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Abstract

In Italy we have assisted to the recent introduction of the natural gas balancing

platform, a system in which gas operators virtually sell and buy natural gas in order

to balance the common pipelines network. Basically, the operators daily submit de-

mand bids and supply offers which are eventually sorted according to price. Demand

and supply curves are hence obtained by cumulating the corresponding quantities.

Motivated by market dynamic modeling in the Italian Natural Gas Balancing Plat-

form, we propose a model to analyze time series of bounded and monotonic functions.

In detail, we provide the constrained functions with a suitable pre-Hilbert structure

and introduce a useful isometric bijective map associating each possible bounded and

monotonic function to an unconstrained. We then introduce a functional-to-functional

autoregressive model that we use to predict the entire demand/supply function. We

estimate the model by minimizing the squared L2 distance between functional data and

functional predictions with a penalty term based on the Hilbert-Schmidt squared norm

of autoregressive lagged operators. We have proved that the solution always exist,

unique and that it is linear on the data with respect to the introduced geometry thus
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guaranteeing that the plug-in predictions of future entire demand/supply functions

satisfy all required constraints. We also provide an explicit expression for estimates

and predictions. The approach is of general interest and can be generalized in any sit-

uation in which one has to deal with constrained monotonic functions (strictly positive

or bounded) which evolve through time (e.g., dose response functions right-censored

survival curves or cumulative distribution functions).

Keywords: Functional Data Analysis; Auto Regressive Model; Functional Ridge

Regression;

1. INTRODUCTION

Supply and demand curves model is well known microeconomic model of price determi-

nation. Basically, it assumes that in a competitive market, the unit price for a partic-

ular good is determined at the intersection of two monotone curves having the traded

quantity as abscissa and the current price as ordinate. The economic equilibrium,

which determines the price, is obtained in that point where the quantity demanded by

consumers (at current price) will equal the quantity supplied by producers (at current

price). Demand and supply curves can be statistically estimated from price, quantity,

and other exogenous variables using least squares or simultaneous equations (see Epple

and McCallum 2006, for a recent application). However usual approaches are intrinsi-

cally descriptive rather than predictive and, even more, they rely on strict parametric

structure for the regression functions.

Motivated by price prediction in Italian natural gas balancing market, we propose

a model to forecast supply and demand curves evolving day by day. The approach is of

general interest and can be generalized in any situations in which one has to deal with

constrained functions which evolve through time. The proposed method is innovative

both from the methodology perspective and from the application point of view.

On the one side, in fact, usual application of supply and demand curve model is

descriptive and static. This clearly does not help the trader of a particular market to

forecast possible price or help him in the decision making on bidding in the future. On

the other side, usual forecasting methods, such as classical time series analysis, while

producing useful forecast of quantities of interest (e.g., price), they do not provide the
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insights of the market given by the supply and demand model. Even more, in markets

with a moderate number of traders, the effect of a single non-standard offer or demand

cannot be directly incorporated in the inference procedure or in what-if simulations.

For all these reasons, the prediction of the supply and demand curves, and hence of

their intersection can be of dramatic interest.

Functional data analysis (FDA) provides an extremely useful set of tools to deal

with data that can be modeled as functions (e.g., demand and supply curves). Refer

to Ramsay and Silverman (2005), Ramsay and Silverman (2002), or Ferraty and Vieu

(2006) for a quick introduction to FDA. Differently from the most common framework

in FDA, we hereby focus on functions that are constrained (i.e., monotonic, lower and

upper bounded, and with an equality constraint on one edge of the domain and an

inequality constraint on the other edge) and temporally dependent. From a practical

point of view, we indeed aim at predicting future functions given past functions and

controlling for shape constraints characterizing both past and future functions.

The current and past literature focussed separately on: (a) the problem of obtaining

a constrained estimation of the underlying function given some point-wise evaluations

of it and (b) on the problem of modeling functional data with temporal dependence

(i.e., functional time series). At our knowledge, the present work is the first one in

which constraints pertaining to monotonicity, boundedness, and values of the function

at the boundary of the domain and the temporal dependence are jointly tackled. We

hencefort refer to this joint framework as Constrained Functional Time Series.

Before going into the details of the mathematical modeling and of the estimation

method that we propose inhere, we want to give a brief overview on the state of the

art pertaining to both monotonic estimation and functional time series estimation.

The problem of having monotonic estimates of unknown functions observed just

at some sparse points of the domain with possibly some measurement errors has been

tackled in the literature for many decades even before the recent outbreak of functional

data analysis. Isotonic regression is the first approach presented in the literature to this

purpose and it has been for years the most common approach to this purpose (e.g., Pas-

sow and Roulier 1977; Winsberg and Ramsay 1980, 1981; Ramsay 1988; Mukerjee 1988;

Mammen 1991; Kelly and Rice 1994; Mammen and Thomas-Agnan 1999). The basic

3



idea of this approach is to introduce a flexible functional basis (e.g., splines) to repre-

sent the function and to estimate the coefficients of the basis expansion by minimizing

the residual some of squares under the constraint of monotonicity of the estimated

functions. Typical choices rely on the use of an I-spline basis with a positive constraint

on the coefficients or on the use of a B-spline basis with equally spaced knots with a

monotonicity constraint on the coefficients. A similar approach has been proposed more

recently in the framework of kernel regression (Hall and Huang 2001; Henderson et al.

2008). The basic idea of these latter works is to locally modify the local kernels such

that the residual sum of squares is minimal and the estimated function is monotonic.

Another approach is the projection method (Friedman and Tibshirani 1984; Bloch and

Silverman 1997; Mammen et al. 2001). The basic idea of this method is to estimate

the unknown function in an unconstrained fashion, then project the estimated function

onto the convex subspace of the monotonic functions (i.e., looking for the monotonic

function being the closest to the unconstrained estimated function according to a given

metric). The approach we are going to use is in line with the transform/back-transform

method. This method is very spread in the literature pertaining to functional data

analysis and has been firstly proposed by Ramsay and Silverman (2005, 2002). The

idea is to find a bijective map from the space of the generic functions to the convex

subspace of the monotonic functions. The idea is indeed to transform data such to per-

form an unconstrained estimation on the transformed data and then back-transform

the estimated function to the convex subspace of the monotonic functions. Some very

recent works (Egozcue et al. 2006; Menafoglio et al. 2013; Boogaart et al. 2014) fo-

cusing on modeling cumulative distribution functions of absolutely continuous random

variable (inspired by the pioneering work by Aitchison (1982) on compositional data)

formalized this approach by introducing a suitable Hilbert structure on the set of the

cumulative distribution functions (i.e., Bayes linear space) and an isometric bijective

map to L2 for transforming and back-transforming functional data and conveniently

map the entire statistical analysis in an unconstrained framework (i.e., L2). In the

present paper, instead, we are going to introduce a suitable pre-Hilbert structure on

the set of monotonic, lower and upper bounded functions satisfying an equality con-

straint on one edge of the domain and an inequality constraint on the other one and
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an associated isometric bijective map to L2 allowing us to model temporal dependence

in an unconstrained framework. In the rest of the manuscript we will refer to it as the

M2 space. To our knowledge, this is the first time that a geometry in a functional

space is introduced and formalized such to obtained a sound theoretical framework to

model temporal dependence between constrained functional data.

The literature dealing with the temporal dependence between functional data is in-

stead more recent and dates at the beginning of this century. Functional autoregressive

models (FAR) are the most used approach, both for their ease of interpretation and

performance in applications (Elezović 2009). FAR models, i.e. autoregressive models

in which scalar random variable are replaced with random functions, do not have to

be confounded with functional-coefficient autoregressive models (e.g. Chen and Tsay

1993; Fan and Yao 2002) that are instead scalar models in which the dependence be-

tween the past values and the current value of the time series is non-linear dependence

and estimated in a generalized additive model perspective.

In functional autoregressive models, autoregressive parameters are replaced by

Hilbert-Schmidt operators and thus model estimation is declined in the estimation of

the autoregressive operators. To this purpose different methods have been presented

in the literature, though at the current state of the art none seems to overcome the

others (Hormann and Kokoszka 2012).

Autoregressive operators are directly linked with lagged autocovariance operators

(e.g., Kargin and Onatski 2008) and thus a first possible approach is to estimate the

lagged autocovariance operators from the functional time series and then use the these

estimates to estimate the autoregressive operators. Because of the infinite dimension-

ality of functional data and to obtain more stable estimates, sample autocovariance

operators are typically replaced by reduce rank approximations. A very common ap-

proach relies on functional principal component decomposition (e.g., Shang 2013) and

the use of a reduce number of principal components. This approach, though easy and

still widely spread, has been recently shown to fail the comparison in terms of predic-

tion with an alternative reduce rank representation based on predictive factors (Kargin

and Onatski 2008). Another reduce rank approximation presented in the literature is

based on a wavelet expansion of the original data (Antoniadis and Sapatinas 2003).
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A second approach to the estimation of the autoregressive operators is the direct

minimization of the mean squared error of prediction. In order to avoid over-fitting

due by the infinite dimensionality of functional data, the minimization problem has

to be dealt with some care. For instance, Fan and Zhang (2000) and Elezović (2009)

used a two-step approach: (i) they estimate a concurrent functional autoregressive

model, i.e. a model in which the cross-effects between different parts of the domains

are set to zero, this is indeed a continuous family of point-wise scalar autoregressive

models, and (ii) they smooth the obtained autoregressive functions to take into account

the effects of neighborhood points of the domain in determining the value at a given

point of tomorrow function. In the present paper, instead, we will directly target

at the minimization of the mean squared error of prediction in a perspective that is

more consistent with current research in functional data analysis by introducing in

the objective function a penalty term involving the squared Hilbert-Schmidt norm of

the autoregressive operators. With this approach, a full rank operator is obtained by

shrinking the set the degenerative solutions (that one would obtain without penalty)

toward a temporal independence scenario (that one would obtain by setting the penalty

constant to infinity). In detail we prove the existence and uniqueness of the estimators

and provide their explicit expressions.

The rest of the paper is structured as follows. In Section 2 we first introduce the

space M2(a, b) and an isometric bijective map to L2(a, b), and describe in detail the

M2-FAR model we are using, with particular emphasis on model estimation. Section 3

describes instead our motivating context and discuss the application of our methodol-

ogy to the Italian natural gas balancing market data. Section 4 summarizes the results

and discusses possible generalizations.

2. MODEL AND METHODS

2.1 The spaceM2(a, b): geometry and mapping functions

Let M2(a, b) be the family of differentiable functions g : [a, b] → [0, 1] such that: (i)

g(a) = 0, g(b) < 1, and (ii) 0 < mg ≤ g′(s) ≤ Mg < +∞ for all s ∈ [a, b]. Previous

conditions imply also that M2(a, b) ⊂ L2(a, b) and that all functions belonging to

M2(a, b) are monotonic increasing and bounded. Note that if condition g(b) < 1 is
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replaced with g(b) = 1 we obtain exactly the same conditions required to define the

Bayes space geometry introduced and developed in Egozcue et al. (2006); Menafoglio

et al. (2013); Boogaart et al. (2014). With respect to the curves studied in these works

(that are valued 1 at the right edge of the domain) the curves we are dealing with are

subject to a right censoring effect which makes them valued less than 1 at the right

edge of the domain of observation.

We first introduce a bijective map from M2(a, b) to L2(a, b) such that for any

g ∈M2(a, b), then

f(s) = log

(

g′(s)

1− g(s)

)

(1)

is its image which belongs to L2(a, b). By applying the exponential function and

integrating between a and s ∈ [a, b] in both sides of equation (1) we obtain the inverse

transformation:

g(s) = 1− exp

(

−

∫ s

a
exp (f(u)) du

)

. (2)

Note that the direct transformation look at g as a cumulative distribution function of a

scalar absolutely-contonuous random variable and maps it into the natural logarithm of

the corresponding hazard function. We will thus call it log-hazard transformation and

its inverse transformation anti-log-hazard transformation and indicate them with logH

and logH−1, respectively. In particular we have that constant function in L2(a, b) are

linked to exponential functions in M2(a, b): ∀c ∈ R f(s) = c ↔ g(s) = 1 − e−ec(s−a),

with the special case of the null function in L2(a, b) which is linked to the exponential

function with unitary decay rate inM2(a, b) (i.e., f(s) = 0↔ g(s) = 1− e−(s−a)).

In the rest of the section, we will build a entire geometry onM2(a, b) which makes

the log-hazard transformation isometric with respect to the geometry induced by the

usual inner product in L2(a, b). We start makingM2(a, b) a vector space defining the

operations of addition and scalar multiplication.

Definition 1. Let g1, g2 ∈M
2(a, b), α ∈ R. We define

• the addition of g1 and g2 as the operation ⊕ :M2(a, b) ×M2(a, b) → M2(a, b)

given by

g1 ⊕ g2 = 1− exp

(

−

∫ s

a

g′1(u)

1− g1(u)
·

g′2(u)

1− g2(u)
du

)

, (3)
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• the scalar multiplication of g1 by α as the operation ⊙ : R×M2(a, b)→M2(a, b)

given by

α⊙ g1 = 1− exp

(

−

∫ s

a

(

g′1(u)

1− g1(u)

)α

du

)

. (4)

Note that the neutral element of addition ⊕ is 1 − e−(s−a) (i.e., the cumulative

distribution function of the exponential distribution with unitary decay rate) and the

neutral element of scalar multiplication ⊙ is 1.

We are now introducing a suitable geometry in M2(a, b) to make the log-hazard

transformation an isometry between M2(a, b) and the image of the log-hazard trans-

formation logH
(

M2(a, b)
)

embedded in L2(a, b). In detail, we are defining an inner

product in the functional vector spaceM2(a, b) and the corresponding norm and dis-

tance as follows:

Definition 2. Let g1, g2 ∈ M
2(a, b). We define the inner product of g1 and g2 as

< ·, · >M2 :M2(a, b)×M2(a, b)→ R given by

< g1, g2 >M2=

∫ b

a
log

(

g′1(s)

1− g1(s)

)

log

(

g′2(s)

1− g2(s)

)

ds. (5)

Definition 3. Let g1, g2 ∈M
2(a, b). The metric dM2(·, ·) :M2(a, b)×M2(a, b)→ R

+
0

and the norm || · ||M2 :M2(a, b)→ R
+
0 induced by the inner product (5) are defined as:

dM2(g1, g2) =

[

∫ b

a

{

log

(

g′1(s)

1− g1(s)

)

− log

(

g′2(s)

1− g2(s)

)}2

ds

]1/2

, (6)

||g1||M2 =

[

∫ b

a

{

log

(

g′1(s)

1− g1(s)

)}2

ds

]1/2

. (7)

Note that even though the functional vector spaceM2(a, b) is closed with respect

to linear combinations of elements as defined in (3) and (4), it is not complete with

respect to the metric dM2 induced by the inner product < g1, g2 >M2 defined in (5).

For example, monotonic non-decreasing step-wise functions belong to the closure of

M2(a, b) and not toM2(a, b) itself. This makesM2(a, b) just a pre-Hilbert space. It

is quite straightforward to make it Hilbert: this would require to close the space and

define on the closure the operations of addition and scalar multiplication consistently

with (3) and (4). This could be done relying on the separability of L2(a, b). This
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M2(a, b)
logH
−−→ logH

(

M2(a, b)
)

⊂ L2(a, b)

g1 7−→ f1 = logH(g1)

g1 ⊕ g2 ←→ f1 + f2

α⊙ g1 ←→ α · f1

< g1, g2 >M2 = < f1, f2 >L2

dM2(g1, g2) = dL2(f1, f2)

||g1||M2 = ||f1||L2

Figure 1: Relations betweenM2(a, b) and image in L2(a, b) of the map logH.

extension (which would make logH an isometric bijective map with the entire space

L2(a, b) and not only with its image logH
(

M2(a, b)
)

⊂ L2(a, b))) is out of the scope of

this work being the pre-Hilbert nature ofM2(a, b) the minimal condition to make the

estimation and prediction process described in the next section self-consistent. Indeed,

as detailed in Corollary 1 the predictions provided by the estimated model are linear

combinations in the sense defined in (3) and (4) of functions in M2(a, b) which are

guaranteed to be inM2(a, b). Figure 1 summarizes all relations betweenM2(a, b) and

L2(a, b).

2.2 Functional Auto Regressive Model

We here describe the model we use for dealing with temporal dependence. The model

can be equivalently formulated on the original data in the space M2(a, b) or on the

log-hazard transformed data in L2(a, b). To help the intuition, we here report the

latter formulation which is indeed the one used in the practice for computations. We

will denote this model asM2-FAR. Let {ft}
T
t=1 be a collection of random functions in

L2(a, b) (here the log-hazard transformed functions ft = logH(gt)) generated sequen-

tially through discrete time t. We assume that ft(s) depends on the values assumed

by the random functions earlier appearing in the sequence potentially at each domain

location s ∈ [a, b]. Let us model this temporal dependence conditionally through an

(non-concurrent) autoregressive functional time series. Precisely a (non-concurrent)
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functional auto regressive model of order p (i.e., FAR(p)) is defined as

ft = α+

p
∑

j=1

Ψjft−j + ǫt, (8)

or equivalently

ft(s) = α(s) +

p
∑

j=1

∫ b

a
ψj(s, u)ft−j(u)du+ ǫt(s) ∀s ∈ [a, b], (9)

where the Hilbert-Schmidt operator Ψj plays the role of the j-th lagged autoregressive

parameter. The bi-variate function ψj(u, s) ∈ L
2(a, b) × (a, b) is its kernel which de-

termines the impact of ft−j(u) on ft(s). Finally, ǫt are the innovation terms which are

i.i.d. zero-mean finite-variance random functions.

2.3 Model estimation and prediction

As mentioned in the introductory section we estimate the lagged autoregressive oper-

ators Ψj and the non-centrality function α by direct minimization. In detail, we get

the estimates as the solution of the following penalized minimization problem:

min
α∈L2 ∩ {Ψj}j=1,...,p ⊆ HS





T
∑

t=p+1

∣

∣

∣

∣

∣

∣
ft −

(

α+

p
∑

j=1

Ψjft−j

)∣

∣

∣

∣

∣

∣

2

L2

+ λ

p
∑

j=1

||Ψj ||
2
HS



 . (10)

The first term of the objective function is the sum of the squared residuals (between

the observed values and their predictions) according to the L2 metric. The lower this

term, the better the fit of predictions to data. The second term is instead the sum

of the squared Hilbert-Schmidt norms of the lagged autoregressive operators Ψj . The

lower this term, the lower is the autocorrelation associated to the estimated model.

Finally λ is the positive penalty constant which defines the relative weights of the two

terms in the objective function.

It is of interest to discuss the two limit cases λ → +∞ and λ → 0+. As the

penalty constant comes bigger the estimated model is pulled towards models with less

memory (i.e., model in which the effect of the last p functions on the present function is

weaker). Indeed when λ→ +∞ the estimated model is the trivial model with Ψ̂j = 0

(i.e., the null operator) for j = 1, . . . , p and α̂ = 1
T−p

∑T
t=p+1 ft. InM

2(a, b) this model
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describes a sequence of i.i.d. random functions and thus trivially leads to predict future

curves with the FréchetM2-mean of the observed curves:

ĝT+1(s) = 1− exp



−

∫ s

a

T
∏

t=p+1

(

g′t(u)

1− gt(u)

) 1

T−p

du



 (11)

At the other extreme, when λ → 0+, the estimated model converges toward an inter-

polating model, in particular (consistently with Theorem 1) the one with the minimal

Hilbert-Schmidt norms of the lagged autocorrelation operators Ψj . As common prac-

tice in functional data analysis, the choice of a suitable value of the penalty constant λ

can be addressed either by minimization of the prediction residual sum of squares on a

test sample, by crossvalidation, or even heuristically by looking - in this case - at the

smoothness/roughness of the kernels of the estimated lagged autocorrelation operators

Ψj and/or of the predictions (i.e. the so called Goldilocks’ method). If one desires

little bias in the estimates, small values of λ might be favored. If instead more robust

estimates are desired, larger values of λ might be favored. Anyhow for any choice of the

value of λ the following theorem proves the existence and uniqueness of the estimators

of α and Ψj for j = 1, . . . , p and provides also their explicit expressions.

Theorem 1 (Existence, uniqueness, and explicit expression of the estimators). For any

λ > 0, the solution of minimization problem (10) always exists unique for j = 1, . . . , p

and s, u ∈ [a, b] and is equal to:

ψ̂j(s, u) =
T
∑

t=p+1

(

P
−1
λ (ft − f̄)

)

(

(j − 1)(b− a) + u
)

(

ft(s)− f̄[0](s)
)

;

α̂(s) = f̄[0](s)−

p
∑

j=1

∫ b

a
ψ̂j(s, u)f̄[j](u)du;

where f̄[j] = 1
T−p

∑T
t=p+1 ft−j; ft ∈ L2

(

a, b + p(b − a)
)

is the function obtained by

chaining ft−1, . . . , ft−p, i.e. ft
(

(j − 1)(b − a) + s
)

= ft−j(s); f̄ = 1
T−p

∑T
t=p+1 ft;

and Pλ : L2
(

a, b + p(b − a)
)

→ L2
(

a, b + p(b − a)
)

is the HS operator with kernel
∑T

t=p+1

{(

ft(s̃)− f̄(s̃)
)(

ft(ũ)− f̄(ũ)
)

+ λ
}

with s̃ and ũ ∈
(

a, b+ p(b− a)
)

.

Proof. See Appendix.

Finally, before moving to the Italian Natural Gas Market application that has urged
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this research, we want to point out the coherence of the entire working pipeline starting

from the time series {g1, . . . , gT } ∈ M
2(a, b) to the prediction of the future function

gT+1, which is the final aim of the work. The following Corollary states indeed that the

joint use of the geometry introduced in Section 2.1 (i.e., the pre-Hilbert spaceM2(a, b))

and the model estimation procedure described in this section (i.e., minimization of (10))

guarantees the plug-in predictions to satisfy all constraints characterizing functions

belonging toM2(a, b).

Corollary 1 (Linearity of predictions). The plug-in prediction

ĝT+1 = logH−1



α̂+

p
∑

j=1

Ψ̂j logH
(

gT+1−j

)





is a linear combination in M2(a, b) of {g1, . . . , gT } and thus belongs to the space

M2(a, b).

Proof. See Appendix.

Remark 1. Note the proposed estimation method (i.e., the minimization of (10)) is

here introduced for the estimation of functional autoregressive models. Nevertheless, it

is trivial to extend it to the estimation functional-to-functional non-concurrent regres-

sion models by simply replacing the function ft with a generic functional response yi and

the p lagged functions ft−1, . . . , ft−p with p generic functional regressors x1i, . . . , xpi:

min
α∈L2 ∩ {Ψj}j=1,...,p ⊆ HS





n
∑

i=1

∣

∣

∣

∣

∣

∣
yi −

(

α+

p
∑

j=1

Ψjxji

)∣

∣

∣

∣

∣

∣

2

L2

+ λ

p
∑

j=1

||Ψj ||
2
HS



 ,

with {yi}i=1,...,n being the functional responses and {xji}{j=1,...,p i=1....,n} being the

functional regressors. This sets our estimation method as a functional generalization

of ridge regression (Hastie et al. 2009).

3. APPLICATION TO ITALIAN NATURAL GAS MARKET

3.1 Context

In the last decade the natural gas market has been extensively studied and discussed

from an economic, political and environmental viewpoint. In Europe, for example,
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several legislative and infrastructural measures have been undertaken to regulate this

market. Among them the legal splitting of pipeline managers and gas shippers and the

legislation for obligatory third party access to transmission, distribution, storage and

liquefied natural gas capacity (European Union 2003).

Such measures, while favoring a liberal market, have created logistic new challenges.

In Italy, likewise other markets, the control of the national pipeline has been split from

the national main natural gas shipper causing uncertainty in the physical balancing of

the network. Under this scenario, several shippers inject natural gas into the network

from different importing countries such as Algeria or Russia. The gas is then consumed

by civil, industrial and thermo-electric stations spread through the country. The role

of the pipeline manager, in Italy Snam Rete Gas (SNAM), is to compensate injections

and consumptions via storage or other measures. In fact, the risk of possible unbalance

is assigned to each shipper which has to daily predict and communicate to SNAM its

injection and consumption forecasts on which a penalty is payed for any positive or

negative unbalance. It turns out that to minimize such a risk, natural gas shippers

should deal with statistical forecast of consumptions.

With the final aim of having a self balancing system, the Italian natural gas balanc-

ing platform (PB-GAS), was introduced in December 2011. The PB-GAS is a system

where gas operators and traders virtually sell and buy natural gas in order to balance

the common pipeline. The PB-GAS is managed by the energy regulatory Gestore Mer-

cati Energetici (GME), with SNAM acting as central counterpart for all daily offers.

Every day SNAM submits a demand bid or supply offer for a volume of gas corre-

sponding to the overall imbalance of the system while the operators submit demand

bids and supply offers for the storage resources they have available.

In this situation, demand bids and supply offers are sorted from the highest to the

lowest and from the lowest to the highest respectively, so that demand and supply

curves are obtained as the cumulative sum of the quantities in gigajoules (GJ). The

selection of bids/offers accepted on the PB-GAS is based on the auction mechanism

so that every offer to the left of the intersection of the two curves is accepted and

exchanged at the resulting price.

While balancing the network, each shipper can also take advantage of the market

13



in a speculative perspective, buying natural gas at lower price or selling exceeding gas

at higher price, with respect to their benchmark supplying indexes. It is clear that

forecast tools are dramatically important for the decision-making of each shipper. For

example, the mere price prediction is a fist procedure to implement. However, the

pointwise or interval price forecast alone, is of limited utility when the effects of non-

standard bids can strongly modify the tomorrow demand or supply curves shape, and

thus the resulting equilibrium price. It would be much more useful to have a prediction

of the entire demand and supply curves. With such tools at hand, traders can directly

see the effect of their bids on the shape of tomorrow curve and on price itself.

3.2 Data description

The data available refer to the first thirteen monts of the PB-GAS, namely from De-

cember 1st, 2011 to December 31st, 2012. The data are available at the website of

GME (2013). The original data are reported in a XML table format, where each row

represents a single awarded bid with its own code, date, trader name, type (sell or buy),

awarded price, and awarded quantity. For each day, we build the supply (and demand)

curve ordering the selling bids increasingly (decreasingly) by price and obtaining the

value of the quantities by cumulating each single awarded quantity.

Before applying the model described in Section 2 row data has been converted to

functional data inM2(a, b) with a = 0 and b = 1.2×107, which can be considered as a

conservative upper bound of the range of investigation. In detail, the smoothed versions

of the supply (and demand) curves are obtained by means of local polynomial regression

as implemented in the R function locpoly of KernSmooth package. To preserve the

constraint in zero for each curve we added an artificial point on the negative axis in

order to have the local polynomial regression output equal to zero for the supply and

to 23 for the demand. The final smoothed curves are then scaled by 23−1 to make them

constrained between zero and one. As an example of the output of the preprocessing,

in Figure 2 the supply (and demand) curve for a particular day are reported in the raw

and smoothed versions. The obtained smoothed functional time series are plotted in

Figure 3. Their evaluation on a grid of 500 points are provided in the Supplementary

Materials.
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Figure 2: Real demand and supply curves February, 8 2012 (solid lines) and smoothed
versions (dashed lines)
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Figure 3: Smoothed functional time series of demand (a) and supply (b) curves. Color
denotes time, with the oldest curves in dark and the most recent ones in bright.
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3.3 Results

Let gDt (s) and gSt (s) be the demand and supply curve of day t, respectively, expressing

the price in function of quantity. We apply the methodology presented in Section 2 to

model {gDt }
T
t=1 and {1 − gSt }

T
t=1. In particular, we estimated the M2-FAR(p) models

described in the previous section, for different choices of the auto-regressive order p,

separately for the two time series. As in classical time series analysis, the model can

be easily extended to model both the functional time series jointly, if needed. The

penalization parameter is fixed here to λ = 10−8 for all p.

To asses model goodness of fit, for increasing value of the auto-regressive order p,

we compare the M2 root mean squared error between the estimated curves and the

original ones:

M2-RMSE =

√

√

√

√

1

T − p

T
∑

p+1

dM2(gt, ĝt)2.

Note that thanks, to the isometric nature of the log-hazard transformation, the latter

ones coincide with the L2 root mean squared error between the estimated transformed

curves and the original transformed ones:

L2-RMSE =

√

√

√

√

1

T − p

T
∑

p+1

||ft − f̂t||2L2 .

The results are reported in Table 1. As a reference, we fit a M2-FAR(0) model (i.e.,

a model ignoring the temporal autocorrelation and thus predicting future curves with

the FrechétM2-mean of the curves as defined in (11)). First, we note that the auto-

regressive order p has similar impacts in the estimation of both the demand and supply

curves (i.e., for fixed p, the errors for the demand and supply curves are roughly of the

same order of magnitude). As expected, increasing p the estimates improve, with the

larger improvements observed moving from p = 1 to p = 2 and moderate ones moving

from p = 0 to p = 1 and from p = 2 to p = 3 suggesting p = 2 as a good candidate

value.

Further insights for the choice of theM2-FAR order p could come from extending

classical time series identification tools to the functional framework. In scalar time

series analysis, it is a common practice to look at the auto-correlation and partial
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Table 1: M2-RMSE between the estimated curves and the original ones.
Demand Supply

M2-FAR(0) 7.98× 103 5.96× 103

M2-FAR(1) 6.12× 102 4.74× 102

M2-FAR(2) 1.05× 10−3 6.25× 10−4

M2-FAR(3) 1.08× 10−4 6.06× 10−5

auto-correlation of the time series prior the analysis. Indeed, following the classical

Box-Jenkins approach, the first step of the modeling procedure consists in evaluating

the autocorrelation and partial autocorrelation functions for different values of the lag

and deciding which (if any) autoregressive or moving average component should be

used (Box et al. 2013). To perform a similar investigation in theM2-FAR framework,

we here introduce a measure of functional auto-correlation and of functional partial

auto-correlation playing the roles of their scalar correspondents. Let us define the

functional autocorrelation function of lag k of a stationary functional time series {ft}
T
t=1

the function

Rk(s, u) =
E[(ft(s)− E[ft(s)])(ft+k(u)− E[ft+k(u)])]

√

E[(ft(s)− E[ft(s)])2]E[(ft+k(u)− E[ft+k(u)])2]
. (12)

which expresses the correlation between ft(s) and ft+k(u). Even though one could

integrate (12) and obtain a scalar measure of autocorrelation, which can be plotted

as a function of k as a standard correlogram, to better understand the dependence

across functions observed at different times, we focused on the visual comparison of

the functional autocorrelation function (12) along p. In analogy with the definition of

scalar partial autocorrelation, define also the functional partial autocorrelation function

of order k > 2 as

Γk(s, u) =
E[rk∗t (s) rkt+k(u)]

√

E[(rk∗t (s))2]E[(rkt+k(u))
2]
, (13)

with Γ0(s, u) = R0(s, u), Γ1(s, u) = R1(s, u) and where {rpt+k} are the functional

residuals at time t + k of the functional auto-regressive model 8 of order p and {rp∗t }

are the function residuals at time t of the functional auto-regressive model 8 of order

k, fitted to the reversed series.

Figures 4 and 5 show the sample autocorrelation function and partial autocorrela-

tion function, respectively, for k = 0, 1, . . . 4 for the demand series only. Qualitatively
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similar results were obtained for the supply series. Figure 4 shows that the auto-

correlation is persistent also for increasing lags, a typical feature registered in scalar

auto-regressive models. Some details of the autocorrelation function are amenable to

an application interpretation. First, higher autocorrelation is registered in the first

part of the curves domain. This is indeed the region where, typically, the demand and

supply curves intersect. It is clear that yesterday’s price influences the bids (and thus

the curves shape) of today, so it is natural to expect high autocorrelation in this part of

the domain. Second, the auto-correlation remains high also for increasing lags mostly

around the diagonal of the plots in Figure 4. This means that the value of the curves

at point s is mainly influenced by the previous observed curves in a neighborhood of

s. The structure described by Figure 5, suggests that the main dependence of curve t

from the past, comes from the curve observed at t − 1. In fact the dependence of the

curve at time t from the curve at time t − 2, is basically zero. This suggests that an

M2-FAR(1) may be sufficiently appropriate to fit our data according to this measure.
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(a) k = 0 (b) k = 1 (c) k = 2 (d) k = 3 (e) k = 4

Figure 4: Sample functional autocorrelation function k = 0, 1, . . . 4 for the demand series.

(a) k = 0 (b) k = 1 (c) k = 2 (d) k = 3 (e) k = 4

Figure 5: Sample functional partial autocorrelation function k = 0, 1, . . . 4 for the demand series.
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Table 2: RMSE for price (in Euro) and quantity (in GJ) obtained as crossing point between
estimated curves.

quantity (GJ) price (Euro)
M2-FAR(1) 336430 2.03
M2-FAR(2) 336053 0.18
M2-FAR(3) 336053 0.18

As additional measure of goodness of fit, we consider an application driven ap-

proach. As motivated in Section 3.1, the whole curve prediction is a more informative

tool than the mere price prediction. However, price forecast is a byproduct of our

procedure (it can be easily obtained as the intersection of the two predicted curves),

and it is desirable that such a prediction is reliable. We calculated the predicted daily

prices and quantities, and compare those values with the real prices and quantities

resulted in the daily bids, in terms of root mean squared errors, reported in Table 2.

We are now focusing on price prediction, since, as said, it is the most important

feature to forecast for a trader. As benchmark we fitted a classical ARIMA model to

the scalar time series of prices. After differentiating the series to make it stationary, an

inspection of the correlograms suggest an ARMA(1,1) order. The root mean squared

error under this specification is of 0.20 Euro. With a simpleM2-FAR(1) the prediction

error for the price is greater than 2 Euro, which is much higher than the benchmark

prediction. On the contrary, with a M2-FAR(2), the benchmark prediction error is

outperformed obtaining an error of 0.18 Euro. Figure 6, report the original price time

series along with the predictions obtained with the standard ARIMA models, and with

the M2-FAR(2) models. Given the performances in predicting both the supply and

demand curves and the price and quantity (despite the suggestion of Figures 5), we

choose theM2-FAR(2) model as the final model for the analysis.

To conclude the analysis we give an example of the tremendous additional insights

that the whole curve forecast can give to traders. Consider the prediction for day

T reported in panel (a) of Figure 7. Suppose that a given trader, is aware that he

is going to buy a large quantity Q of natural gas tomorrow urged by legislative and

logistic reasons (for all the details, please refer to the PB-GAS normative, in GME

(2013) website). To lower the price, the trader can submit an extra non-standard

supply offer for a small quantity, that eventually he is going to buy above Q. For
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Figure 6: Scalar time series of prices (continuous line) and of the estimated prices with the
classical ARIMA approach (dotted line) and as intersection of the curves predicted with a
FAR(2) model (dashed lines).

example assume to submit an offer of 240,000 GJ at 7.20 Euro. The modified curve is

represented by a dotted line in panel (a) of Figure 7, with panel (b) showing a zoom

in a neighborhood of the intersection. In this case the price is lowered from 7.65 to

7.43 Euro leading the trader to save Q× 0.22 Euro. To better understand which is the

most convenient action, panel (c) of Figure 7 reports the obtained price in function of

price and quantity of the extra non-standard bid. To move the intersection point, the

lower the offered price, the higher need to be the offered quantity. Evidently, prices

above the estimated one, affect the shape of the curve after the intersection, with no

consequences from a practical viewpoint.

4. DISCUSSION

Motivated by the analysis of functional time series of demand and supply curves in

the Italian natural gas market, we proposed a model for functional time series, which

preserves particular curves features such as monotonicity and bounds on the codomain.

A bijective map associating each possible bounded and monotonic function to an un-

constrained one is introduced. To make the latter an isometry between the space of

monotone increasing and bounded function and L2, a suitable geometry is introduced.

In detail, we provide the constrained functions with a suitable pre-Hilbert structure.
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Figure 7: What-if simulations: curves prediction (continuous lines) and a supply perturba-
tion (dotted line) (a) and zoom on a neighborhood of the intersections (b) with horizontal
dashed lines representing the prices obtained as default and after the non-standard bid per-
turbation; price heatmap (brighter colors for higher resulted price) obtained as a function of
a price and quantity of an extra non-standard bid (c).
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The transformed curves are then modeled by means of functional auto regressive model.

The autoregressive lagged operators and the non-centrality function of the model are

obtained by minimizing the squared L2 distance between functional data and functional

predictions with a penalty term based on the Hilbert-Schmidt squared norm of autore-

gressive lagged operators. We have proved that the solution always exist, unique and

that it is linear on the data with respect to the introduced geometry thus guaranteeing

that the plug-in predictions of future functional data satisfy all required constraints.

We also provide an explicit expression for estimates and predictions. The model can be

easily generalized to include scalar covariates, or other functional predictors available

at prediction time.

The methods has been successfully applied to data on the Italian natural gas bal-

ancing platform, revealing that tomorrow curves are strongly influenced by those of

today and partially by those of yesterday. The prediction of tomorrow’s curve is of

dramatic interest for gas traders as it allows for what-if simulations that can help the

decision making if ones wants act in this market with a speculative behavior.
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APPENDIX: PROOFS

Proof of Theorem 1. Let us first show that the minimization withe respect to α is

trivial. Indeed, for fixed values of Ψj for j = 1, . . . , p the minimization of the objective

function is obtained by minimizing the first term in equation 10 with respect to α,

thus trivially obtaining α̂ = 1
T−p

∑T
t=p+1

(

ft −
∑p

j=1Ψjft−j

)

= f̄[0] −
∑p

j=1Ψjf[j].

Hence the minimization of (10) can be carried out on the simplified objective function

depending only on Ψj for j = 1, . . . , p (obtained by (10) by replacing α with α̂):

T
∑

t=p+1

∣

∣

∣

∣

∣

∣
(ft − f̄[0])−

p
∑

j=1

Ψj(ft−j − f̄[j])
∣

∣

∣

∣

∣

∣

2

L2

+ λ

p
∑

j=1

||Ψj ||
2
HS . (14)

The proof of the existence and uniqueness of the minimizers comes by noticing that

being Ψj for j = 1, . . . , p Hilbert-Schmidt operators, the second term in (14) can be

computed as λ
∑p

j=1

∑

k∈N ||Ψjφk||
2
L2 with {φk}k∈N being an arbitrary orthonormal
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basis of L2(a, b). This latter identity points out that the simplified objective function

(14) is a positive definite quadratic form in with respect to {Ψj}j=1,...,p and thus it

admits a unique minimum. It is indeed obtained by linear combination with positive

coefficients (i.e., 1 and λ) of a semi-positive definite quadratic form (i.e., the first term)

and a positive definite quadratic form (i.e., the second term).

The explicit expressions of the estimators can be obtained by noticing that, thanks

to Fubini-Tonelli Theorem, the ||Ψj ||
2
HS =

∫ b
a

(

∫ b
a ψ

2
j (s, u)du

)

ds, and thus the mini-

mization of (14) can be carried out separately for each value of s ∈ [a, b], i.e. minimiz-

ing:

T
∑

t=p+1







(

ft(s)− f̄[0](s)
)

−

p
∑

j=1

∫ b

a
ψj(s, u)

(

ft−j(u)− f̄[j](u)
)

du







2

+λ

p
∑

j=1

∫ b

a
ψ2
j (s, u)du,

(15)

with respect to {ψj(s, ·)}j=1,...,p for all s ∈ [a, b]. Focussing on the case p = 1, min-

imization problem (15) can be seen as a continuous version of a ridge-regression-like

minimization problem. We thus have

ψ̂1(s, ·) =

T
∑

t=p+1

(

P
−1
λ (ft−1 − f̄[1])

)

(·)
(

ft(s)− f̄[0](s)
)

,

with Pλ being the HS operator with kernel

T
∑

t=p+1

{(

ft−1(s)− f̄[1](s)
)(

ft−1(u)− f̄[1](u)
)

+ λ
}

.

The explicit solution for p ≥ 2 is directly obtained by chaining, for t = p + 1, . . . , T ,

functions ft−1, . . . , ft−p in a unique function ft defined on the auxiliary domain
(

a, b+

p(b− a)
)

and replicating the proof as in p = 1.

Proof of Corollary 1. The plug-in prediction of fT+1 is defined as

f̂T+1 = α̂+

p
∑

j=1

Ψ̂jfT+1−j .

We are now showing that f̂T+1 is a linear combination in L2(a, b) of {f1, . . . , fT }. Let
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u∗j =
(

(j − 1)(b− a) + u
)

, then by simple computations we have

α̂(s) = f[0](s)−

T
∑

t=p+1











p
∑

j=1

∫ b

a

(

P
−1
λ (ft − f̄)

)

(

u∗j )f̄[j](u)du







(

ft(s)− f̄[0](s)
)



 ,

and that:

p
∑

j=1

(

Ψ̂jfT+1−j

)

(s) =

T
∑

t=p+1











p
∑

j=1

∫ b

a

(

P
−1
λ (ft − f̄)

)

(

u∗j
)

fT+1−j(u)du







(

ft(s)− f̄[0](s)
)



 ,

leading to f̂T+1(s) equal to

f[0](s)+
T
∑

t=p+1











p
∑

j=1

∫ b

a

(

P
−1
λ (ft − f̄)

)

(

u∗j
)

(

fT+1−j(u)− f̄[j](u)
)

du







(

ft(s)− f̄[0](s)
)



 .

Thanks to the isometry betweenM2(a, b) and L2(a, b), ĝT+1 = logH−1(f̂T+1) is a linear

combination in M2(a, b) of {g1 = logH−1(f1), . . . , gT = logH−1(fT )} which belongs

to M2(a, b) being M2(a, b) a space vector with respect to addition (3) and scalar

multiplication (4).
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