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Abstract

The COVID-19 epidemic is the last of a long list of pandemics that have affected human
kind in the last century. The virus spread very quickly all over the world due to the structure
of modern society where mobility is very high. In this paper we aim at a critical study of
a multi-city model consisting of 8 compartments for describing the spreading of a disease. A
convenient parameter calibration is implemented with the aim of reproducing the past history
of the epidemic and of exploring its predicting capabilities.

1 Introduction

The COVID-19 epidemic is a tremendous threat to global health. Since the outbreak in early
December 2019 in China, more than 473.000 people have died from COVID-19, while the total
number of confirmed patients having the disease is 9.158.912 (up to 23 June 2020, [1]). The real
number of people infected is unknown, but probably much higher.

In this scenario, predicting the trend of the epidemic is of paramount importance to mitigate
the pressure on the health systems and activate control strategies (e.g. quarantines, lockdowns,
and suspension of travel) aiming at containing the disease and delaying the spread.

As these predictions have vital consequences on the different actions taken from governments
to limit and control the COVID-19 epidemic, the recent period has seen an astonishing production
of numerous epidemiological mathematical models. However, estimates and scenarios emerging
from modeling highly depend on different factors, ranging from epidemiological assumptions to,
perhaps most importantly, the completeness and the quality of the data to which models are
calibrated. Since the beginning of the COVID-19 emergency, the quality of data on infections,
deaths, tests, and other factors have been spoiled by underdetection or inconsistent detection of
cases, reporting delays, and poor documentation. This inconvenient has seriously compromised the
intrinsic predictive capability of any mathematical model.

Building upon the celebrated SIR model proposed in 1927 by Kermack and McKendrick ([12]),
several generalizations have been formulated over the years by enriching the number of compart-
ments (SEIR, SIS, SEIRD, SIRS, S(E)IQR, MSEIR ...), see, e.g., [11, 6, 15] for an overview. Over-
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all, these models have been abundantly applied to locally analyze COVID-19 outbreak dynamics
in various countries (see, e.g., [14, 13]).

However, the peculiar epidemiological traits of the COVID-19 ask for more complex models able
to accurately portray the dynamic characteristics of the ongoing epidemic. We refer, for instance, to
[10] and the references therein. In particular, in [10] a new model, named SIDARTHE, discriminates
between detected and undetected cases of infection, either asymptomatic or symptomatic, and also
between non-life-threatening cases (minor and moderate infection) and potentially life-threatening
cases (major and extreme) that require Intensive Care Unit (ICU) admission. These last two
compartments are of paramount importance in designing realistic scenarios that incorporate the
pressure of the epidemic on the national health systems. On the other hand, human mobility has
played a far-reaching role in the diffusion of the COVID-19 contagions. This requires to incorporate
into the mathematical model the spatial nature of the progress of the wave of infections. In this
respect several different approaches have been proposed in the literature, see, e.g., the book [7] and
the references therein, ranging from the use of network based model [4, 8], to systems of ODEs
on network [3, 2], to non-local PDEs [16]. Among the recent contributions appeared during the
COVID-19 pandemic, we also recall the recent papers [9, 5] where a meta-community SEIR-like
model has been proposed and employed to reproduce the contagion in Italy.

Moreover, the highly heterogeneous quality of COVID-19 data requires the design of sophis-
ticated model calibration procedures able to deal with the intrinsic ill-posedness of the inverse
problem (the calibration) and going beyond, e.g., the popular approach based on a least square
minimization approach which, typically, does not incorporate any quality information on data.

In view of the above discussion, in this paper we generalize the SIDARTHE model by adding
suitable spatial-multicity mobility terms. The resulting model is first calibrated based on Italian
data to reproduce the COVID-19 contagion in Italy. Moreover, the robustness of the calibration
process is assessed with the aim of exploring the capability of the model in producing reasonable
forecast.

The outline of the paper is as follows: in Section 2 we introduce the mathematical model,
Section 3 is devoted to the description of the calibration procedure, Section 4 and Section5 contain
the obtained numerical result along with a critical discussion.

2 Mathematical model

The spread of COVID-19 has been characterized by a very peculiar behaviour: in particular it has
been emphasized by several authors that it is of paramount importance to consider a compartment
describing the the dynamics of infected undetected individuals. For this reason in this paper the
SIDARTHE model presented in [10] will represent our point of departure. The model is described
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by the following system of ordinary differential equations

Ṡ (t) = −S (t)
αI (t) + βD (t) + γA (t) + δR (t)

N
,

İ (t) = S (t)
αI (t) + βD (t) + γA (t) + δR (t)

N
− (ε+ ζ + λ) I (t) ,

Ḋ (t) = εI (t)− (η + ρ)D (t) ,

Ȧ (t) = ζI (t)− (θ + µ+ κ)A (t) ,

Ṙ (t) = ηD (t) + θA (t)− (ν + ξ)R (t) ,

Ṫ (t) = µA (t) + νR (t)− (σ + τ)T (t) ,

Ḣ (t) = λI (t) + ρD (t) + κA (t) + ξR (t) + σT (t) ,

Ė (t) = τT (t) .

(1)

where the compartments of the model are defined as (see Figure 1):

• S: number of susceptible (uninfected) individuals;

• I: number of infected (asymptomatic infected, undetected) individuals;

• D: number of diagnosed (asymptomatic infected, detected) individuals;

• A: number of ailing (symptomatic infected, undetected) individuals;

• R: number of recognized (symptomatic infected, detected) individuals;

• T: number of threatened (acutely symptomatic infected, detected) individuals;

• H: number of healed (recovered) individuals;

• E: number of extinct individuals;

and N = S + I +D +A+R+ T +H + E denotes the total population (assumed constant).
The model is characterized by the following 16 parameters:

• α, β, γ and δ denote the transmission rates due to contacts between a susceptible subject
and an infected, a diagnosed, an ailing or a recognized subject;

• ε and θ describe the probability rate of detection, relative to asymptomatic and symptomatic
cases, respectively;

• ζ and η denote the probability rate at which an infected subject, respectively not aware and
aware of being infected, develops clinically relevant symptoms;

• µ and ν respectively denote the rate at which undetected and detected infected subjects
develop life-threatening symptoms;

• τ denotes the mortality rate;
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Figure 1: Interactions between compartments in SIDARTHE model.

• λ, ρ, κ, ξ and σ denote the rate of recovery for the five classes of infected subjects.

For a more detailed description of the SIDARTHE model we refer to [10].
In mathematical epidemiology a fundamental quantity is the basic reproduction number (denoted

by R0) which is used to measure the transmission potential of a disease. It represents the average
number of secondary infections produced by a typical case of an infection in a population where
everyone is susceptible (see [6, 15]). In the SIDARTHE model we have

R0 =
α+ βε/r2 + γζ/r3 + δ (ηε/ (r2r4) + ζθ/ (r3r4))

r1
, (2)

where r1 = ε+ ζ + λ, r2 = η + ρ, r3 = θ + µ+ κ, r4 = ν + ξ and r5 = σ + τ .
From the mathematical point of view the reproduction number plays the role of a threshold value

for the dynamics of the system and the disease. If R0 > 1, the disease remains in the population;
if R0 < 1, the number of infected gradually declines to zero, and the disease disappears.

2.1 Multi-city model

In order to account for a spatial characterization of the evolution of the epidemic, we consider
a complete graph describing a geographic network characterized by Cn nodes (representing the
fundamental geographic entities we want to account for e.g. regions, provinces, cities, etc...) (see
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for example [3, 15]). The population of each node i is denoted by Ni and every node a system like
(1) is associated. Moreover we introduce a mobility matrix M where the element mij represents the
mobility of individuals from node j to node i (matrix M is the transpose of the so-called origin-
destination matrix). By means of the mobility matrix we can compute the total number of infected

people arriving at node i as
∑

j mij
Ij
Nj

; hence the probability of infection from all nodes to node i

is given by
∑

j mij
Ij
Nj
α and the fraction of susceptible people at node i which can be infected by

people from all other locations is given by

İmob =

∑
j mij

Ij
Nj
α

N tot
i

, (3)

where N tot
i = Ni +

∑
j mij denotes the total number of individuals in location i including the

mobility contribution.
We assume that the only infected compartment that contributes to spatial spreading is I (in-

fected undetected) since it is reasonable to assume that the detected (D,R, and T ) and the symp-
tomatic (A) do not move. Based on these assumptions the spatial evolution of the disease is
described by Cn systems of ODEs where each system is a modification of the SIDARTHE “single-
city” model (1) that reads

Ṡi (t) = −Si(t)
α(Ii(t) +

∑
j
mij

Nj
Ij(t)) + βDi (t) + γAi (t) + δRi (t)

N tot
i

,

İi (t) = Si(t)
α(Ii(t) +

∑
j
mij

Nj
Ij(t)) + βDi (t) + γAi (t) + δRi (t)

N tot
i

− (ε+ ζ + λ) Ii (t) ,

Ḋi (t) = εIi (t)− (η + ρ)Di (t) ,

Ȧi (t) = ζIi (t)− (θ + µ+ κ)Ai (t) ,

Ṙi (t) = ηDi (t) + θAi (t)− (ν + ξ)Ri (t) ,

Ṫi (t) = µAi (t) + νRi (t)− (σ + τ)Ti (t) ,

Ḣi (t) = λIi (t) + ρDi (t) + κAi (t) + ξRi (t) + σTi (t) ,

Ėi (t) = τTi (t) ,

(4)

In the results described in Section 4 we have used the origin-destination matrix available at
the level of municipalities at https://www.istat.it/it/archivio/139381; these data have been
collected in 2011 but the comparisons with some regional data available for 2019 show that minor
changes have occurred during the last 8 years.

3 Parameter calibration

System (4) can be recast in the following general form describing a system of ODEs:
find Y(t) : [tI , tF ]→ Rne with Y(t) = [Y1(t), . . . , Yne(t)]

T such that

Y′(t) = F(t,Y(t);p(t)) t ∈ (tI , tF ] (5)

Y(tI) = Y0 (6)
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where the vector valued function p(t) : (tI , tF ] → Rnp encodes the (possibly time dependent)
parameters of the problem.

Let us partition the interval I = [tI , tF ] into subintervals Ij = [tj , tj+1], j = 0,M − 1 with
t0 = tI and tM = tF .

Let us introduce the set of admissible parameters

Uad = {p(t) : p|Ij ∈ [P0(Ij)]
np ,pL,j ≤ p(t) ≤ pU,j , t ∈ Ij , j = 1, . . . ,M − 1} (7)

where pL,j ,pU,j are given constant vectors.
Let us assume the following collection of data are given

{Y∗1,j , . . . ,Y∗nj ,j}
M
j=1.

The calibration process is performed by solving the following minimization problem

p∗(t) = argminp∈UadJ (p) + cR(p) (8)

where

J (p) :=

M∑
j=1

nj∑
i=1

‖Y(t
(j)
i )−Y∗i,j‖2 (9)

being Y(t
(j)
i ) the solution of (5)-(6) evaluated at a certain given instant t

(j)
i ∈ Ij and ‖ · ‖ the usual

Euclidean vector norm. The regularization term R(p) is weighted by a penalization term c > 0.
The above procedure can be generalized in case the following collection of data are given

{(Ys)∗1,j , . . . , (Ys)
∗
nj ,j
}Mj=1, s ∈ {s1, . . . , sd}.

It is sufficient to consider

J (p) :=

M∑
j=1

nj∑
i=1

∑
s∈{s1,...,sd}

((Ys)(t
(j)
i )− (Ys)

∗
i,j)

2. (10)

For the calibration of the model, we employed the regularization term

R(p) =
M∑
j=1

nj∑
i=1

‖Y′′(t(j)i )‖2

where the values of the second derivatives are approximated with a centered difference formula.
We considered the official epidemiological data supplied daily by the Dipartimento della Protezione
Civile (DPC) through the repository https://github.com/pcm-dpc/COVID-19. The accuracy of
this data is highly questioned, in particular concerning the estimate of the total number of infection
(which is strongly dependent on the screening effort). Among the DPC data, we have selected 4
time series that can be considered more reliable and have a reasonable correspondence with the
compartments of the SIDARTHE model: the infected individuals quarantined at home (corre-
sponding to the Detected compartment D), the symptomatic hospitalized cases (corresponding to
the Recognized compartment R), the cases in ICUs (corresponding to the Threatened compartment
T) and the cumulative number of fatalities (corresponding to the Extinct compartment E).

The calibration has been performed solving the minimization problem (8) with c = 1, by
a parallel version of the limited memory Broyden-Fletcher-Goldfarb-Shanno algorithm with box
constraints (L-BFGS-B), see [17] for details.
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4 Results

In this section we present the results that have been obtained using the model and the data
introduced above in order to evaluate the forecasting capabilities of the model.

A first analysis was finalized to evaluate the dependence of the calibration of the model (4),
based on the fitting strategy introduced in Section 3, on the number of days of recorded data used
for the data calibration. This kind of analysis could be used to assess at which extent the model
may be able to forecast the time evolution of the epidemic beyond the available recorded data.

We have considered 6 phases over the time in which the model parameters assume different
values as a consequence of the political choices that led to progressive restrictions and changes in
the case detection strategy. The first 5 phases correspond to those considered in [10]. While in [10]
the model was started on February 20th, in the present work day 0 is February 25th, the first day
for which spatial distributed data at the provincial level were made available in the DPC database.

Note that at day 0, some hygiene and behavioral recommendations were already issued, together
with the first government restriction measures (school closure) inducing a certain degree of aware-
ness of the epidemic in the population. The second phase starts at day 7 when the screening was
limited to symptomatic individuals. On day 17, a first partial lockdown was introduced limiting
the movement of people in the northern Italian regions. The national lockdown was enforced at
day 23 while at day 33 a broader testing campaign allowed to identify a larger number of mildly
symptomatic infected cases. In this work, we have considered an additional phase starting at day
68, corresponding to the partial relaxation of containment measures that was issued on May 3rd.

The multi-city SIDARTHE model (4) has been calibrated using a number of days of recorded
data ranging between 40 and 110 starting from February 25th.

In Figure 2 we present a comparison between the time evolution computed by our model and
the corresponding data at the national level. In particular, the different curves correspond to
the compartments that have been used for the calibration, namely the diagnosed cases (D), the
recognized cases (R), the threatened cases (T) and the extincts (E).

As already pointed out in [10], the calibration of this kind of models involving many state
variables and a large number of uncertain parameters is a very challenging problem which is in
general ill-posed. In this respect, many different parameter sets may all potentially match the
recorder data with a similar degree of accuracy. However, the result of the parameter calibration,
which is reported in Table 1, displays values of the parameters which are close to those obtained
in [10] .

As mentioned above, the model has been calibrated using the compartments that have a corre-
spondent counterpart in the recorded data.

An estimate of the total number of infected can be obtained summing all the infected com-
partments (I+D+A+R+T) including those (I and A) that, being undetected, cannot appear in the
recorded data.

The time history of all the infected compartments is displayed in Figure 3. It should be pointed
out that the cumulative count predicted by the model indicated that the total number of cases will
be close to one million.

The calibration carried out in this work has been based on time history of number of individuals
populating the different compartments at the national level. However, the extended multi-city
model that we have considered allows to analyse the spatial spreading of the epidemic. Figure 4
shows the point prevalence at different times during the outbreak, that is the ratio between the
total number of people infected at a given time in each province and the population living in that
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2: Comparison of the simulation results with the official data for the compartments that
have been used for the model calibration with different training sets until day 40 (a), day 50 (b),
day 60 (c), day 70 (d), day 80 (e), day 90 (f), day 100 (g), day 110 (h).
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Table 1: Values of the model parameters during the different phases

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Phase 6

α 0.6238 0.4147 0.3998 0.3179 0.1900 0.2351
β 0.3181 0.0369 0.0164 0.0038 0.0010 0.0187
δ 0.0870 0.0378 0.0109 0.0034 0.0010 0.1395
γ 0.4694 0.3052 0.3027 0.2576 0.0449 0.3239
ε 0.2274 0.1264 0.1231 0.1470 0.0389 0.2751
θ 0.4179 0.3695 0.3770 0.3065 0.3893 0.1916
ζ 0.4262 0.2022 0.0851 0.0145 0.0594 0.0010
η 0.2502 0.0767 0.0314 0.0564 0.0010 0.0286
µ 0.0692 0.0387 0.0320 0.0011 0.0892 0.0093
ν 0.0442 0.0414 0.0445 0.0464 0.0010 0.0198
τ 0.0539 0.1821 0.2329 0.2059 0.1723 0.1929
λ 0.0072 0.0585 0.0590 0.1126 0.1203 0.0742
ρ 0.0042 0.0066 0.1205 0.2121 0.0154 0.1173
κ 0.0357 0.0081 0.0351 0.0010 0.0617 0.0013
ξ 0.0078 0.0836 0.0700 0.0543 0.1229 0.1805
σ 0.0042 0.0471 0.0417 0.0586 0.0761 0.1300

province.
A similar analysis has been carried out in order to evaluate what would have been the epidemic

evolution in the absence of the strict national lockdown measures. In this case, neglecting the
change of parameters after day 17, that is extending the Phase 3 in the future, the spatial spread
of the epidemic predicted by the model is displayed in Figure 5 (where we have used the same scale
as in 4).

5 Discussion

In the recorded data, the peak of the cases threatened in ICUs (April 3rd, day 38, 4068 cases)
anticipates by one day the peak of the recognized cases (April 4th, day 39, 29010) which, in turns,
occurs more than 3 weeks before the peak of the diagnosed cases (April 29th, day 64, 83652 cases).

The comparison displayed in Figure 2 clearly highlights that even a qualitative prediction of
the evolution of the epidemic appears to be difficult until the data used in the calibration cover the
three peaks.

Indeed, the calibration that uses 60 days of recorded data is the first one to be able to reproduce
the decreasing trends of all the compartments, while the error between the simulated results with
respected to the recorded data (not used for the model training) considerably reduces when at least
two weeks of recorded data past the latest peak occurs, that is data until day 80, are used.

Notice that the prediction using recorder data until day 70 still overestimates the total number
of hospitalized cases (R+T) at mid June by almost the 90%.

These results clearly indicates that a particular care should be paid when a model calibrated
with a partial time history is used for forecasting, in particular when the level of uncertainty of the
data is high.
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Figure 3: Time history of all the infected compartments and cumulative count of the total infected
cases.

The epidemic spreading results presented in Figures 4 and 5 indicate that the considered model
could represent a valid tool to investigate the spatial evolution of the disease. The level of accuracy
of the spatial evolution may be further improved by considering in the calibration spatial dependent
parameters and exploiting the spatial distribution of the recorded data (as done, for instance, in
[5]).

The computational model here proposed is highly efficient: every spatio-temporal simulation at
the provincial scale (107 geographical units) over a time range of 1 year requires less than 1 second
on a laptop. The calibration procedure is computationally more involved. However, running the
parallel L-BFGS-B model on a two-processor workstation with 24 cores the calibration can be
obtained in a few minutes. This very low computational time allows real time considerations of
multiple scenarios and is easily compatible with the implementation of an optimal control procedure
aimed at identifying optimal strategies at both regional and local levels.
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