fact, by construction,
v(µ) ∈ [−1, 1]q for all µ ∈ Rp; furthermore,

E|v − s| = E|L ◦ v0 − L ◦ s| ≤ E|v0 − s| < δ,

as L is 1-Lipschitz.

Clearly, Theorem 1 is only an existence result. In particular, it does not provide an answer to
three main questions: i) how to construct such a network, ii) how to train it, and iii) whether the
overall approach is computationally feasible. We shall start by answering the first two questions,
while we leave the third one to the numerical experiments, Section 4.

Remark 1. In this work, we adopt a fully algebraic perspective, as that can be more natural in
the context of model order reduction. However, to better understand the overall idea, it may be
useful to discuss the implications of the DOD approach at the continuous level. To this end, let
us write the PDE solution as a map u = u(x,µ,ν), depending explicitly on the space variable
and on the model parameters. Then, at the continuous level, the POD decomposition corresponds
to a separation of variable approach of the form

u(x,µ,ν) ≈
n∑

i=1

vi(x)ϕi(µ,ν), (6)

where n is the reduced dimension, vi corresponds to the ith mode (represented by the ith column
in the POD matrix), while ϕi(µ,ν) is the corresponding parameter dependent coefficient. With
this formalism, the DOD approach can be regarded as

u(x,µ,ν) ≈
n∑

i=1

vi(x,µ)ϕi(µ,ν), (7)

effectively presenting a µ-adaptive basis. From an intuitive point of view, Eq. (7) is emphasiz-
ing the fact that the "space-interacting" parameters, µ, should not be decoupled from the space
variable, x, when approximating u.

8

3.1 DOD architecture design
Having to deal with remarkably large dimensions, from p to Nh × n, the construction of a DOD
architecture requires some discussion. In principle, the high dimension at output could be tackled
by relying on suitable layer types, specifically designed for handling high-dimensional data, such
as, e.g., convolutional models (CNNs) [43], graph neural networks (GNNs) [44], or mesh-informed
neural networks (MINNs) [45]. However, all these approaches have limited scalability: as of today,
using these architectures to address problems with Nh ∼ 104 − 106 degrees of freedom requires a
significant amount of computational resources, often beyond practical feasibility.

For this reason, and to be as general as possible, we propose a simpler approach, based on
the introduction of a suitable ambient space, approximating the original state space. Simply put,
we start by introducing an ambient matrix A ∈ RNh×NA , where NA is smaller than Nh but still
fairly large, e.g., NA ∼ 102 − 103, such that A is G-orthonormal and

uµ,ν ≈ AA⊤Guµ,ν ,

with a given tolerance. In practice, A can be constructed by computing a preliminary POD over
the training snapshots: see, e.g., Algorithm 1. However, we remark that this is only a preliminary
reduction whose purpose is to make the FOM data more manageable; by no means, we assume
NA to be small: the actual reduction in dimensionality will be carried out by the DOD. In a way,
this intermediate step corresponds to rewriting FOM solutions in a more convenient, problem-
specific, way: in fact, while the FOM basis is defined a priori, the ambient space is constructed
a posteriori by leveraging the training data. We also note that, in spirit, this is the same trick
adopted by other techniques, such as POD-DL-ROM [46] and POD-DeepONet [47]. The main
advantage of this maneuver is that the DOD network can now be constructed as

Vµ := AṼµ,

where Ṽ : Rp → RNA×n is the learnable component of the architecture and Ṽµ := Ṽ(µ) denotes
its output, coherently with the notation adopted so far. In particular, since NA can be orders
of magnitude smaller than Nh, adopting this approach can substantially reduce the number of
trainable parameters in the DOD, thus simplifying its design and optimization. We call Ṽ the
inner module of the DOD. Notice that Vµ is G-orthonormal if and only if Ṽµ is orthonormal in
the Euclidean sense,

V⊤
µGVµ = Ṽ⊤

µA⊤GAṼµ = Ṽ⊤
µ Ṽµ.

To construct the matrix-valued network Ṽ, we use a composite architecture comprised of

i) a seed module, s : Rp → Rl, whose purpose is to pre-process the input parameters by
mapping them onto a suitable feature space;

ii) a collection of root modules, R1, . . . , Rn : Rl → RNA operating in parallel, whose purpose is
to compute the several columns of the (inner) DOD projector Ṽ;

iii) an ORTH unit, that is, a nonlearnable block ensuring orthormality of the final output.
The latter accepts a matrix W ∈ RNA×n and returns a corresponding orthonormal matrix
W̃ := ORTH(W) ∈ RNA×n such that span(W) = span(W̃). In practice, this can be achieved
in many equivalent ways, e.g. via reduced QR decomposition [48] or via Gram-Schmidt
orthogonalization [49], both of which support backpropagation.

Both the seed and the root components are implemented via classical deep feed forward neural
networks. The overall workflow can be summarized as in Figure 2 or, in formula, as

Vµ = AORTH ([R1(sµ), . . . , Rn(sµ)]) ,

9

Seed module Roots

…

Ambient space

expansion

Space-interacting
parameters

…

…

…

…

…

…

…

…

Column

stack

Inner DOD module

…

…

…

…

…
ORTH

Fig. 2: Sketch of a DOD architecture. The seed module (gray block) performs a preprocessing of the
input parameters, returning a suitable hidden representation. The latter is the input of the root modules
(blue block), each of which outputs a column vector: together, these vectors form a basis for the desired
local subspace. For convenience, all vectors are written using the notation inherited from the ambient
space, entailing NA degrees of freedom; after orthonormalization, the basis is expanded at the FOM level
using the ambient matrix A (red block). The first two blocks (gray and blue) constitute the learnable
part of the architecture.

where sµ := s(µ).

Remark 2. The ambient space is only a practical expedient that we have introduced in order
to tackle arbitrarily large FOMs. However, if Nh is reasonably small, this step can be omitted
and one may work directly at the FOM level. In practice, if φ̃1, . . . , φ̃Nh

is an orthonormal basis
derived from φ1, . . . , φNh

, that is, from the original FOM basis, this would be equivalent to setting
A := [φ̃1, . . . , φ̃Nh

], so that A⊤GA = I and span(A) = RNh .

Remark 3. The problem of mitigating the issues posed by a slow decay of the Kolmogorov n-width
is timely. Recently, in [39], some authors have proposed the use of neural networks combined with
POD in order to address this challenge. The idea, however, is fundamentally different from ours.
In [39], the authors use POD to compress PDE solutions and then rely upon neural networks to
improve the quality of the decoding process, which can be understood both as a closure modeling
technique but also as a nonlinear manifold approximation method. Here, instead, we are adopting
an adaptive basis perspective. For each µ, the encoding-decoding process is purely linear; indeed,
it is the dependency on µ that makes the method nonlinear as a whole. In particular, our strat-
egy is tailored to a specific class of problems where assumptions A1-A2 hold. Nonetheless, the
two methods do share some similarities, such as the use of an ambient space to represent PDE
solutions, as well as the deployment of neural networks to overcome the Kolmogorov barrier and
thus obtain more compact representations.

10

Algorithm 1: Construction of the ambient space.

Input : Training simulations [u1, . . . ,uNtrain], Gram matrix G, ambient dimension NA.

Output: Ambient matrix A.

// Preprocessing

U← stack [u1, . . . ,uNtrain]

M← U⊤GU

// Eigenvalues and eigenvectors, with λi ≥ λi+1

λ1, . . . , λNtrain and ξ1, . . . , ξNtrain
← eig(M)

// Modes truncation

Λ← diag(λ1, . . . , λNA
)

Ξ← stack [ξ1, . . . , ξNA
]

A← UΞΛ−1/2.

return A

3.2 Model training
In order to learn the DOD basis, we propose a supervised training strategy based on a variational
principle, where the DOD architecture V is trained by minimizing the reconstruction error over
the training data, as depicted in Algorithm 2. In other words, we learn the DOD by minimizing
the loss function below,

L (V) :=
1

Ntrain

Ntrain∑
i=1

∥uµi,νi
− Vµi

V⊤
µi
Guµi,νi

∥2, (8)

where {µi,νi,uµi,νi
}Ntrain
i=1 ⊂ Θ × Θ′ × RNh are high-fidelity samples generated —at random—

by repeated calls to the FOM solver. This approach is fairly intuitive, as it defines the DOD
projector following the same minimization principle of POD.

In practice, since optimizing (8) can be computationally demanding, we can take advantage of
the existence of the ambient space, A, in order to ease computational effort. In fact, minimizing
(8) is equivalent to minimizing

LA(Ṽ) :=
1

Ntrain

Ntrain∑
i=1

|ũµi,νi
− Ṽµi

Ṽ⊤
µi
ũµi,νi

|2, (9)

where ũµi,νi := A⊤Guµi,νi and | · | denotes the Euclidean norm. Indeed, the two loss functions
only differ by a constant: see Lemma 2 in the following.

Lemma 2. Let A ∈ RNh×NA be G-orthonormal and let n ≤ NA. Let Ṽ : Rp → RNA×n be any
matrix-valued map. Define V : Rp → RNh×n as V(µ) := AṼ(µ). Then,

L (V) = cA + LA(Ṽ), (10)

where cA > 0 is a constant depending on A and on the training data.

11

Algorithm 2: Construction and training of the DOD architecture.

Input : FOM solver FOM = FOM(µ,ν), parameter spaces Θ and Θ′, inner module
architecture class D of reduced dimension n, sample size Ntrain, Gram matrix
G, ambient dimension NA with NA > n.

Output: Trained DOD model V.

[µ1, . . . ,µNtrain
]← i.i.d. random sample from Θ

[ν1, . . . ,νNtrain]← i.i.d. random sample from Θ′

[u1, . . . ,uNtrain]← [FOM(µi,νi) for i = 1 : Ntrain] // sampling

A← POD([u1, . . . ,uNtrain], G, NA) // ambient space definition

[ũ1, . . . , ũNtrain]← [A⊤Gui for i = 1 : Ntrain] // ambient projection

Ṽ∗ ← argminṼ∈D
1

Ntrain

∑Ntrain
i=1 |ũi − Ṽ(µi)Ṽ

⊤(µi)ũi|2 // training

V← AṼ∗ // map composition

return V

Proof. Fix any µi,νi,uµi,νi
in the training set. Since the ambient residual uµi,νi

−AA⊤Guµi,νi

is G-orthonormal to span(A), it follows that

∥uµi,νi
− Vµi

V⊤
µi
Guµi,νi

∥2 = ∥uµi,νi
− AṼµi

Ṽ⊤
µi
A⊤Guµi,νi

∥2 =

= ∥uµi,νi − AA⊤Guµi,νi∥2 + ∥AA⊤Guµi,νi − AṼµi
Ṽ⊤

µi
A⊤Guµi,νi∥2 =

= ∥uµi,νi − AA⊤Guµi,νi∥2 + |A⊤Guµi,νi − Ṽµi
Ṽ⊤

µi
A⊤Guµi,νi |2.

Averaging over the training set yields (10).

Hence, to summarize, the implementation and training of a DOD network can be carried out as
follows. First, following the guidelines presented in Section 3.1, we design the model architecture.
According to Figure 2, this corresponds to fixing an ambient space A, a latent dimension n, and
a set of neural network architectures defining, respectively, the seed and the roots modules. From
an abstract point of view, this is equivalent to identifying a suitable hypothesis class

D ⊂ {Ṽ : Θ→ RNA×n}.

for the inner DOD module. Then, we rely on classical optimization algorithms, such as L-BFGS
or Adam, to solve the following minimization problem

min
Ṽ∈D

LA(Ṽ),

and thus train the (inner) DOD network.

3.3 Quantifying adaptivity
After training, it can be useful to quantify the actual adaptivity of the DOD basis: that is, to
which extent the map µ 7→ Vµ is non-constant over the parameter space Θ. As we shall see in
the next Section, this postprocessing can substantially increase our understanding of the DOD
approach, and help us in designing better models.

12

In principle, measuring the variability of the DOD basis across Θ might seem straightforward:
in fact, since the DOD is explicitly given (and in closed form) by a neural network model, we can
easily compute quantities such as derivatives, variances, and so on. However, this is not the full
story, and things are actually more complicated. To appreciate this, let us consider a very simple
example where p = 1, Nh = 3 and ∥ · ∥ is the Euclidean norm. Consider the DOD model below

µ 7→ Vµ :=

 cosµ − sinµ

sinµ cosµ

0 0

 . (11)

At first sight, it may look like the DOD basis is adaptively changing with the input parameter
µ. However, this is not really the case. In fact,

span(Vµ) = span(V0)

for all µ ∈ R. In particular, since the projection error depends only on the underlying subspace
and not on the matrix representation, the maps µ 7→ Vµ and µ 7→ V0 are actually equivalent. In
this sense, a DOD network acting as (11) would not be adaptive at all.

These considerations are key, as they bring us to the following observation: for what we care,
the outputs of a DOD network are not matrices, but subspaces. As such, the variability of the
DOD basis is better understood in terms of the so-called Grassmann manifold [30, 50–52]. For
a given dimension n and a suitable ambient space A, the Grassmann manifold consists of all
subspaces V ⊆ A of dimension n, namely

Gn(A) := {V ⊆ A such that V is linear and dim(V) = n},

defined whenever 1 ≤ n ≤ dim(A). The Grassmann manifold can be equipped with different
metrics —see, e.g., [53] for a comprehensive list— specifically designed for measuring distances
between subspaces. Here, by noting that the variability of V ultimately depends on that of its
inner module Ṽ, we focus on the case A = RNA and we endow the Grassmann manifold with the
following metric, commonly referred to as the projection 2-norm [53],

d (V,W) := max
w∈W
|w|=1

min
v∈V

|w − v|,

so that d : Gn(RNA) × Gn(RNA) → [0, 1]. Equivalently, if Ṽ and W̃ are orthonormal matrices
representing the two subspaces V andW, respectively, then d (V,W) =

√
1− σ2

n, where σn is the
smallest singular value of Ṽ⊤W̃: cf. Algorithm 3. In light of this, with little abuse of notation, we
shall write d (Ṽ, W̃) to intend d (span(Ṽ), span(W̃)) = d (V,W).

With this setup, we can think of the inner DOD module as of a map

Ṽ : Θ→ Gn(RNA),

and exploit the metric d to define a suitable adaptivity-score. We do this by relying on a gen-
eralization of the statistical variance, specifically designed for random variables in metric spaces
—see, e.g., [54] or Remark 4 at the end of this Section—, that is,

Var(Ṽ) := Eµ,µ′

[
1

2
d 2(Ṽµ, Ṽµ′)

]
, (12)

13

Algorithm 3: Computation of the distance d over the Grassmann manifold Gn(RNA).

Input : Matrices V,W ∈ RNA×n.
Output: Metric distance d between span(V) and span(W).

Ṽ ← ORTH(V) \\ Orthonormalization

W̃← ORTH(W)

[σ1, . . . , σn]← singular values of Ṽ⊤W̃ (in decreasing order)

return
√

1− σ2
n

where µ,µ′ ∼ P are i.i.d. (independent and identically distributed). Since, 0 ≤ Var(Ṽ) ≤ 1/2 by
construction, we define the DOD adaptivity-score as a normalized standard-deviation,

Adpt(V) :=

√
2Var(Ṽ) = E1/2

µ,µ′

[
d 2(Ṽµ, Ṽµ′)

]
, (13)

so that 0 ≤ Adpt(V) ≤ 1. The adaptivity-score has the following interpretation: values close to
zero indicate that the DOD is collapsing towards a unique global basis; conversely, larger scores
correspond to a larger variability across Θ. See also Remark 5 for further insights.

In practice, since the DOD can be evaluated at a negligible computational cost, we can
estimate (13) via classical Monte Carlo. Here, we shall rely on the following estimator

AdptMC(V) :=

√√√√ 1

Nr

Nr∑
i=1

d 2(Ṽµr
2i−1

, Ṽµr
2i
), (14)

where {µr
i}

2Nr
i=1 ⊂ Θ is a suitable i.i.d. random sample, independent of the training set. In general,

letting Nr ∼ 104 typically suffices, as demonstrated by the following.

Lemma 3. Fix any δ, ϵ > 0. Let Nr =
⌈
δ−1ϵ−4/4

⌉
and let {µr

i}
2Nr
i=1 ⊂ Θ be an i.i.d. random

sample, independent of the training set. Then,

|Adpt(V)−AdptMC(V)| ≤ ϵ

with probability 1− δ.

Proof. Let Prob denote the probability law of the entire random sample. We note that, for all
a, b ≥ 0, one has |a2 − b2| ≥ |a− b|2. Therefore,

Prob (|Adpt(V)−AdptMC(V)| > ϵ)

≤ Prob
(∣∣Adpt2(V)−Adpt2MC(V)

∣∣ > ϵ2
)
≤ ϵ−4Var(Adpt2MC(V)),

by Chebyshev inequality. Let X := d 2(Ṽµr
1
, Ṽµr

2
). By independence, and since both X and E[X]

take values in [0, 1], we have

Var(Adpt2MC(V)) =
1

Nr
Var(X) =

1

Nr

(
E[X2]− E2[X]

)
≤

14

≤ 1

Nr

(
E[X]− E2[X]

)
=

1

Nr
E[X] (1− E[X]) ≤ 1

4Nr
.

Consequently, Prob (|Adpt(V)−AdptMC(V)| > ϵ) ≤ (4Nr)
−1ϵ−4 ≤ δ.

Remark 4. Equation (12) can be seen as a generalization of the variance to metric spaces. To
see this, consider the case of a real-valued random variable X. Classically, its variance is defined
as Var(X) = E[|X − E[X]|2] = E[X2] − E2[X]. We now note that if Y is another independent
random variable and Y ∼ X (identical distribution), then by classical properties,

E
[
1

2
|X − Y |2

]
=

1

2

(
E[X2]− 2E[XY] + E[Y 2]

)
=

=
1

2

(
E[X2]− 2E[X]E[Y] + E[Y 2]

)
=

=
1

2

(
E[X2]− 2E[X]E[X] + E[X2]

)
= Var(X).

In particular, if we denote the Euclidean distance by d = | · |, then E
[
1
2d (X,Y)2

]
= Var(X).

Remark 5. It is worth pointing out that both the case Adpt(V) = 0 and Adpt(V) = 1, are
somewhat pathological. In the former case, in fact, the DOD basis is constant, which is equivalent
to a classical POD. In the latter case, instead, the DOD would have to be discontinuous. To see
this, note that the continuity of the DOD implies that of the map g : µ1,µ2 7→ d 2(Ṽµ1

, Ṽµ2
).

Assume now that µ is an absolutely continuous random variable whose density never vanishes
over Θ. Then Adpt(V) = 1 would imply g = 1 almost everywhere. If V were to be continuous,
this would imply g ≡ 1 over Θ × Θ; however, this is not possible, since g(µ1,µ1) = 0 for all
µ1 ∈ Θ. Thus, Adpt(V) = 1 can only be achieved by a discontinuously adaptive basis. Of note, a
deep learning model could never realize such scenario as the relationship between input and output
in (trainable) neural networks is always continuous.

4 Numerical experiments (I): dimensionality reduction
The purpose of this Section is to provide some preliminary insights on the capabilities of the
DOD algorithm as a tool for dimensionality reduction. To this end, we shall present a couple of
numerical experiments in which we compare the DOD with other well-established approaches,
such as POD, local POD, basis interpolation and autoencoders.

Similarly to DOD, all these techniques are data-driven, meaning that they require the pre-
liminary collection of some FOM snapshots, {µi,νi,uµi,νi

}Ni=1, randomly sampled, which serve
as training data. All these approaches define a latent space, where solutions are projected (lin-
early or nonlinearly) and from which they can be later recovered. To evaluate the quality of the
reconstruction, we rely on the mean relative projection error (MRPE)

MRPE :=
1

Ntest

Ntest∑
i=1

∥uµ̌i,ν̌i
− uproj

µ̌i,ν̌i
∥

∥uµ̌i,ν̌i
∥

, (15)

where ∥ · ∥ is the norm induced by G over RNh , corresponding to the L2-norm in Vh, while
{µ̌i, ν̌i,uµ̌i,ν̌i

}Ntest
i=1 is the so-called test set, a collection of high quality data generated indepen-

dently of the training set. With little abuse of notation, we denote by uproj
µi,νi

the reconstruction
of uµi,νi

, even though, in some cases, the encoding-deconding process may involve nonlinear
transformations that go beyond linear projections. For the DOD, the model reconstruction reads

uproj
µ,ν := VµV⊤

µGuµ,ν .

15

In the other cases, instead, the formulas are slightly different. We report them below.

• POD [15]. In this case,
uproj
µ,ν := VV⊤Guµ,ν

where, for a given reduced dimension n, V ∈ RNh×n represents a global basis computed via
generalized SVD (analogously to Algorithm 1, up to replacing NA with n);

• Local POD using clusters [25, 26, 28]. Here, the reconstruction reads{
uproj
µ,ν := VjV⊤

j Guµ,ν ,

j = argmink=1,...,c ∥uµ,ν − VkV⊤
k Guµ,ν∥,

where c is the number of clusters, V1, . . .Vc ∈ RNh×n is a collection of basis and n is the
reduced dimension. In practice, given c and n, the FOM data are first subdivided into c
clusters by grouping together similar solutions (here, we rely on the k-means algorithm);
then, a POD basis is computed for each cluster, yielding the matrices V1, . . .Vc. Then, each
solution is projected and reconstructed using its own POD basis, defined as the "best" among
the ones available. It can be regarded as a primitive form of DOD, where the basis is piecewise
constant over the parameter space and changes discontinuously. Typically, methods known
as dictionary-based ROMs tend to rely on this approach for their construction [55, 56];

• Basis interpolation [30–32]. Following [31], we consider the implementation proposed in
[30] combined with the use of radial basis interpolation. The model reconstruction reads

uproj
µ,ν := VµV⊤

µuµ,ν with Vµ = I(µ1, . . . ,µc,V1, . . . ,Vc)(µ),

where µ1, . . . ,µc ∈ Θ are the interpolation points, V1, . . . ,Vc are a set of pre-computed local
basis (each being representative of the submanifold associated to the corresponding µi), and
I encapsulates the interpolation routine, which is carried out over the Grassmann manifold.
For a precise definition of I, we refer the interested reader to Appendix A. Notice the absence
of the Gramian matrix G: consistently with the literature, the algorithm is implemented
using the Euclidean metric for the state space. It is also worth remarking that this procedure
cannot be implemented using the same training set used for the other approaches. In fact,
one first needs to select c interpolation points µ1, . . . ,µc, and then, for each i = 1, . . . , c,

– sample M > n random values of the remaining parameters, νi,1, . . .νi,M ;

– solve the FOM to generate uµi,νi,1
, . . . ,uµi,νi,M

;

– use those M simulations to extract the basis Vi via classical POD.

In our experiments, we shall choose c and M such that the total number of FOM simulations
is larger or equal to the one used for the other approaches. Finally, in order to select the
interpolation points, we use structured grids if p ≤ 3 and random sampling if p > 3.

• Autoencoders [19, 20, 24]. In this case, the formula is just

uproj
µ,ν := Ψ(Ψ′(uµ,ν)),

where Ψ′ : RNh → Rn and Ψ : Rn → RNh are the encoder and decoder networks, respectively.
To foster interpretability and provide a meaningful comparison, we shall construct these
models following the same ideas adopted for the design of DOD architectures: in particular,
we shall rely on POD enhanced autoencoders [46, 57], thus leveraging the existence of the

16

ambient space A. In other words, we let

Ψ′(u) = ψ′(A⊤u) and Ψ(c) = Aψ(c),

where ψ′ : RNA → Rn and ψ : Rn → RNA are the trainable parts of the two architectures,
respectively.

We conduct the analysis as follows. First, we compare DOD, POD, and AE for varying n,
so as to better understand how the reduced dimension impacts the projection error. Then, we
fix a latent dimension n and assess the performances of the DOD in comparison with the basis
interpolation method and local POD.

All the code was implemented in Python 3 using the dlroms library [58], a Python pack-
age that relies on FEniCS and Pytorch to construct deep learning-based ROMs. The dlroms
package is freely available on Github at https://github.com/NicolaRFranco/dlroms. All deep
learning models were trained offline and evaluated online using a Tesla V100-PCIE-32GB GPU
accelerator.

4.1 Stationary Navier-Stokes flow around a parametrized obstacle
To start, we consider the model problem discussed in Section 2.1, concerning a steady fluid
flow around an obstacle. For better readability, we take the opportunity to restate the problem,
specifying the governing equations and their parameterization. Specifically, we consider a 2D fluid
flow modeled by the following parametrized Navier-Stokes equations,

−ϵ∆u+ u · ∇u+∇q = 0 in Ωµ,

∇ · u = 0 in Ωµ,

u = gν on Γin,

u = 0 on ∂Ωµ \ (Γin ∪ Γout) ,

q = 0 on Γout

(16)

where Ωµ := (0, 1)2 \ Oµ is a parameter dependent domain, obtained by removing an almond-
shaped object, Oµ, from the unit square, see Fig. 1. We focus our attention on the parameters-
to-velocity map,

(µ,ν) 7→ u.

Here, µ = [θ, x0, y0] is a vector parametrizing the center of the obstacle, (x0, y0), and its angle of
rotation, θ. To ensure that the obstacle Oµ always lies within the unit square, we let µ ∈ Θ :=
[0, 2π]× [0.25, 0.75]2. The other parameters, ν = [α, β] ∈ Θ′ := [0, 10]2, instead, parametrize the
inflow condition as

gν(x, y) = y(1− y)
(
αe−100(y−0.25)2 + βe−100(y−0.75)2

)1/2
,

that is, by combining the contribution of two jet flows: one coming from the bottom (centered at
y = 0.25), whose strength is determined by α, and one concentrated at the top (y = 0.75), whose
intensity depends on β. For simplicity, we fix the viscosity coefficient to ϵ := 5 · 10−3. We equip
both parameter spaces, Θ and Θ′, with a uniform probability distribution.

Notice that, here, the parametric dependence of the geometry poses an additional challenge
in the construction of a ROM for Eq. (16) stemming from the difficulty in comparing different
problem instances. As we mentioned in Section 2.1, to simplify the analysis and focus on the
phenomenon of interest —that is, the slow decay in the Kolmogorov n-width— we circumvent this
issue by extending all PDE solutions to the whole unit square Ω = (0, 1)2 and then interpolating
them over a common finite element space (see also Remark 6 for a deeper discussion on the

17

https://github.com/NicolaRFranco/dlroms

Component Specifics Terminal activation
Seed pp

∗7→ 44 7→ 50 0.1-leakyReLU
Root 50 7→ 50 7→ NA -
Orth reduced QR -

Table 1: General DOD architecture for the Navier-Stokes case study, Section 4.1. All archi-
tectures employ the 0.1-leakyReLU activation at the internal layers. The notation a 7→ b
denotes a dense layer from Ra to Rb; longer sequences indicate a composition of multiple
layers. The number of root modules depends on the DOD dimension, n. Here, ∗7→ denotes a
non-learnable feature layer that acts as [θ, x0, y0]

∗7→ [cos 4θ, sin 4θ, x0, y0], which we use to
enforce rotational symmetry.

matter). Precisely, for each parametric configuration (µ,ν) ∈ Θ×Θ′: (i) we introduce a suitable
mesh over Ωµ, tailored for the given geometry; (ii) we solve (16) by discretizing the function
spaces for the pressure and velocity fields using a stable finite element pair based on mini-elements
(continuous P1 elements for q, and P1-Bubble vector elements u); (iii) we extend u to Ω by
setting it equal to zero inside the obstacle; (iv) we interpolate u over a predefined finite element
space Vh ∼= RNh , consisting of P1-Bubble vector elements defined over a structured triangular
grid of stepsize h =

√
2/50. This allows us to represent all velocity fields within a common state

space, and thus treat the FOM as map of the form

(µ,ν) 7→ uµ,ν ∈ RNh ,

where Nh = 15202 are the dof in the P1-Bubble space of vector fields, Vh ⊂ H1(Ω) × H1(Ω).
We exploit the FOM to sample 1500 random solutions, 1350 for training and 150 for testing. In
order to construct the DOD projector, we introduce an ambient space of dimension NA = 300
(average projection error over the test set: 0.87%). To construct the seed and the root modules,
instead we use a collection of dense architectures whose hyperparameters are reported in Table 1.
Additional details concerning the other benchmark models (namely, the autoencoders) can be
found in Appendix B.

Results are in Figs. 3-4, and in Tables 2 and 5. As we can appreciate from Figure 4 (left panel),
for any fixed latent dimension n, the DOD approach emerges by far as the best dimensionality
reduction technique, reporting errors that are 3 to 4 times smaller than those achieved by POD
and autoencoders. In turn, this results in a significant gain in terms of compression rate: notice,
for instance, that 4 DOD modes can provide the same information as 27 POD modes. As the
reduced dimension increases, we also observe an increased volatility of the DOD basis, with
adaptivity scores ranging from 0.6 to 0.9, cf. Figure 4, right panel.

This adaptivity is also clearly depicted in Figure 3, where we see how each DOD mode change
according to the position and the orientation of the obstacle. Interestingly, we also note that each
DOD mode reflects different features of the problem. For instance, the third mode appears to focus
on capturing the interaction between the obstacle and the jet flow at the top, while the first mode
is more associated with the flow coming from the bottom. In general, it is evident that, even for
very small latent dimensions, n = 3, the DOD approach can provide very rich representations. On
the contrary, dictionary-based approaches, such as local POD, fail in replicating such complexity,
unless the number of clusters becomes extremely large.

This is clearly seen in Table 2. For instance, when comparing the two approaches for n = 4,
extrapolating from the overall trend indicates that approximately c ≈ 1200 clusters would be
required to match the accuracy of the DOD basis, a conclusion that is clearly impractical. Notably,
DOD outperforms the basis interpolation method as well. We speculate that this could be due
to the rigidity of the sampling strategy used for the interpolation method. In order to implement

18

Fig. 3: DOD basis for different obstacle configurations in the Navier-Stokes example, Section 4.1. Each
row refers to a different value of µ = [θ, x0, y0], while each column represents a DOD mode (here, n = 3).
NB: for this case study, each DOD mode is actually a vector field Vj

µΩe → R2. However, to enhance
readability, we are only plotting their magnitudes, |Vj

µ|.

the latter, in fact, we selected c = 144 collocation points in Θ using a uniform grid, and then, for
each of them, sampled 10 random points in Θ′, which resulted in 1440 FOM simulations. How-
ever, despite exceeding the size of the training set employed for the DOD, Ntrain = 1350, these
simulations are not as rich in terms of overall content. Specifically, due to their nested structure,
they are not as efficient (in terms of cost investment) in revealing the actual complexity of the
solution manifold. In turn, the interpolation procedure ends up relying on a set of local basis that
are not sufficiently representative of the system. These considerations seem to suggest that the
main strenght of the DOD approach lies in its capability of combining a continuously adaptive
local perspective together with a flexible training procedure.

Before continuing, we conclude with a final note on the error decay. As seen in Figure 4,
although the DOD manages to reduce the errors significantly, it is not capable of recovering
the fast decay rate that we saw in Figure 1. In other words, using the notation in Assump-
tions A1-A2, the DOD succeeds in reducing the error constant, C ′ ≪ C, but fails in improving
its decay rate, β ≈ α. In our view, this could be due to our design choice of introduc-
ing an underlying ambient space. Notice, in fact, that E

[
∥uµ,ν − VµV⊤

µGuµ,ν∥/∥uµ,ν∥
]
≥

E
[
∥uµ,ν − AA⊤Guµ,ν∥/∥uµ,ν∥

]
, meaning that the accuracy of the DOD cannot improve indef-

initely if we just increase the latent dimension n. Nonetheless, the presence of A remains
fundamental for the scalability of the approach.

19

Fig. 4: Left: comparison between DOD and global dimensionality reduction strategies for the Navier-
Stokes example, Section 4.1. Right: adaptivity of the DOD for different reduced dimensions n. Scores are
defined as in Eq. (13).

Reduction method DOD Local POD Basis interpolation
c = 4 c = 16 c = 64

Projection error 5.109% 14.488% 10.872% 8.825% 10.878%

Table 2: Comparison between DOD and other adaptive methods for the Navier-Stokes case
study, Section 4.1. All models use n = 4 modes. c = number of clusters for Local POD.
Projection error = MRPE, cf. Eq. (15).

Remark 6. Developing ROMs to tackle problems in varying geometries is a very challenging
task. Possible strategies to achieve this goal typically consist of: (i) relying on a fictitious domain
approach, or on a suitable postprocessing routine that interpolates all PDE solutions over a
common mesh [59, 60], (ii) exploiting mesh deformation strategies [61, 62], and/or registration
methods [63], (iii) leveraging local operations, as in graph neural networks (GNNs) [64–66]. Here,
we consider the simplest of these approaches —that is, the first one—, in order to maintain our
focus on our primary objective, i.e., developing an adaptive local basis capable of overcoming the
Kolmogorov barrier. Clearly, integrating DOD with, e.g., GNNs, would be an interesting research
direction, potentially leading to very powerful and flexible ROMs. However, given that the DOD
approach is still in its early stages, we leave these considerations for future work.

4.2 Eikonal equation in a parametrized medium
For our second case study we consider a different scenario where the parametric problem is
characterized by a high-dimensional parameter space, specifically, p≫ p′ ≥ 1. In doing so, we take
the chance to showcase how DOD can handle nonlinear PDEs defined on complicated domains.
We consider, in fact, a parameter dependent Eikonal equation,

|∇u| = s−1
µ,ν , (17)

20

defined over a simplified cartography of the italian peninsula, complemented with an internal
Dirichlet condition, u(x0) = 0, where x0 ∈ Ω. We recall that, among other things, the Eikonal
equation also constitutes a prototypical example of wave propagation: for instance, in seismology
and geophysics, it is commonly employed for modeling travelling times of seismic waves through
the Earth’s subsurface [67, 68]. In these cases, x0 typically represents the epicenter’s location,
while sµ,ν(x) models the propagation speed at x ∈ Ω, which depends on the material properties
of the soil at x. Then, u(x) ≥ 0 corresponds to the time required for the wave to travel from x0

to x. For the case at hand, we let x0 ∈ Ω represent a fixed source situated approximately near
the city of Urbino, in central Italy.

For our analysis, we consider a situation in which (17) depends on p + p′ = 102 scalar
parameters, µ = [η1, . . . , η100], ν = [α, β], which parametrize the speed of travel as

sµ,ν(x) := σ

(
α

p∑
j=1

ηjξj(x)

)
+ β. (18)

Here, σ(z) := ex/(1 − ex) is the sigmoid, whereas ξ1, . . . , ξ100 ∈ L2(Ω) are suitable orthonormal
modes defined over Ω. In practice, we construct the latter by truncating the Karhunen-Loeve
expansion of a mean zero Gaussian processes with covariance kernel κ(x,x′) = exp(−10|x−x′|2),
cf. [69]. In particular, for each j = 1, . . . , 100 one has∫

Ω

κ(x,x′)ξj(x
′)dx′ = λjξj(x) ∀x ∈ Ω

for a suitable λj > 0. We sort the indices such that λj+1 ≥ λj . With this notation, we define the
parameter space Θ×Θ′ by setting

Θ :=

100∏
j=1

[
−
√

4λj , 4
√
λj

]
, Θ′ := [0, 0.1]× [0.5, 1.0],

so that p = 100 and p′ = 2. Essentially, in Eq. (18), β prescribes the minimum traveling speed for
the wave, whereas σ(α

∑p
j=1 ηjξj) models spatial heterogeneity. To this end, the ηj coefficients

serve to characterize the spatial distribution of the material properties, while α controls the
squashing of the sigmoidal transformation. Intuitively, for fixed values of µ = [η1, . . . , ηp] we
expect that the solution to (17) does not change dramatically. Conversely, different values of the
ηj ’s can significantly affect the behavior of the solution due to their interaction with the space
variable x.We equip Θ′ with a uniform distribution, whereas we let each ηj follow (independently)
a truncated gaussian distribution, so that ηj ∼ N (0, λj) approximately. As ground truth reference,
we consider a FOM based off an iterative scheme [70] relying upon a Finite Element discretization
with continuous P1 elements defined over a triangular mesh of stepsize h ≈ 0.0369. The resulting
FOM dimension is Nh = 6183. We exploit the FOM to sample 3000 random solutions, 2700 for
training, and 300 for testing.

To construct the DOD projector, we rely on an ambient space of dimension NA = 200
(average ambient error = 0.28%). The remaining parts of the architecture are as in Table 3. To
ensure a proper comparison, the autoencoders are constructed similarly; see Appendix B for
further details.

Results are reported in Figures 5-6 and Tables 4-5.
As seen in Figure 5 (left panel), for small latent dimensions n, the DOD approach emerges by

far as the best dimensionality reduction technique, reporting errors that are 2 to 3 times smaller
than those achieved by POD and autoencoders. The trend, however, changes progressively as n
increases, with POD reporting a steeper and steeper decay. At the same time, the adaptivity of

21

Component Specifics Terminal activation
Seed pp 7→ 30 7→ 50 0.1-leakyReLU
Root 50 7→ 100 7→ NA -
Orth reduced QR -

Table 3: General DOD architecture for the Eikonal Equation case study, Section 4.2. Table
entries read as in Table 1. All architectures employ the 0.1-leakyReLU activation at the
internal layers.

Fig. 5: Left: comparison between DOD and global dimensionality reduction strategies for the Eikonal
equation, Section 4.2. Right: adaptivity of the DOD for different reduced dimensions n. Scores are defined
as in Eq. (13).

the DOD appears to be reaching a plateau, cf. right panel of Figure 5. This suggests that the
solutions to (17) can be expressed in terms of a small number of adaptive modes —those captured
by the DOD— combined with a global set of high frequency modes, which are, instead, shared
in between different problem instances.

As for the previous case study, at the latent level, the DOD basis manages to combine richness
with interpretability. Notice, for instance, how the first DOD mode in Figure 6 allows the model
to distinguish between the central regions of Italy and the surrounding northern-south parts,
coherently with the position of the epicenter x0. Conversely, the second mode captures differences
between the east and west sides at the north of the peninsula. At the same time, these details
are tuned depending on the underlying properties of the soil (left column in Fig. 6).

Notably, DOD also outperforms local POD and basis interpolation, see Table 4. The basis
interpolation method, in fact, reports the worst performance, with an average test error above
10%. We believe this to be caused by the high-dimensionality of the parameter space (recall that
p = 100), which makes it difficult to capture a complex behavior with few collocation points.
Finally, while the local POD method performs better compared to the interpolation method, the
error decay in terms of the number of clusters, c, is extremely slow. Indeed, the reported trend
would suggest picking more than 1011 clusters in order to match the accuracy of the DOD, which
is clearly not feasible.

22

Fig. 6: DOD basis for two different realizations of the space-interacting parameter µ ∈ R100 appearing
in the Eikonal equation example, Section 4.2. Each row refers to a different value of µ. 1st column:
random field gµ defining the speed of travel map; 2nd-3rd column: DOD modes. Here, n = 6 but only
two modes are shown to improve readability.

Reduction method DOD Local POD Basis interpolation
c = 4 c = 16 c = 64

Projection error 3.066% 6.495% 6.049% 6.006% 10.698%

Table 4: DOD in comparison with other adaptive methods for the Eikonal equation, Sec. 4.2.
All models use n = 6 modes. c = num. of clusters. Projection error = MRPE, cf. Eq. (15).

We also highlight that the advantages of the DOD approach also include a remarkable effi-
ciency during the online phase. Indeed, after training, only a few milliseconds are required to
compute the local basis Vµ for any given µ ∈ Θ, cf. Table 5. This is possible thanks to the effi-
ciency of deep learning models, which do not require special routines aside from matrix-vector
multiplication in order to be evaluated. In contrast, the basis interpolation method is considerably
slower –—by two orders of magnitude on our machine–— as it requires repeated transforma-
tions between the Grassmann manifold and its tangent space, even when employed online, cf.
Appendix A.

5 Deep orthogonal decomposition (II): reduced order
modeling of parametrized PDEs

As we anticipated in Section 3, a DOD with n-modes allows us to reduce the complexity of the
problem by shifting our attention from the parameter-to-solution map, (µ,ν) 7→ uµ,ν ∈ RNh to
the parameter-to-DOD-coefficient map, i.e.

(µ,ν) 7→ cµ,ν := V⊤
µGuµ,ν ∈ Rn, (19)

23

Case study ptot p Nh n Projection Adaptivity Evaluation
error time

Navier-Stokes 5 3 15202 4 5.109% 0.748 0.001547 sec
Eikonal Eq. 102 100 6183 6 3.066% 0.545 0.001568 sec

Table 5: DOD architectures selected for model order reduction (see Section 6). Here, ptot :=
p + p′ is the total number of parameters in the PDE models. Wall times refer to a single
forward pass µ 7→ Vµ.

Since n≪ Nh, learning the latter should be much easier when compared to the original problem.
Before coming to our own proposal on how learn (19), it is worth making a few considerations of
general interest. We summarize them below.

5.1 General considerations
Let ϕ : Rp × Rp′ → Rn be any algorithm of choice, be it intrusive or data-driven, that, given
(µ,ν) seeks to approximate the corresponding DOD coefficient cµ,ν . The latter naturally gives
rise to a DOD-based ROM via the ansatz

uROM
µ,ν := Vµ · ϕ(µ,ν) ≈ uµ,ν ,

where "·" emphasizes the presence of a matrix-vector multiplication. The quality of such an
approximation will depend both on the DOD, V, and on the parameter-to-coefficient algorithm,
ϕ. To appreciate this, let

EA := E1/2
µ,ν∥uµ,ν − uROM

µ,ν ∥2,
be the approximation error of the whole ROM, here measured according to a root-mean-square-
error metric (RMSE). The two architectures, V and ϕ, are responsible for the following sources
of error

EDOD := E1/2
µ,ν∥uµ,ν − VµV⊤

µGuµ,ν∥2, Ecoeff := E1/2
µ,ν |cµ,ν − ϕ(µ,ν)2|,

respectively. Here, EDOD represents the DOD projection error, while Ecoeff reflects the quality of
the approximation of the reduced problem (19): together, these two quantities uniquely charac-
terize the general expressivity of the ROM. In fact, it is straightforward to see that the following
identity holds.

Lemma 4. For all DOD networks and all reduced algorithms, one has

E2A = E2DOD + E2coeff. (20)

Proof. We shall prove the stronger identity below,

∥uµ,ν − uROM
µ,ν ∥2 = ∥uµ,ν − VµV⊤

µGuµ,ν∥2 + |cµ,ν − ϕ(µ,ν)|2. (21)

holding for all µ ∈ Θ and all ν ∈ Θ′. Note, in fact, that (20) is just (21) in expectation. To see
that (21) is valid, let (µ,ν) ∈ Θ×Θ′. Since Vµ is orthonormal, we have

|cµ,ν − ϕ(µ,ν)|2 = ∥Vµcµ,ν − Vµϕ(µ,ν)∥2 = ∥VµV⊤
µGuµ,ν − uROM

µ,ν ∥2.

24

We now notice that, by definition,(
VµV⊤

µGuµ,ν − uROM
µ,ν

)
∈ span (Vµ) .

At the same time, by classical properties of linear projections,(
uµ,ν − VµV⊤

µGuµ,ν

)
⊥ span (Vµ) .

Then, by orthogonality,

∥uµ,ν − VµV⊤
µGuµ,ν∥2 + ∥VµV⊤

µGuµ,ν − uROM
µ,ν ∥2 =

= ∥uµ,ν −������VµV⊤
µGuµ,ν +������VµV⊤

µGuµ,ν − uROM
µ,ν ∥2 =

= ∥uµ,ν − uROM
µ,ν ∥2,

as claimed.

This splitting shows that errors in the approximation of the reduced map propagate through
the DOD in a stable way, that is: an error of ϵ in the approximation of the reduced coefficients
is reflected in a corresponding error of (at most) ϵ at FOM level. We note that, typically, this
property is exclusive to projection methods. Nonlinear techniques based on, e.g., autoencoders,
instead, might suffer from error inflation. There, in fact, reduced coefficients are replaced by latent
variables, and the lifting from Rn → RNh is obtained via a nonlinear decoder Ψ. Consequently,
errors at the latent level can be bounded, at most, as

∥Ψ(cµ,ν)−Ψ(ϕ(µ,ν))∥ ≤ LΨ|cµ,ν − ϕ(µ,ν)|,

where LΨ is the Lipschitz constant of the decoder module. In particular, if LΨ > 1, errors may
grow when passing through the decoder.

5.2 Learning the DOD coefficients
The hybrid nature of the DOD projector opens up a wide spectrum of possibilities for comput-
ing DOD coefficients, ranging from intrusive to data-driven approaches. For example, during the
online phase, the DOD basis could be used to project and solve the governing equations, ulti-
mately mimicking the idea underlying the POD-Galerkin ROMs. However, this approach would
face major limitations when dealing, e.g., with nonlinear problems, as one would need to comple-
ment the DOD with a suitable hyperreduction strategy, or when facing operators with nonaffine
dependency on the parameters, as that would quickly increase the online computational cost (in
fact, in order to project the equations, one would still need to assemble the FOM first). In light
of this, and in order to be as general as possible, here we shall focus on non-intrusive strategies.
Given a candidate model class C ⊂ {ϕ̃ : Rp × Rp′ → Rn}, which might consist of, e.g., neural
network architectures, polynomials or Gaussian processes, the idea is to construct the reduced
algorithm ϕ via mean-square regression, namely

ϕ := argmin
ϕ̃∈C

1

Ntrain

Ntrain∑
i=1

|cµi,νi
− ϕ̃(µi,νi)|2,

where cµi,νi
are defined according to (19).

In this work, we explore the use of neural network architectures, thus obtaining a ROM
strategy that resambles the so-called POD-NN approach [71], except for the presence of the
adaptive DOD basis. For this reason, we term this method DOD-NN.

25

Space-interacting
parameters

DOD
Ad-hoc local basis

Reduced
coefficients

reshape

reshape

Fig. 7: Sketch of the DOD-NN approach, Section 5.2. See also Eq. (22).

The idea is to construct ϕ using a segregated architecture comprised of two submodules, ϕ1 and
ϕ2, as to further differentiate between µ and ν. More precisely, we design ϕ as

ϕ(µ,ν) := diag
[
ϕ1(µ)

⊤ϕ2(ν)
]
,

where ϕ1 : Rp → Rm×n and ϕ2 : Rp′ → Rm×n are two matrix-valued networks (implemented
using classical architectures taking values in Rmn, followed by a reshape layer). Mathematically
speaking, this construction is equivalent to a separation of variables approach, where a function
of two variables, µ and ν, is expressed as the truncated sum (up to m terms) of simpler functions.
Similar strategies have also been explored elsewhere, as in, e.g., DeepONets [72] and POD-MINN
[73]. Here, the diag operator is merely a matter of mathematical notation: in practice, we refrain
from calculating the matrix product ϕ1(µ)⊤ϕ2(ν) and instead compute the Hadamard product
of ϕ1(µ) and ϕ2(ν), followed by a columnwise summation.

With this setup, the DOD-NN ROM, uDOD-NN
µ,ν ≈ uµ,ν , can be summarized in formulas as

uDOD-NN
µ,ν := Vµϕ(µ,ν) = AORTH ([R1(sµ), . . . , Rn(sµ)]) · diag

[
ϕ1(µ)

⊤ϕ2(ν)
]
, (22)

or, visually, as in Figure 7. In general, the accuracy of the approximation will depend on: the
richness of the ambient space A, the expressivity of the inner DOD module, Ṽ, and the quality of
the parameter-to-DOD-coefficient approximation, ϕ. In fact, it is straightforward to see that, as a
direct consequence of Lemma 2 and Lemma 4, the following error decomposition formula is given.

Corollary 1. Let (µ,ν) 7→ uDOD-NN
µ,ν be a DOD-NN reduced order model with ambient matrix A,

inner DOD module Ṽ, and reduced network ϕ. Then,

Eµ,ν∥uµ,ν − uDOD-NN
µ,ν ∥2 = Eµ,ν∥uµ,ν − AA⊤Guµ,ν∥2

26

+ Eµ,ν |A⊤Guµ,ν − ṼµṼ⊤
µA⊤Guµ,ν |2

+ Eµ,ν |Ṽ⊤
µA⊤Guµ,ν − ϕ(µ,ν)|2, (23)

where we recall that uDOD-NN
µ,ν := Vµϕ(µ,ν) with Vµ := AṼµ. The three terms at the right-

hand-side of (23) are the (i) ambient error, the (ii) intrinsic DOD projection error and the (iii)
coefficients error, respectively.

Remark 7. Once a DOD architecture has been trained, replacing the orthonormalization block,
ORTH, with a different one has no effect on the projection error. For instance, switching from a
reduced QR algorithm to a Gram-Schidmt routine (and vice versa) has no impact on the accuracy
of the DOD projection. In fact, as we noted in Section 3.3, the projection error depends only on
the underlying subspace. However, from a practical perspective, this observation can be very useful,
as the ORTH block directly affects the DOD coefficients. For example, during our experiments,
we observed that the reduced QR module works best when it comes to the training of the DOD
module, as its remarkable efficiency can significantly speed up the optimization of the architecture;
conversely, switching to a Gram-Schmidt block seems to be a more favorable option for learning
the DOD coefficients. In fact, at least from our experiments, the latter seems to facilitate training
the reduced network ϕ.

6 Numerical experiments (II): reduced order modeling of
parametrized PDEs

We are now ready to extend the analysis presented in Section 4, originally devoted to the sole
dimensionality reduction, by considering the application of the DOD-NN strategy for model order
reduction. To do so, we shall consider the same case studies discussed in Section 4, and, for each
of them, proceed as follows.

First, we fix a reduced dimension n and a corresponding DOD network. In doing so, we shall
opt for a suitable compromise between: reconstruction accuracy, dimensionality reduction, and
model volatility. Then, following the ideas presented in Section 5.2, we implement and train a
reduced network ϕ. To do so, we rely on the same training data used for the DOD. Finally, we
quantify the quality of the approximation by computing an empirical test error, calculated as

MRE :=
1

Ntest

Ntest∑
i=1

∥uµ̌i,ν̌i − uDOD
µ̌i,ν̌i
∥

∥uµ̌i,ν̌i∥
,

where we recall that uDOD
µ,ν := Vµϕ(µ,ν), whereas {µ̌i, ν̌i}Ntest

i=1 are a collection of randomly
sampled parameter configurations, drawn independently from the training set.

To better understand and appreciate the capabilities of the proposed approach, we also com-
pare the performances of DOD-NN with two benchmark ROMs. In order to make the comparison
as meaningful as possible, we first note the following. By construction,

uDOD
µ,ν ∈ span(A)

for all µ and all ν: that is, the outputs of a DOD-NN module are always elements of the ambient
space. In particular, the inner module of the DOD-NN architecture,

(µ,ν) 7→ Ṽµϕ(µ,ν),

can be interpreted as approximating of the parameter-to-ambient-coefficients map. In light of
this, it is perfectly reasonable to ask whether a direct approximation would provide better results,

27

i.e. with the ansatz,
uµ,ν ≈ AΦ(µ,ν) (24)

where Φ : Rp × Rp′ → RNA is some neural network model. If so, the complex structure of the
DOD-NN would be unmotivated, raising significant questions about the overall approach. Because
of this, we believe this comparison to be highly valuable and of general interest. Notice also that
Eq. (24) can be interpreted as a POD-NN model with A as POD matrix; however, we refrain from
using this terminology here, as that might generate confusion regarding the underlying latent
dimension. The latter, in fact, would be n for DOD-NN but NA for the surrogate model in (24).
In view of these facts, we propose the following benchmark models.

• Benchmark 1 (Standard A-NN). Starting from Eq. (24), we design ϕPOD as a classical
DNN, taking as input the stacked vector of parameters [µ,ν] ∈ Rp+p′

.

• Benchmark 2 (Segregated A-NN). Here, we still rely on Eq. (24) but adopt a segre-
gated architecture, Φ(µ,ν) = diag

[
Φ1(µ)

⊤Φ2(ν)
]
, thus mimicking the idea in the DOD-NN

approach.

In both cases, we train the benchmark models by minimizing the mean square error associated
with the discrepancy |A⊤Guµ,ν − Φ(µ,ν)|. Furthermore, in order to make the comparison as
fair as possible, in both cases we design Φ to have the same complexity of the overall DOD-NN
module. That is, we shall choose the number of layers and neurons so that Φ has approximately
the same number of trainable parameters of the entire DOD-NN, including those of ϕ and Ṽ.

6.1 Results
Table 5 contains the main information on the DOD architectures selected for the model order
reduction phase. In general, we have opted for those architectures showing a satisfactory accuracy
but also moderate volatility. In fact, a higher variability of the DOD basis is typically reflected
in a higher volatility of the DOD coefficients, cµ = V⊤

µGuµ,ν ; thus, less volatile models are likely
to yield representations that are simpler to learn.

A global overview of the final results is reported in Table 6. In particular, the DOD-NN
approach consistently outperforms the benchmark models, at times exhibiting twice the accu-
racy. Overall, considering the inherently data-driven nature of the DOD-NN, we find that its
performance is quite satisfactory, with relative errors always below 6%.

Interestingly, the superiority of DOD-NN is not only quantitative but also qualitative, as seen
in Figures 8-9. There, we compared FOM solutions, DOD-NN approximations, and benchmark
outputs for unseen values of the model parameters. We notice that the DOD-NN surrogate is
much more aware of the space-interacting parameters, effectively capturing their effect over the
global solution field. On the contrary, both benchmark models seem more likely to yield unphysical
results: see, for example, Figure 8, where both ROMs erroneously predict a fluid flow entering
the obstacle.

Finally, it is worth emphasizing that these performances where achieved together with a
significant compression of the FOM dimension. In fact, the proposed DOD-based ROMs only used
n = 4 and n = 6 latent variables to represent the PDE solutions in the two case studies, resulting
in a compression rate of 99.97% and 99.90%, respectively. For comparison, any POD based ROM
operating at the same latent dimension is guaranteed to yield significantly worse results (see the
last row of Table 6). This includes reduced basis methods, such as POD-Galerkin [15], but also
data-driven techniques such as POD-NN, POD-GPR [74] and POD-DeepONet [47]. In fact, the
accuracy of these approaches is confined by the projection error of the POD itself (compare the
lower bounds in Table 6 with the values reported in Figures 4 and 5.)

28

ROM Navier-Stokes Eikonal Eq.
DOD-NN 5.92% 5.39%
Standard A-NN 12.37% 7.04%
Segregated A-NN 10.13% 6.56%
POD-NN, POD-GPR, POD-DeepONet ≥ 19.44% ≥ 7.01%

Table 6: ROM performances (average relative L2 error) for the two case studies presented
in Section 4. 1st row: DOD-NN method, cf. Section 5; 2nd-3rd row: benchmark models using
the ansatz in Eq. (24); 4th row: lower bound for POD-NN, POD-GPR and POD-DeepONet
assuming a number of spatial modes equal to that of DOD-NN.

Fig. 8: Streamlines of the velocity fields for the Navier-Stokes example: FOM solutions vs DOD-NN
approximations and benchmark outputs for two unseen configurations of the model parameters (µ,ν).
Velocity magnitude varies with color (lower values in blue, higher values in red).

Fig. 9: Comparison between FOM solution, DOD-NN approximation and benchmark ROMs for two
unseen configurations of the model parameters appearing in the Eikonal equation example.

29

Problem dof Training time Eval. time (100’000 calls)
Navier-Stokes 84750 4 m 37.78 s 0.0029 s
Eikonal Eq. 176880 2 m 51.61 s 0.0038 s

Table 7: Training and evaluation times for DOD-NN. Training includes both the DOD and
the additional NN. Online times refer to querying 100’000 different PDE solutions simulta-
neously. dof = degrees of freedom of the DOD-NN = total number of trainable parameters
in the DOD and the NN.

7 Conclusions
We presented a novel approach for reduced order modeling of parametrized PDEs, termed DOD-
NN, designed to overcome the difficulties posed a slow decay of the Kolmogorov n-width in the
context of problems characterized by the presence of space-interacting parameters. By combin-
ing an adaptive basis perspective together with deep neural network models, DOD-NN can be
interpreted as a generalization of the POD-NN strategy, which makes the approach capable of
tackling broader class of parametric problems.

At its core, DOD-NN uses DOD, a newly proposed neural network architecture that approx-
imates the solution manifold through a continuously adaptive local basis, for the sake of
dimensionality reduction. Compared to other techniques, such as deep autoencoders, the DOD
stands out for its ability in providing a tight error control during the decoding phase combined
with a rich and high-interpretable latent space. This is possible thanks to the hybrid linear-
nonlinear nature of the DOD, which makes the approach closely related to basis interpolation
methods and library ROMs. In this sense, we consider DOD-NN as a new valuable tool for domain
practitioners, whose usage is particularly recommended when

i) the problem at hand features multiple parameters, ptot = p + p′, some of which lead to a
slow decay in the Kolmogorov n-width. Our experiments show that including this knowledge
during the dimensionality reduction process can provide improved performances compared
to POD and autoencoders;

ii) the parameters responsible of the above issue are p > 1. This is the regime where our approach
becomes a valuable alternative to basis interpolation methods. DOD, infact, can handle an
arbitrary large number of parameters and does not require special sampling strategies. While
this is not an intrinsic issue of classical interpolation strategies, see e.g. [32], our experiments
suggest that a significant improvement can be achieved for certain classes of problems.

iii) capturing global features is a priority, and accuracies in the range of 1%-10% are considered
satisfactory. This is in fact the scenario where the DOD-NN yields the best compromise in
terms of accuracy and computational efficiency. Applications of this kind include, e.g., for-
ward and inverse uncertainty quantification tasks, where low-fidelity models can be extremely
valuable. If finer scales need to be captured, instead, resorting to closure models can be a
more favorable option;

iv) reducing the computational cost is crucial. By relying on deep learning models, DOD-NN
can produce new simulations in few milliseconds. Furthermore, the speed-up is even more
advantageous when multiple solutions are sought at the same time, cf. Table 7, thanks to
the ability of neural networks to operate in batches;

v) interpretability constitutes an added value. In some cases, being able to inspect the ROM
can suggest new ways for improving the accuracy of the model, or simply provide additional
insights on how (or why) a certain prediction was made.

30

In this work, we focused exclusively on stationary PDEs. In principle, integrating time as
an additional parameter (to be coupled with µ) should make the extension of our approach to
time-dependent problems straightforward. However, a more in-depth exploration may unveil
more advanced strategies, potentially leading to more sophisticated DOD-based ROMs capable
of enforcing specific properties inherent to dynamical systems (Markovianity, iterative structure,
etc.). Parallel to this, another interesting question would be to investigate suitable generaliza-
tions of the DOD capable of tackling PDEs with parameter-dependent spatial domains. Right
now, this is only possible in tandem with fictitious domain or mesh deformation approaches.
In this concern, radically different tools, such as graph neural networks, might offer valuable
insights. Similarly, another open question is whether one can discover the decoupling of the
parameter space from data, i.e. how to distinguish between µ and ν, without relying on prior
knowledge, similarly to what happens with slow-fast decompositions [75]. Last but not least, an
interesting perspective could be to integrate the DOD with a physics-based framework, e.g., by
combining it with reduced basis methods. This will likely require introducing ad hoc projection
strategies, such as tailored hyper-reduction algorithms, in order to make the approach computa-
tionally suitable for real-time applications. We leave all these considerations for future work.

Appendix A Basis interpolation with radial basis functions
Let 1 ≤ n < Nh and let Θ ⊂ Rp. We are given µ1, . . . ,µc ∈ Θ and corresponding V1, . . .Vc ∈
RNh×n. The basis interpolation method defines an interpolator I = I(µ1, . . . ,µc,V1, . . . ,Vc) :
Θ→ RNh×n such that

span I(µ1, . . . ,µc,V1, . . . ,Vc)(µi) = span Vi.

Equivalently, if we denote by G := Gn(RNh) the Grassmann manifold consisting of all subspaces of
dimension n embedded in RNh , then interpolator I ensures that each µi is mapped onto a matrix
indistinguishable from Vi in G. We define the interpolator following [30], specifically relying upon
radial basis interpolation as in [31]. The idea goes as follows. Let On ⊂ RNh×n be the set of
orthonormal matrices. Define the map LogG : On ×On → RNh×n as

LogG(A,B) = U tan−1 (Σ) ,V⊤,

where U,Σ,V⊤ = svd
[(

I− ÃÃ⊤
)
B̃(Ã⊤B̃)−1

]
are computed using the SVD algorithm. Similarly,

define ExpG : On × RNh×n → On as

ExpG(A,Γ) =
(
V⊤ cos(Σ) + U sin(Σ)

)
A,

where U,Σ,V⊤ = svd(Γ). It can be shown that, from the perspective of the Grassmann manifold,
computing LogG(A,B) corresponds to projecting span(B) onto the tangent space of the Grass-
mann manifold at the point span(A) ∈ G. Conversely, given an element Γ in the tangent space of
G at span(A), computing ExpG(A,Γ) corresponds to mapping Γ back on G. In this sense, LogG
and ExpG can be seen as the Riemannian logarithm and exponential over G, respectively: cf. [30].

In the basis interpolation method, the maps LogG and ExpG are used to lift the interpolation
problem from the Grassmann manifold onto the tangent space (which, being a linear vector space,
is much easier to handle). Within the tangent space, the interpolation can be carried out using
any algorithm of choice [76]; here, we use radial basis interpolation as in [31]. Given a radial basis
function κ : [0,+∞) → R, a set of vector inputs {ai}mi=1 and a set of scalar outputs {bi}mi=1 we
write

rbfκ(a1, . . . ,am, b1, . . . , bm) : R→ R

31

for the RBF interpolator fitted such that κ ai 7→ bi.
With this notation, the full algorithm of the basis interpolation method is outlined in Algo-

rithm 4. In our experiments, we use a Gaussian kernel κ(d) = e−ηd2

with η > 0 chosen such that
the reconstruction error over the test set is minimized.

Algorithm 4: Basis interpolation on the Grassmann manifold using RBF.

Input : Interpolation points µ1, . . . ,µc ∈ Rp, corresponding basis V1, . . .Vc ∈ RNh×n,
radial basis function κ : [0,+∞)→ R, evaluation point µ ∈ Rp.

Output: Interpolated basis Vµ = I(µ1, . . . ,µc,V1, . . .Vc)(µ).

// Closest interpolation point

i∗ ← argmini∈{1,...,c} |µi − µ|

// Mapping onto tangent space

[Γ1, . . . ,Γc]← [LogG(Vi∗ ,V1), . . . ,LogG(Vi∗ ,Vc)]

// Fit interpolators

for k = 1, . . . , Nh do
for j = 1, . . . , n do

rk,j ← rbfκ(µ1, . . . ,µc, γ
k,j
1 , . . . , γk,jc) where Γi = [γk,ji]k,j ∀i = 1, . . . , c

end
end

// Evaluate interpolators

Γµ ← [rk,j(µ)]k,j

// Map back to the Grassmann manifold

Vµ ← ExpG(Vi∗ ,Γµ)

return Vµ

Appendix B Technical details: neural network
architectures and sampling

We report below the architectures of the autoencoder models in Section 4, together with the neural
network models employed in Section 6 (DOD-NN and POD-NN benchmarks). All architectures
employ the 0.1-leakyReLU activation at the internal layers. NB: in the Navier-Stokes example,
some architectures use a nonlearnable feature layer, denoted as ∗7→, which either acts as

[θ, x0, y0, α, β]
∗7→ [cos 4θ, sin 4θ, x0, y0, α, β]

or [θ, x0, y0]
∗7→ [cos 4θ, sin 4θ, x0, y0], depending on the input size. As discussed in Section 4,

the latter is used to enforce rotational symmetry. At the end of this Section, we also report
additional details on the sampling strategy adopted for the basis interpolation method (number
of collocation points, c, and samples per location, M).

32

Table C.1: Autoencoder architectures for the case studies in Sections 4.2-4.1.

Case study Component Specifics Terminal activation
Navier-Stokes Encoder NA 7→ n 0.1-leakyReLU

Decoder n 7→ 1000 7→ NA -
Eikonal equation Encoder NA 7→ n 0.1-leakyReLU

Decoder n 7→ 50 7→ 50 7→ NA -

Table C.2: POD-NN network architectures (Benchmark 1).

Case study Specifics Terminal activation
Navier-Stokes (p+ p′)p

∗7→ 6(4 + p′) 7→ 150 7→ 150 7→ NA -
Eikonal equation (p+ p′) 7→ 200 7→ 200 7→ NA -

Table C.3: POD-NN network architectures (Benchmark 2).

Case study Component Specifics Terminal activation
Navier-Stokes ϕ1 p

∗7→ 4 7→ 30 7→ 5×NA 0.1-leakyReLU
ϕ2 p′ 7→ 30 7→ 5×NA -

Eikonal equation ϕ1 p′ 7→ 20 7→ 20×NA 0.1-leakyReLU
ϕ2 p′ 7→ 20 7→ 20×NA -

Table C.4: DOD-NN network architectures.

Case study Component Specifics Terminal activation
Navier-Stokes ϕ1 p

∗7→ 4 7→ 50 7→ 50 7→ 25× n 0.1-leakyReLU
ϕ2 p′ 7→ 50 7→ 25× n -

Eikonal equation ϕ1 p′ 7→ 25 7→ 10× n 0.1-leakyReLU
ϕ2 p′ 7→ 25 7→ 10× n -

Table C.5: Sampling strategy for basis interpolation.

Case study Method c M

Navier-Stokes uniform grid 144 10
Eikonal equation random 270 10

Declarations
Fundings and acknowledgments
NRF and AM acknowledge the Project “Reduced Order Modeling and Deep Learning for the
real-time approximation of PDEs (DREAM)” (Starting Grant No. FIS00003154), funded by the
Italian Science Fund (FIS) - Ministero dell’Università e della Ricerca. NRF and PZ acknowledge
the project Cal.Hub.Ria (Piano Operativo Salute, traiettoria 4), funded by MSAL. PZ acknowl-
edges the support of the grant MUR PRIN 2022 No. 2022WKWZA8 "Immersed methods for
multiscale and multiphysics problems (IMMEDIATE)” part of the Next Generation EU program.
AM acknowledges the PRIN 2022 Project “Numerical approximation of uncertainty quantifica-
tion problems for PDEs by multi-fidelity methods (UQ-FLY)” (No. 202222PACR), funded by

33

the European Union - NextGenerationEU and the project FAIR (Future Artificial Intelligence
Research), funded by the NextGenerationEU program within the PNRR-PE-AI scheme (M4C2,
Investment 1.3, Line on Artificial Intelligence). The present research is part of the activities
of project Dipartimento di Eccellenza 2023-2027, Department of Mathematics, Politecnico di
Milano, funded by MUR. NRF, AM and PZ are members of the Gruppo Nazionale per il Calcolo
Scientifico (GNCS) of the Istituto Nazionale di Alta Matematica (INdAM).

References
[1] Cao, L., O’Leary-Roseberry, T., Jha, P.K., Oden, J.T., Ghattas, O.: Residual-based error

correction for neural operator accelerated infinite-dimensional bayesian inverse problems.
Journal of Computational Physics 486, 112104 (2023) https://doi.org/10.1016/j.jcp.2023.
112104

[2] Benfenati, A., Causin, P., Quinteri, M.: A modular deep learning-based approach for diffuse
optical tomography reconstruction. arXiv preprint arXiv:2402.09277 (2024) https://doi.
org/10.48550/arXiv.2402.09277

[3] Lähivaara, T., Malehmir, A., Pasanen, A., Kärkkäinen, L., Huttunen, J.M., Hesthaven,
J.S.: Estimation of groundwater storage from seismic data using deep learning. Geophysical
Prospecting 67(8), 2115–2126 (2019) https://doi.org/10.1111/1365-2478.12831

[4] Mücke, N.T., Sanderse, B., Bohté, S.M., Oosterlee, C.W.: Markov chain generative adversar-
ial neural networks for solving bayesian inverse problems in physics applications. Computers
& Mathematics with Applications 147, 278–299 (2023) https://doi.org/10.1016/j.camwa.
2023.07.028

[5] Zabaras, N.: Solving stochastic inverse problems: A sparse grid collocation approach. In:
Large-scale Inverse Problems and Quantification of Uncertainty, pp. 291–319. Wiley Online
Library, Chichester, UK (2011). https://doi.org/10.1002/9780470685853

[6] Bader, E., Kärcher, M., Grepl, M.A., Veroy, K.: Certified reduced basis methods
for parametrized distributed elliptic optimal control problems with control constraints.
SIAM Journal on Scientific Computing 38(6), 3921–3946 (2016) https://doi.org/10.1137/
16M1059898

[7] Kleikamp, H., Lazar, M., Molinari, C.: Be greedy and learn: efficient and certified algorithms
for parametrized optimal control problems. ESAIM: Mathematical Modelling and Numerical
Analysis 59(1), 291–330 (2025) https://doi.org/10.1051/m2an/2024074

[8] Ravindran, S.S.: A reduced-order approach for optimal control of fluids using proper orthog-
onal decomposition. International journal for numerical methods in fluids 34(5), 425–448
(2000) https://doi.org/10.1002/1097-0363(20001115)34:5<425::AID-FLD67>3.0.CO;2-W

[9] Strazzullo, M., Ballarin, F., Mosetti, R., Rozza, G.: Model reduction for parametrized opti-
mal control problems in environmental marine sciences and engineering. SIAM Journal on
Scientific Computing 40(4), 1055–1079 (2018) https://doi.org/10.1137/17M1150591

[10] Cicci, L., Fresca, S., Guo, M., Manzoni, A., Zunino, P.: Uncertainty quantification for nonlin-
ear solid mechanics using reduced order models with gaussian process regression. Computers
& Mathematics with Applications 149, 1–23 (2023) https://doi.org/10.1016/j.camwa.2023.
08.016

34

https://doi.org/10.1016/j.jcp.2023.112104
https://doi.org/10.1016/j.jcp.2023.112104
https://doi.org/10.48550/arXiv.2402.09277
https://doi.org/10.48550/arXiv.2402.09277
https://doi.org/10.1111/1365-2478.12831
https://doi.org/10.1016/j.camwa.2023.07.028
https://doi.org/10.1016/j.camwa.2023.07.028
https://doi.org/10.1002/9780470685853
https://doi.org/10.1137/16M1059898
https://doi.org/10.1137/16M1059898
https://doi.org/10.1051/m2an/2024074
https://doi.org/10.1002/1097-0363(20001115)34:5<425::AID-FLD67>3.0.CO;2-W
https://doi.org/10.1137/17M1150591
https://doi.org/10.1016/j.camwa.2023.08.016
https://doi.org/10.1016/j.camwa.2023.08.016

[11] Reiner, J., Linden, N., Vaziri, R., Zobeiry, N., Kramer, B.: Bayesian parameter estimation
for the inclusion of uncertainty in progressive damage simulation of composites. Composite
Structures 321, 117257 (2023)

[12] Vitullo, P., Franco, N.R., Zunino, P.: Deep learning enhanced cost-aware multi-fidelity uncer-
tainty quantification of a computational model for radiotherapy. Foundations of Data Science
7(1), 386–417 (2025) https://doi.org/10.3934/fods.2024022

[13] Zhu, Y., Zabaras, N.: Bayesian deep convolutional encoder–decoder networks for surrogate
modeling and uncertainty quantification. Journal of Computational Physics 366, 415–447
(2018) https://doi.org/10.1016/j.jcp.2018.04.018

[14] Hesthaven, J.S., Rozza, G., Stamm, B., et al.: Certified Reduced Basis Methods for
Parametrized Partial Differential Equations. Springer, Cham, Switzerland (2016). https:
//doi.org/10.1007/978-3-319-22470-1

[15] Quarteroni, A., Manzoni, A., Negri, F.: Reduced Basis Methods for Partial Differential
Equations: An Introduction. Springer, Cham, Switzerland (2016). https://doi.org/10.1007/
978-3-319-15431-2

[16] DeVore, R.A., Kyriazis, G., Leviatan, D., Tikhomirov, V.M.: Wavelet compression and
nonlinear n-widths. Advances in Computational Mathematics 1(2), 197–214 (1993) https:
//doi.org/10.1007/BF02071385

[17] Lee, K., Carlberg, K.T.: Model reduction of dynamical systems on nonlinear manifolds using
deep convolutional autoencoders. Journal of Computational Physics 404, 108973 (2020)
https://doi.org/10.1016/j.jcp.2019.108973

[18] Cohen, A., DeVore, R.: Kolmogorov widths under holomorphic mappings. IMA Journal of
Numerical Analysis 36(1), 1–12 (2016) https://doi.org/10.1093/imanum/dru066

[19] Fresca, S., Dede, L., Manzoni, A.: A comprehensive deep learning-based approach to
reduced order modeling of nonlinear time-dependent parametrized pdes. Journal of Scientific
Computing 87(2), 1–36 (2021) https://doi.org/10.1007/s10915-021-01462-7

[20] Franco, N., Manzoni, A., Zunino, P.: A deep learning approach to reduced order modelling of
parameter dependent partial differential equations. Mathematics of Computation 92(340),
483–524 (2023) https://doi.org/10.1090/mcom/3781

[21] Ohlberger, M., Rave, S.: Reduced basis methods: Success, limitations and future challenges,
pp. 1–12. Publishing House of Slovak University of Technology in Bratislava, Bratislava, Slo-
vakia (2016). http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/algoritmy/article/view/
389

[22] Apacoglu, B., Paksoy, A., Aradag, S.: Cfd analysis and reduced order modeling of uncon-
trolled and controlled laminar flow over a circular cylinder. Engineering Applications of
Computational Fluid Mechanics 5(1), 67–82 (2011) https://doi.org/10.1080/19942060.2011.
11015353

[23] Lorenzi, S., Cammi, A., Luzzi, L., Rozza, G.: Pod-galerkin method for finite volume approx-
imation of navier–stokes and rans equations. Computer Methods in Applied Mechanics and
Engineering 311, 151–179 (2016) https://doi.org/10.1016/j.cma.2016.08.006

35

https://doi.org/10.3934/fods.2024022
https://doi.org/10.1016/j.jcp.2018.04.018
https://doi.org/10.1007/978-3-319-22470-1
https://doi.org/10.1007/978-3-319-22470-1
https://doi.org/10.1007/978-3-319-15431-2
https://doi.org/10.1007/978-3-319-15431-2
https://doi.org/10.1007/BF02071385
https://doi.org/10.1007/BF02071385
https://doi.org/10.1016/j.jcp.2019.108973
https://doi.org/10.1093/imanum/dru066
https://doi.org/10.1007/s10915-021-01462-7
https://doi.org/10.1090/mcom/3781
http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/algoritmy/article/view/389
http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/algoritmy/article/view/389
https://doi.org/10.1080/19942060.2011.11015353
https://doi.org/10.1080/19942060.2011.11015353
https://doi.org/10.1016/j.cma.2016.08.006

[24] Romor, F., Stabile, G., Rozza, G.: Non-linear manifold reduced-order models with convolu-
tional autoencoders and reduced over-collocation method. Journal of Scientific Computing
94(3), 74 (2023) https://doi.org/10.1007/s10915-023-02128-2

[25] Amsallem, D., Zahr, M.J., Farhat, C.: Nonlinear model order reduction based on local
reduced-order bases. International Journal for Numerical Methods in Engineering 92(10),
891–916 (2012) https://doi.org/10.1002/nme.4371

[26] Pagani, S., Manzoni, A., Quarteroni, A.: Numerical approximation of parametrized problems
in cardiac electrophysiology by a local reduced basis method. Computer Methods in Applied
Mechanics and Engineering 340, 530–558 (2018) https://doi.org/10.1016/j.cma.2018.06.003

[27] Bonito, A., Cohen, A., DeVore, R., Guignard, D., Jantsch, P., Petrova, G.: Nonlinear methods
for model reduction. ESAIM: Mathematical Modelling and Numerical Analysis 55(2), 507–
531 (2021) https://doi.org/10.1051/m2an/2020057

[28] Geelen, R., Willcox, K.: Localized non-intrusive reduced-order modelling in the operator
inference framework. Philosophical Transactions of the Royal Society A 380(2229), 20210206
(2022) https://doi.org/10.1098/rsta.2021.0206

[29] Nouy, A., Pasco, A.: Dictionary-based model reduction for state estimation. Advances in
Computational Mathematics 50(3), 1–31 (2024)

[30] Amsallem, D., Farhat, C.: Interpolation method for adapting reduced-order models and
application to aeroelasticity. AIAA journal 46(7), 1803–1813 (2008) https://doi.org/10.2514/
1.35374

[31] Boncoraglio, G., Farhat, C., Bou-Mosleh, C.: Model reduction framework with a new take
on active subspaces for optimization problems with linearized fluid-structure interaction
constraints. International Journal for Numerical Methods in Engineering 122(19), 5450–5481
(2021) https://doi.org/10.1002/nme.6376

[32] Boncoraglio, G., Farhat, C.: Active manifold and model-order reduction to accelerate mul-
tidisciplinary analysis and optimization. AIAA Journal 59(11), 4739–4753 (2021) https:
//doi.org/10.2514/1.J060581

[33] Peherstorfer, B.: Model reduction for transport-dominated problems via online adaptive
bases and adaptive sampling. SIAM Journal on Scientific Computing 42(5), 2803–2836
(2020) https://doi.org/10.1137/19M1257275

[34] Hesthaven, J.S., Pagliantini, C., Ripamonti, N.: Rank-adaptive structure-preserving model
order reduction of hamiltonian systems. ESAIM: Mathematical Modelling and Numerical
Analysis 56(2), 617–650 (2022) https://doi.org/10.1051/m2an/2022013

[35] Hesthaven, J., Pagliantini, C., Ripamonti, N.: Adaptive symplectic model order reduction of
parametric particle-based vlasov-poisson equation. Mathematics of Computation 93(348),
1153–1202 (2024) https://doi.org/10.1090/mcom/3885

[36] Peherstorfer, B., Willcox, K.: Online adaptive model reduction for nonlinear systems via
low-rank updates. SIAM Journal on Scientific Computing 37(4), 2123–2150 (2015) https:
//doi.org/10.1137/140989169

[37] Singh, R., Uy, W.I.T., Peherstorfer, B.: Lookahead data-gathering strategies for online adap-
tive model reduction of transport-dominated problems. Chaos: An Interdisciplinary Journal

36

https://doi.org/10.1007/s10915-023-02128-2
https://doi.org/10.1002/nme.4371
https://doi.org/10.1016/j.cma.2018.06.003
https://doi.org/10.1051/m2an/2020057
https://doi.org/10.1098/rsta.2021.0206
https://doi.org/10.2514/1.35374
https://doi.org/10.2514/1.35374
https://doi.org/10.1002/nme.6376
https://doi.org/10.2514/1.J060581
https://doi.org/10.2514/1.J060581
https://doi.org/10.1137/19M1257275
https://doi.org/10.1051/m2an/2022013
https://doi.org/10.1090/mcom/3885
https://doi.org/10.1137/140989169
https://doi.org/10.1137/140989169

of Nonlinear Science 33(11) (2023) https://doi.org/10.1063/5.0169392

[38] Berman, J., Peherstorfer, B.: Colora: continuous low-rank adaptation for reduced implicit
neural modeling of parameterized partial differential equations. In: Proceedings of the 41st
International Conference on Machine Learning. ICML’24. JMLR.org, online (2024). https:
//doi.org/10.5555/3692070.3692212

[39] Barnett, J., Farhat, C., Maday, Y.: Neural-network-augmented projection-based model order
reduction for mitigating the kolmogorov barrier to reducibility. Journal of Computational
Physics 492, 112420 (2023) https://doi.org/10.1016/j.jcp.2023.112420

[40] Tait, D.J.: Deep orthogonal decompositions for convective nowcasting. arXiv preprint
arXiv:2006.15628 (2020) https://doi.org/10.48550/arXiv.2006.15628

[41] Aubin, J.-P., Frankowska, H.: Set-valued Analysis. Springer, Harrisonburg, Virginia (2009).
https://doi.org/10.1007/978-0-8176-4848-0

[42] Hornik, K.: Approximation capabilities of multilayer feedforward networks. Neural networks
4(2), 251–257 (1991) https://doi.org/10.1016/0893-6080(91)90009-T

[43] Franco, N.R., Fresca, S., Manzoni, A., Zunino, P.: Approximation bounds for convolutional
neural networks in operator learning. Neural Networks 161, 129–141 (2023) https://doi.org/
10.1016/j.neunet.2023.01.029

[44] Battaglia, P.W., Hamrick, J.B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V., Malinowski,
M., Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R., et al.: Relational inductive biases,
deep learning, and graph networks. arXiv preprint arXiv:1806.01261 (2018) https://doi.
org/10.48550/arXiv.1806.01261

[45] Franco, N.R., Manzoni, A., Zunino, P.: Mesh-informed neural networks for operator learning
in finite element spaces. Journal of Scientific Computing 97(2), 35 (2023) https://doi.org/
10.1007/s10915-023-02331-1

[46] Fresca, S., Manzoni, A.: POD-DL-ROM: enhancing deep learning-based reduced order
models for nonlinear parametrized PDEs by proper orthogonal decomposition. Computer
Methods in Applied Mechanics and Engineering 388(114181) (2022) https://doi.org/10.
1016/j.cma.2021.114181

[47] Lu, L., Meng, X., Cai, S., Mao, Z., Goswami, S., Zhang, Z., Karniadakis, G.E.: A compre-
hensive and fair comparison of two neural operators (with practical extensions) based on
fair data. Computer Methods in Applied Mechanics and Engineering 393, 114778 (2022)
https://doi.org/10.1016/j.cma.2022.114778

[48] Golub, G.H., Van Loan, C.F.: Matrix Computations. JHU press, Baltimore, Maryland
(2013). https://doi.org/10.56021/9781421407944

[49] Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics vol. 37. Springer, Berlin
Heidelberg (2006). https://doi.org/10.1007/b98885

[50] Zimmermann, R., Peherstorfer, B., Willcox, K.: Geometric subspace updates with applica-
tions to online adaptive nonlinear model reduction. SIAM Journal on Matrix Analysis and
Applications 39(1), 234–261 (2018) https://doi.org/10.1137/17M1123286

37

https://doi.org/10.1063/5.0169392
https://doi.org/10.5555/3692070.3692212
https://doi.org/10.5555/3692070.3692212
https://doi.org/10.1016/j.jcp.2023.112420
https://doi.org/10.48550/arXiv.2006.15628
https://doi.org/10.1007/978-0-8176-4848-0
https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.1016/j.neunet.2023.01.029
https://doi.org/10.1016/j.neunet.2023.01.029
https://doi.org/10.48550/arXiv.1806.01261
https://doi.org/10.48550/arXiv.1806.01261
https://doi.org/10.1007/s10915-023-02331-1
https://doi.org/10.1007/s10915-023-02331-1
https://doi.org/10.1016/j.cma.2021.114181
https://doi.org/10.1016/j.cma.2021.114181
https://doi.org/10.1016/j.cma.2022.114778
https://doi.org/10.56021/9781421407944
https://doi.org/10.1007/b98885
https://doi.org/10.1137/17M1123286

[51] Bendokat, T., Zimmermann, R., Absil, P.-A.: A grassmann manifold handbook: Basic geome-
try and computational aspects. Advances in Computational Mathematics 50(1), 1–51 (2024)
https://doi.org/10.1007/s10444-024-10115-w

[52] Wong, Y.-C.: Differential geometry of grassmann manifolds. Proceedings of the National
Academy of Sciences 57(3), 589–594 (1967) https://doi.org/10.1073/pnas.57.3.589

[53] Edelman, A., Arias, T.A., Smith, S.T.: The geometry of algorithms with orthogonality
constraints. SIAM journal on Matrix Analysis and Applications 20(2), 303–353 (1998)
https://doi.org/10.1137/S0895479895290954

[54] Dubey, P., Müller, H.-G.: Functional models for time-varying random objects. Journal of
the Royal Statistical Society Series B: Statistical Methodology 82(2), 275–327 (2020) https:
//doi.org/10.1111/rssb.12337

[55] Daniel, T., Casenave, F., Akkari, N., Ryckelynck, D.: Model order reduction assisted by deep
neural networks (rom-net). Advanced Modeling and Simulation in Engineering Sciences 7,
1–27 (2020) https://doi.org/10.1186/s40323-020-00153-6

[56] Herkert, R., Buchfink, P., Haasdonk, B.: Dictionary-based online-adaptive structure-
preserving model order reduction for parametric hamiltonian systems. Advances in Compu-
tational Mathematics 50(1), 12 (2024) https://doi.org/10.1007/s10444-023-10102-7

[57] Brivio, S., Fresca, S., Franco, N.R., Manzoni, A.: Error estimates for pod-dl-roms: a deep
learning framework for reduced order modeling of nonlinear parametrized pdes enhanced by
proper orthogonal decomposition. Advances in Computational Mathematics 50(33) (2024)
https://doi.org/10.1007/s10444-024-10110-1

[58] Franco, N.R.: NicolaRFranco/dlroms: First release. Zenodo (2024). https://doi.org/10.5281/
zenodo.13254758

[59] Bourguet, R., Braza, M., Dervieux, A.: Reduced-order modeling of transonic flows around an
airfoil submitted to small deformations. Journal of Computational Physics 230(1), 159–184
(2011) https://doi.org/10.1016/j.jcp.2010.09.019

[60] Liberge, E., Hamdouni, A.: Reduced order modelling method via proper orthogonal decom-
position (pod) for flow around an oscillating cylinder. Journal of fluids and structures 26(2),
292–311 (2010) https://doi.org/10.1016/j.jfluidstructs.2009.10.006

[61] Antil, H., Heinkenschloss, M., Sorensen, D.C.: Application of the discrete empirical interpola-
tion method to reduced order modeling of nonlinear and parametric systems. In: Quarteroni,
A., Rozza, G. (eds.) Reduced Order Methods for Modeling and Computational Reduction,
pp. 101–136. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-02090-7_4

[62] Yin, M., Charon, N., Brody, R., Lu, L., Trayanova, N., Maggioni, M.: Dimon: Learning
solution operators of partial differential equations on a diffeomorphic family of domains.
arXiv preprint arXiv:2402.07250 (2024) https://doi.org/10.48550/arXiv.2402.07250

[63] Taddei, T.: A registration method for model order reduction: data compression and geometry
reduction. SIAM Journal on Scientific Computing 42(2), 997–1027 (2020) https://doi.org/
10.1137/19M1271270

[64] Barwey, S., Shankar, V., Viswanathan, V., Maulik, R.: Multiscale graph neural network
autoencoders for interpretable scientific machine learning. Journal of Computational Physics

38

https://doi.org/10.1007/s10444-024-10115-w
https://doi.org/10.1073/pnas.57.3.589
https://doi.org/10.1137/S0895479895290954
https://doi.org/10.1111/rssb.12337
https://doi.org/10.1111/rssb.12337
https://doi.org/10.1186/s40323-020-00153-6
https://doi.org/10.1007/s10444-023-10102-7
https://doi.org/10.1007/s10444-024-10110-1
https://doi.org/10.5281/zenodo.13254758
https://doi.org/10.5281/zenodo.13254758
https://doi.org/10.1016/j.jcp.2010.09.019
https://doi.org/10.1016/j.jfluidstructs.2009.10.006
https://doi.org/10.1007/978-3-319-02090-7_4
https://doi.org/10.48550/arXiv.2402.07250
https://doi.org/10.1137/19M1271270
https://doi.org/10.1137/19M1271270

495, 112537 (2023) https://doi.org/10.1016/j.jcp.2023.112537

[65] Franco, N.R., Fresca, S., Tombari, F., Manzoni, A.: Deep learning-based surrogate models for
parametrized pdes: Handling geometric variability through graph neural networks. Chaos:
An Interdisciplinary Journal of Nonlinear Science 33(12) (2023) https://doi.org/10.1063/5.
0170101

[66] Gladstone, R.J., Rahmani, H., Suryakumar, V., Meidani, H., D’Elia, M., Zareei, A.: Gnn-
based physics solver for time-independent pdes. arXiv preprint arXiv:2303.15681 (2023)
https://doi.org/10.48550/arXiv.2303.15681

[67] Lin, F.-C., Ritzwoller, M.H., Snieder, R.: Eikonal tomography: surface wave tomography
by phase front tracking across a regional broad-band seismic array. Geophysical Journal
International 177(3), 1091–1110 (2009) https://doi.org/10.1111/j.1365-246X.2009.04105.x

[68] Ma, T., Zhang, Z.: Calculating ray paths for first-arrival travel times using a topography-
dependent eikonal equation solver. Bulletin of the Seismological Society of America 104(3),
1501–1517 (2014) https://doi.org/10.1785/0120130172

[69] Ghanem, R.G., Spanos, P.D.: Stochastic Finite Elements: a Spectral Approach. Springer,
New York (2003). https://doi.org/10.107/978-1-4612-3094-6

[70] Mokrỳ, P.: Iterative method for solving the eikonal equation. In: Optics and Measurement
International Conference 2016, vol. 10151, pp. 263–268 (2016). https://doi.org/10.1117/12.
2257326 . SPIE

[71] Hesthaven, J.S., Ubbiali, S.: Non-intrusive reduced order modeling of nonlinear problems
using neural networks. Journal of Computational Physics 363, 55–78 (2018) https://doi.
org/10.1016/j.jcp.2018.02.037

[72] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via
deeponet based on the universal approximation theorem of operators. Nature Machine
Intelligence 3(3), 218–229 (2021) https://doi.org/10.1038/s42256-021-00302-5

[73] Vitullo, P., Colombo, A., Franco, N.R., Manzoni, A., Zunino, P.: Nonlinear model order
reduction for problems with microstructure using mesh informed neural networks. Finite
Elements in Analysis and Design 229, 104068 (2024) https://doi.org/10.1016/j.finel.2023.
104068

[74] Guo, M., Hesthaven, J.S.: Reduced order modeling for nonlinear structural analysis using
gaussian process regression. Computer methods in applied mechanics and engineering 341,
807–826 (2018) https://doi.org/10.1016/j.cma.2018.07.017

[75] Zieliński, P., Hesthaven, J.S.: Discovery of slow variables in a class of multiscale stochastic
systems via neural networks. Journal of Nonlinear Science 32(4), 51 (2022) https://doi.org/
10.1007/s00332-022-09808-7

[76] Amsallem, D., Farhat, C.: An online method for interpolating linear parametric reduced-
order models. SIAM Journal on Scientific Computing 33(5), 2169–2198 (2011) https://doi.
org/10.1137/100813051

39

https://doi.org/10.1016/j.jcp.2023.112537
https://doi.org/10.1063/5.0170101
https://doi.org/10.1063/5.0170101
https://doi.org/10.48550/arXiv.2303.15681
https://doi.org/10.1111/j.1365-246X.2009.04105.x
https://doi.org/10.1785/0120130172
https://doi.org/10.107/978-1-4612-3094-6
https://doi.org/10.1117/12.2257326
https://doi.org/10.1117/12.2257326
https://doi.org/10.1016/j.jcp.2018.02.037
https://doi.org/10.1016/j.jcp.2018.02.037
https://doi.org/10.1038/s42256-021-00302-5
https://doi.org/10.1016/j.finel.2023.104068
https://doi.org/10.1016/j.finel.2023.104068
https://doi.org/10.1016/j.cma.2018.07.017
https://doi.org/10.1007/s00332-022-09808-7
https://doi.org/10.1007/s00332-022-09808-7
https://doi.org/10.1137/100813051
https://doi.org/10.1137/100813051

MOX Technical Reports, last issues

Dipartimento di Matematica

Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

41/2025 Torzoni, M.; Maisto, D.; Manzoni, A.; Donnarumma, F.; Pezzulo, G.; Corigliano, A.

Active digital twins via active inference

40/2025 Tentori, C.A.; Gregorio, C.; ...; Ieva, F.; Della Porta, M.G.

Clinical and Genomic-Based Decision Support System to Define the Optimal Timing of

Allogeneic Hematopoietic Stem-Cell Transplantation in Patients With Myelodysplastic

Syndromes

37/2025 Spreafico, M.; Ieva, F.; Fiocco, M.

Causal effect of chemotherapy received dose intensity on survival outcome: a retrospective study

in osteosarcoma

Gimenez Zapiola, A.; Boselli, A.; Menafoglio, A.; Vantini, S.

Hyper-spectral Unmixing algorithms for remote compositional surface mapping: a review of the

state of the art

35/2025 Perotto, S.; Ferro, N.; Speroni, G.; Temellini, E.

Anisotropic recovery-based error estimators and mesh adaptation for real-life engineering

innovation

34/2025 Bucelli, M.; Dede', L.

Coupling models of resistive valves to muscle mechanics in cardiac fluid-structure interaction

simulations

32/2025 De Sanctis, M.F.; Di Battista, I.; Arnone, E.; Castiglione, C.; Palummo, A.; Bernardi, M.; Ieva,

F.; Sangalli, L.M.

Exploring nitrogen dioxide spatial concentration via physics-informed multiple quantile

regression

33/2025 Di Battista, I.; De Sanctis, M.F.; Arnone, E.; Castiglione, C.; Palummo, A.; Sangalli, L.M.

A semiparametric space-time quantile regression model

31/2025 Botteghi, N.; Fresca, S.; Guo, M.; Manzoni, A.

HypeRL: Parameter-Informed Reinforcement Learning for Parametric PDEs

30/2025 Rosafalco, L.; Conti, P.; Manzoni, A.; Mariani, S.; Frangi, A.

Online learning in bifurcating dynamic systems via SINDy and Kalman filtering

	qmox42-copertina
	mox-2025711205044
	Introduction
	Problem setup
	An instructive example

	Deep orthogonal decomposition (I): dimensionality reduction
	DOD architecture design
	Model training
	Quantifying adaptivity

	Numerical experiments (I): dimensionality reduction
	Stationary Navier-Stokes flow around a parametrized obstacle
	Eikonal equation in a parametrized medium

	Deep orthogonal decomposition (II): reduced order modeling of parametrized PDEs
	General considerations
	Learning the DOD coefficients

	Numerical experiments (II): reduced order modeling of parametrized PDEs
	Results

	Conclusions
	Basis interpolation with radial basis functions
	Technical details: neural network architectures and sampling

	qmox42-terza_di_copertina

