
MOX-Report No. 42/2019

hmmhdd Package: Hidden Markov Model for High
Dimensional Data

Martino, A.; Guatteri, G.; Paganoni, A.M.

MOX, Dipartimento di Matematica
Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

mox-dmat@polimi.it http://mox.polimi.it

hmmhdd Package: Hidden Markov Model for High
Dimensional Data

Andrea Martino1, Giuseppina Guatteri1 and Anna Maria Paganoni1

1Department of Mathematics, Politecnico di Milano, Milan, Italy

Abstract

The R package hmmhdd provides some tools to study times series and longitudinal
datasets. In particular, the package is based on Hidden Markov Models, i.e. it considers
an underlying structure defined by a Markov Model with non-observable states generating
a certain type of data, in the multivariate or functional framework. In the former setting,
a Gaussian copula models the correlation structure between the components of the
observations while, in the latter setting, the data are multivariate functional data and
the methods are based on distances between curves. The package is able to estimate all
the parameters corresponding to the states of the underlying Markov model, while also
computing the optimal state sequence and providing some further helpful tools.
Keywords: Functional Data; Hidden Markov Models; Multivariate Data.

1 Introduction
Hidden Markov Models (HMMs) are a very well-known method for the study of longitudal

data or time series involving sequences of data, commonly used in many fields like biostatistics
([9]), finance ([15]) and signal processing ([5]). They consist in a generalization of mixture
models, with the hidden variables being related through a Markov process (see [16] for
further details). In the literature, HMMs are usually used to model univariate or multivariate
data with independent components.

In this paper we present the hmmhdd package (Hidden Markov Models for High
Dimensional Data), where some novel methods are applied both in the finite and the
functional setting. For what concerns the multivariate HMM framework, there are examples
of HMMs where the outcome is modelled using mixtures of multivariate Gaussian distributions
(e.g. [3]) or multivariate distributions with independent nonnormal marginals, and there are
some R packages able to do the task; see, e.g. depmixS4 ([22]) and msm ([8]). Specifically,
the hmmhdd package is able to study, using HMMs, two different types of data, by adding
several novelties in both cases:

1

1. Multivariate data: the package extends the usual HMM algorithms in the multi-
variate framework, allowing a dependence between the components of the observations,
which is done by means of gaussian copulas (see [12] for further details). A copula (see,
e.g., [19], [14] and [10]) is a function that “couples” a multivariate distribution function
to its marginal distribution functions, containing the information about the dependence
structure between the components of a random vector. It is very useful since different
marginals can be used, incorporating a flexible modelling of the dependence structure,
without making any assumptions of normality.

2. Functional data: the package is able to study and model multivariate functional
random curves, by extending the usual HMM algorithms from the finite dimensional
framework to the infinite dimensional one (see [13] for further details). Therefore, this
type of data falls into the well known Functional Data Analysis (FDA) setting (see, e.g.
[17], [18], [6], [7]). The package models the functional data by considering a hidden
Markov chain evolving in time, where each state emits a multivariate random curve
and, estimating the parameters of the underlying Markov process, helps to understand
the time series system that generated data.

The paper is organized as follows: in Section 2 we show how to set up a HMM using
the package, for both multivariate and functional data; then, in Section 3 we present
some background theory behind the model and algorithms, from the objective function
computation to the parameter estimation and the computation of the optimal state sequence.
In Section 4 and Section 5 we explain how to use the package to model multivariate and
functional data, respectively, while in Section 6 and 7 we show how to use the package to
estimate the optimal state sequence and make model selection.

2 Setting a Hidden Markov Model
A Hidden Markov Model [4] is a bivariate process {(Qk,Xk)}k≥1 defined on a given

probability space (Ω,F ,P) such that

• {Qk}k≥1 is a Markov chain with a discrete and finite state space {s1, . . . , sN}, with
N ≥ 1, transition matrix A = {aij} = P(Qk = sj |Qk−1 = si) and initial distribution
ν, where νi = P(Q1 = si);

• for each time k, the observation Xk is a d-dimensional random array. In particular,
given the state process {Qk}k≥1,Xk is a sequence of conditionally independent random
arrays (vectors or matrices, depending on the type of data).

The first step for defining a HMM in the hmmhdd package consists in defining an object
corresponding to the S3 classes mhmm or fhmm, depending on the data being vectors or
functions. These classes can be used to characterize a HMM and they are the initialization
for the other functions that will be used for further analysis. Both classes require bT, i.e. the
beginning times of each observation for every statistical unit, the number of states nStates

2

of the HMM, the vector of the initial probabilities nu and the transition matrix A of the
HMM.

When dealing with a multivariate dataset, Obs is a matrix with n rows and d columns,
where n is the number of observations while d is the number of components of the observations.
The function also admits the values of the correlation matrices corr for the gaussian copula,
passed as a N -dimensional array of matrices, the values of the state-dependent parameters
params, to be passed as a list of matrices, and a vector of strings distr specifying the
distribution for each component. If the dataset is functional, Obs is a funData object from
the gmfd package, i.e. a list containing the grid I = [t0, t1, . . . , tP−1] over which the data is
defined and the values of the observations in the functional dataset, provided as a matrix
with the rows as observations and the columns as their measurements over the grid of length
P . Moreover, the function requires centroids, i.e. the functional parameters representing
the functional means of each state of the HMM, passed as a funData where the first element
is again the grid over which the data is defined and the others are N x P matrices, one
for each component of the data. The package contains two simulated dataset, denoted as
copuladata and copulahmmdata, to test the functions for the multivariate case and one
denoted as simulatedFD to test the functions in the functional case. A call’s example for
a multivariate model, using the simulated data copulahmmdata in the package, with some
data visualization given using the summary function is the following:

data(copulahmmdata)
Obs <- copulahmmdata
n <- 20 #number of observations per statistical unit
n_tot <- dim(Obs)[1]
bt <- seq(1, n_tot, by = n) #beginning times for each statistical unit
distr <- c("exp", "gaussian")

#Initialize the HMM
hmm <- set_mhmm(Obs, bT = bt, nStates = 2, distr = distr)
summary(hmm)

Initial state probabilities:
S_1 S_2
0.5 0.5

Transition matrix:
toS_1 toS_2
fromS_1 0.5 0.5
fromS_2 0.5 0.5

Response 1 :Exponential
Response 2 :Gaussian

3

Response parameters
rate.Comp_1 mean.Comp_2 sd.Comp_2
S_1 0.5006811 -1.998299 1.005719
S_2 2.0303610 3.988309 1.006424
Correlation matrix for State 1
[,1] [,2]
[1,] 1.0000000 0.1469427
[2,] 0.1469427 1.0000000
Correlation matrix for State 2
[,1] [,2]
[1,] 1.0000000 0.6044778
[2,] 0.6044778 1.0000000

where the initial state probabilities and the transition matrix have a default initialization,
where each term is set to 1/nStates while the response parameters and the correlation
matrices are initialized using the kmeans function. where we are not setting any initialization
for the state-dependent parameters. More details will be given later, where we will cover the
case with functional response too.

The implementation of S3 classes allows us to use typical methods like summary and
plot to help visualizing outputs of the HMM. Specifically, for both classes we implemented
a method for visualizing all the elements of the HMM, summary.mhmm and summary.fhmm
respectively. Moreover, in the case of data with functional response, it is possible to visualize
all the data and the curves corresponding to the states with the function plot.fhmm; in
particular, in this case, the graphical window is split in a rectangular lattice so that each
component is plotted singularly, with each state represented with a different colour.

3 Fitting a Hidden Markov Model
After the initialization of a HMM, there are usually three fundamental problems (see for

instance [16] and [25]) to be solved:

1. find the objective function L(λ|x) for the observations x = (x1, . . . ,xK). In particular,
if the data is multivariate, this is a likelihood function for the data;

2. given some x and λ, find the optimal state sequence Q = (Q1, . . . , QK) that explains
x;

3. find λ∗ = argmax
λ

L(λ|x), i.e. the best parameters of the models that maximize the

objective function.

4

3.1 Objective function computation

First, we have to define the objective function of a HMM, which in general can be written
as

log(L(λ|x)) =
N∑
i=1

γ1(i) log νi︸ ︷︷ ︸
term 1

+
N∑
i=1

N∑
j=1

(
K−1∑
k=1

ξk(i, j)
)
log aij︸ ︷︷ ︸

term 2

+
N∑
i=1

K∑
k=1

γk(i) log bi(xk;θi)︸ ︷︷ ︸
term 3

.

(1)

where ξk(i, j) = P (Qk = si, Qk+1 = sj | X1 = x1, . . . ,Xk = xk, λ) is the probability of
being in state si at time k and state sj at time k + 1, given the model and the observations,
γk(i) = P (Qk = si | X1 = x1, . . . ,Xk = xk, λ) is the probability of being in the state si at
time k, while bi(xk;θi) is the emission function of Xk conditionally on the event {Qk = si}
for any i = 1, . . . , N . To estimate the value of the function in (1), we perform the so called
forward-backward algorithm. If we define the forward quantities, i.e. the probability density
functions of observing the partial sequence x1, . . . ,xk and ending in the state Qk, given the
model λ, as

αk(j) = f(X1,...,Xk,Qk)|λ(x1, . . . ,xk, sj),

then we can find the objective function by solving for αk(j) inductively, as follows:

(1) α1(i) = νibi(x1;θi), for 1 ≤ i ≤ N ;

(2) αk+1(i) =
[∑N

j=1 αk(j)aji
]
bi(xk+1;θi), for any 1 ≤ k ≤ K − 1 and 1 ≤ i ≤ N .

The objective function can be computed as L(λ|x) =
∑N
j=1 αK(j). The backward procedure

is similar (see [16] for further details) and it is implemented along with the forward one in
the forwardbackward function of the package.

3.2 Parameter estimation

The forward-backward algorithm is implemented together with the Baum-Welch algo-
rithm, to fit a HMM and estimate all its parameters starting from the data [16]. Parameters
are estimated in hmmhdd using the expectation-maximization (EM) algorithm. In particu-
lar, in the HMM setting, the algorithm is known as Baum-Welch algorithm (see for instance
[1], [2], [24], [3]).

Starting from the expression (1), it is possible to perform the EM algorithm for HMMs
by solving iteratively the two steps:

• E step replace the quantities ξk(i, j) and γj(k) by their conditional expectations given
the current parameter estimates and the observations (see, e.g. [16])

5

• M step maximize the logarithm of the objective function in (1). Each term of the
expression depends on different parameters, so it can be split into three parts in order
to maximize each term separately. The maximization of the first two terms of the
expression is done as in [16], while the maximization of third term depends on the
type of data of the response.

The hmmhdd package is designed to model longitudinal datasets or time series with several
observations for each statistical unit; until now, all the formulas only considered a single
observation sequence. Since the package models multiple sequences, we denote the set of
observation sequences as

X = (x(1), . . . ,x(M))

for M statistical units, each one of them being a sequence of length Km, m = 1, . . . ,M .
Then, x(m) = (x(m)

1 x
(m)
2 · · · x(m)

Km
) is the m-th observation sequence of length K; all the

sequences are considered independent from each other. The main goal consists in adjusting
the parameters of the model λ to maximize the following likelihood:

L(λ|X) =
M∏
m=1
L(λ|x(m)). (2)

The use of the package hmmhdd for parameter estimation mainly consists of two steps:

1. model initialization, as described in Section 2, through the use of the setHMM_mhmm
and setHMM_fhmm functions;

2. model fitting, through the use of the algorithms just described, with the functions
fitBM_mhmm and fitBM_fhmm.

4 Multivariate Hidden Markov Model
Throughout this work, two simulated datasets will be used. For what concerns the

multivariate case, the dataset is the copulahmmdata. Specifically, the dataset was simulated
starting from a Markov Model with 2 states and the following parameters:

ν = (1 0), A =
(

0.70 0.30
0.10 0.90

)
,

with 20 observations for 250 statistical units. The process is bivariate, with an exponential
and a gaussian component. Each state emits realizations of the joint distribution (X1, X2)
where, for every state i, we have:

• X1|si ∼ E(λi);

• X2|si ∼ N (µi, σ2
i).

6

In particular, the parameters of the first state are λ1 = 2, µ1 = 4, σ1 = 1 while the parameters
of the second state are λ2 = 0.5, µ2 = −1, σ2 = 1. Moreover, the components of the first state
have a stronger correlation (ρ1 = 0.7) than the ones related to the second state (ρ2 = 0.15).
The data was generated using the rmdistr function of the hmmhdd package, which returns
a multivariate sample after taking as arguments the number n of observations, a list of
the distribution parameters params, an array containing the true correlation matrices corr
and a vector of strings distr, for the names of the distribution for each component (the
allowed options are the exponential, the gaussian and the gamma distribution, represented
by exp, gaussian and gamma, respectively). The package does not necessarily require any
initialization, since the transition matrix A and the vector nu have a default initialization,
with every element set to 1/nStates while the parameters are initialized with a k-means
algorithm, performed with the kmeans function of the stats package. As seen before, the
Baum-Welch algorithm requires the computation of the emission functions, which represent
the likelihood of emitting a certain observation by a certain state. In our case, since the
response is multivariate but we want to consider the correlation between the components,
we implemented a gaussian copula model using a copula density function c [12]. In general,
for a d-variate data, the emission function related to state sj for the observation xk, can be
written as

bj(xk;θj) = c[F1j(x1k;θ1j), . . . , Fdj(xdk;θdj); ρj] ·
d∏
i=1

fij(xik;θij)

where fij and Fij , i = 1, . . . , d, are the pdf and the cdf of a given distribution. Therefore,
taking into account the equations (1) and (2), the proper estimates of the model parameters
can be found by maximizing the following quantity:

M∑
m=1

Km∑
k=1

N∑
j=1

γk(j)
(
log c

[
F1j(x1k;λ1j), . . . , Fdj(xdk;λdj); ρj

]
+

d∑
i=1

log fij(y1k;θdj)
)

To compute the values of the emission functions, we implemented in the package the function
dmdistr that takes as arguments the matrix of the data x, a list of the parameters params,
an array of correlation matrices corr and a vector of strings for the distributions of each
components, returning a numeric value corresponding to the value of the multivariate density
function that uses gaussian copulas to model the correlation between the marginals.

To set the right class of this model, which is mhmm for multivariate data, and estimate its
parameters, a call’s example along with its output is the following:

data(copulahmmdata)
Obs <- copulahmmdata
n <- 20 #number of observations per statistical unit
n_tot <- dim(Obs)[1]
bt <- seq(1, n_tot, by = n) #beginning times for each statistical unit
distr <- c("exp", "gaussian")

7

#Initialize the HMM
hmm <- set_mhmm(Obs, bT = bt, nStates = 2, distr = distr)

#Parameter estimation
bw <- fitBM_mhmm(hmm)
Initial state probabilities:
S_1 S_2
0.995151673 0.004848327
Transition matrix:
toS_1 toS_2
fromS_1 0.70010846 0.2998915
fromS_2 0.09917526 0.9008247

Response 1: Exponential
Response 2: Gaussian

Response parameters
rate.Comp_1 mean.Comp_2 sd.Comp_2
S_1 2.0296898 4.005769 0.988701
S_2 0.5053992 -1.988103 1.022097
Correlation matrix for State 1
[,1] [,2]
[1,] 1.000000 0.622236
[2,] 0.622236 1.000000
Correlation matrix for State 2
[,1] [,2]
[1,] 1.000000 0.138430
[2,] 0.138430 1.000000

where bw contains the output of the function, i.e. all the estimations of the parameters.
Although it is advised to initialize the data if possible to reduce convergence problems, since
these methods are guaranteed to find a local maximum, all the obtained estimates using
the gaussian copula are quite accurate. The code snippet shows first the parameters related
to the Markov Model, where S_1 and S_2 represent the states of the HMM, and then the
parameters related to the response, along with the correlation matrices of the gaussian
copula for each state.

5 Functional Hidden Markov Model
If dealing with a functional dataset, like the one implemented in the package simulatedFD,

we have to set a different class and compute some of the quantities in a different way. This
dataset was generated using the R package roahd [20], starting from a 3-state Markov model

8

with the following parameters:

ν = (1 0 0), A =

0.60 0.30 0.10
0.10 0.80 0.10
0.00 0.00 1.00

 ,

θ1(t) =
(
t(1− t)

2t

)
; θ2(t) =

(
t2(1− t)

t2

)
; θ3(t) =

(
t(1− t)2

1
2 t

3

)
,

with 20 observations for 100 statistical units. Each functional data consists of a bivariate
random curve with independent components, defined on a grid of P = 100 points, with
θ1(t),θ2(t),θ3(t) being the means of each multivariate random curves for state s1, s2 and s3,
respectively. A call’s example, where we initialize the functional HMM and then estimate
all the parameters is given by:

data(simulatedFD)
FD <- simulatedFD
n <- 20 #number of observations per statistical unit
n_tot <- dim(FD$data[[1]])[1]
bt <- seq(1, n_tot, by = n) #beginning times for each statistical unit
bt <- seq(1, n_tot, by = n)
Initialize the HMM
hmm <- set_fhmm(FD, nStates = 3, bT = bt)

#Parameter estimation
bw <- fitBM_fhmm(hmm)
summary(bw)
Initial state probabilities:
S_1 S_2 S_3
1.000000e+00 3.002669e-50 5.263375e-65

Transition matrix:

toS_1 toS_2 toS_3
fromS_1 6.955202e-01 1.882253e-01 0.11625450
fromS_2 4.809883e-02 8.548413e-01 0.09705983
fromS_3 1.187856e-26 1.529422e-09 1.00000000

In this case, the initial probabilities nu and the transition matrix A are still set to default,
with each element being equal to 1/nStates. If no initialization is given for the centroids,
then a functional k-means is performed using the gmfd_kmeans function of the gmfd package
[11]. The algorithm alternates a step where each multivariate curve is assigned to a state
with a step where the centroids of the states are computed, until convergence is reached (see
[21] for further details).

9

After this initialization step, the Baum-Welch algorithm is performed to compute all
the parameters of the Markov model and the new functional parameters representing
the states. To be able to do that, it is necessary to compute the emission functions
bi(· ;θi), i = 1, . . . , N for each functional response. Let us recall the definition of L2 distance
between two multivariate curves a and b defined on I, compact interval of R:

dL2(a,b) = ‖a − b‖ =

√√√√ d∑
l=1

∫
I
(al(t)− bl(t))2dt.

Therefore, in the fitBM_fhmm function, the computation of the emission functions related to
the states of the HMM is performed as

bi(· ;θi) = h
(
d(· ,θi)

)
, i = 1, . . . , N (3)

where h(y) is a function that transforms the distance in a similarity measure; in this case,
we have chosen h(y) = 1/y2, but other choices for the function are possible. By recalling
equations 1 and 2, in the case of functional data, to estimate the functional parameters of
the HMM, the package maximizes the following quantity:

M∑
m=1

Km∑
k=1

N∑
j=1

γk(j) log bi(xk;θj).

For further details regarding this method, see [13]. Since the output of the fitBM_fhmm
function is an object of class fhmm, we implemented a summary method to be used for this
class. As we can see from the output, the estimates of the values related to the initial
probabilities nu and the transition matrix A are quite accurate. Other than these parameters,
which are just related to the Markov structure underlying the succession of states, we can
also obtain some estimates for the functional means θ1(t),θ2(t),θ3(t) generating the data.
Since they are functional data, for a better visualization we implemented a function based
on the plot method for objects belonging to the fhmm classes. In Fig. 1, we can see the
output related to the call plot(bw).

6 Optimal state sequence
When dealing with HMMs, a problem that is usually considered consists in finding

the optimal state sequence Q = (Q1, . . . , QK) that generated the observations. The most
popular approach to solve this problem is based on the Viterbi algorithm, see [23]. Let us
fix an observed sequence q1, . . . , qk and define the quantity

δk(i) = max
q1,...,qk−1

P(Q1 = q1, . . . , Qk−1 = qk−1, Qk = si,x1, . . . ,xk|λ). (4)

which is the highest probability on a single path at time k by taking into account the partial
sequence x1, . . . ,xk. Since we need to retrieve the state sequence, we have to keep track of
the argument that maximizes (4) for each k and j, through the array ψk(j). In particular,
the procedure can be divided into four steps:

10

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

State centers for component 1

t

X
(t

)

0.0 0.2 0.4 0.6 0.8 1.0

−
1

0
1

2
3

State centers for component 2

t

X
(t

)

Figure 1: Plot of the functional parameters related to the states of the HMM, using the
function plot.fhmm.

11

1. Initialization: δ1(i) = νibXk|Qk=si
(x1;θi) and ψ1(i) = 0 for 1 ≤ i ≤ N .

2. Recursion:

δk(j) = max
1≤i≤N

[δk−1(i)aij]bXk|Qk=sj
(xk;θi), 1 ≤ k ≤ K, 1 ≤ j ≤ N ;

ψk(j) = argmax
1≤i≤N

[δk−1(i)aij], 1 ≤ k ≤ K, 1 ≤ j ≤ N.

3. Termination:

P ∗ = max
1≤i≤N

[δK(i)];

q∗K = argmax
1≤i≤N

[δK(i)].

4. State sequence backtracking: q∗k = ψk+1(q∗k+1), k = K − 1,K − 2, . . . , 1.

Except for the last step, we can notice this procedure is similar to the forward one, where we
have a maximization step instead of the summing one. By following this procedure, we can
retrieve the optimal state sequence q∗k, k = 1, . . . ,K. (see [16] for further details).If bw is an
object of class mhmm or fhmm, then the state sequence can be computed with the function
viterbi as follows:

viterbi(bw)
[1] 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2
[26] 2 2 1 1 1 1 3 3 3 3 3 3 3 3 3 2 2 2 2 3 3 3 3 3 3
[51] 3 3 3 3 3 3 3 3 3 3 2 2 1 1 1 3 3 3 3 3 3 3 3 3 3
[76] 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
...

where in this case we are referring to the bw object obtained in Section 5. As we can see
from the output, the function viterbi returns a vector of numbers, each one being a label
for each observation.

7 Model Selection
Since the number of states for a HMM is not usually known a priori, it is useful to use

some model selection criteria to be able to compare some model results and choose the one
that performs better. In this package, we implemented two criteria often used in the HMM
framework, AIC and BIC, to perform model selection; see, e.g., [25]. Given a dataset with n
statistical units and p unknown parameters, the two quantities are computed as:

AIC = −2log(L(λ|x)) + 2p BIC = −2log(L(λ|x)) + plog(n), (5)

with the functions aic and bic, respectively. Let us consider the functional dataset just
used in Section 5. If we want to compare some HMMs to choose the optimal number of

12

−
73

00
−

72
00

−
71

00
−

70
00

−
69

00

Number of Hidden States

2 3 4 5

AIC
BIC

Figure 2

states, we have to use the aic and bic functions for each one of it. In particular, we can see
in Fig. 2 the results for n = 2, . . . , 6 number of states. The smallest number for both criteria
is for n = 3, which represents the optimal number of states to model the data. The calls
to both of these functions are also included inside the summary.mhmm and summary.fhmm
functions of the package.

8 Conclusion
In this work, we presented the R package hmmhdd (Hidden Markov Models for High-

Dimensional Data) that we developed for the study of both multivariate and functional data
using HMMs. In particular, our package can deal with high-dimensional datasets, with little
a priori knowledge on data, and provides useful tools for describing the time series system of
data. hmmhdd is available on the Comprehensive R Archive Network (CRAN), with current
release version 1.0, at https://cran.r-project.org/web/packages/hmmhdd and the source
code is fully documented and commented.

References
[1] L. Baum. An inequality and associated maximization technique in statistical estimation

of probabilistic functions of a markov process. Inequalities, 3:1–8, 1972.

13

[2] L. E. Baum, T. Petrie, G. Soules, and N. Weiss. A maximization technique occurring
in the statistical analysis of probabilistic functions of markov chains. The annals of
mathematical statistics, 41(1):164–171, 1970.

[3] J. A. Bilmes et al. A gentle tutorial of the em algorithm and its application to parameter
estimation for gaussian mixture and hidden markov models. International Computer
Science Institute, 4(510):126, 1998.

[4] O. Cappé, E. Moulines, and T. Ryden. Inference in Hidden Markov Models (Springer
Series in Statistics). Springer-Verlag, Berlin, Heidelberg, 2005.

[5] M. S. Crouse, R. D. Nowak, and R. G. Baraniuk. Wavelet-based statistical signal
processing using hidden markov models. IEEE Transactions on signal processing,
46(4):886–902, 1998.

[6] F. Ferraty and P. Vieu. Nonparametric functional data analysis: theory and practice.
Springer Science & Business Media, 2006.

[7] L. Horváth and P. Kokoszka. Inference for functional data with applications, volume
200. Springer Science & Business Media, 2012.

[8] C. H. Jackson. Multi-state models for panel data: The msm package for R. Journal of
Statistical Software, 38(8):1–29, 2011.

[9] C. H. Jackson and L. D. Sharples. Hidden markov models for the onset and progression
of bronchiolitis obliterans syndrome in lung transplant recipients. Statistics in medicine,
21(1):113–128, 2002.

[10] H. Joe. Multivariate models and multivariate dependence concepts. Chapman and
Hall/CRC, 1997.

[11] A. Martino, A. Ghiglietti, F. Ieva, and A. M. Paganoni. gmfd: Inference and Clustering
of Functional Data, 2018. R package version 1.0.1.

[12] A. Martino, G. Guatteri, and A. M. Paganoni. Multivariate hidden markov models for
disease progression. Mox Report 59/2018, 2018.

[13] A. Martino, G. Guatteri, and A. M. Paganoni. Hidden markov models for multivariate
functional data. Mox Report 20/2019, 2019.

[14] R. B. Nelsen. An introduction to copulas. Springer Science & Business Media, 2007.

[15] L. J. Paas, J. K. Vermunt, and T. H. Bijmolt. Discrete time, discrete state latent
markov modelling for assessing and predicting household acquisitions of financial
products. Journal of the Royal Statistical Society: Series A (Statistics in Society),
170(4):955–974, 2007.

14

[16] L. R. Rabiner. A tutorial on hidden markov models and selected applications in speech
recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

[17] J. O. Ramsay. Functional data analysis. Encyclopedia of Statistical Sciences, 4, 2004.

[18] J. O. Ramsay and B. W. Silverman. Applied functional data analysis: methods and case
studies. Springer, 2007.

[19] M. Sklar. Fonctions de repartition an dimensions et leurs marges. Publ. inst. statist.
univ. Paris, 8:229–231, 1959.

[20] N. Tarabelloni, A. Arribas-Gil, F. Ieva, A. M. Paganoni, and J. Romo. roahd: Robust
Analysis of High Dimensional Data, 2018. R package version 1.4.1.

[21] T. Tarpey and K. K. Kinateder. Clustering functional data. Journal of classification,
20(1):093–114, 2003.

[22] I. Visser and M. Speekenbrink. depmixS4: An R package for hidden markov models.
Journal of Statistical Software, 36(7):1–21, 2010.

[23] A. Viterbi. Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm. IEEE transactions on Information Theory, 13(2):260–269, 1967.

[24] L. R. Welch. Hidden markov models and the baum-welch algorithm. IEEE Information
Theory Society Newsletter, 53(4):10–13, 2003.

[25] W. Zucchini, I. L. MacDonald, and R. Langrock. Hidden Markov models for time series:
an introduction using R. Chapman and Hall/CRC, 2016.

15

MOX Technical Reports, last issues
Dipartimento di Matematica

Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

41/2019 Abbà, A.; Bonaventura, L.; Recanati, A.; Tugnoli, M.;
Dynamical p-adaptivity for LES of compressible flows in a high order DG
framework

39/2019 Lovato, I.; Pini, A.; Stamm, A.; Taquet, M.; Vantini, S.
Multiscale null hypothesis testing for network-valued data: analysis of brain
networks of patients with autism

40/2019 Lovato, I.; Pini, A.; Stamm, A.; Vantini, S.
Model-free two-sample test for network-valued data

38/2019 Massi, M.C.; Ieva, F.; Gasperoni, F.; Paganoni, A.M.
Minority Class Feature Selection through Semi-Supervised Deep Sparse
Autoencoders

36/2019 Salvador, M.; Dede', L.; Quarteroni, A.
An intergrid transfer operator using radial basis functions with application to
cardiac electromechanics

37/2019 Menafoglio, A.; Secchi, P.
O2S2: a new venue for computational geostatistics

35/2019 Zancanaro, M.; Ballarin, F.; Perotto, S.; Rozza, G.
Hierarchical model reduction techniques for flow modeling in a parametrized
setting

33/2019 Regazzoni, F.; Dede', L.; Quarteroni, A.
Machine learning of multiscale active force generation models for the
efficient simulation of cardiac electromechanics

34/2019 Antonietti, P. F.; Mazzieri, I.; Melas, L.; Paolucci, R.; Quarteroni, A.; Smerzini, C.; Stupazzini, M.
Three-dimensional physics-based earthquake ground motion simulations for
seismic risk assessment in densely populated urban areas

32/2019 Fedele, M.
Polygonal surface processing and mesh generation tools for numerical
simulations of the complete cardiac function.

	qmox42-copertina
	mox-20191030144612
	qmox42-terza_di_copertina

