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Abstract	  

Next generation bioreactors are being developed to generate multiple human cell-based 

tissue analogs within the same fluidic system, to better recapitulate the complexity and 

interconnection of human physiology (1, 2). The effective development of these devices 

requires a solid understanding of their interconnected fluidics, to predict the transport of 

nutrients and waste through the constructs and improve the design accordingly. In this 

work, we focus on a specific model of bioreactor, with multiple input/outputs, aimed at 

generating osteochondral constructs, i.e., a biphasic construct in which one side is 

cartilaginous in nature, while the other is osseous. We next develop a general 

computational approach to model the microfluidics of a multi-chamber, interconnected 

system that may be applied to human-on-chip devices. This objective requires 

overcoming several challenges at the level of computational modeling. The main one 

consists of addressing the multi-physics nature of the problem that combines free flow in 

channels with hindered flow in porous media. Fluid dynamics is also coupled with 

advection-diffusion-reaction equations that model the transport of biomolecules 

throughout the system and their interaction with living tissues and C constructs. 

Ultimately, we aim at providing a predictive approach useful for the general organ-on-

chip community. To this end, we have developed a lumped parameter approach that 

allows us to analyze the behavior of multi-unit bioreactor systems with modest 

computational effort, provided that the behavior of a single unit can be fully 

characterized. 
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1 Introduction 

A number of in vitro approaches have been used over time for high throughput drug 

screening or toxicology testing. However, most currently available systems are only 

partial approximations of human biology and their predictive capacity is consequently 

limited. In fact, such systems are either based on human cell cultures, not capturing the 

complexity of cell behavior in a three dimensional (3D) environment, or they are based 

on animal tissues fragments, 3D in nature but only partially biosimilar to human tissues 

and unable to account for interactions with other organs. To overcome these limitations, 

next generation bioreactors are being developed to generate multiple human cell-based 

tissue analogs within the same fluidic system to better recapitulate the complexity and 

interconnection of human physiology. These efforts aim at creating multi-tissue organ 

systems (cardiovascular, gastro-intestinal, musculoskeletal, etc.) that ultimately can be 

joined in an interconnected human-on-chip device capable of providing a veritable 

representation of the body complex response to diseases and potential drug treatments (3, 

4). 

The effective development of these devices requires a solid understanding of their 

interconnected fluidics, to predict the transport of nutrients and waste through the 

constructs and improve the design accordingly. In this work, we have focused on a 

specific bioreactor with multiple input/output aimed at generating osteochondral 

constructs, i.e., a biphasic constructs in which one side is cartilaginous in nature, while 

the other is osseous. This bioreactor (1, 5, 6) represented in Figure	  1  has been chosen 

since it comprises both a dual chamber system to host a single biphasic tissue construct 
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with distinct fluidics (Fig.1, top), and a set of interconnected chambers with common 

fluidics (Fig. 1, bottom). Starting from this specific bioreactor, we have developed a 

general approach to model the microfluidics of a multi-chamber, interconnected system 

that may be applied to human-on-chip devices.  

The microphysiological osteochondral bioreactor analyzed in this work is aimed at the 

study of osteoarthritis (OA), a major pathology of articular joints, affecting over 33% of 

the population over the age of 65 (7). The hallmark of this disease that affects all tissues 

in the joint, is the progressive degeneration of cartilage which begins well before clinical 

symptoms manifest, ultimately requiring joint replacement surgery (8). The high 

incidence of this painful and disabling pathology begs for the understanding of the causes 

and mechanisms of its development, in order to identify reparative drug therapies to 

arrest or even regenerate the damaged tissues and ultimately avoid surgery. A novel 

strategy in this respect adopts a tissue engineering approach and the use of bioreactors (1, 

6) to generate a high number of identical in vitro constructs that can replicate the 

pathogenesis of joint diseases for the identification of therapeutic targets and for drug 

screening (1, 9-11). Critical in this respect is the development of a representative model 

of the interactions between cartilage and other joint tissues and, in particular, with the 

subchondral bone. In fact, there is growing evidence of the exchange of nutrients, 

cytokines, and hormones in vivo between bone and cartilage. The osteochondral (OC) 

unit is then conceived as the main target of OA, to reflect the dynamic cartilage/bone 

interplay in both health and disease (1, 12-17). The medium to high throughput system 

studied in this work, which we call high-throughput bioreactor (HTB) hereon, is the first 

of its kind. It hosts in a single chamber a biphasic construct, with separate fluidics for its 
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cartilaginous and osseous components, effectively creating a dual-chamber setup (Figure 

1) (5, 6). In this way, cartilage and bone will be in contact and able to signal to each 

other, while each is exposed to its ideal culture medium. Furthermore, the HTB allows 

the generation and culture of a high number of identical OC constructs similar in 

dimensions to native tissue biopsies (1, 5, 6).  It must be noted that the physiological 

functions of the examined tissue are primarily load bearing and force transduction, which 

imply a key role for the extracellular matrix (ECM), also an essential player in the 

regulation of cell differentiation, physiology and response to insults (1, 18, 19). 

Consequently, a bioreactor that accommodates a significant ECM tissue component to 

recapitulate at least some of the physiological aspects of the osteochondral complex 

requires a relatively larger volume, in the order of millimeters rather than the hundreds of 

micrometers more common in microfluidic systems. To generate a construct that mimics 

tissue physiology, the bioreactor chamber is filled with a cell-laden porous polymeric 

scaffold. Hence, the larger size and the presence of porous scaffold within the insert 

makes nutrient perfusion within the device a potential challenge, since to avoid cellular 

hypoxia and to obtain adequate tissue development, nutrients must travel a longer path to 

reach the inner regions within the bioreactor. In this context, we use computational fluid 

dynamics to assess the hydrodynamic properties of the system. Previous works (4, 20-22) 

evaluated the fluid mixing and transport of nutrients between chambers in the same unit 

of a forced perfusion setup, but to our knowledge there are no similar studies about the 

interaction of fluid and porous constructs in a design with more effective fluidics as the 

one in Figure 1.  



	   7	  

Furthermore, to achieve a high-throughput drug screening system, single bioreactor dual-

chambers (bioreactor unit) have been connected and combined in a multi-unit system, 

organized in sequential and parallel rows (Figure 1). A further challenge is then to 

guarantee that the tissue constructs in the downstream chambers receive the appropriate 

amount of nutrients from the fluid that has perfused the units upstream. In other words, 

not only a dual-chamber bioreactor, but also a multi-unit array shall be analyzed. 

The specific objective of this work is to develop a methodology to characterize the flow 

and transport in a HTB by means of a computational modeling approach, combining 

distributed and lumped parameter models. In particular, we have assessed the degree of 

perfusion and mixing of nutrients in each region of the device, evaluating the effect of 

different scaffold types. The computational model was then used to compare two 

different engineered constructs, a hydrogel (methacrylated gelatin, GelMA (5, 23)) and a 

porous polymeric scaffold (poly-L-lactate, PLLA)(24). The first one features very small 

pore size and is solute permeable, the second one shows larger pore size and is 

impenetrable to fluid and nutrients. 

Performing such simulations requires overcoming several challenges at the level of 

computational modeling. The main one consists of addressing the multi-physics nature of 

the problem that combines free flow in channels with hindered flow in porous media. 

Fluid dynamics is then coupled with advection-diffusion-reaction equations that model 

the transport of biomolecules throughout the system and their interaction with living 

tissue. Besides these modeling challenges, the complex configuration of the bioreactor 

poses significant difficulties in building the CAD model and discretizing its parts with a 
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computational mesh suitable for the application of a numerical scheme. These issues can 

be solved using an in-house-made software that incorporates state-of-the-art efficient 

algorithms for the approximation of partial differential equations. Although this approach 

is viable, it entails significant costs in terms of man-hours for the implementation and 

validation of the new software. For this reason, we have adopted here a commercial 

platform, ANSYS (ANSYS Inc., Canonsburg, PA), which features advanced multi-

physics simulation capabilities. Another challenging aspect of this work is then to stretch 

the limits of the ANSYS platform to address the complex problem at hand. Ultimately, 

our aim is to provide a predictive approach useful for the general organ-on-chip 

community. To this end, we have developed a lumped parameter approach that allows us 

to analyze the behavior of multi-unit bioreactor systems with a modest computational 

effort, provided that the behavior of a single unit could be fully characterized. If the 

linearity conditions are satisfied, this computational methodology is independent from the 

specific osteochondral nature of the biological system being studied. Our approach 

simply describes a network of interconnected multi-chamber units. Consequently, we 

believe that our approach can be directly applied to predict the flow and transport of a 

generic human-on-chip setup, even those comprising multiple physiological systems 

(e.g., a liver model connected to a kidney model, connected to a bone model, etc.) with 

single or multi-chamber units.  

2	  Models	  and	  methods	  

Exploiting the commercial platform ANSYS (ANSYS Inc., Canonsburg, PA), we have 

developed a CAD model of the bioreactor and we have used it to simulate flow and 



	   9	  

transport phenomena in the system. The steps to achieve a realistic simulation of the fluid 

and transport within the bioreactor are detailed below. 

2.1	  CAD	  model	  

The 3D CAD model of the bioreactor was created using ANSYS ICEM CFD v.15.0 

(ANSYS Inc.) CAD modeler. We have considered a row of 4-units connected in series 

(see Figure 1). Each unit has the same configuration, specifically designed to grow a 

construct that combines cartilage and bone, and comprises the following parts: two inlets 

and two outlets consisting of cylindrical channels, to guarantee the circulation of fluid 

from the upstream units to the downstream ones. Each inlet/outlet channel is 

characterized by a length (L) of 5.3 mm and an inner diameter (d) of 1 mm. The 

perforated cylindrical insert that holds the scaffold in place is 8.5 mm high and 3.75 mm 

wide. Each bioreactor chamber is sealed by an upper cap and by two O-rings (see Figure 

1). Forthcoming extensions of this study will consider rows of 8 bioreactor units. By 

aligning 12 parallel lines of these rows, one obtains a plate of 96-units, which is a 

realistic prototype of high-throughput bioreactor for drug screening.  

2.2	  Flow	  

The bioreactor features the combination of free flow for the inlets, outlets, and the outer 

chambers with porous media flow for the inner culture chamber (insert). In each region, 

we assume that the flow is incompressible. For momentum balance, our approach 

employs a general equation that encompasses the nature of both types of flow, and we 

will switch between them by suitably tuning the problem parameters in each region. This 
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equation has the structure of Brinkman equation for flow in porous media, because it 

combines viscous terms, such as in Stokes, with friction terms, such as in Darcy. To 

model free flow, a convective term, which plays a significant role in case of high 

Reynolds regimes, was added. Static conditions are also assumed. Then, the momentum 

balance equation reads as follows: 

𝛻 ∙ ρ𝑈×𝑈 −  𝛻 ∙ 𝜇 𝛻𝑈+ 𝛻𝑈
!

= −
𝜇

𝐾!"#$
𝑈 − 𝛻𝑝                ∀𝒙   ∈   Ω𝑐_𝑢𝑝 ∪   Ω𝑐_𝑑𝑜𝑤𝑛 ∪   Ω𝑠𝑐𝑎𝑓𝑓𝑜𝑙𝑑 

(	  1	  ) 

where 𝑈 denotes the velocity vector field (𝑈! and 𝑈! denote the restriction of the velocity 

field to the free fluid and porous medium, respectively), 𝑝 the hydrostatic pressure, 𝜌 e 𝜇 

are the fluid viscosity and density respectively, and 𝐾!"#$ the hydraulic conductivity of 

the porous medium (for the free flow regions we set 𝐾!"#$ → ∞). For the partition of the 

bioreactor into sub-regions, we refer to Figure 2. We assume that the culture medium that 

perfuses the bioreactor is comparable to water (𝜌 = 999,97  𝑘𝑔/𝑚!  𝜇 = 0,001  𝑃𝑎  𝑠) 

since the dissolved nutrients and other chemical species are relatively dilute. 

For the definition of boundary conditions, we partition the bioreactor surface as 

illustrated in Figure 2 . At the bioreactor inlet, (𝛤!_!",!"  𝑒  𝛤!_!"#$,!"), a given flow rate is 

applied through the enforcement of a flat velocity profile on the inflow sections; a no-slip 

condition is adopted on the surfaces that separate the free fluid and the porous medium 

from the bioreactor walls (𝛤!_!",   𝛤!!"#$𝑒    𝛤!"#$$%&'), which have been assumed to be rigid 

walls. At the outlet, (𝛤!_!",!"#  𝑒  𝛤!_!"#$,!"#) we have set a uniform normal stress field 

equal to the atmospheric pressure, namely 𝛔! ∙ 𝒏 = 𝟎 , where 
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𝝈𝒇 =  𝛻 ∙ 𝜇 𝛻𝑈+ 𝛻𝑈 ! − 𝛻𝑝 is the Cauchy stress in the fluid. Given the previous 

modeling choices, the flow problem becomes  

∇ ∙ 𝑈 = 0       ∀𝑥 ∈ Ω!_!" ∪Ω!_!"#$ ∪Ω!"#$$%&' 

𝛻 ∙ ρ𝑈×𝑈 −  𝛻 ∙ 𝜇 𝛻𝑈+ 𝛻𝑈
!

= −
𝜇

𝐾!"#$
𝑈 − 𝛻𝑝 ∀𝑥 ∈ Ω!_!" ∪Ω!_!"#$ ∪Ω!"#$$%&' 

𝑄 𝑟 = 𝑄 ∀𝑥 ∈ 𝛤!_!",!" ∪ 𝛤!_!"#$,!" 

𝑝 = 0 ∀𝑥 ∈ 𝛤!_!",!"# ∪ 𝛤!_!"#$,!"# 

𝑈 = 0 ∀𝑥 ∈ 𝛤!_!" ∪ 𝛤!_!"#$ ∪ 𝛤!"#$$%&' 

𝑈! = 𝑈! ∀𝑥 ∈ 𝛤!"#$%!!"#"$% 

𝝈! ∙ 𝒏 = 𝝈! ∙ 𝒏 ∀𝑥 ∈ 𝛤!"#$%!!"#"$% 

(	  2	  ) 

2.3	  Mass	  transport	  

An important part of this study consists of modeling the transport of bio-molecules 

dissolved in the culture media that perfuse the bioreactor. In particular, we focus on 

oxygen, fundamental to guarantee cell survival. However, the model is general and has 

been used to describe the transport of glucose and proteins, as it will be reported in 

forthcoming works. 

Since all solutes are diluted, they are modeled as passively transported by the culture 

media. Their governing equations have been formulated in terms of volumetric 

concentrations measured in [mg/ml]. The symbol C denotes the solute concentration, D 

the diffusion coefficient for the specific biomolecule and the subscripts f and s indicate 
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the fluid and the porous medium (scaffold), respectively. Therefore the equation 

describing the biomolecules’ transport in the fluid phase is: 

∇ ∙ −𝐷!∇𝐶! + 𝑈𝐶! = 0      ∀  𝑥   ∈      Ω!_!" ∪   Ω!_!"#$  

( 	  3	  )  

For the porous medium, namely the scaffold region, we assume that fluid and solid 

phases coexist. We denote with 𝐶!,!  and 𝐶!,!  the volumetric concentration of 

biomolecules in the solid and in the fluid phase of the scaffold, respectively. Denoting 

with 𝛾 the porosity of the scaffold (complement to unity of the solid phase, i.e. for the 

free flow regions we set 𝛾 = 1), the volumetric concentration of biomolecules in the 

porous medium is given by the following weighted average 𝐶! = 𝛾𝐶!,! + (1− 𝛾)𝐶!,!. 

Then, following the theory of mixtures, the governing equations for biomolecules 

concentration in the porous medium read as follows: 

∇ ∙ −𝐷!,!∇ 1− 𝛾 𝐶!,! + 1− 𝛾 𝑈𝐶!,! + 1− 𝛾 𝑆 + 𝜏𝐼𝐴𝐷 𝐶!,! − 𝐶!,! = 0; 

∇ ∙ −𝐷!,!∇γ𝐶!,! + 𝑈𝛾𝐶!,! + 𝛾𝑆  +   𝜏𝐼𝐴𝐷 𝐶!,! − 𝐶!,! = 0    ∀  𝑥   ∈      Ω!"#$$%&' . 

(	  4	  ) 

This model assumes that both the fluid and the solid phases in the porous medium are 

permeable to biomolecules. The mass transfer coefficient from the fluid to the solid phase 

in the porous medium is  𝜏 , while 𝐼𝐴𝐷  is the interface area density of the surface 

separating the two phases. As a result, the term 𝜏𝐼𝐴𝐷 𝐶!,! − 𝐶!,!  represents the flux 

exchanged between the two phases of the porous medium. The symbol 𝑆 denotes the 
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source term representing the consumption of nutrients by living cells disseminated into 

the scaffold. For this reason, it is usually a function (linear or nonlinear) of the nutrient 

concentration.  We will discuss the constitutive models for the parameters 𝑆, 𝜏, 𝐼𝐴𝐷 in the 

next section. 

At the inlet boundaries (𝛤!_!",!"  𝑒  𝛤!_!"#$,!") a known concentration has been imposed, 

using independent values on each inlet section. A homogeneous Neumann condition 

∇𝐶! ∙ 𝒏 = 0   has been adopted on the bioreactor wall and outlets 

(𝛤!_!", 𝛤!!"#$ ,   𝛤!_!",!"#  𝑒  𝛤!_!"#$,!"#). In fact, the wall is considered impermeable to 

nourishments and their flux in the direction normal to the outlets is assumed equal to 

zero. Moreover, conservation of concentrations 𝐶! = 𝐶!  and of biomolecules flux 

−𝐷!∇ ∙ 𝐶!𝒏 = −𝐷!∇ ∙ 𝐶!𝒏      have been applied at the interface between fluid and porous 

media (𝛤!"#$%!!"#"$%). As a result, the concentration of oxygen is determined by the 

following problem: 

∇ ∙ −𝐷!,!∇ 1 − 𝛾 𝐶!,! + 1 − 𝛾 𝑈𝐶!,! + 1 − 𝛾 𝑆 + 𝜏𝐼𝐴𝐷 𝐶!,! − 𝐶!,! = 0 

∇ ∙ −𝐷!,!∇γ𝐶!,! + 𝑈𝛾𝐶!,! + 𝛾𝑆   +   𝜏𝐼𝐴𝐷 𝐶!,! − 𝐶!,! = 0     

 

∀𝑥 ∈ Ω!"#$$%&' 

∇ ∙ −𝐷!∇𝐶! + 𝑈𝐶! = 0       ∀𝑥 ∈ Ω!_!" ∪ Ω!_!"#$ 

𝐶!  !𝐶! ∀𝑥 ∈ 𝛤!_!",!" 

𝐶!  !𝐶! ∀𝑥 ∈ 𝛤!_!"#$,!" 

∇𝐶! ∙ 𝒏 = 0     ∀𝑥 ∈ 𝛤!_!",!"# ∪ 𝛤!_!"#$,!"# 

∇𝐶! ∙ 𝒏 = 0     ∀𝑥 ∈ 𝛤!_!" ∪ 𝛤!_!"#$ 
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𝐶! = 𝛾𝐶𝑠,𝑓 + (1 − 𝛾)𝐶𝑠,𝑠 ∀𝑥 ∈ 𝛤!"#$%!!"#"$% 

−𝛾𝐷!∇𝐶! ∙ 𝒏 = −𝐷!∇ 𝛾𝐶𝑠,𝑓 ∙ 𝒏 ∀𝑥 ∈ 𝛤!"#$%!!"#"$% 

− 1− 𝛾 𝐷!∇𝐶! ∙ 𝒏 = −𝐷!∇ (1 − 𝛾)𝐶𝑠,𝑠 ∙ 𝒏 ∀𝑥 ∈ 𝛤!"#$%!!"#"$% 

(	  5	  ) 

2.4	  Model	  parameters	  and	  constitutive	  laws	  

2.4.1 Model parameters for the flow model 

First, the characteristic Reynolds number of the flow in the bioreactor was determined 

from the following definition, 

𝑅𝑒 =
𝑣𝐷𝜌
𝜇 =

4
𝜋𝐷

𝜌𝑣𝜋𝐷!

4𝜇 =
4
𝜋𝐷

𝜌𝑄
𝜇  

(	  6	  ) 

where 𝐷 is the inlet diameter of 1mm, 𝜌 = 999,97  𝐾𝑔/𝑚!and 𝜇 = 0,001  𝑃𝑎 ∙ 𝑠 are the 

fluid density and dynamic viscosity, respectively, 𝑄 is the inlet flow rate into each 

chamber, equal to 1 ml/day. A 𝑅𝑒 ≪ 0,01 , was found thus confirming that the 

assumption of laminar flow is accurately verified. As a consequence, the inertial (and 

nonlinear) term in the momentum equation, namely ρ𝑈×𝑈, can be neglected and the flow 

model turns out to be a set of linear equations. This will be the key property for the later 

derivation of a surrogate of the flow model, which is only based on algebraic equations 

consequently featuring a negligible computational cost. 
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Another parameter, essential to determining the flow in the porous medium is the 

(intrinsic) permeability 𝐾!"#$ that is determined by the microscopic structure of the 

scaffold, quantified by the porosity (𝛾), the tortuosity, etc. In the case of materials 

featuring an anisotropic structure, permeability is a tensor quantity. Here, since the 

scaffolds under consideration are isotropic, it becomes a scalar parameter. In what 

follows, we will consider two types of scaffolds, one made out of methacrylated gelatin 

(GelMA) and the other consisting of a poly-L-lactate (PLLA) foam. The porosity and 

permeability of the latter have been estimated via Boyle’s pycnometer and scanning 

electron microscopy (SEM) analysis. Data for GelMA are scarce in literature. However, 

for tissue engineering it is used as a surrogate material to mimic the extracellular matrix 

of cartilage; hence, we initialized the model for the bioreactor configuration using data 

that have been previously measured for native cartilage (25). In both cases, the values for 

porosity and permeability are reported in Table 1. 

2.4.2 Model Parameters and constitutive laws for mass transport 

Inlet concentrations for oxygen are 3.15 e-3 [mg/ml] and 7.2 e-3 [mg/ml] for the upper 

and lower chamber, respectively. We observe that the oxygen supply of the upper 

chamber falls within the range of hypoxic conditions, compatible with the biological need 

of the chondral tissue, while the lower chamber, where bone is developed, is kept under 

normoxic conditions. These different environments are aimed at supporting stem cell 

differentiation into a chondral and  osseous phenotype, respectively (26). The diffusion 

coefficient was obtained from previously published studies (27). 
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For the exchange of biomolecules between fluid and solid phases within the scaffold, the 

coefficients 𝜏, 𝐼𝐴𝐷 must be calculated. To this purpose, we model the porous medium as 

a periodic structure whose unit can be idealized as a cube containing a hollow sphere, 

namely the pore, as illustrated in Figure 3. Although this configuration is incompatible 

with the flow through the pore, as it is completely closed, it is adequate for modeling 

mass transfer between the solid and the fluid phases of the porous medium. According to 

this model, we estimate the value of the interface area density (𝐼𝐴𝐷), which only depends 

on the configuration of the unit. Let 𝑆!_! = 4𝜋𝑅! and 𝑆!_! = 4𝜋 𝑅 − 𝛿 ! be the external 

and internal pore surface, respectively, and let 𝑉! be the total volume of the unit. Then the 

interface area density is defined as: 

𝐼𝐴𝐷 =
𝑆!_!+𝑆!_!

𝑉!
 

(	  7	  ) 

To estimate the mass transfer coefficient, we assume that at the pore scale mass transfer 

is dominated by diffusion in the solid phase. As a consequence, the Sherwood number 

magnitude turns out to be in the range of unity. Exploiting this assumption, we have 

1 = 𝑆ℎ =
𝜏𝑑
𝐷!,!

 

(	  8	  ) 

where   𝜏 is the mass transfer coefficient and 𝑑 is the pore diameter. As a result, we 

obtain, 
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𝜏 =
𝐷!,!
𝑑  

(	  9	  ) 

We observe that GelMA and PLLA have different behaviors with respect to mass transfer 

and interface area density. GelMA scaffold has homogeneous properties, namely the pore 

radius is uniform everywhere and equal to R=9.77205 e-6[m] with a thickness δ=10%R. 

The GelMA matrix is permeable to solutes, as shown by the positive diffusion 

coefficients 𝐷!,! reported in Table 2. The PLLA scaffold is substantially different because 

it is impermeable to solutes. As a result, the mass transfer coefficient is necessarily null. 

Since the exchange between solid and fluid phases in the porous medium is modeled by 

terms 𝜏𝐼𝐴𝐷 𝐶!,! − 𝐶!,! , we notice that the interface area density does not affect the 

model. 

In order to complete the mass transport model, we introduced the term 𝑆, to account for 

both catabolite production and metabolite consumption in cell metabolism. Given the 

importance of maintaining cell viability by ensuring sufficient nutrients supply, we focus 

in particular on metabolite consumption, for which studying transport of oxygen is ideal. 

Cells are assumed to be confined in the porous scaffold and consumption of 

nutrients,𝑆 𝐶! , is expected to be proportional to their availability, namely 𝑆 𝐶! =

𝑆(𝛾𝐶!,! + 1− 𝛾 𝐶!,!). Different models can be adopted for this function, either linear or 

nonlinear. In the former case we set 𝑆 𝐶! = 𝑟𝐶! , where 𝑟  is a constant parameter 

determined according to the following balance law: 

𝑟 ∙ 𝐶 = 𝑉!"# ∙ 𝑁! 
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(	  10	  ) 

where 𝐶 is a reference concentration for each solute, measured in [mol/ml], 𝑉!"#is the 

maximal consumption rate for the considered nutrient and for a specific cell phenotype, 

quantified in [mol/cell s], and 𝑁! is the average volumetric cell density in the scaffold, 

measured in [cells/ml]. The main limitation of this model is that it does not guarantee any 

upper bound for nutrient consumption rate. The more nutrients are available, the more 

they are metabolized. This approach can be improved using a Michaelis-Menten 

description of cell metabolism (28), which introduces saturation of the consumption rate, 

according to the following function: 

𝑟 𝐶! =
𝑉!"#𝐶!
𝐾! + 𝐶!

 

(	  11	  ) 

where 𝐾! is the Michaelis-Menten constant, equal to the concentration at which the 

consumption rate reaches 50% of the maximal value. As a result, the consumption term 

turns out to be a nonlinear function, namely 

𝑆 𝐶! = 𝑟 𝐶! 𝐶! 

(	  12	  ) 

We observe that for small nutrient concentrations the linear and the Michaelis-Menten 

models behave similarly, whereas the latter provides a better estimate of metabolic 

consumption in case of abundance of nutrients. 
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2.5	  Computational	  solvers	  

The commercial code ANSYS CFX v.13.0  was used to carry out the fluid dynamic and 

mass transport simulations. The spatial discretization consists of a cell based finite 

volume method.  

From the computational standpoint, the main challenge of this study consists in solving a 

fluid-porous interaction problem that involves coupled flow and mass transport. A fully 

coupled strategy has been adopted, namely all the equations are solved simultaneously 

through a monolithic linear system that embraces all the degrees of freedom.  

More precisely, the Laplace operator in the fluid momentum and oxygen transport 

equations is approximated by a centered scheme, while the convective terms have been 

discretized by means of an upwind method. The convective term in the Navier-Stokes 

equations is linearized by Picard iterations (equivalent to a fictitious time stepping 

method with semi-implicit treatment of 𝛻 ∙ ρ𝑈×𝑈 ) (“ANSYS CFX-Solver Theory 

Guide”, ANSYS Inc., 2010). The pressure variable in the Navier-Stokes equations is 

evaluated at the same nodes of the velocity field. 

The system is then solved using an algebraic multigrid method exploiting incomplete LU 

factorization as smoother. Numerical simulations have been performed on parallel CPUs 

using a quad-socket 12-Core AMD Magny Cours CPU, 128 GB RAM at University of 

Pittsburgh. Convergence criteria were set to 10!!  for the normalized residuals of the 

global linear system of equations.  
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To ease the convergence of the algebraic solver, it turned out to be extremely helpful to 

neglect the contribution of streamline diffusion in the mass transport model, accounting 

only for the cross-wind component of the diffusion operator. From the modeling 

standpoint, this approximation is justified since the Péclet number characterizing mass 

transport in the ducts and in the scaffold of the bioreactor is larger than unity. More 

precisely, we define the Péclet number as follows 

𝑃𝑒 =
𝑎𝑈
𝐷  

(	  13	  ) 

where 𝑎 is the characteristic length of diffusion, 𝑈 is the characteristic fluid velocity and 

𝐷 is the diffusion coefficient of the nutrient in the fluid (water). The Péclet number has 

been calculated for two sets of parameters, the first one identifying flow and mass 

transport in the pores of the insert (𝑎= 9.77205 e-6 m, 𝑈 = 1.546e-3 m/s, D =2.9e-9 m2/s) 

and the second one the flow in the chambers that will hold the scaffold (  𝑎= 5 e-4 [m],𝑈 = 

1.473e-5 [m/s], D =2.9e-9 [m2/s]). For the insert we obtained 𝑃𝑒 = 2.5, while for the 

chambers 𝑃𝑒 = 5.2. 

Domain discretization is a crucial phase in the computational model set up to ensure an 

accurate description of the investigated phenomena as well as reasonable computational 

time and costs. The geometrical features of the bioreactors span from 8.5 mm (height of 

the scaffold), to 1 mm (inlet/outlet channel inner diameter), to 0.25 mm (radius of the 

pores). The final mesh consists of 735658 and 550226 tetrahedral elements for the 

GelMA and the PLLA case, respectively, with a minimum dimension of the elements of 
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0.1 mm and a maximum of 0.25 mm. This discretization is suitable for the fluid dynamics 

model, because, as previously stated, the Reynold’s number results smaller than 0.01, and 

consequently the boundary layers can be considered fully developed. The fluid dynamics 

simulations in single array are performed with moderate computational effort (about 7 

minutes on CPUs using a quad-socket 12-Core AMD Magny Cours CPU, 128 GB RAM). 

A numerical test that uses a coarser mesh consisting of 443740	  and	  242236 elements, 

respectively, confirms that the results obtained with the finer discretization are insensitive 

to the mesh size. 

3	  Lumped	  parameter	  models	  of	  HTB	  

Although in-silico analysis is rightfully considered a cost efficient approach with respect 

to experimental investigation, section 2.3 illustrates that the development of a 

computational model of the bioreactor is a challenging task, because of the significant 

amount of work-hours required to define a detailed CAD model and the considerable 

computational efforts involved with the definition of a computational mesh and with the 

solution of the discrete equations.  

When using numerical tools in the design or optimization of the bioreactor configuration 

and working conditions, it is essential to minimize the cost of running simulations for 

different sets of design parameters. The scientific computing community is well aware of 

this critical aspect of the approach and has recently made great progress in developing 

strategies to synthesize surrogate models that replace the brute force simulation approach 

with much less computational costs. We have mentioned a list of a few examples related 

to bioengineering (29-35), among many others. 
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Surrogate or reduced models are based on much simpler mathematical operators than 

partial differential equations. For steady problems, they may consist of algebraic 

equations, or ordinary differential equations to capture time dependent phenomena. Such 

models are often called lumped parameter models, because they synthesize into a small 

number of coefficients the behavior of spatially dependent functions, solutions of partial 

differential equations, a.k.a. distributed parameter models. 

The aim of this section is to derive a set of lumped parameter models describing flow and 

mass transport in the bioreactor fulfilling two objectives: 

1. To determine the change of quantitative outputs when the input data are 

varied, for a fixed single or multi-chamber configuration, 

2. To determine the change of quantitative outputs when the number of 

chambers in the array is varied. 

3.1	  Lumped	  parameter	  model	  for	  a	  fixed	  HTB	  configuration	  

We aim to develop an input-output relation between parameters of the model and 

observed quantities of interest. Because of the linearity of the flow model, motivated by 

low Reynolds numbers, this relation is a linear operator that can be characterized by a 

limited number of simulations. The number of required simulations depends on the 

dimension of the input/output parameter space. 

To illustrate the derivation of a lumped parameter model, we consider an example that 

will be later used for the bioreactor design. In particular, we analyze the flow split at the 

outlet of the bioreactor chambers for prescribed values of the inlet flow rates. 
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Let us consider the velocity fields 𝑈! , 𝑖 = 1,2 defined by fixing unit flow rates at each 

inlet of the bioreactor, 

− 𝛻 ∙ 𝜇 𝛻𝑈!+ 𝛻𝑈!
! = −

𝜇
𝐾!"#$

𝑈! − 𝛻𝑝! 	   ∀𝑥 ∈ Ω!_!" ∪Ω!_!"#$ ∪Ω!"#$$%&' 	  

∇ ∙ 𝑈! = 0	   ∀𝑥 ∈ Ω!_!" ∪Ω!_!"#$ ∪Ω!"#$$%&' 	  

𝑈! = 1	   ∀𝑥 ∈ Γ!",!   , 𝑖 = 1,2	  

𝜎 𝑈,𝑝 ∙ 𝑛 = 0	   ∀𝑥 ∈ Γ!"#,!   , 𝑖 = 1,2	  

(	  14	  ) 

Since the flow model is linear, the velocity and pressure fields 𝑈,𝑝 corresponding to any 

combination of the inlet flow rates, denoted as 𝑄!"!  and 𝑄!"!  respectively, can be 

represented as a linear combination of solutions 𝑈! ,𝑝! 

𝑈 =
𝑄!"!
𝐴!

𝑈! +
𝑄!"!
𝐴!

𝑈!  ;   𝑝 =
𝑄!"!
𝐴!

𝑝! +
𝑄!"!
𝐴!

𝑝! 

(	  15	  ) 

Since we are interested in the quantification of the outflow rates, we calculate 

𝑄!"#,! = 𝑈
Γ!"#,!

∙ 𝑛𝑑𝑥 = 𝑄!",! 𝑈!
Γ!"#,!

∙ 𝑛𝑑𝑥

!!,!

+ 𝑄!",! 𝑈!
Γ!"#,!

∙ 𝑛𝑑𝑥

!!,!

=  

= 𝑄!",! ∙𝑚!,! + 𝑄!",! ∙𝑚!,! 

(	  16	  ) 
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As a result, we have identified the following input-output algebraic relation between inlet 

and outlet flow rates  

𝑄!"#,!
𝑄!"#,!

=
𝑚!,! 𝑚!,!
𝑚!,! 𝑚!,!

∙
𝑄!",!
𝑄!",!

      𝑖. 𝑒.      
𝑄!"!,!
𝑄!"#,!

= 𝑀
𝑄!",!
𝑄!",!

     , 𝑀 =
𝑚!,! 𝑚!,!
𝑚!,! 𝑚!,!

 

(	  17	  ) 

that represents the lumped parameter model we were looking for. We note that the 

operator (matrix) 𝑀 depends on the bioreactor geometric design.  

This approach can be extended to the mass transport problem, provided that the model 

adopted for consumption of nutrients is linear, namely 𝑆 𝐶! = 𝑟𝐶!. In this case, we 

denote with 𝑑!  the solution of equation (5) obtained setting 𝐶! = 𝐶!",! = 1  and 𝐶!!! =

𝐶!",!!! = 0. Then, any solution 𝐶! of the mass transport problem can be expressed as 

𝐶! = 𝐶!",!𝑑! + 𝐶!",!𝑑! 

(	  18	  ) 

Let 𝐶!"#,!,𝐶!"#,! be the nutrient concentration on the upper and lower outlets respectively 

and for simplicity of notation let us define 

𝑑!,! =   𝑑! !!"#,!"  ,𝑑!,! =   𝑑! !!"#,!"#$ 

(	  19	  ) 

Then, because of the linearity of the mass transport model we obtain 
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𝐶!"#,! = 𝐶!",! ∙ 𝑑!,! + 𝐶!",! ∙ 𝑑!,! 

(	  20	  ) 

that can be translated in the following vector form, 

𝐶!"# = 𝐷 ∙ 𝐶!"  ;     𝐶!"# =
𝐶!"#,!
𝐶!"#,!

 ;    𝐶!" =
𝐶!",!
𝐶!",!

  e    𝐷 =
𝑑!,! 𝑑!,!
𝑑!,! 𝑑!,!

 

(	  21	  ) 

3.2	  Lumped	  parameter	  model	  for	  variable	  bioreactor	  configurations	  

Here we focus on the problem of determining a lumped parameter model for a sequence 

of bioreactor units, when the solution for 1-unit is known. From the methodological 

standpoint, this problem is more challenging than the one of characterizing the lumped 

parameter model for one bioreactor unit, because partial differential equations are not 

linear with respect to the configuration of the domain. In other words, the solution of an 

n-unit bioreactor is not the superposition of n solutions of a single unit configuration. 

Another strategy for determining a lumped parameter model of a multi-unit configuration 

emerges observing that units are combined in sequence (see Figure 4). Consequently, we 

conjecture that the behavior of the n-unit bioreactor is the composition of n-unit models. 

As an example, for a sequence of two units we posit that the input/output relation for 

flow rates is 

𝑄′!"#!
𝑄′!"#!

= 𝑀
𝑄!"!
𝑄!"!

;     
𝑄′!"#!
𝑄′!"#!

= 𝑀!
𝑄′!"!
𝑄′!"!

;   
𝑄′!"!
𝑄′!"!

= 𝑀!
𝑄!"!
𝑄!"!
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(	  22	  )	  

Owing to the similar design of the upper and lower chambers, the resistance to flow of 

the fluid entering from the upper and lower inlets is comparable. As a result, the 

following property is valid at any junction between two adjacent bioreactor units, 

𝜎 𝑈,𝑝 ∙ 𝒏
Γ!
= 𝜎 𝑈,𝑝 ∙ 𝒏

Γ!
	  

(	  23	  )	  

It shows that equal normal stresses are applied at the intermediate section of a 2-unit 

bioreactor. Since these are the boundary conditions applied at the outlet of our model for 

an individual unit it means that any unit in a row functions as an individual one. As a 

result, we conclude that 

𝑀! ≅ 𝑀;   𝑀! = 𝑀	  

(	  24	  )	  

and consequently 

𝑄′!"#!
𝑄′!"#!

= 𝑀 ∙
𝑄′!"!
𝑄′!"!

= 𝑀 ∙𝑀
𝑄!"!
𝑄!"!

= 𝑀! 𝑄!"!
𝑄!"!

	  

(	  25	  )	  

This example can be easily generalized to the case of a row of n-units. More precisely, 

we infer that the lumped parameter model for an n-unit bioreactor, denoted by 𝑀!is the 

multiplicative composition of n single unit models, namely 
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𝑀! = 𝑀! 

(	  26	  ) 

where the latter expression denotes the n-th power of the operator 𝑀. 

This approach can be applied to flow (as illustrated above) as well as to mass transport. 

In this way, the lumped parameter models 𝑀,𝐷, derived in section 3.1 for single unit 

configurations, can be extended to multi-unit configurations made of units  combined in a 

row. Using direct numerical simulations of multi-cell configurations, we will demonstrate 

in the next sections the good accuracy of these reduced models. 

We finally observe that the model composition rule is also applicable in the case of 

combination of different unit designs (schematized in Figure 4 with letters A, B, C). In 

particular, the input/output relation (𝑌 = 𝑀 ∙ 𝑋)  for a row of 3-units of generic type A, B, 

C of which we know the individual lumped parameter models, 𝑀!,𝑀! ,𝑀!  respectively, 

is given by 𝑀 = 𝑀! ∙𝑀! ∙𝑀! . Following the ambitious vision of building a human-on-

chip model, any pattern of bioreactors organized in a row can be characterized using this 

approach, provided that the properties of each individual unit are known. 

4	  Numerical	  simulations	  	  

4.1	  Numerical	  simulation	  of	  flow	  

In this study, simulations of flow are performed to compare flow patterns in the GelMA 

and PLLA scaffold when inlet flow rates are varied. More precisely, the following 
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different flow pairs were simulated: (a) 1 and 1, (b) 1 and 2 and (c) 10 and 10 ml/day for 

the upper and lower inlet, respectively.  

We observe that for all the configurations, the fluid is driven by the pressure gradient to 

move toward the upper chamber (Figure 5). The flow split obtained by applying the 

different flow pairs are reported in Tables 3 and 4 for the GelMA and PLLA case, 

respectively. The comparison of the outlet flow rates for the two scaffolds highlighted 

opposite outcomes in terms of flow mixing. Indeed, while not significant flow mixing 

was found for the GelMA scaffold, a significant mixing occurs in the PLLA case. As 

expected, the maximum mixing (that is 42.9%) occurs with different input fluid flow 

rates (1 and 2 ml/day at the upper and lower inlet, respectively). 

For the sake of brevity, the results of the 4-units array are not reported since they are the 

qualitatively equivalent to the single unit configuration. 

4.2	  Numerical	  simulation	  of	  transport	  

Simulations of oxygen transport were performed to compare mass transfer in the GelMA 

and PLLA scaffolds.  

Concentrations equal to 3.15 and 7.2 µg/l were applied at the upper and lower inlet, 

respectively. As in the previous case, the following flow pairs were simulated: (a) 1 and 

1, (b) 1 and 2 and (c) 10 and 10 ml/day at the upper and lower inlet. Two configurations 

of the bioreactor were considered, namely 1-unit and a 4-unit array. The results of 1-unit 

model are reported in Figure 6 and Figure 7 for the GelMA and PLLA scaffold, 

respectively. The analysis of the mass transport simulations obtained for the GelMA and 
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the PLLA scaffolds allows us to draw general considerations, which are valid for both 

single and 4-unit arrays. 

Firstly, as explained in section 2.3.2, we see that axial advection is dominant with respect 

to the cross-wind diffusion. Therefore, the higher the flow rates and fluid velocity, the 

more the inlet and outlet oxygen concentrations look similar due to a reduced oxygen 

drop (Figure 6 b and Figure 7 b). However, the diffusion of oxygen from the lower 

chamber to the upper one is not negligible, because different inlet concentrations promote 

the formation of concentration gradients that trigger transport. 

For both the GelMA and PLLA cases, the oxygen concentration in the top region of the 

scaffold is higher in the case of low flow rate, (a, inlet flow equal to 1 ml/day) than in the 

case of high flow rate (c, inlet flow equal to 10 ml/day). Concerning case (b), the mix of 

the two chambers’ flow is greater and a contribution of convective transport is added to 

the diffusive flux from the bottom towards the top of the bioreactor chamber. For this 

reason, the oxygen concentration in the top region of the scaffold is greater in case (b) 

than in cases (a) and (c). 

Finally, the simulations suggest that the scaffold porosity and permeability play a 

relevant role on mass transport. Indeed, while the GelMA is permeable to oxygen, the 

PLLA is not. This implies that the aforementioned phenomena are more evident with a 

polymeric scaffold impervious to mass transport through the solid phase, such as PLLA. 
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4.3	  Oxygen	  consumption	  

The simulations of oxygen consumption were performed for the two different scaffolds 

(GelMA and PLLA) for an array of 4-units, in order to study the depletion of nutrients in 

the culture medium. The flow split is the one of case (a) (1 and 1 ml/day) and the inlets 

concentrations are equal to 3.15 and 7.2 µg/l at the upper and lower inlet, which 

correspond to the normoxic levels of the different types of tissue grown in the upper and 

lower chambers.  

Since we consider a 4-unit array, we observe that diffusion develops more easily along 

the bioreactor axis (longer fluid path with respect to the 1-unit case) and as a 

consequence, the oxygen concentration tends to become more uniform. More precisely, 

enhanced diffusion combined with different inlet concentrations causes a decrease of the 

oxygen level in the lower chamber and an increase in the top one. This trend is 

heightened by cellular oxygen consumption, which further leads to a diminishing of the 

oxygen concentration in the lower chamber (Figure 8).  

The two types of scaffold show the same trend of oxygen consumption, but the 

computations highlighted different percentage of consumed oxygen (Tables 9,10). 

Indeed, a higher percentage of oxygen consumption was found for the PLLA scaffolds 

with respect to GelMA. This effect is likely a result of the different cell density used for 

the two cases. In fact, cell density is assumed to be equal to 1 x 10! cells/ml for GelMA 

and to 2.12304019 x 10! cells/ml in the case of PLLA.  
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4.4	  Comparison	  of	  distributed	  and	  lumped	  parameter	  models	  

In this section, the results of the lumped and the distributed parameter models are 

presented and compared in terms of fluid dynamics and mass transport. The fluid 

dynamics results for 1-unit and 4-units array are first presented, then, the mass transport 

results of both configurations are studied. For the sake of brevity, we present only the 

results obtained by simulating the GelMA scaffold. 	  

4.4.1 Fluid dynamics 

Two computational fluid dynamics simulations were performed for the single unit 

configuration to determine the lumped parameter model (LPM). In particular, two inlet 

flow pairs are applied as reported in Table 5. The resulting LPM matrix M is:	  

𝑀 = 1 6.820  𝑒 − 8
6.188  𝑒 − 8 0.9999 	  

Then, the results of the 1-unit and 4-unit LPMs are compared to those of the distributed 

parameter model, see Tables 6,7, and in two test cases the error was lower than 1%. 

4.4.2 Mass transport 

For the LPM model of mass transport we have adopted the parameters of Table 2 and 

inlet concentrations summarized in Table 8. To start with, we analyze the mass transport 

model without cell metabolism, that is the case 𝑆 𝐶! = 0 in equation 5. The LPM model 

for the corresponding mass transport simulations is the following matrix: 
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𝐷 = 0.8481 0.1519
0.1519 0.8481 	  

The results of the 1-unit LPM are compared with those of the distributed parameter 

model in two simulations with different inlets concentrations, reported in Table 9, whose 

values are set according to ongoing experimental tests. The results from the LPM model 

differ from those of the distributed parameters model by less than the 1%.  

We also calculate the LPM model for mass transport with active cell metabolism. For the 

linear model, 𝑆 𝐶! = 𝑟𝐶!,  the LPM matrix for 1-unit is the following 

𝐷! =
0.6550 0.137
0.137 0.605  

while for the Michaelis-Menten case, namely equations (11,12), the LPM model becomes 

𝐷!! = 0.8377 0.1347
0.1327 0.8147  

The inspection of the matrices 𝐷,𝐷! ,𝐷!!   informs about the characteristics of the 

different consumption models compared here. We observe that the diagonal entries of 𝐷! 

are the smallest, confirming that the linear model is the one with the highest oxygen 

consumption rate. The extra-diagonal coefficients correspond to the oxygen exchange 

between the upper and lower chambers. Their magnitude is similar in all cases, because 

they depend on the diffusion parameters solely. For the linear case, the theory at the basis 

of the LPM derivation is satisfied, while it does not rigorously hold true for the 

Michaelis-Menten model, because the mass transport equation becomes nonlinear. Once 

again, numerical simulations based on the full model applied to the 8-unit array confirm 
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that the LPM model with linear consumption rate, namely 𝐷! , predicts outlet 

concentrations with less than 1% error. The corresponding results are reported in Table 

10 and visualized in Figure 9. In Table 11 we report the error of the LPM based on the 

Michaelis-Menten nonlinear consumption rate. Despite the nonlinear nature of the 

problem, in conflict with the principles at the basis of the LPM derivation, the LPM 

model is fairly accurate in predicting the concentration split and decay at the outlet also 

with a Michaelis-Menten consumption rate, with a maximum error of about 10% for an 

array of 4-units, located on the bottom outlet of the bioreactor. 

The LPM model for mass transport is particularly interesting because it allows us to 

estimate the decay of nutrient concentrations due to cell metabolism along an arbitrarily 

long array of units, using the formula 𝐶!"# 𝑛 = 𝐷! ∙ 𝐶!". Considering for example the 

inlet concentrations of Table 9, test case #2 for  𝐶!"  ,      we estimate the outlet 

concentration decay for the transport model without oxygen consumption. The same 

calculation is then repeated for the linear and the Michaelis-Menten models for cell 

metabolism and the results are compared in Figure 9, where also the outlet concentrations 

determined using the fully 3D simulations are shown for a qualitative visualization of the 

LPM error. 

5	  Discussion	  

From the engineering standpoint, our study shed lights on important aspects of the 

bioreactor behavior. We observe that the flow is dominated by viscous effects and by 

pressure gradients, while inertial effects are negligible. Differences in inlet velocities 
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between upper and lower chamber generate a vertical pressure gradient inside the 

bioreactor chambers, which promotes mixing of nutrient fluid flowing through the 

osteochondral construct. Furthermore, we have observed that the magnitude of vertical 

pressure gradients depends highly on the permeability of the scaffold. Between the two 

materials tested here, it appears that the most permeable one favors the mixing of fluid 

among the upper and lower chambers. 

Concerning mass transfer, our simulations suggest that it is dominated by convection. 

Diffusion effects are however non-negligible, but their (relative) intensity varies 

according to the inlet flow rate and the scaffold properties. More precisely, Figure 6 and 

Figure 7 show that high flow rates decrease the transport of biochemical species between 

the two chambers. From the analysis of these plots we also observe that the concentration 

in the bioreactor top chamber is greater than the one at the upper outlet. This means that 

the exchange between the chamber and the supplying channels is not sufficient to remove 

all the chemical species that accumulate in this region, because of combined diffusion 

and convection. This effect is observable for both types of scaffold, but is more evident 

for GelMA, suggesting that this type of material hinders flow and mass transport more 

than PLLA does. When nutrient (or oxygen) consumption is switched on in the 

simulation, concentration gradients are quickly smoothed out when traveling along 

multiple bioreactor units. At the same time, concentration levels significantly decrease. 

The computational model thus serves as a valuable tool to estimate whether the final units 

of the row receive enough nutrients, as illustrated in the example presented below. 
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Finally, we have developed a surrogate, inexpensive approach to characterize the output 

of the bioreactor without the burden of running many computer simulations. It consists of 

a lumped parameter model, derived exploiting the linearity of the full model. The LPM 

has proven to be very accurate in capturing the effect of sequentially combining multiple 

units. A natural application of this model is studying the concentration decay along a 

sequence of bioreactor units. For example, Figure 9 shows the concentration decay at the 

bioreactor outlets when the number of units is varied from 1 to 16. Three sets of curves 

outline the behavior of different cell metabolism models. When cell metabolism is 

switched off (dashed lines), the upper and lower concentrations equilibrate very quickly, 

confirming that diffusion effects of oxygen between the two chambers are non negligible. 

We recall that large oxygen diffusion and transport between the upper and lower 

chambers is not necessarily desirable, when different types of tissue are grown. Indeed, in 

our case, cartilage natural environment should be hypoxic, while bone better develops in 

normoxic conditions. For constant consumption rate, the concentration decay is the 

largest. As a consequence after 16 bioreactor units, almost all the nutrient concentration 

has been consumed. The Michaelis-Menten metabolic model is the most realistic of the 

three options, because it accounts for a saturation effect that limits the consumption rate. 

According to our preliminary data on cell viability in the bioreactor, obtained by 

Live/Dead assays (data not shown), the oxygenation computed after 16-units appears to 

be still at a sufficient level.  

The computational approach proposed here is subject to some limitations. One is the 

approximation of the fluid dynamic and mass transport through steady model. A key 

challenge in the engineering of three-dimensional tissue is maintenance of cell viability 



	   36	  

when the volumetric cell density increases. In this study, we assumed a constant cell 

density equal to the initial culture conditions that occur after distributing cells 

homogenously throughout the volume of the scaffolds. However, variations in cell 

density with time could be easily incorporated in both our models, to predict oxygen 

drops in long-term culture. Secondly, as literature data are lacking, we assumed the 

GelMA properties (i.e., porosity and permeability) equal to those of native cartilage. 

Experimental test will be performed in future work to assess these properties. Another 

improvement of our study would be to validate the oxygen concentration drops predicted 

by our models with actual measurements performed when the bioreactor is operated with 

cell-seeded constructs. This validation is feasible using oxygen sensors incorporated in 

the perfusion circuit, at the inlet and outlets of each bioreactor unit or even inserted 

directly in the chambers, in direct contact with the living cells (36). Extensive validation 

of the ability of our models to predict the flow-dynamics and mass transport in the 

bioreactor will be the subject of future work.  

6	  Conclusions	  and	  perspectives	  

From	  the	  methodological	  standpoint,	  we	  have	  overcome	  the	  challenge	  of	  developing	  

a	   complex	   multi-‐physics	   model	   of	   the	   bioreactor.	   We	   have	   also	   succeeded	   in	  

implementing	   the	   model	   into	   a	   commercial	   computational	   platform,	   showing	   the	  

significant	   potential	   of	   computational	   tools	   on	   biomedical	   research,	   including	  

analytical	  cases	  integrating	  quantitative	  biology	  and	  translational	  medicine.	  Future	  

developments	   of	   this	   study	   consist	   of	   experimental	   validation	   of	   the	   models	   and	  

their	   application	   to	   explore	   different	   bioreactor	   configurations.	   Such	   findings	  will	  
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allow	   optimization	   of	   the	   model	   by	   incorporating	   the	   multi-‐faceted	   factors	   that	  

affect	  its	  behavior	  and	  functionality.	  

  



	   38	  

Figures 

	  

Figure 1 Different bioreactor configurations: 1 cell (top left), 1-unit in cross section 

(top right), 4-units (bottom left) and 96-units. (bottom right). 
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Figure 2 Representation of the bioreactor (top). Free fluid regions are visualized in 

grey, the porous medium is red. For the localization of boundary surfaces, Ω  and Γ  

indicate volume and surface, respectively (bottom). 
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Figure 3 Representative SEM micrograph of the PLLA scaffold and microscopic 

model of the scaffold pores for the quantification of the exchange between fluid and 

solid constituents of the porous matrix.. 
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Figure 4 Top: A 8-unit bioreactor configuration, showing details of a 2-unit example 

used for the development of the lumped parameter model (top panels). Bottom: A 

sketch of a multi-unit bioreactor configuration with heterogeneous unit design in a 

generic sequence of units, where different unit designs are denoted with letters A, B, 

C. 
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Figure 5 Streamlines in the 1- unit model with the GelMA scaffold. 
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Figure 6 Oxygen concentration with GelMA scaffold. From left to right, flow pair of 

1-1 [ml/day], 1-2 [ml/day], 10-10 [ml/day] 

	  

	  

Figure 7 Oxygen concentration, with PLLA scaffold. From left to right, flow pair of 

1-1 [ml/day], 1-2 [ml/day], 10-10 [ml/day] 

Oxygen [mg/ml] 

Oxygen [mg/ml] 
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Figure 8 Oxygen concentration in the 4 cells array with GelMA (left) and PLLA 

(right) scaffold when the consumption phenomenon is accounted for 

	  

 

	  

Oxygen [mg/ml] 
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Figure 9 Variation of the outlet concentration with respect to the number of units 

(unit #0 denotes the inlet value) for the mass transport model without cell 

metabolism (dashed line), with linear consumption rate (dotted line) and with 

Michaelis-Menten consumption model (solid line). Data calculated using the full 3D 

model are reported in red. 
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Table 1 Porosity and permeability values used for GelMA and PLLA scaffolds	  

 GelMA scaffold PLLA scaffold 

Porosity 0.8 0.93 

Permeability [m^2] 1 e-16[20] 3.23384e-09 

	  

Table 2 Oxygen parameters adopted in the computational analysis for GelMA and 

PLLA scaffold	  

 GelMA PLLA 

𝐷! = 𝐷!,! 2.1 x10-9 [m2/s] 2.1 x10-9 [m2/s] 

𝐷!,! 4.5 x10-10 [m2/s] 0 

𝜏   0.230248 e-5[21] [m s^-1] 0 

IAD	   2.9094 e5 [m^-1] 3.8924 e4 

𝑣!"#	  	  	   1.15	  10-‐17	  [mol/cell	  s] 1.15	  10-‐17	  [mol/cell	  s] 

𝑁!	   1.12	  106	  [cell/ml] 1.12	  106	  [cell/ml] 

𝐶!	   168.98	  10-‐9	  [mol/cl] 168.98	  10-‐9	  [mol/cl] 
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Table 3 Results obtained by simulating different flow split in the one unit model 

with the GelMA and PLLA scaffold.	  

 Inlet GelMA PLLA 

 

Qin,top 

[Kg/s] 

Qin,down 

[Kg/s] 

Qout,top 

[Kg/s] 

Qout,down 

[Kg/s] 

Qout,top 

[Kg/s] 

Qout,down 

[Kg/s] 

a) 1 1 1 1 1.032 0.968 

b) 1 2 1 2 1.429 1.571 

c) 10 10 10 10 10.32 9.68 

Table 4 Percentage of oxygen consumption for the GelMA and PLLA scaffold	  

 GelMA PLLA 

Upper chamber  0.93% 4.9% 

Lower Chamber 1.8% 8.14% 
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Table 5 Simulation settings to identify the fluid dynamics characteristics of one-unit 

bioreactor.	  

 

Qin,top 

[Kg/s] 

Qin,down 

[Kg/s] 

Qout,top 

[Kg/s] 

Qout,down 

[Kg/s] 

#1  1e-08 0 1e-08 6.19e-16 

#2  0 1e-08 6.82e-16 9.99e-9 

 

Table 6 Comparison of the 1-unit fluid dynamics results provided by the distributed 

(distr) and the lumped (lump) parameter models.	  

 

Qin,top 

[Kg/s] 

Qin,down 

[Kg/s] 

Qout,top, distr 

[Kg/s] 

Qout,down, distr 

[Kg/s] 

Qout,top, lump 

[Kg/s] 

Qout,down, lump 

[Kg/s] 

#1  1.157e-08 1.157e-08 1.157e-08 1.157e-08 1.157e-08 1.569e-08 

#2  1.157e-08 2.314e-08 1.157e-08 2.314e-08 1.157e-08 2.313e-08 

	  

Table 7 Comparison of the 4-unit array fluid dynamics results provided by the 

distributed (distr) and the lumped (lump) parameter models.	  

 

Qin,top 

[Kg/s] 

Qin,down 

[Kg/s] 

Qout,top, distr 

[Kg/s] 

Qout,down, distr 

[Kg/s] 

Qout,top, lump 

[Kg/s] 

Qout,down, lump 

[Kg/s] 

#1  1.157e-08 1.157e-08 1.157e-08 1.157e-08 1.157e-08 1.569e-08 
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#2  1.157e-08 2.314e-08 1.157e-08 2.314e-08 1.157e-08 2.313e-08 
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Table 8 Simulation settings to identify the mass transport input-output 

characteristics of one-unit bioreactor.	  

 

[O2]in,top 

[mg/ml] 

[O2]in,down 

[mg/ml] 

[O2]out,top 

[mg/ml] 

[O2]out,down 

[mg/ml] 

#1  1e-03 0 8.514e-04 1.486e-04 

#2  0 1e-03 1.486e-04 8.514e-04 

 

Table 9 Comparison of the one-unit oxygen concentration results provided by the 

distributed (distr) and the lumped (lump) parameter models.	  

 

[O2]in,top 

[mg/ml] 

[O2]in,down 

[mg/ml] 

[O2]out,top, distr 

[mg/ml] 

[O2]out,down, distr 

[mg/ml] 

[O2]out,top, lump 

[mg/ml] 

[O2]out,down, lump  

[mg/ml] 

#1  3.15e-03 7.2e-03 3.765e-03 6.585e-03 3.765e-03 6.585e-03 

#2  2e-03 4e-03 2.304e-03 3.696e-03 2.304e-03 3.696e-03 

	  

Table 10 Comparison of the 8-unit array oxygen concentration results provided by 

the distributed (distr) and the lumped (lump) parameter models with linear 

consumption rate.	  

 [O2]in,top [O2]in,down [O2]out,top, distr [O2]out,down, distr [O2]out,top, lump [O2]out,down, lump  
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[mg/ml] [mg/ml] [mg/ml] [mg/ml] [mg/ml] [mg/ml] 

#1  3.15e-03 7.2e-03 6.555 e-4 5.628 e-4 6.545 e-4 5.613 e-4 

#2  2e-03 4e-03 3.826 e-4 3.274 e-4 3.821 e-4 3.265 e-4 

	  

	  

Table 11 Comparison of the 4-unit array oxygen concentration results provided by 

the distributed (distr) and the lumped (lump) parameter models with Michaelis-

Menten consumption rate.	  

 

[O2]in,top 

[mg/ml] 

[O2]in,down 

[mg/ml] 

[O2]out,top, distr 

[mg/ml] 

[O2]out,down, distr 

[mg/ml] 

[O2]out,top, lump 

[mg/ml] 

[O2]out,down, lump  

[mg/ml] 

#1  3.15e-03 7.2e-03 3.754e-03 4.295e-03 3.971e-03 4.678e-03 

#2  2e-03 4e-03 2.202e-03 2.43e-03 2.3482e-03 2.677e-03 
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