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Abstract

We analyze the juggling data by means of the k-mean alignment
algorithm using cycles as the experimental units of the analysis. Allow-
ing for affine warping, we detect two clusters distinguishing between
mainly-planar trajectories and trajectories tilted toward the body of
the juggler in the lower part of the cycle. In particular we detect
an anomalous presence of tilted trajectories among the record third
cycles. We also find warping functions to be clustered according to
records suggesting that each record is performed at a different pace
and thus associated to a different typical cycle-duration.

1 Pre-processing

We analyzed the juggling data described in Ramsay et al. (2013b) from
two perspectives: records as experimental units of the analysis and cy-
cles - composing each record - as experimental units of the analysis. In
this manuscript we focus on the second approach and thus we deal with
113 three-dimensional curves indicating different trajectories of the juggler’s
right hand forefinger. We arbitrarily indicate as cycle the period between
two subsequent releases of a ball and, for biological reasons, we identify
the moment when a ball is released with the moment when the tangential
acceleration is maximal. These moments identify the end of a cycle and
the beginning of the following one. As an example, in Figure 1 we report
the evolution across time of the tangential acceleration for the first record.
Colored stars represent stationary points. In particular, blue stars represent
the ones used to cut the record into cycles.
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Figure 1: Tangential acceleration of the first record.
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Figure 2: Left panels: the 113 cycles. The three panels show the X, Y,
and Z components of the curves, respectively. Right panels: Aligned and
clustered cycles provided by the k-mean alignment algorithm performed with
affine warping functions and k = 2. The three panels show the X, Y, and
Z components of the aligned cycles. The cycles of the first cluster are in
green, while those of the second cluster are in red.

This procedure was applied to all ten records thus obtaining a set of
113 cycles. As suggested in Ramsay et al. (2013b), the origin of each cycle
has been set at the time when the tangential acceleration is maximal, i.e.,
the starting points of the 113 curves. Note that all cycles present different
durations and thus the final time instants differ across cycles. In the left
panels of Figure 2 the X, Y, and Z components of the 113 cycles are reported.

2 K-mean Alignment

To look for clusters of trajectories in presence of phase variability we ap-
plied the k-mean alignment algorithm, detailed in Sangalli et al. (2010) and
summarized in Sangalli et al. (2013), to the 113 trajectories. Since data pre-
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processing centered and partially rotated data but did not rescaled them,
we will consider two cycles as similar if they are identical up to a multi-
plicative factor along each component. Therefore, we shall use the following
similarity index:

ρ(fi, fj) =
1

3

3
∑

p=1

∫

fip(t)fjp(t)dt
√

∫

fip(t)2dt
√

∫

fjp(t)2dt
, (1)

where fi and fj are cycles. Indeed, this similarity index assigns similarity
equal to 1 (its maximal value) to couples of curves that differ only for a
positive multiplying factor along each component:

ρ(fi, fj) = 1 ⇔ ∀p ∈ {1, 2, 3} ∃ap ∈ R
+ : fip(t) = apfjp(t) . (2)

Since the physical phenomenon does not suggest any particular group of
warping functions to be the best suited to the analysis, we run the analy-
sis using different groups of warping functions coherent with the previous
similarity index:

Haffine = {h : h(t) = mt+ q with m ∈ R
+, q ∈ R} ,

Hshift = {h : h(t) = t+ q with q ∈ R} ,

Hdilation = {h : h(t) = mt with m ∈ R
+} ,

Hidentity = {h : h(t) = t} .

The analysis here presented has been performed using fdakma R package
downloadable from CRAN (Patriarca et al. (2013)).

The left panel of Figure 3 shows the results of the k-mean alignment
algorithm applied with different choices for the number k of clusters and the
group H of warping functions. For each couple (k,H) the mean similarity
between the aligned curves and their respective templates is reported. The
gray dot on the left represents the mean similarity between the unaligned
curves and their mean which acts as a lower bound for the algorithm per-
formance. The mean similarities achieved by using Haffine, Hshift, Hdilation,
and Hidentity are reported in orange, blue, green, and black, respectively.
Note that, as already pointed out in Sangalli et al. (2010) and in Sangalli
et al. (2013), running the k-mean alignment without allowing for warping
(i.e, choosing Hidentity) is equivalent to perform a simple functional k-mean
clustering, while setting k = 1 is equivalent to perform a simple continuous
alignment with just one template. As described in Sangalli et al. (2010) and
in Sangalli et al. (2013), being the curves not defined on the entire real axis,
the integrals in (1) are computed over the intersection of the domains of fi
and fj , and the cluster templates are estimated by means of local polynomial
regression.
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The vertical displacement between the black curve and the others sug-
gests the presence of phase variability. In detail, the slightly higher per-
formances achieved using the group of affinity (i.e., orange curve) seem to
suggest this latter group as the most suitable. This choice is consistent with
a possible wrong detection of the starting point of the cycle and a possible
different velocity across cycles. The right panel of Figure 3 details the orange
curve by showing the boxplots of the similarities between each aligned curve
and its respective template. Focussing on the orange curve, the elbow ob-
served for k = 2 suggests the existence of two clusters. No significant gain
in the mean similarity is indeed obtained by introducing en extra cluster
(i.e., k = 3). We thus now focus on the clustering and alignment obtained
by setting the number of clusters equal to 2 (i.e., k = 2) and by considering
positive affinities (i.e., Haffine) as the group of warping functions. The three
right panels of Figure 2 show the X, Y, and Z components of the aligned
cycles. The cycles of the first cluster are colored in green, while those of the
second cluster in red.
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Figure 3: Performance of the k-mean alignment algorithm. The left panel
shows the mean similarity between the aligned curves and their respective
templates obtained with different values of k and different classes of warping
functions. The right panel displays the boxplots of the similarity indexes
between the aligned curves and their respective templates with the group of
warping functions Haffine and different values of k.

3 Analysis of the clusters

Differences between the two clusters are observed in all three components,
though the major ones pertain to the front-back component (i.e., Y-axis)
where the trajectories of the first cluster (i.e, green) present a more os-
cillating behavior. As it is even clearer in the left panel of Figure 4, the
trajectories of the second cluster (i.e, red) are mainly planar curves in the
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X-Z plane, while the trajectories of the first cluster are tilted toward the
body of the juggler in the lower part of the cycle. The same differences are
captured by the two template curves reported in the right panel of Figure
4.

Figure 4: Left panel: 3D plot of the cycles colored according to the clusters
provided by the k-mean alignment algorithm performed with affine warping
functions and k = 2. The cycles of the first cluster are in green, while those
of the second cluster are in red. Right panel: the corresponding template
curves.

We now want to test if there is any relation between cluster assignments
and records or cluster assignments and position in the sequence. Figure
5 shows cluster assignment for each cycle. Rows are associated to records
and columns to positions in the sequence. In Figure 6 we report confidence
intervals for the proportion of cycles belonging to the second cluster across
records (right panel) and across positions in the sequence (left panel). We
found no statistical differences among the proportions across records (i.e.,
curves of each clusters seem randomly spread across records), while we found
a higher proportion of curves belonging to the second cluster among the third
cycles of each record (i.e., third column in Figure 5). Note that in the third
cycle for the first time the juggler needs to catch and then throw a ball with
his right hand. Indeed, the first two cycles are warm-up cycles in which no
ball is caught, and only balls previously handled by the juggler are thrown.

4 Analysis of the warping functions

We now focus on the analysis of warping functions and in particular on pos-
sible associations between warping functions and records or warping func-
tions and position in the sequence. Analyzing the mean shift and dilation
across records and positions in the sequence (Figure 7) we found an op-
posite scenario with respect to the one illustrated in the previous section.
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Figure 5: Clustering assignments across records (i.e., rows) and positions in
the sequence (i.e., columns). Mismatches between our classification and the
one obtained by Lu and Marron (2013) are pointed out in orange.
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Figure 6: Confidence (95%) intervals for the proportion of cycles belonging
to the second clusters across records (right panel) and across position in the
sequence (left panel).

Indeed we found no association between warping functions and position in
the sequence, while we observed significant differences across records. As
an example, in Figure 8 we point out with different colors over the gray
background the warping function associated to cycles belonging to records
1, 9, 2, and 5, respectively. Indeed, all warping functions of record 1 have
negative intercepts, while those of record 9 have positive intercepts: the cy-
cles of record 1 have been anticipated to be aligned to the other ones, while
those of record 9 have been delayed. All warping functions of record 2 have
slopes lower than 1, while those of record 5 have slopes greater than one:
the cycles of record 2 have been sped up to be aligned, while those of record
5 have been slowed down. Our analysis suggests that each record has been
performed at a different pace (i.e., cycle durations are homogeneous within
records but not across records).

5 Discussion

Our findings pertaining to the amplitude variability agree with Lu and Mar-
ron (2013), Kurtek et al. (2013), and Poss and Wagner (2013). Our cluster-
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Figure 7: Confidence (95%) intervals for the mean of the dilations (left
panel) and the shifts (right panel) of the warping functions.

ing structure is indeed very similar to the one detected in Lu and Marron
(2013): only 20 cycles among the 113 have been assigned to different clus-
ters by the two analyses. In Figure 5 the mismatches are pointed out by
means of orange circles. The differences between the two clusters shown in
the right panels of Figures 2 and 4 are also the same gathered by the first
functional principal component detected in both Kurtek et al. (2013) and
Poss and Wagner (2013). Moreover, Poss and Wagner (2013) look for possi-
ble association between scores and the position in the sequence. Since their
first principal component seems to be related to our clustering structure, it
would be interesting to know if they find an anomaly in the first principal
component score distribution in correspondence of third cycles analogous to
the one we find for the cluster assignment.

On the contrary, with respect to phase variability, our results disagree
with the ones reported in Kurtek et al. (2013) and Ramsay et al. (2013a). In
details, Kurtek et al. (2013) point out a “compensation” effect within each
cycle, suggesting that cycles that started faster then slowed down or cycles
that started slower then sped up. Possibly, because of the affine warping
we used, we did not detect any similar effect. Finally, our analysis of the
warping functions suggests that cycle durations are homogeneous within
records but not across records. This contrasts with the “return to the base
frequency” effect reported in Ramsay et al. (2013a) where early cycles at
the beginning of each record are found to be followed by late cycles at the
end of the record.
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Figure 8: Warping function associated to cycles belonging to records 1, 9,
2, and 5, respectively.
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