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Abstract

Digital twins are transforming engineering and applied sciences by enabling real-time monitoring, simula-
tion, and predictive analysis of physical systems and processes. However, conventional digital twins rely
primarily on passive data assimilation, which limits their adaptability in uncertain and dynamic environ-
ments. This paper introduces the active digital twin paradigm, based on active inference. Active inference is
a neuroscience-inspired, Bayesian framework for probabilistic reasoning and predictive modeling that unifies
inference, decision-making, and learning under a unique, free energy minimization objective. By formulating
the evolution of the active digital twin as a partially observable Markov decision process, the active infer-
ence agent continuously refines its generative model through Bayesian updates and forecasts future states
and observations. Decision-making emerges from an optimization process that balances pragmatic exploita-
tion (maximizing goal-directed utility) and epistemic exploration or information gain (actively resolving
uncertainty). Actions are dynamically planned to minimize expected free energy, which quantifies both the
divergence between predicted and preferred future observations, and the epistemic value of expected infor-
mation gain about hidden states. This approach enables a new level of autonomy and resilience in digital
twins, offering superior spontaneous exploration capabilities. The proposed framework is assessed on the
health monitoring and predictive maintenance of a railway bridge.

1. Introduction

Over the past decade, the digital twin (DT) paradigm has emerged as a transformative approach for mon-
itoring, control, and decision support, enabling diagnostic and predictive capabilities that surpass those of
traditional computational models. As outlined in the 2024 report by the National Academies of Engineering,
Science, and Medicine [1], DTs differ from both forward digital models and digital shadows [2]. The former
are designed to simulate how input parameters and internal states influence system behavior to generate
observable outputs, while the latter focus on data assimilation and model updating. A DT is a tailored
virtual representation that captures key attributes of a physical system or process [3]. This digital represen-
tation dynamically synchronizes with its physical counterpart by continuously assimilating sensor data and
providing predictive capabilities. Specifically, DTs enable the simulation of what-if scenarios, supporting
predictive decision-making aimed at maximizing utility. This paper proposes active inference (AIF) [4] as a
new paradigm for DTs. By modeling the twin’s evolution as a partially observable Markov decision process
(POMDP) [5], the AIF agent achieves intelligent automation under the free-energy principle [6, 7]. This
results in a unified mathematical framework for a new class of active digital twins (ADT), equipped with
spontaneous exploration capabilities.

Emerging from aeronautical and aerospace engineering [8, 9], DT applications nowadays expand across
several domains. These include structural health monitoring and predictive maintenance [10–12], additive
manufacturing [13], smart cities [14], energy transition [15], urban sustainability [16], geotechnical engineer-
ing [17], subduction zone modeling [18], railway infrastructure management [19], aerial vehicles monitoring
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and control [20, 21], spacecraft operations in orbit [22], personalized medicine [23, 24], and climate sci-
ence [25]. Despite the growing interest in DTs, their implementation remains highly customized, typically
tailored on the specific application, and often hard to deploy. The need for a widely accepted framework
for DTs is therefore increasingly recognized in both research and industry. In [26], Kapteyn et al. proposed
an application-agnostic formulation for describing coupled physical-digital systems that evolve dynamically
over time and interact via observed data and control inputs. A key contribution of their work is the ab-
straction of the coupled dynamical system into a generalized representation, which serves as the foundation
for a mathematical description of DTs. This abstraction is consistent with agent-based representations in
POMDPs, typically formalized using probabilistic graphical models [27].

We introduce ADTs with enhanced exploratory capabilities, employing AIF agents based on discrete
generative models to leverage and significantly extend the abstraction of physical-digital systems by Kapteyn
et al. [26]. Active inference is a theoretical framework integrating perception, decision-making, and learning
within the unified objective of free energy minimization [4]. An AIF agent maintains an internal generative
model of its environment, continuously updating its beliefs in response to sensory inputs. By minimizing
variational free energy, the agent simultaneously fulfills two objectives: reducing the divergence between
predicted and preferred future observations, and resolving expected uncertainty about hidden states through
action. This dual mechanism naturally balances exploitation of existing knowledge to achieve specific goals
with exploration, i.e., the acquisition of new information. These two imperatives can be referred to using
interchangeable terminology. The exploitative or pragmatic behavior is associated with terms such as goal-
directed behavior or utility maximization, while the exploratory or epistemic behavior is described using
terms such as information seeking, information gain, or uncertainty resolution. The AIF framework has been
applied in diverse domains, from neuroscience [28–32] – for modeling decision-making under uncertainty – to
reinforcement learning [33, 34], collective behavior [35, 36], and robotics [37–40], demonstrating its versatility
in modeling dynamic systems.

The generative model of an AIF agent functions as a self-updating engine that unifies the key aspects
underpinning ADTs – namely, data assimilation, state estimation, prediction, planning, and learning – under
a Bayesian framework that generalizes across applications. Furthermore, as demonstrated in the following
sections, AIF agents naturally provide a mechanism for active information seeking, thereby unlocking the
full potential of ADTs. When combined with goal-directed (pragmatic) behavior and possibly enhanced
with learning capabilities, this information-seeking (epistemic) drive enables ADTs to engage in spontaneous
exploration in response to (potentially critical) uncertainty, ultimately maximizing pragmatic utility.

The limitations of conventional DTs, which are typically restricted to passive observation and open-loop
simulation, have already been recognized in [41], although the challenge of actively seeking information to
enhance perception or learning remains largely unaddressed. Similar problems have long been studied in
fields such as active vision, where perception is not limited to passively acquired images, but involves ac-
tively steering the sensing process to resolve uncertainty about the environment [42, 43]. Likewise, robotic
systems dynamically adjust their sensing devices to enhance environmental exploration [44, 45], as seen in
simultaneous localization and mapping (SLAM) tasks [46]. Similar perception mechanisms are embedded in
autonomous driving systems, where view and sensor attention can be dynamically adjusted based on envi-
ronmental conditions and contextual priorities [47]. In the same spirit, pan-tilt-zoom cameras can actively
track objects or events of interest in real time for surveillance purposes [48]. Active digital twins rely on the
analogous principle of closing the loop between perception and action, enabling them to autonomously im-
prove situational awareness, refine their internal models through active exploration, and proactively manage
the environment evolution.

Compared to alternative approaches for developing DTs, AIF offers remarkable advantages. Unlike rein-
forcement learning, which relies on trial-and-error exploration (often infeasible in real-world applications) and
typically requires extensive datasets, AIF enables ADTs to infer hidden states and optimize future behav-
ior using a compact generative model. Moreover, the free energy minimization imperative of AIF balances
information-seeking (epistemic) and goal-directed (pragmatic) behaviors, without the need for manually
tuned reward functions or random exploration. These features make AIF particularly well-suited for adap-
tive and robust ADTs.
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We present the ADT paradigm through an application in structural health monitoring and predictive
maintenance of engineering structures. Given the potentially high life-cycle costs – economic, social, and
safety – associated with such systems, adopting a DT perspective is crucial to enable condition-based or
predictive maintenance practices, replacing traditionally employed time-based methods [49, 50]. To this end,
non-destructive tests and in-situ inspections are inadequate for continuous and global monitoring. Conversely,
by assimilating sensor data from permanent data collection systems, vibration-based structural health mon-
itoring techniques enable automated damage identification and evolution tracking [51, 52]. This paradigm
shift has the potential to unlock personalized monitoring, management, and maintenance programs [53, 54],
offering numerous benefits throughout the system life-cycle – including more informed structural safety as-
sessments, better resource allocation, and increased system availability [55].

A graphical abstraction of the computational flow is illustrated in Fig. 1. The end-to-end loop spans
from the physical to the digital domain through data assimilation and inference, and then back to the asset
through action and observation, while explicitly accounting for uncertainty quantification, propagation,
and resolution. We refer to the monitored asset, whose physical state is hidden to the AIF agent and
only indirectly accessible via the sensed structural response, as the external generative process. The asset
state evolves over time according to physical laws influenced by both its internal properties and external
factors. These external factors might encompass long-term degradation mechanisms caused by chemical,
physical, or mechanical aging, as well as sudden changes, such as discrete damage events or maintenance
interventions [56].

The digital counterpart (AIF agent) is defined by an internal generative model, implemented as a prob-
abilistic graphical model in the form of a dynamic Bayesian network (DBN) [5, 27]. This factored repre-
sentation provides a systematic way to maintain a posterior belief about latent variables that characterize
the (hidden) structural health of the asset, such as damage presence, location, and severity, by continuously
integrating new observations within a sequential Bayesian inference scheme. Belief updating is achieved by
minimizing variational free energy, which measures the discrepancy between the model’s predicted observa-
tions and the actual sensor data.

In parallel, the internal generative model supports the forward simulation of future. This enables the ADT
to evaluate “what-if” trajectories for structural health evolution, conditioned on its current beliefs. This
forecasting step involves modeling not only the asset’s physical dynamics but also the agent’s control policies,
represented as latent variables encoding sequences of future actions, usually termed policies [57]. Policy se-
lection is then framed as an optimization problem, where the agent seeks to minimize the expected free energy
– a quantity that balances (i) selecting policies that align future observations with (pragmatic) goal-directed
prior preferences, and (ii) resolving uncertainty about hidden states through (epistemic) information-seeking.
This formalism unifies inference and control: posterior beliefs are updated via free energy minimization, while
action sequences are selected to minimize expected free energy, converting the problem of decision-making
into a problem of inference under the generative model. Once an action is executed, the generative process
evolves, and the bidirectional perception-action cycle restarts.

The paper is organized as follows. Section 2 describes the POMDP that encodes the coupled dynamics
of the physical-digital system. Section 3 illustrates the use of AIF agents to realize ADTs. Section 4 assesses
the proposed procedure on the simulated monitoring, management, and maintenance of a railway bridge,
providing comparative results for different AIF agents featuring increasingly rich behavior. Conclusions and
future developments are finally outlined in Sec. 5.

2. Partially observable Markov decision process for digital twins

Figure 2 illustrates the probabilistic graphical model – adapted from [26] – that represents the dynamic
interaction between the physical and virtual domains. This abstraction is inspired by classical POMDP
formulations [5]. POMDPs are state-space models for decision-making in stochastic, partially observable
environments, where system dynamics are typically described by Markov transition models. Unlike stan-
dard Markov decision processes, where a policy directly maps observable states to actions, POMDPs define
the policy as a mapping from belief states – probabilistic representations of hidden states inferred from
observations – to actions.
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online policy switch in the case of rare events.

Model-Form Uncertainty. Further work is needed to address
concerns related to modeling assumptions. Despite efforts
to refine the structural model or employ more sophisticated
descriptions for potential damage patterns, engineering struc-
tures may be too complex and uncertain systems to be perfectly
modeled. Uncertainties arising from modeling choices, envi-
ronmental factors, and operational variabilities are among the
many factors that can hinder the model capability to faithfully
describe a real-world system. In terms of monitoring, properly
accounting for model-form uncertainty is crucial to obtain a
reliable solution to the parameter identification problem. To
address this challenge, latent variable models offer an interesting
perspective. Latent variables could be leveraged to account for
missing pieces of information, and examining their distribution
could provide insights into the reliability of the forward model
and, consequently, of the monitoring process. Using latent
variable models for data assimilation purposes would require
the use of appropriate Bayesian inference engines. In this regard,
the recent advances in simulation-based inference stand as an
appealing choice [7].

Experimental Data. A last aspect that should be explored
concerns the use of available experimental recordings to improve
the reliability of data assimilation models. To bridge the data-to-
methodology gap for supervised learning tasks, we envision the
application of multi-fidelity methods at the feature level as an
opportunity to advance current strategies in population-based
[8,9] and domain adaptation [10,11,12] for structural health
monitoring. For example, experimental data from existing
structures could be integrated with synthetic data from physics-
based models via multi-fidelity information fusion to establish
shared feature spaces unaffected by label inconsistencies.
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Mrr̈(t) + Cr(µ)ṙ(t) + Kr(µ)r(t) = fr(t, µ) , t 2 (0, T )
r(0) = W>d0

ṙ(0) = W>ḋ0 ,
(23)

Mr ⌘W>MW , Cr ⌘W>C(µ)W , Kr ⌘W>K(µ)W , fr(t, µ) ⌘W>f(t, µ).
(24)

u1(t) u2(t) u3(t) u4(t) (25)

q(t) (26)

Algorithm POD elasto-dynamics
1: Sample µ! µ1
2: Solve full-order model
3: Collect S1 = [d(t0, µ1)| . . . |d(tT , µ1)]
4: W = PODtime(S1)
5: FOR j = 2, . . . , Nsamp DO
6: Sample parameters µ! µj
7: Solve full-order model
8: Collect Sj = [d(t0, µj)| . . . |d(tT , µj)]
9: Wj = PODtime(Sj)

10: S = [W|Wj ]
11: W = PODparam(S)
12: END FOR

F := Forward operator (parameters ! measurements)
I := Inverse problem (measurements ! sought parameters)
I✓⇤ := Neural network approximation to I

(27)

I✓⇤ = arg min
✓2⇥

X

j

k(I✓ � F)(µj)� µjk (28)

...
...

...
...

Figure 4: Scheme of the NN LF fully-connected model: red nodes denote the input/output quantities,
while blue nodes refer to the tunable parameters.
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policy by incorporating both goal-directed and uncertainty-resolving components, as explained
in Sec. 3(c). Finally, the initial prior p(Dtc ;�) is typically represented by an unconditional CPT
denoted as d : D 7! [0, 1].

Also graphically, the generative model illustrated in Fig. 3 presents several differences
compared to the DBN in Fig. 2. This formulation focuses on sampling (or generating) sequences of
potential observations Otc:tp and predicting future digital states Dtc:tp based on the probabilistic
structure encoded in A and B, conditioned on control actions Utc:tp that have not yet been
executed. Accordingly, actions Ut are modeled as (circular) random variables rather than (square)
decision nodes, as they represent hypothetical what-if scenarios beyond data assimilation.
Moreover, since control states are determined by feasible policies ⇡ defined a priori, the same
color is used to represent both digital states and control policies in the graph, as both are latent
variables of the generative model. Equipped with this generative model – specified by the four-
tuple hA,B, c,di – AIF involves performing inference over Dt, ⇡, and �, as described in the
following sections.

(b) Digital state inference via variational free energy minimization

Given an observation Otc = o
Exp
tc

, the underlying digital state Dtc can be inferred by estimating a

posterior distribution p(Dtc | Otc = o
Exp
tc

), using Bayes’ Rule:

p(Dtc | Otc = o
Exp
tc

) =
p(o

Exp
tc

, Dtc)

p(o
Exp
tc

)
=

p(o
Exp
tc

| Dtc)p(Dtc)

p(o
Exp
tc

)
, (3.2)
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Figure 1: Active digital twins via active inference – Graphical abstraction of the end-to-end information flow. The dichotomy
between the external physical process generating observational data (i.e., the generative process) and the agent’s internal model
(i.e., the generative model) is evident by the symmetry along the vertical axis. Meanwhile, the two forms of inference – digital
state estimation and policy selection – exhibit a symmetry along the horizontal axis. A detailed schematic of generative models
for both digital state and policy inference is presented in Fig. 4.

The graph in Fig. 2 is a DBN, in which circular nodes represent random variables, square nodes denote
taken actions, and diamond-shaped nodes symbolize the objective function. All variables are defined at
discrete time steps. Each time the DT is updated through the assimilation of new observational data, the
DBN advances by one time step, with t ∈ {0, . . . , T}, where t = 0 marks the moment the DT enters operation,
and t = T defines its lifetime horizon. Nodes with bold outlines indicate observed quantities, while those
with thin outlines correspond to latent variables that must be inferred. The DBN is sparsely connected,
with edges encoding conditional dependencies among the variables. For an overview of the fundamentals of
DBNs, the reader is referred to [5, 27].

Capital letters denote random variables associated with the quantities in our abstraction, the correspond-
ing lowercase letters refer to their specific realizations, and subscripts indicate their time index. Calligraphic
letters denote the set of possible values each quantity can assume. For instance, the hidden physical state is
denoted as St ∼ p(st), where st represents a particular realization at time t, and p(st) defines the probability
that St = st for any possible state st ∈ S.

The digital state Dt ∼ p(dt) is designed to capture the essential features of the (hidden) physical state
that are relevant for diagnosis, prediction, and decision-making [3]. The digital state space D can represent
a variety of information, including initial and/or boundary conditions, material properties, and other key
characteristics to describe the asset under consideration.

The physical-to-digital information flow from St to Dt is mediated by the assimilation of observational
data Ot ∼ p(ot), enabling the inference of Dt. The observation space O may include sensor measurements,
inspection results, or diagnostic reports. Since the physical state St is only partially and indirectly observ-
able, the digital state Dt encodes posterior beliefs over possible system configurations at time t, reflecting
the evidence provided by the available observations [58, 59]. This perceptual process is realized through
observation models – one for each observation modality – which relate digital states and observations in a
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Figure 2: Dynamic Bayesian network encoding the asset-twin dynamical system. Circular nodes represent random variables,
square nodes denote taken actions, and diamond-shaped nodes symbolize the objective function. Nodes with bold outlines
indicate observed quantities, while those with thin outlines represent latent variables to be inferred. Directed edges encode
conditional dependencies between variables.

probabilistic manner, such that Ot is modeled as stochastically generated from Dt. Throughout the paper,
we will use both Ot and OExp

t to represent observations: Ot refers to predicted (expected) observations under

the generative model, while OExp
t denotes actual sensor data. Belief updates are driven by minimizing the

discrepancy between predicted and actual observations.
The updated digital state Dt informs the digital-to-physical information flow by guiding the selection

of control actions to influence future physical states. In Fig. 2, Ut ∼ p(ut) denotes a decision variable
representing the action taken. The action space U may include interventions that directly modify the physical
state, adjustments to the operational conditions, or modifications to the observational process. Each action
is associated with its own transition model – one for each digital state factor – across the digital state space,
which serves as a control-dependent predictor that propagates the digital state beliefs forward in time.

Finally, the reward node Rt ∼ p(rt) quantifies the performance of the asset-twin system within a reward
space R. These rewards assess the expected “quality” of DBN trajectories to guide action selection toward
optimal outcomes. In general, reward values may represent real costs associated with states and actions, or
abstract metrics tuned to steer the system toward the desired behavior.

Formally, a POMDP can be defined as a seven-tuple 〈D,O,U ,R,A,B,φ〉, where: D denotes the space of
beliefs over hidden states; O is the space of possible observations; U is the space of available actions; R : D×
U 7→ R defines the reward function, which assigns a numerical value to beliefs-action pairs; A : O×D 7→ [0, 1]
is the observation model, encoding the conditional observation likelihood p(Ot | Dt;φ), which represents
beliefs about how hidden states give rise to observations; B : D × D × U 7→ [0, 1] is the transition model,
encoding the conditional probability p(Dt | Dt−1, Ut−1;φ), which represents beliefs about the temporal
evolution of hidden states conditioned on control actions; finally, φ is a vector of hyperparameters of the
POMDP model.

In the following, we assume that digital states, observational data, and control actions are defined over
discrete and finite spaces. This implies that these variables can only take value on a finite set of discrete levels.
Consequently, categorical distributions give a natural choice for representing the corresponding probability
distributions. These latter assign a probability value between 0 and 1 to each discrete outcome, under the
constraint that probabilities across all levels must sum to one, as they represent a complete and mutually
exclusive set of realizations.

The joint probability distribution p(Ot, Dt, Ut, Rt,φ) over the POMDP factorizes – according to the
chain rule of probability – into a product of categorical distributions (representing conditional likelihoods)
and Dirichlet distributions (serving as priors). Numerically, these discrete distributions are organized as
multidimensional arrays known as conditional probability tables (CPTs). The leading dimensions (rows) of
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a CPT correspond to the support of the random variable, while the lagging dimensions (columns) represent
the conditioning variables. Each column specifies the probability distribution of a random variable given a
particular configuration of its parent nodes, and the entries within each column sum to one, as they represent
a complete set of mutually exclusive and exhaustive outcomes. If a node has no parents, its CPT reduces to
a single column representing the prior probabilities of its possible values. The contents of these CPTs can
be controlled through the hyperparameters included in φ.

The complete set of possible realizations of the unobserved variables – conditioned on observational data
OExp

0:tc
= oExp

0:tc
and control actions U0:tc = u0:tc – from the initial time step t = 0 up to the current time tc,

with t = 0, . . . , tc, can be extracted by leveraging the conditional independence assumptions implied by the
graph structure in Fig. 2. The joint belief state can then be factorized according to the following sequential
Bayesian inference formulation:

p(D0:tc , R0:tc ,φ | OExp
0:tc

= oExp
0:tc

, U0:tc = u0:tc) =

p(φ)p(D0;φ)

tc∏

t=1

p(Dt | Dt−1, ut−1;φ)

tc∏

t=0

p(oExp
t | Dt;φ)p(Rt | Dt, ut).

(1)

In Eq. (1), the term p(φ) represents the prior distribution over the hyperparameters φ; inference over them
typically evolves on a slower timescale than the inference of hidden states and control actions. p(D0;φ)
denotes the prior over the initial hidden states, representing the digital state belief at t = 0, before any
observation is incorporated. The term p(oExp

t | Dt;φ) represents the sensory likelihood encoded in A. Simi-
larly, p(Dt | Dt−1, ut−1;φ) defines the transition likelihood encoded in B. Finally, p(Rt | Dt, ut) represents
the likelihood of receiving a given reward, encapsulating the objective function evaluation. Note that select-
ing actions Ut = ut underpins solving the planning problem induced by the probabilistic graphical model.
After forming a belief that measures the desirability of actions, such as p(Ut | Dt), the actual action can be
selected either as the best-point estimate or by sampling from this posterior, converting probabilistic control
into a decision.

3. Active inference for digital twins

An attractive feature of AIF is that perception, learning, and action emerge as distinct manifestations
of variational Bayesian inference [4]. Perception, or state estimation, is accomplished through inference over
dynamically evolving hidden states, conditioned on assimilated observations and past actions. Learning
corresponds to the gradual inference of hyperparameters that capture the statistical regularities of the
environment. Action, in turn, is realized by inferring a posterior distribution over policies and sampling
actions accordingly.

In the following, we describe the use of AIF agents to “navigate” the POMDP underlying the DT problem,
enabling the full potential of ADTs. Section 3.1 introduces the AIF generative model, which encodes the
probabilistic assumptions about the underlying environment. Section 3.2 addresses digital state inference
via variational free energy minimization. Section 3.3 covers policy inference and action selection through
expected free energy minimization. Section 3.4 describes the slow-scale learning of the hyperparameters
that define the AIF generative model. Finally, Sec. 3.5 discusses the active information-seeking (epistemic)
behavior that characterizes ADTs.

3.1. Active inference generative model

In AIF, the set of probabilistic assumptions about how the environment (or generative process) produces
observations (via the observation model A) and how actions influence the environment evolution (via the
transition model B) is referred to as the POMDP generative model. This model is used to represent the
joint distribution in Eq. (1), from current time tc to a prediction horizon tp > tc. Specifically, for time-
and space-discretized POMDPs, probabilistic estimates of future digital states and observations over the
prediction time steps t = tc, . . . , tp are computed as:

p(Otc:tp , Dtc:tp ,φ | π) = p(φ)p(Dtc ;φ)

tp∏

t=tc+1

p(Dt | Dt−1, π;φ)

tp∏

t=tc

p(Ot | Dt;φ), (2)

6



π

G

c

Dtc B

Ut−1

Dt

Ot

A

B

Ut

Dtp

Otp

A

Figure 3: Dynamic Bayesian network encoding the active inference generative model used to predict future digital states and
observations under each policy. Circular nodes represent random variables, while the diamond-shaped node denotes prior
preferences that reflect a goal-directed (pragmatic) objective. Gray square nodes represent parametrized operators of the
generative model. Directed edges encode conditional dependencies between variables.

which reflects unrolling the AIF generative model of Fig. 3 over t = tc, . . . , tp. Compared to Eq. (1), the
factorization in Eq. (2) introduces several modifications to align with the AIF framework. First, the control
variable U is replaced by a policy π, defined as a sequence of control states π = {utc , . . . , utp}. The generative
model in Eq. (2) is conditioned on a fixed policy π, which is how it is used for inference purposes. Policies
are treated as latent variables to be inferred: the posterior over policies represents the agent beliefs about
its intended actions, while single actions are realizations sampled from the posterior over control states. The
policy-to-control mapping p(Ut | π) assigns the control state at each time-step based on the selected policy.

The second modification concerns the omission of the reward variable R. In AIF, utility-maximization
goals are encoded as a prior distribution p̃(Otc:tp) over future observations. These preferences are specified
through an unconditional CPT c : O 7→ [0, 1]. Such prior preferences guide policy selection toward goal-
directed (pragmatic) behavior by favoring actions expected to produce preferred observations. This formal
equivalence between rewards and priors eliminates the need for explicit cost functions. Further, it enables
optimal control to be cast as an inference problem: the joint probability of observations, digital states,
control states, and model parameters is maximized when the system samples from preferred observations.
The square node G in the graph represents the expected free energy, which quantifies the desirability of
each policy by incorporating both pragmatic and information-seeking (epistemic) components, as explained
in Sec. 3.3. Finally, the initial prior p(Dtc ;φ) is typically represented by an unconditional CPT denoted as
d : D 7→ [0, 1].

Graphically, the generative model illustrated in Fig. 3 shows several differences compared to the DBN in
Fig. 2. This formulation focuses on predicting future digital states Dtc:tp and sampling (or generating) se-
quences of potential observations Otc:tp based on the probabilistic structure encoded in A and B, conditioned
on control actions Utc:tp that have not yet been executed. Accordingly, actions Ut are modeled as (circular)
random variables rather than (square) decision nodes, since they represent what-if scenarios beyond data
assimilation. Moreover, the same color is used to represent both digital states and control policies in the
graph, as both are latent variables of the generative model. Equipped with this generative model – specified
by the four-tuple 〈A,B, c,d〉 – AIF supports the inference over Dt, π, and φ, as described in the following
sections.
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3.2. Digital state inference via variational free energy minimization

Given an observation OExp
tc = oExp

tc , the underlying digital state Dtc can be inferred by estimating a

posterior distribution p(Dtc | OExp
tc = oExp

tc ), using Bayes’ Rule:

p(Dtc | OExp
tc = oExp

tc ) =
p(oExp

tc , Dtc)

p(oExp
tc )

=
p(oExp

tc | Dtc)p(Dtc)∑
dtc∈D p(o

Exp
tc , Dtc = dtc)

, (3)

where the (generative model) joint distribution p(oExp
tc , Dtc) is factorized into a likelihood term p(oExp

tc | Dtc)

and a prior p(Dtc). The denominator p(oExp
tc ) is the marginal likelihood or model evidence, which captures

the probability of observing OExp
tc = oExp

tc under the generative model.
Since Bayesian inversion to estimate hidden states from observations is generally intractable, AIF employs

variational inference [60] as an approximate Bayesian method, trading exactness for computational tractabil-
ity. Specifically, we define a tractable variational distribution Q(Dtc ;θ) : D 7→ [0, 1], parametrized by θ, and

optimize this surrogate distribution to make it as close as possible to the true posterior p(Dtc | OExp
tc = oExp

tc ).
In our discrete POMDP setting, the variational parameters θ correspond to the relative frequencies of each
category in the support of a random variable. This leads to the following optimization problem:

θ∗ = arg min
θ

DKL

[
Q(Dtc ;θ) || p(Dtc | oExp

tc )
]
, (4)

where DKL [Q(X) || P (X | Y )] = EQ [lnQ(X)− lnP (X | Y )] denotes the Kullback-Leibler (KL) divergence
between the approximate posterior Q(X) and the true posterior P (X | Y ), for two generic random variables
X and Y . Here, EQ denotes the expectation with respect to the variational posterior. However, this objective

remains intractable because it depends on the true posterior p(Dtc | oExp
tc ) that we seek to approximate. To

circumvent this, we reformulate the objective as the variational free energy (VFE):

Ftc(θ) = DKL

[
Q(Dtc ;θ) || p(Dtc | oExp

tc )
]
− ln p(oExp

tc )

=
∑

D
Q(Dtc ;θ)

[
ln

Q(Dtc ;θ)

p(Dtc | oExp
tc )

− ln p(oExp
tc )

]

= EQ
[
lnQ(Dtc ;θ)− ln p(oExp

tc , Dtc)
]
,

(5)

which serves as an upper bound on the negative log marginal likelihood (− ln p(oExp
tc )), also known as the

Bayesian surprise. Minimizing VFE thus brings the variational posterior closer to the true posterior while si-
multaneously increasing the marginal likelihood of the observation. The VFE objective leads to the following
final form of the optimization problem:

θ∗ = arg min
θ

Ftc(θ). (6)

At convergence, if Q∗(Dtc ;θ
∗) exactly matches the true posterior, the KL divergence vanishes, i.e., DKL = 0,

and the VFE equals surprise: Ftc = − ln p(oExp
tc ). By further minimizing surprise, the VFE then provides

a useful objective not only for inference but also for learning the parameters of the generative model. The
underlying rationale is that AIF agents aim to avoid surprising observations, and minimizing surprise is
equivalent to maximizing model evidence.

With reference to the generative model formulation (2), instantaneous inference over digital states involves

approximating the true posterior p(Dtc | OExp
tc = oExp

tc , Dtc−1, Utc−1 = utc−1). This inference is conditioned

on the current observation OExp
tc = oExp

tc , the previous (posterior) distribution over digital states Dtc−1, and
the previously executed action Utc−1 = utc−1, as:

θ∗ = arg min
θ

Ftc(θ)

= arg min
θ

EQ
[
lnQ(Dtc ;θ)− ln p(oExp

tc , Dtc | Dtc−1, utc−1;φ)
]

= arg min
θ

EQ
[
lnQ(Dtc ;θ)− ln

(
p(oExp

tc | Dtc ;φ)p(Dtc | Dtc−1, utc−1;φ)
)]
.

(7)
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The optimization problem in Eq. (7) is solved using fixed-point iteration [61], under the assumption of
temporal factorization, where variational posteriors at different time steps are conditionally independent. As
a result, the full VFE across trajectories decomposes into a sum of single-time-step free energies, enabling
independent optimization at each time point. Moreover, the posterior Q(Dt;θ) at a given time step t can
be further factorized across F independent hidden state factors D = {D1, . . . , DF }, following the mean-field
approximation [62]:

Q(Dt;θ) =

F∏

f=1

Q(Df
t ;θ), (8)

where Q(Df
t ;θ) denotes the posterior over the fth hidden state factor, f = 1, . . . , F .

These factors may represent distinct aspects of the generative process, potentially varying in dimension-
ality, transition dynamics, and association with specific observation modalities. Similarly, observations can
be structured into M distinct modalities O = {O1, . . . , OM}, where each Om, m = 1, . . . ,M , corresponds to
a separate sensory channel used by the agent at each time step. For example, in a DT application for the
human health, one hidden state factor may represent a patient’s metabolic state, while another factor could
encode cardiovascular function. Correspondingly, observation modalities may include blood glucose readings
and heart rate measurements, each providing information about different latent physiological processes.

In this multi-modal, multi-factor setup, the observation likelihood array A becomes a collection of M
sub-arrays A = {A1, . . . ,AM}, with each Am, m = 1, . . . ,M , representing the observation model for the
mth modality. Each sub-array encodes the likelihood p(Om | D1, . . . , DF ;φ), capturing the dependency of
that observation modality on the hidden state factors. Similarly, the transition model B is represented as a
collection of F sub-arrays B = {B1, . . . ,BF }, under the assumption that hidden state factors evolve indepen-

dently without influencing each other. Each Bf , f = 1, . . . , F , encodes the dynamics p(Df
t | Df

t−1, u
f
t−1;φ),

conditioned on the previous state and action for that factor. Note that control states are factorized analo-
gously to hidden states, such that U = {U1, . . . , UF }. Each control factor Uf governs the transitions of the
corresponding digital state factor Df , with a dimensionality matching the number of possible control actions
applicable to that aspect of the system.

This factored structure enables the encoding of complex conditional dependencies while significantly
reducing memory requirements. For instance, if the model employs two separate hidden state factors to
represent the location and identity of a phenomenon, the memory requirements for the factored representation
scale linearly with the dimensionality of the two factors. An additional advantage of this factorization lies in
its interpretability: by explicitly designing digital state factors to reflect intuitive features of the environment,
the resulting generative model becomes more transparent and modular. In contrast, explicitly enumerating
all possible combinations of “where” and “what” would incur polynomial memory complexity.

The marginal variational posteriors for each hidden state factor at the current time tc are computed
analytically via mean-field fixed-point iteration [61]. The algorithm proceeds by setting the gradient of the

VFE Ftc(θ) to zero, and iteratively solving for each factorized component Q(Df
tc ;θ), for f = 1, . . . , F . A

detailed derivation of this procedure can be found in [63].
Note that in the AIF framework, there is no need to introduce an explicit node for representing quantities

of interest, unlike the abstraction of physical-digital systems proposed in [26]. In their probabilistic graphical
model, these variables are represented by a dedicated node and predicted from the updated digital state
via the computational models comprising the DT. In contrast, under the AIF framework, such a node is
redundant, as quantities of interest are naturally embedded within the observational data node. When
observational evidence is unavailable for a particular modality, inference simply remains uninformed in that
dimension of the observation space. Nevertheless, the updated digital state can still be used to predict
expected values across any observation channel – whether observed or unobserved – via the corresponding
observation model. The models may, in principle, incorporate arbitrarily complex forward mappings, ranging
from high-fidelity physics-based simulators to purely data-driven surrogates or hybrid combinations of the
two.

3.3. Policy inference-action selection via expected free energy minimization

Given the updated variational posterior over the digital state Q∗(Dtc ;θ
∗), policy inference involves eval-

uating the quality of each admissible policy comprising future actions over a prediction horizon t = tc, . . . , tp.
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Figure 4: A dynamic Bayesian network illustrating the use of active inference generative models to navigate the partially
observable Markov decision process underlying the digital twin problem. Circular nodes represent random variables, red square
nodes denote taken actions, gray square nodes represent parametrized operators of the generative model, and the diamond-
shaped node symbolizes prior preferences that reflect a goal-directed (pragmatic) objective. Nodes with bold outlines indicate
observed quantities, while those with thin outlines represent latent variables to be inferred. Directed edges encode conditional
dependencies between variables. The upper left-to-right path represents the evolution of the physical space, while the lower
path depicts the evolution of the digital space. Digital state inference is performed at the current time tc, whereas policy
inference involves propagating the updated digital state from tc to the prediction time tp.

In AIF, the desirability of (or preference for) each policy is quantified through the expected free energy (EFE).
The EFE is the central quantity driving the behavior of ADTs and is formulated to evaluate sequences of
actions (or policies) both on goal-directed (pragmatic) and information-seeking (epistemic) behaviors. Like
the VFE, the EFE is a function of observations, hidden states, and policies. However, different from the
VFE, it pertains to sequences of future actions, where no actual observations are yet available, and it includes
expectations over future digital states and future observations generated by the generative model.

The use of AIF generative models for digital state inference and policy inference is graphically summarized
in Fig. 4. Digital state inference integrates the prior belief at time tc − 1 with the observational data
assimilated at tc. In contrast, policy inference entails predictive modeling over the horizon t = tc, . . . , tp,
where the generative model operates without access to future sensory data or executed actions from the
interfacing generative process.
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The EFE associated to a generic policy π is defined as:

Gπ = EQ(Otc:tp ,Dtc:tp |π)

[
lnQ(Dtc:tp | π)− ln p̃(Otc:tp , Dtc:tp | π)

]
, (9)

where, for simplicity, we omit the explicit dependence of the variational posterior on the variational param-
eters θ, denoting it simply as Q(Dt). Similarly, we omit the dependency of the generative model on the
hyperparameters φ. In Eq. (9), p̃(Ot, Dt | π) = p(Dt | Ot, π)p̃(Ot) defines a generative model biased by the
predictive prior over observations p̃(Ot). This construction integrates the prior preferences encoded in c into
the inference process (described below), enabling the AIF agent to act in ways that maximize the likelihood
of preferred outcomes.

Given the assumed conditional independence of variational posteriors across time, the EFE at a generic
time step t ∈ {tc, . . . , tp} for policy π is given by:

Gπt = EQ(Ot,Dt|π) [lnQ(Dt | π)− ln p̃(Ot, Dt | π)]

= −EQ(Ot|π) [DKL [Q(Dt | Ot, π) || Q(Dt | π)]]
︸ ︷︷ ︸

Epistemic value (information gain)

− EQ(Ot|π) [ln p̃(Ot)]︸ ︷︷ ︸
Pragmatic value (utility)

+ EQ(Ot|π) [DKL [Q(Dt | Ot, π) || p(Dt | Ot, π)]]
︸ ︷︷ ︸

Expected variational approximation error (≥ 0)

,

(10)

with the complete derivation provided in Appendix A, as adapted to the ADT framework from [63]. In
Eq. (10), the first term denotes the epistemic value [28], which promotes information-seeking behavior. It
favors policies under which the agent is expected to explore states that yield high information gain about
the digital state. This gain is quantified as the divergence between predicted digital states conditioned and
unconditioned on observations under the same policy. The second term corresponds to the pragmatic value,
which reflects goal-directed behavior. It favors policies that lead the agent to states expected to generate
outcomes aligned with prior preferences p̃(Ot). The final term captures the expected approximation error –
the divergence between the true digital state posterior and its variational approximation – which is typically
assumed to be negligible.

The epistemic drive in Eq. (10) is a crucial component that enables ADTs to exhibit spontaneous ex-
ploratory behavior. Epistemic actions in ADTs encompass decisions that gather information or improve the
digital state observability. These may include, for instance, installing new sensors, scheduling targeted in-
spections, or testing model predictions. For example, in a manufacturing ADT, the agent might deliberately
vary process parameters within safe limits to resolve uncertainty about machine wear dynamics. In a per-
sonalized medicine context, the ADT might recommend a low-risk diagnostic test to disambiguate between
competing hypotheses about a patient’s physiological condition. In both cases, the primary objective of
these actions is not immediate (pragmatic) utility maximization, but rather to refine the generative model
and enhance the understanding of the environment.

The EFE of temporally deep policies is given by the sum of time step-specific contributions:

Gπ =

tp∑

t=tc

Gπt , (11)

where each term is evaluated based on the agent’s predictive beliefs over future digital states and observa-
tions. The computation begins from the current posterior belief Q∗(Dtc), which is then propagated over the
prediction horizon t = tc, . . . , tp using the policy-specific transition and observation models. This process
generates the posterior predictive densities Q(Otc:tp , Dtc:tp | π), which are subsequently used to evaluate the
goal-directed (pragmatic) and information-seeking (epistemic) values at each time step.

Let Π = {π1, . . . , πP } denote the set of P feasible policies, constructed through the combinatorial enu-
meration of sequences of actions from the action space U over the time horizon t = tc, . . . , tp. The EFE
vector G = [Gπ1 , . . . , GπP ]> ∈ RP , which assigns a scalar EFE to each policy, defines a prior over policies
according to:

p(π) = σ(−γG), (12)

where σ(x) = exp(x)∑
x exp(x) is the Softmax function, and γ ∈ R+ is an inverse temperature parameter that

modulates the precision over policies. Higher γ values yield more deterministic preferences.
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Under the prior (12), AIF agents perform policy inference by optimizing a variational posterior over
policies Q(π) [63], to minimize the following VFE expansion over the prediction horizon t = tc, . . . , tp:

Ftc:tp = EQ(Dtc:tp ,π)

[
lnQ(Dtc:tp , π)− ln p(Otc:tp , Dtc:tp , π)

]

= EQ(Dtc:tp ,π)

[
lnQ(Dtc:tp | π) + lnQ(π)− ln p(Otc:tp , Dtc:tp | π)− ln p(π)

]

= EQ(π) [lnQ(π)− ln p(π)]

+ EQ(π)

[
EQ(Dtc:tp |π)

[
lnQ(Dtc:tp | π)− ln p(Otc:tp , Dtc:tp | π)

]]

= DKL [Q(π) || p(π)] + EQ(π)

[
Fπtc:tp

]
,

(13)

which measures the KL divergence between the approximate posterior Q(Dtc:tp , π) and the generative model
p(Otc:tp , Dtc:tp , π) as a sum of two contributions. The first is the KL divergence between the variational
posterior over policies and the corresponding prior (12), thereby incorporating the EFE into the inference
process. The second term is a policy-weighted average of the free energy across all policies, where Fπtc:tp
denotes the free energy associated with a single policy π:

Fπtc:tp = −EQ(Dtc:tp |π)

[
ln p(Otc:tp , Dtc:tp | π)− lnQ(Dtc:tp | π)

]

= −EQ(Dtc:tp |π)

[
ln p(Otc:tp , Dtc:tp | π)

]
−H

[
Q(Dtc:tp | π)

]
,

(14)

with H
[
Q(Dtc:tp | π)

]
= EQ(Dtc:tp |π)

[
− lnQ(Dtc:tp | π)

]
being the variational posterior entropy, which quan-

tifies the uncertainty in the beliefs about future digital states under policy π.
By evaluating each policy independently and computing its associated free energy, the optimal posterior

Q∗(π) is obtained by minimizing the total VFE Ftc:tp with respect to Q(π). This is achieved by enforcing the
stationarity of Ftc:tp with respect to Q(π), leading to a Softmax distribution through the following update
rule:

Q∗(π) = arg min
Q(π)

Ftc:tp = σ(ln p(π)−Fπtc:tp), (15)

assigning higher probability to policies with lower free energy while remaining close to the prior.
The posterior over policies can be further biased by incorporating a policy prior p(π0), which encodes

habitual tendencies. For example, p(π0) could represent the standard policy implemented by decision-makers,
such as state agencies and companies, depending on the context, or standard protocols in medical settings.
By expanding the prior (12) as:

p(π) = σ(ln p(π0)− γG), (16)

the resulting update rule for belief estimation becomes:

Q∗(π) = arg min
Q(π)

Ftc:tp = σ(ln p(π0)− γG−Fπtc:tp). (17)

The posterior over control states Q∗(Ut) is formed by marginalizing over policies as follows:

Q∗(Ut) =
∑

π∈Π

p(Ut | π)Q∗(π), (18)

where p(Ut | π) defines a deterministic mapping from policies to control states. The actual action Utc = utc
to be executed on the system can eventually be selected either as the maximum a-posteriori estimate or by
sampling from Q∗(Utc).

3.4. Learning of the generative model via parameter inference

In this section, we describe the learning of the parameters φ that define the AIF generative model, based
on the outcomes of inference. “Learning” φ is a generative model’s parameter updating occurring at a
slower timescale than the faster inference processes for digital states and policies. Nevertheless, the update
equations for φ follow the same variational principles of digital state inference, where a variational posterior
over φ is optimized through VFE minimization.
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In our discrete setting, posterior inference over φ is performed by parametrizing the likelihood and prior
distributions of the generative model with Dirichlet distributions, following an approach similar to [11, 21].
The choice to treat hyperparameters φ as the parameters of Dirichlet distributions is motivated by their
conjugacy to the categorical distribution. This formulation enables online learning via closed-form Bayesian
updates, allowing evidence about the system response to actions to be incorporated efficiently, while ensuring
that the posterior remains within the Dirichlet family. The approach is computationally scalable and supports
continual refinement of ADTs, even when initialized with potentially inaccurate or uncertain priors and
likelihoods.

In the following, we refer to the generative model (2) by decomposing φ into subsets corresponding to
the categorical and Dirichlet parameters associated with the arrays A, B, and d. Specifically, we write
φ = {A, a,B, b,D, d} to explicitly highlight the stochastic parametrization of each likelihood and prior
distribution, as defined below:

1. The observation model A ∈ R|O|×|D|, which encodes the observation likelihood p(Ot | Dt;A), is parametrized
by the matrix of categorical probabilities A ∈ R|O|×|D|, as follows:

Ot | Dt;A ∼ Cat(A), (19)

p(A) =
∏

d∈D
p(A•,d), A•,d ∼ Dir(a•,d), (20)

where |X | ∈ N denotes the cardinality of a generic set X ; Cat(X) and Dir(X) denote categorical and
Dirichlet distributions over a generic random variable X, respectively; the notation X•,j refers to the jth
column of a matrix X; and a ∈ R|O|×|D| is the matrix of (positive) concentration parameters defining
the Dirichlet prior over A. These parameters encode prior beliefs over categorical probabilities and
can be interpreted as pseudo-counts representing the expected frequency of each possible realization –
here, the frequency of each observation given a digital state. For notational simplicity, we assume the
generative model is not factorized into multiple digital state factors or observation modalities. However,
the formulation can be easily extended to a multi-modal, multi-factor setup via additional parametrized
dimensions.

2. The transition model B ∈ R|D|×|D|×|U|, which encodes the control-dependent forward-time predictor
p(Dt | Dt−1, ut−1;B), is parametrized by the tensor of categorical parameters
B ∈ R|D|×|D|×|U|, as follows:

Dt | Dt−1, ut−1;B ∼ Cat(B), (21)

p(B) =
∏

d∈D

∏

u∈U
p(B•,d,u), B•,d,u ∼ Dir(b•,d,u), (22)

where b ∈ R|D|×|D|×|U| is the tensor of parameters for the Dirichlet prior over B.

3. the initial state model d ∈ R|D|, which encodes the prior over initial digital states p(D0;D), is parametrized
by the vector of categorical parameters d ∈ R|D|, as follows:

D0;D ∼ Cat(D), (23)

D ∼ Dir(d), (24)

where d ∈ R|D| is the vector of parameters defining the Dirichlet prior over D.

Given the split of φ into the individual parametrizations for A, B, and d, the generative model (2) can
be expressed as:

p(Otc:tp , Dtc:tp ,A,B,D, π) =

p(A)p(B)p(D)p(π)p(Dtc ;D)

tp∏

t=tc+1

p(Dt | Dt−1, π;B)

tp∏

t=tc

p(Ot | Dt;A).
(25)
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Learning is thus formulated as the approximate inference of A, B, and D by minimizing the VFE with
respect to their corresponding approximate posteriors Q(A), Q(B), and Q(D). The full variational posterior
is assumed to factorize as:

Q(Dtc:tp ,A,B,D, π) = Q(A)Q(B)Q(D)Q(π)

tp∏

t=tc

Q(Dt | π), (26)

where the variational distributions Q(A), Q(B), and Q(D) are modeled as Dirichlet distributions:

Q(A) =
∏

d∈D
Q(A•,d), Q(A•,d) = Dir(â•,d), (27)

Q(B) =
∏

d∈D

∏

u∈U
Q(B•,d,u), Q(B•,d,u) = Dir(b̂•,d,u), (28)

Q(D) = Dir(d̂), (29)

where â ∈ R|O|×|D|, b̂ ∈ R|D|×|D|×|U|, and d̂ ∈ R|D| serve the same role as a, b, and d in defining Dirichlet
distributions, while being treated as variational parameters to be optimized. Accordingly, the full VFE
objective for the generative model (25) is given by:

Ftc:tp = EQ(Dtc:tp ,A,B,D,π)

[
lnQ(Dtc:tp ,A,B,D, π)− ln p(Otc:tp , Dtc:tp ,A,B,D, π)

]
, (30)

which, using Eq. (25) and Eq. (26), can be factorized as:

Ftc:tp = EQ(Dtc:tp ,A,B,D,π)

[
lnQ(A)− ln p(A) + lnQ(B)− ln p(B) + lnQ(D)− ln p(D)

+ lnQ(π)− ln p(π)− ln p(Dtc ;D) + lnQ(Dtc:tp | π)

− ln p(Dtc+1:tp | Dtc:tp−1, π;B)− ln p(Otc:tp | Dtc:tp ;A)
]
.

(31)

The update rules for the Dirichlet parameters a, b, and d are derived by independently setting the
gradients of the VFE (31) to zero with respect to each parameter direction. Specifically, when the ADT is
being updated at the current time step tc, learning proceeds as follows:

• A array: Given the Dirichlet prior parameters a over the generative model, the observation OExp
tc = oExp

tc ,
and the digital state posterior Q∗(Dtc), the fixed-point update rule for the variational posterior Dirichlet
parameters â over Q(A) is:

â∗ = a + ηA(oExp
tc ⊗Q∗(Dtc)), (32)

where ⊗ denotes the outer product, and ηA ∈ R, with 0 ≤ ηA ≤ 1, is a learning rate parameter that
scales the update step.

• B array: Given the Dirichlet prior parameters b over the generative model, the digital state posterior
Q∗(Dtc), the previous digital state posterior Q∗(Dtc−1), and the action Utc−1 = utc−1 taken at the

previous time step, the fixed-point update rule for the variational posterior Dirichlet parameters b̂ over
Q(B) is:

b̂∗•,•,utc−1
= b•,•,utc−1 + ηB(Q∗(Dtc)⊗Q∗(Dtc−1)), (33)

which corresponds to an update applied to the utc−1th slice of b̂.

• d array: Given the Dirichlet prior parameters d and the digital state posterior Q∗(Dtc), the fixed-point
update rule for the variational posterior Dirichlet parameters d̂ over Q(D) is:

d̂∗ = d + ηdQ∗(Dtc). (34)
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3.5. Epistemic behavior of active digital twins

If the agent also maintains a variational posterior over the model hyperparameters Q(φ), as discussed
in Sec. 3.4, the EFE expression (10) can be extended to capture the epistemic value associated with the
expected information gain not only over digital states but also over φ:

Gπt = EQ(Ot,Dt,φ|π) [lnQ(Dt,φ | π)− ln p̃(Ot, Dt,φ | π)]

= −EQ(Ot|π) [DKL [Q(Dt | Ot, π) || Q(Dt | π)]]
︸ ︷︷ ︸

Epistemic value (digital state information gain)

− EQ(Ot|π) [DKL [Q(φ | Ot, π) || Q(φ | π)]]
︸ ︷︷ ︸

Epistemic value (model parameters information gain)

− EQ(Ot|π) [ln p̃(Ot)]︸ ︷︷ ︸
Pragmatic value (utility)

+EQ(Ot|π) [DKL [Q(Dt,φ | Ot, π) || p(Dt,φ | Ot, π)]]
︸ ︷︷ ︸

Expected variational approximation error (≥ 0)

.

(35)

The full derivation is provided in Appendix A, adapted to the ADT framework from [63]. The second
epistemic term quantifies the value of resolving uncertainty over the Dirichlet parameters that govern the
prior and posterior distributions of the A, B, and d arrays. When the AIF agent maintains and updates
beliefs over these model parameters, this term steers policy inference toward action-observation trajectories
expected to yield informative updates to the generative model. We point out that the epistemic value over
φ is not exploited in the numerical demonstrations presented in Sec. 4. Nevertheless, it is retained in the
formulation of the ADT framework, as this capability may enable essential functionalities depending on the
context and specific application objectives.

Epistemic actions aimed at refining the generative model can be regarded as forms of autonomous cal-
ibration, wherein the ADT steers its operation into underexplored regimes or perturbs its environment to
test and improve its generative model. For instance, a sensor might be temporarily activated solely to
evaluate its reliability while updating a likelihood model deemed unreliable. This behavior underscores the
distinction between passive and active learning: while passive learning entails assimilating externally pro-
vided or randomly encountered data, active learning reflects the strategic initiation of data acquisition to
accelerate model refinement and enhance future decision-making. The information-seeking (epistemic) be-
havior of ADTs thus emerges from their capacity for self-adaptive inference and learning, pursued alongside
goal-directed (pragmatic) objectives. This dual optimization is embedded in policy inference through EFE
minimization, which unifies goal-directed exploration and utility maximization within a single computational
framework that moves beyond the passive replication of physical systems.

3.6. Algorithmic description

An algorithmic description of a single step of the AIF loop for ADTs is provided in Algorithm 1. Given
the generative model, an observation sampled from the generative process, the posterior over digital states
from the previous time step, and the action taken at the previous time step, one step of the loop involves:
(1) performing inference over digital states based on the new observation; (2) using the posterior belief
over digital states to perform policy inference and select the next action; (3) updating the generative model
through learning informed by inference results.

4. Numerical demonstrations

This section demonstrates the proposed methodology through the simulated monitoring, management,
and maintenance planning of the Hörnefors railway bridge [64]. Although this case study focuses specifically
on structural health monitoring (SHM), the underlying framework broadly applies to a wide range of systems
or domains.

Section 4.1 introduces the monitored physical asset. Section 4.2 describes the composition of the handled
vibration data and the numerical models used to generate labeled examples under various damage scenarios.
Section 4.3 outlines the assimilation of observational data for structural health identification using artificial
neural networks. Section 4.4 details the step-by-step construction of the AIF generative model, namely
the four-tuple 〈A,B, c,d〉. Section 4.5 presents the results of ADT simulations under purely goal-directed
behavior, serving as a baseline for comparison with the simulations involving mixed pragmatic-epistemic
behavior, subsequently discussed in Sec. 4.6.
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Algorithm 1 Active inference loop for active digital twins.

input: generative model 〈A,B, c,d〉
assimilated observation OExp

tc = oExp
tc

digital state posterior Q∗(Dtc−1) at previous time step
action Utc−1 = utc−1 executed at previous time step

. digital state inference by minimizing variational free energy Ftc
1: infer digital state posterior Q∗(Dtc)

. policy inference and action selection by minimizing future variational free energy Ftc:tp
2: compute posterior predictive distributions Q(Otc:tp , Dtc:tp | π)
3: evaluate epistemic and pragmatic values over t = tc, . . . tp under each policy
4: infer control policies posterior Q∗(π)
5: select action Utc = utc by taking the best-point estimate or sampling from Q∗(Utc)

. learning by minimizing variational free energy Ftc
6: update observation model A by computing the variational posterior Dirichlet parameters â
7: update transition model B by computing the variational posterior Dirichlet parameters b̂
8: update initial prior d by computing the variational posterior Dirichlet parameters d̂

return updated generative model 〈A,B, c,d〉
updated posterior distribution over control policies Q∗(π)
control action to be executed Utc = utc
posterior predictive density over digital states Q(Dtc:tp)
posterior predictive density over actions Q(Utc:tp)

The AIF agents based on discrete, Markovian generative models have been simulated using the open-
source Python package pymdp library [63]. Compared to other AIF libraries, such as the MATLAB toolbox DEM

[65] and the C++ library cpp-AIF [66], pymdp offers notable advantages in terms of user-friendliness, flexibility,
and customizability, although featuring lower process representation (DEM) and less computational efficiency
(cpp-AIF). The simulations have been run on a PC featuring an Intel R© CoreTM i9-14900KF CPU @ 3.2
GHz and 64 GB RAM.

4.1. Physical asset

The Hörnefors railway bridge, shown in Fig. 5(a), is an integral reinforced concrete structure along the
Swedish Bothnia line. It spans 15.7 m, with a clearance height of 4.7 m and a width of 5.9 m (excluding edge
beams). The main structural elements have a thickness of 0.5 m for the deck, 0.7 m for the frame walls, and
0.8 m for the wing walls. The foundation system comprises two slabs connected by stay beams, supported
by pile groups. The concrete is of grade C35/45, characterized by the following material properties: Young’s

modulus E = 34 GPa, Poisson’s ratio ν = 0.2, and density ρ = 2500 kg/m
3
. The bridge supports a single

railway track with sleepers spaced at 0.65 m intervals, resting on a ballast layer that is 0.6 m deep and 4.3 m
wide, with a density of ρB = 1800 kg/m

3
. The structure is subjected to dynamic loading from Gröna T̊aget

trains operating at speeds between v ∈ [160, 215] km/h. We specifically consider configurations involving
two-car trainsets, totaling eight axles, with each axle bearing a mass of ψ ∈ [16, 22] ton. The geometrical
and mechanical parameters, as well as the moving load model, are adapted from [67]. The physical state
space S represents the ground-truth variability in the bridge structural health.

4.2. Offline data assembly

The bridge monitoring system provides displacement data in the form of multivariate time series, denoted
as U(µ) = [u1(µ), . . . ,uNs(µ)] ∈ RL×Ns . These consist of Ns = 10 individual time series corresponding to
the degrees of freedom (dofs) indicated in Fig. 5(b). Each series contains L samples equally spaced over the
time interval [0, 1.5 s], acquired with a sampling frequency of 400 Hz. The vector µ ∈ RNpar collects Npar
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Figure 5: Physical asset and its digital twin. (a) The physical space corresponds to the Hörnefors bridge. (b) The digital space
represents a structural health monitoring schematization, including details of synthetic recordings related to displacements
u1(t), . . . , u10(t), and predefined damage regions Ω1, . . . ,Ω6. (c) Exemplary vertical displacement time history at midspan,
comparing full-order model (FOM), reduced-order model (ROM), and noisy FOM approximations.

control parameters, which are assumed to represent the operational and damage conditions. For the problem
settings we consider, each observation spans a relatively short time interval, within which these conditions
are regarded as constant.

We simulate the monitored asset using a physics-based computational model. Specifically, the structure
is modeled as a linear-elastic continuum under the assumption of linearized kinematics, and the equations
of elasto-dynamics describe its dynamic response to train transits. The model is spatially discretized using
linear tetrahedral finite elements, and its solution is advanced in time to generate synthetic observational
data, controlled by the parameter vector µ.

The full-order model (FOM) is described in detail in [10]; here, we summarize its key features. The finite
element mesh consists of elements with a nominal size of 0.8 m, refined to 0.15 m along the deck, resulting
in a total of 17, 292 dofs. The ballast layer is accounted for by increasing the density of the deck and edge
beams to represent an equivalent mass. Embankment effects are captured using distributed springs applied
along the surfaces in contact with the ground, implemented via a Robin-type boundary condition with an
elastic coefficient of 108 N/m

3
. Structural damping is introduced using Rayleigh damping, calibrated to yield

a 5% damping ratio in the first two vibrational modes. The dynamic response is computed over the time
interval [0, 1.5 s], uniformly partitioned into L = 600 time steps, using an implicit Newmark time integration
scheme [68].

Damage-induced variations in the structural dynamic response are modeled as localized reductions in
effective stiffness. Assuming that each observation spans a time window short enough compared to the
timescale of damage progression, the structural behavior can be treated as linear within that interval. This
enables a separation of timescales between the slow evolution of damage and the structural health assess-
ment [69]. While the precise damage mechanisms are typically confirmed through on-site inspections follow-
ing early detection, the degradation patterns in integral bridges that can be described in this way include:
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cracking in concrete due to thermal gradients, freeze-thaw cycles, or overloading; progressive deterioration
from alkali-silica reactions, which may lead to cracking and spalling; cracking from stress concentrations
caused by differential settlements; and surface erosion from prolonged environmental exposure.

The digital state space D includes a set of predefined configurations of damage presence, location, and
severity. These are modeled by parametrizing the stiffness matrix using two variables y ∈ N and δ ∈ R, both
included in the parameter vector µ. The discrete variable y ∈ {0, . . . , 6} designates the damage region, with
y = 0 denoting the undamaged baseline. For the damage cases y = 1, . . . , 6, we consider NΩ = 6 predefined
subdomains Ωm, for m = 1, . . . , 6, each representing a potential damage location as shown in Fig. 5. Within
each subdomain, the material stiffness may be reduced by a factor δ ∈ [30%, 80%], which remains constant
throughout the passage of a train.

To reduce the computational cost of solving the FOM for arbitrary values of µ, we employ a projection-
based reduced-order model (ROM). The reduction is performed using a Galerkin reduced basis method [70,
71], relying on a low-dimensional set of basis functions computed through proper orthogonal decomposition.
Following the method of snapshots [72], the ROM is constructed upon 400 FOM solutions for different
configurations of the input parameters µ = (v, ψ, y, δ)>, which are taken as uniformly distributed and
sampled via the Latin hypercube rule. The dimension of the reduced-order expansion is determined based on
an energy retention criterion. By setting a tolerance of 10−3 for the fraction of discarded energy, the number
of dofs is reduced to 133. Both the FOM and ROM have been implemented in the Matlab environment,
using the redbKIT library [73]. For a more detailed description, the reader is referred to [10].

A representative example of displacement time histories is reported in Fig. 5(c), showing the vertical
displacement at midspan obtained from both the FOM and ROM. To emulate measurement noise and assess
its potential impact on the handled structural response, signals are corrupted with additive Gaussian noise,
yielding a signal-to-noise ratio of 120.

4.3. Data assimilation via artificial neural networks

The vibration recordings are assimilated for structural health diagnostics by leveraging the flexibility of
deep learning (DL) models for SHM applications, as demonstrated in [74–76].

Data-driven approaches to SHM follow a pattern recognition paradigm [62], in which damage is assessed
by comparing measurements with data previously collected under known structural conditions. This process
relies on two key components: (i) feature selection and extraction, and (ii) statistical modeling to associate
these features with specific damage patterns [77]. A major challenge lies in identifying damage-sensitive
features that remain robust under varying operational and environmental conditions. DL offers an automated
alternative for selecting and extracting optimized features by capturing temporal correlations within and
across time series data [78, 79].

In our framework, each time a train crosses the bridge, the vibration recordings U are initially processed
by a DL classifier, which outputs confidence scores indicating the likelihood that U corresponds to each
damage class defined by the y parameter. The class with the highest confidence is selected as the best-point
estimate for categorizing the measurements. Whenever damage is detected and localized within a region Ωm,
m = 1, . . . , 6, the vibration recordings U are further processed by a dedicated regression model – one for
each damageable region – to estimate the severity of damage δ. These initial estimates are then incorporated
into the AIF framework as assimilated observation OExp

tc = oExp
tc , as detailed below.

The DL architectures have been implemented through the Tensorflow-based Keras API [80], and trained
on a single Nvidia GeForce RTXTM 3080 GPU card. The training has been performed in a supervised fashion
using 10, 000 noisy data instances generated from ROM simulations. For a comprehensive description the
reader is referred to [10].

4.4. Active digital twin framework

The outcomes from the DL models are integrated into our POMDP framework by discretizing the range
of δ into Nδ = 6 intervals: {[30%, 35%], [35%, 45%], [45%, 55%], [55%, 65%], [65%, 75%], [75%, 80%]}. This
discretization results in a total of NΩNδ + 1 = 37 possible damage scenarios, each specifying a combination
of damage location and severity. By ordering them first by location and then by severity, this post-processed
output constitutes the first observation modality OΩδ.

The observation space O is completed with a second observation modality Ou corresponding to the action
taken prior to data assimilation, such that O = {OΩδ, Ou}. Including this additional perceptual channel
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provides two key benefits. First, it enables prior preferences (via the c array) to account not only for the
costs associated with structural health states but also for those linked to actions. Second, as detailed below,
it naturally supports the formulation of an action-conditioned observation model, introducing an inductive
bias that facilitates digital state identification.

The digital state space D is structured into three factors D = {DΩ, Dδ, DEpi}, corresponding to: the
damage location DΩ = {Ω1, . . . ,Ω6}; the discretized percentage reduction in material stiffness Dδ = {0%,
[30%, 35%], [35%, 45%], [45%, 55%], [55%, 65%], [65%, 75%], [75%, 80%]}; and an epistemic switch DEpi =
{Epi, Non-Epi}, which indicates whether the AIF agent is likely to engage in information-seeking (epistemic)
behavior. This third factor allows the agent to autonomously switch between acting as an active information
seeker or as a utility maximizer that is confident in its beliefs. It is worth noting that this factorization is
neither the only viable option nor necessarily the most appropriate. This reflects the inherent subjectivity
involved in shaping the digital state space. For example, DΩ and Dδ could have been merged into a single
enumerated representation, similar to the one used for OΩδ, at the expense of increased computational
complexity and reduced interpretability. Alternatively, a more expressive but computationally demanding
option would involve defining six separate Dδ factors, one for each of the NΩ damageable regions. Finally,
note that including DEpi is essential to enable epistemic behavior, as this factor leads to distinct observation
models associated with the Epi and Non-Epi states, as discussed further below.

The action space U comprises four control actions, each producing specific effects:

1. Do nothing (DN): the structural health state evolves according to a stochastic deterioration process,
while regular revenue is maintained.

2. Maintenance (MA): a high-cost maintenance intervention is executed to mitigate existing damage. Al-
though this action improves the structural condition, it may not fully restore the system to a pristine
(damage-free) state.

3. Restrict operations (RO): traffic is limited to lightweight trains with axle load below 18 ton, thereby
reducing the rate of structural degradation. However, this also leads to a reduction in the revenue
generated by the infrastructure.

4. Read sensors (RE): a moderate-cost, high-fidelity sensing action is performed to resolve uncertainty in the
structural health state. This action provides high epistemic value by decreasing the entropy of the digital
state posterior, thus increasing the mutual information between latent states and expected observations.
This effect reflects the use of high-quality sensors, controlled forced vibration tests, or in-situ inspection.
From the perspective of the generative model, performing an inspection is equivalent to reading vibration
recordings from sensors, albeit with significantly higher information content and a corresponding higher
cost.

The observation likelihood array A = {AΩδ,Au} comprises two observations models:

AΩδ ∈ R|OΩδ|×|DΩ|×|Dδ|×|DEpi| and Au ∈ R|Ou|×|DΩ|×|Dδ|×|DEpi|, respectively encoding the conditional sen-
sory likelihoods p(OΩδ | DΩ, Dδ, DEpi) and p(Ou | DΩ, Dδ, DEpi) for the first and second observation modal-
ities. Conceptually, these tensors are designed to answer two distinct questions: (i) what might the agent
believe about the pre-classified signals? and (ii) what might the agent infer about its previous action?

The slice of AΩδ for the epistemic state, i.e., p(OΩδ | DΩ, Dδ, DEpi = Epi), is denoted by AΩδ
Epi ∈

R|OΩδ|×|DΩ|×|Dδ|. This observation model is derived from a confusion matrix that quantifies the offline (ex-
pected) performance of the DL models in identifying the digital state factors DΩ and Dδ. The confusion
matrix is interpreted as a CPT, where rows correspond to ground-truth responses and columns to predicted
outcomes. The offline evaluation has been performed using 4000 noisy FOM solutions, achieving a classifi-
cation accuracy of 91.39%. To mitigate the risk of inconsistencies due to zero-likelihood observations, i.e.,
evidence contradicting the confusion matrix, a small positive perturbation 10−5 is added to all entries of
AΩδ

Epi prior to normalization. An exemplary slice of AΩδ
Epi associated with p(OΩδ | DΩ = Ω4, D

δ, DEpi = Epi)
is shown in Fig. 6a.

While AΩδ
Epi serves as a relatively informative sensory likelihood, a higher-entropy likelihood is used to

model the slice of AΩδ under the non-epistemic state, i.e., p(OΩδ | DΩ, Dδ, DEpi = Non-Epi), denoted by

AΩδ
Non-Epi ∈ R|OΩδ|×|DΩ|×|Dδ|. This non-epistemic model is obtained via uniform random perturbation of
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Figure 6: Visualization of the observation models: Panels (a) and (b) show slices of AΩδ, corresponding to the sensory
likelihoods (a) p(OΩδ | DΩ = Ω4, Dδ, DEpi = Epi) and (b) p(OΩδ | DΩ = Ω4, Dδ, DEpi = Non-Epi) for α = 0.2. Panels
(c) and (d) show slices of Au, corresponding to the sensory likelihoods (c) p(Ou | DΩ = Ω1:6, Dδ, DEpi = Epi) and (d)
p(Ou | DΩ = Ω1:6, Dδ, DEpi = Non-Epi).

AΩδ
Epi as the following linear combination:

AΩδ
Non-Epi = (1− α)AΩδ

Epi + αAΩδ
Entropic, (36)

which is then properly renormalized. Here, AΩδ
Entropic is a purely entropic observation model sampled from

a uniform distribution over [0, 1], and 0 ≤ α ≤ 1 is a weighting coefficient controlling the degree of entropy
introduced. Figure 6b shows an exemplary slice corresponding to p(OΩδ | DΩ = Ω4, D

δ, DEpi = Non-Epi)
for α = 0.2. It is worth noting that modulating α can also be interpreted as a simple yet effective mechanism
to account both for potential errors in, and for the decision-maker confidence about, the use of DL models
to assimilate real-world data.

The slice of Au for the epistemic state, i.e., encoding p(Ou | DΩ, Dδ, DEpi = Epi), is denoted as Au
Epi ∈

R|Ou|×|DΩ|×|Dδ|. It is populated with Dirac delta distributions centered at the RE action for all possible
combinations of DΩ and Dδ (see also Fig. 6c). This design reflects the assumption that if the agent is in the
state DEpi = Epi, it knows with certainty that the previously taken action was the (epistemic) RE action,
regardless of the values of the other digital state factors. From a data assimilation point of view, receiving
Ou = RE provides no informative cues for inferring DΩ or Dδ, but it deterministically sets DEpi = Epi. In

contrast, under the non-epistemic state, the corresponding observation model Au
Non-Epi ∈ R|Ou|×|DΩ|×|Dδ| is

filled with entries that reflect a plausible causality for what the agent can infer about the previous action
given DΩ and Dδ. This prior CPT (see also Fig. 6d) is modeled consistently across the DΩ factor, as follows:
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p(Ou | DΩ = Ω1:6, D
δ, DEpi = Non-Epi) =




0.08 0.3 0.45 0.4 0.3 0.2 0.1
0.9 0.4 0.3 0.1 0.15 0.2 0.25
0.02 0.3 0.25 0.5 0.55 0.6 0.65

0 0 0 0 0 0 0


 . (37)

For data assimilation, observing Ou 6= RE has two implications: first, it deterministically sets DEpi =
Non-Epi; second, it introduces an inductive bias by leveraging the structure of Au

Non-Epi to condition inference
on the previous action, similar to the influence of the transition model.

The transition array B = {BΩ,Bδ,BEpi} comprises three sub-arrays Bf ∈ R|Df |×|Df |×|Uf |, each encod-

ing the transition dynamics p(Df
t | Df

t−1, u
f
t−1;Bf ) of a specific digital state factor Df ∈ {DΩ, Dδ, DEpi},

conditioned on its previous state and the corresponding control factor uf ∈ {uΩ, uδ, uEpi}. Starting with
initial priors over the transition probabilities defined by Bf , these are iteratively refined by assimilating ev-
idence from the system response to actions, as described in Sec. 3.4. A graphical visualization of the initial
transition models for each digital state and control factor is shown in Fig. 7. Note that these internal models
do not replicate the ground-truth evolution, which remains unknown to the ADT. Moreover, assuming digital
state factors evolve independently, the control space is factorized as U = {UΩ = ∅, Uδ = U,UEpi = U}.
This reflects that DΩ is an uncontrollable factor, with a control dimensionality of 1, while Dδ and DEpi are
both influenced by the same control variable U ∈ U = {DN,MA,RO,RE}. The set of feasible policies Π is
constructed by combinatorially enumerating all possible sequences of actions from the action space U over
the prediction horizon t = tc, . . . , tp, resulting in a total of 4tp−tc policies.

The initial Dirichlet parameters bΩ over the categorical distribution BΩ for the uncontrollable BΩ are
selected to yield a 0.8 probability that damage stays in the same subdomain Ωm, for m = 1, . . . , 6. The
remaining 0.2 probability is evenly distributed across the other subdomains, reflecting a strong prior belief
that damage is unlikely to move between different regions.

For the action-conditioned Bδ, each action-specific slice encodes the probability of transitioning between
discrete δ intervals. The diagonal entries represent the probability of remaining in the same damage state,
while the lower-left and upper-right triangles denote the probabilities of deterioration and improvement,
respectively. Under the DN action, the initial Dirichlet parameters bδ for the categorical distribution Bδ

are configured to yield transition probabilities of 0.85, 0.1, and 0.05 for degradation of zero, one, or two δ
intervals, respectively. For the RO action, the corresponding probabilities are set to 0.92, 0.05, and 0.03,
reflecting a slower rate of deterioration due to reduced structural load. The slice associated with the RE
action is designed to reflect improved damage tracking. It assigns probabilities of 0.9 and 0.1 for degradation
of zero and one δ intervals, capturing the higher confidence associated with epistemic control actions. In
contrast, the MA action slice is designed to support transitions across up to six δ intervals, with probabilities
0.05, 0.15, 0.20, 0.20, 0.20, and 0.20, for improvements of zero to five intervals, respectively. To mitigate
the risk of numerical inconsistencies caused by evidence that contradicts the assumed transition dynamics,
a small perturbation of 10−3 is added to all entries of Bδ prior to normalization.

The sub-array BEpi serves as an epistemic switch, enabling deterministic transitions between the states
DEpi = Epi and DEpi = Non-Epi. This mechanism is implemented through Boolean matrices that enforce
DEpi = Non-Epi – regardless of its previous value – whenever the ADT selects DN, MA, or RO actions.
Conversely, selecting the RE action triggers a transition to the epistemic state DEpi = Epi. This transition
model is not subject to learning updates, as its structure is predefined and not expected to benefit from
interaction with the generative process.

At each time step, the ADT selects a control action ut ∈ U whose effects on the generative process are
uncertain and may lead to unexpected outcomes. The costs associated with both the structural health state
and the control actions are modeled as prior preferences via the array c = {cΩδ, cu}. The components cΩδ ∈
R|OΩδ| and cu ∈ R|Ou| assign relative log-probabilities to each outcome of the two observation modalities,
respectively:

cΩδ ← ln p̃(OΩδ
t ) =





0 if y = 0,

− exp(δ) if 30% < δ < 80%,

−10 if δ = 80%,

cu ← ln p̃(Out ) =





+5.5 if ut = DN,

−5 if ut = MA,

+2.5 if ut = RO,

−0.5 if ut = RE.

(38)
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Figure 7: Visualization of the transition models: Panel (a) shows the uncontrollable BΩ, corresponding to the transi-
tion likelihood p(DΩ

t | DΩ
t−1). Panels (b-e) show the action-specific slices of Bδ, corresponding to the transition like-

lihoods (b) p(Dδt | Dδt−1, U
δ
t−1 = DN), (c) p(Dδt | Dδt−1, U

δ
t−1 = MA), (d) p(Dδt | Dδt−1, U

δ
t−1 = RO), and (e) p(Dδt |

Dδt−1, U
δ
t−1 = RE). Panels (f) and (g) shows the action-specific slices of BEpi, corresponding to the transition likelihoods

(f) p(DEpi
t | DEpi

t−1, U
Epi
t−1 = {DN,MA,RO}) and (g) p(DEpi

t | DEpi
t−1, U

Epi
t−1 = RE).

These log-probability vectors are passed through a Softmax function to produce valid probability distributions
p̃(OΩδ

t ) and p̃(Out ), which are then used to compute the expected utility term in the EFE. The structural
health preferences penalize deterioration in proportion to the exponential of δ, with a steep penalty for
severely compromised states. The control action preferences reflect trade-offs between epistemic value of
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expected information gain and operational cost: DN and RO actions yield positive rewards but carry the risk
of structural deterioration; RE similarly allows for deterioration, yet it is expected to reduce the entropy of
the digital state posterior at the cost of a moderately negative reward. MA mitigates deterioration but carries
a significantly negative reward due to its high cost. While these values are expressed in non-dimensional form,
they represent indicative costs charged to the decision maker. Actual values may be derived from service and
cost catalogs issued by governmental agencies or infrastructure operators. In particular, the health-related
preference distribution p̃(OΩδ

t ) should reflect a prioritization analysis that accounts for both the likelihood
and consequences of different damage scenarios – such as loss of serviceability, increased accident risk, or
structural failure – as well as the risk tolerance of the decision-maker.

The array defining the initial state model d = {dΩ,dδ,dEpi} consists of three sub-arrays df ∈ R|Df |,
each specifying the initial prior distribution p(Df

tc) over a digital state factor Df ∈ {DΩ, Dδ, DEpi}. Uni-
form probability distributions are adopted for DΩ and DEpi to reflect initial uncertainty. In contrast, Dδ

is initialized as a Dirac delta distribution centered at 0%, consistent with the assumption of undamaged
structure when the ADT enters into operation.

The (unknown) ground-truth generative process evolves conditionally on the most recent control ac-
tion. In particular, we assume that damage can develop in any predefined region, without propagating
across different damageable subdomains. The evolution follows the degradation (or improvement) stochas-
tic models described below. Under the DN, RO, and RE actions, structural health is assumed to de-
grade monotonically. For the DN action, the damage class y is sampled from a categorical distribu-
tion y ∼ Cat( 1

2 ,
1
12 ,

1
12 ,

1
12 ,

1
12 ,

1
12 ,

1
12 ), which assigns half of the probability mass to the undamaged state

y = 0, and distributes the remaining half uniformly among the six damage classes y = 1, . . . , 6. When
damage first initiates, the magnitude δ is sampled uniformly within the range of the first damage inter-
val δt | yt 6= 0, yt−1 = 0 ∼ Uniform(0.3%, 0.35%). Subsequent damage progression is modeled by sampling
δ increments from a truncated normal distribution centered at 1.5% with a standard deviation of 1%,
δt − δt−1 | yt−1 6= 0 ∼ Normal≥0(1.5%, 1%), with any increments below 0% rounded up to 0%. For the RO
action, a similar model is employed, but with a lower probability of damage initiation and slower dete-
rioration. In this case, the damage class is sampled as y ∼ Cat( 3

4 ,
1
24 ,

1
24 ,

1
24 ,

1
24 ,

1
24 ,

1
24 ), and the damage

magnitude evolves as δt − δt−1 | yt−1 6= 0 ∼ Normal≥0(0.95%, 0.5%). For the RE action, the generative pro-
cess is the same as that under the DN or RO actions, respectively, depending on whether the system was
previously in a restricted or unrestricted condition before engaging in information-seeking (epistemic) behav-
ior. In contrast, the MA action is modeled as a healing process. If y = 0, the system remains undamaged.
If y 6= 0, the damage magnitude decreases according to δt − δt−1 | yt 6= 0 ∼ Normal≤10%(−25%, 15%), with
any decrement below 10% rounded up to 10%. The system is assumed to return to an undamaged condition
(y = 0) if the resulting damage magnitude satisfies δ < 30%, reflecting a minimal detectable deterioration
threshold.

4.5. Results: Purely goal-directed behavior

In this section and the next, we present the results of several ADT simulations, each spanning 60 time
steps. At every time step, new observational data are generated based on the (unknown) ground-truth
generative process. The ADT assimilates these data to infer the variational posterior Q∗(Dtc) over the
current digital state, and performs policy inference by computing the posterior Q∗(π) over policies. Control
actions are subsequently selected as the best-point estimate from the posterior Q∗(Utc) over control states,
and the generative model is eventually learned by updating the variational posterior Dirichlet parameters
b̂∗.

We adopt a policy horizon of tp − tc = 4 and begin by analyzing a baseline scenario where the ADT
operates under a purely goal-directed (pragmatic) behavior. This is achieved by retaining only the utility
term associated with pragmatic value in the EFE formulation, excluding any contributions from information-
seeking (epistemic) value and removing the epistemic RE action from the available action set. The entropy
level in the observation model AΩδ

Non-Epi is set using α = 0.5. The inverse temperature parameter controlling
the precision of policy selection is left to its default value of γ = 16. Furthermore, learning updates to the
generative model are disabled in this baseline setting.

Figure 8 illustrates a representative ADT simulation. Results are reported in terms of both the ground-
truth physical state and the corresponding ADT estimates obtained after assimilating observational data.
The evolution of the digital state is shown only for regions that experience damage, although all damageable
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Figure 8: Active digital twin using purely goal-directed (pragmatic) behavior. Probabilistic and best-point estimates of: (top two
panels) digital state evolution compared to the ground-truth physical state; (penultimate panel) control actions recommended
by the digital twin versus the optimal action under the ground-truth generative process. In the top panels, background colors
represent the belief distribution over the digital state at each time step. In the penultimate panel, background colors indicate
the belief distribution over the control actions. The bottom panel quantifies simulation quality in terms of the percentage
absolute discrepancy between the sum of the policy-specific expected free energies computed by the digital twin and those
obtained under the ground truth.

regions Ω1, . . . ,Ω6 are susceptible to degradation. Initially, damage develops in Ω1, and the posterior Q∗(Dtc)
reveals relatively high uncertainty, primarily due to the entropy in the observation model. Nevertheless, de-
spite the severely corrupted observation model AΩδ

Non-Epi, the ADT successfully follows the ground-truth
evolution by leveraging prior information from the forward-time predictor B. The corresponding sequence
of control action estimates Q∗(Utc) is shown in the penultimate panel. The ADT initially recommends DN
actions, aligned with the prior preferences over the two observation modalities encoded in c, i.e., to max-
imize utility. Once a substantial probability mass in Q∗(Dtc) is assigned to Dδ ≥ 45%, RO actions begin
to be selected, enabling the ADT to continue monitoring degradation, which now evolves at a reduced rate.
Eventually, an MA action is selected when the structural state becomes critically compromised, as indicated
by a consistent probability mass over Dδ ≥ 75% in Q∗(Dtc). A similar behavior is shown for the subsequent
damage event in Ω6.
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For comparison, control actions under the ground-truth generative process are computed using a second
AIF agent that mirrors the ADT architecture but has access to the true physical state. The ADT selects
the appropriate control action from Q∗(Utc) with a delay of at most five time steps relative to the ground-
truth-informed agent. This delay is mainly attributed to the continued use of a highly entropic observation
model, which limits fast and accurate inference, along with the need to recursively update prior beliefs
from earlier time steps. Note that including the RE action in the available action set would not affect the
results in this case, as the ADT is driven solely by (pragmatic) utility maximization and does not engage in
information-seeking (epistemic) behavior, i.e., it does not seek to reduce the entropy of Q(Dtc:tp) through
exploratory actions. The bottom panel of the figure assesses simulation quality by tracking the evolution
of the percentage absolute discrepancy between the sum of the policy-specific EFEs computed by the ADT
and those obtained under the ground-truth-informed agent:

∆G =

∣∣∣∣∣

∑
π∈Π(Gπ − Ĝπ)
∑
π∈Π Ĝ

π

∣∣∣∣∣ · 100, (39)

where Ĝπ denotes the EFE associated with policy π under the ground-truth-informed AIF agent.
A second representative ADT simulation is shown in Fig. 9, exemplifying the same purely goal-directed

(pragmatic) behavior but with a different random seed. In this case, damage begins to develop in region Ω3,
and the ADT initially behaves consistently with the previous results, tracking the generative process with
relatively high-entropy estimates propagated forward in time. However, starting from time step t = 33, the
ADT begins to diverge from the ground truth, and the digital state posterior Q∗(Dtc) progressively loses
synchronization with the physical state. The probability mass in Q∗(Dtc) gradually shifts from DΩ = Ω3 to
DΩ = Ω6, where Dδ is consistently underestimated as lying within the range [65%, 75%], while the actual
value is in the range [75%, 80%]. As a result, the ADT fails to select an MA action for more than ten time
steps, despite its necessity. The simulation eventually terminates at time step t = 46, due to a digital failure
at t = 47, caused by Dδ > 80%, and symbolizing structural collapse. The ADT inability to recover accurate
tracking is attributed to the interplay between the poorly informative sensory likelihood and the recursive
propagation of outdated prior beliefs, which degrade over time.

By running a cluster of 100 simulations, each spanning 60 time steps and initialized with a different
random seed for both the observation model AΩδ

Non-Epi and the ground-truth generative process, the ADT
operating under a purely goal-directed (pragmatic) behavior fails in 47 out of 100 cases. In this baseline
setting, the failure rate is strongly driven by the high level of entropy introduced in the observation model
AΩδ

Non-Epi. Although highly corrupted observations realistically reflect many real-world conditions, the results
in the following section show that equipping the ADT with both goal-directed and information-seeking
(epistemic) components enables active exploration in response to critical uncertainty, resulting in a significant
performance improvement over the purely pragmatic baseline.

The behavior described above can also be illustrated using a simplified scenario in which the ADT relies
on two sensors, each providing partial observations to update its beliefs about the evolving damage state.
If one sensor becomes faulty but the transition model closely approximates the actual dynamics of damage
progression, the ADT may still track the system accurately, as the predictive power of the prior compensates
for the degraded sensory evidence. However, in the more typical case where the transition model does not fully
capture the actual system evolution, outdated priors dominate the inference process, and the compromised
likelihood is unable to correct them. In such conditions, an information-seeking (epistemic) action should
ideally be triggered to resolve ambiguity and restore confidence in the likelihood model – for instance, by
querying a redundant sensor, activating a dormant one, or scheduling a targeted diagnostic procedure.

It is interesting to note how the EFE discrepancy shown in the bottom panel of Fig. 9 does not indicate
any critical issue. This is because the EFE is a subjective metric, reflecting how the ADT evaluates its own
performance rather than measuring the correctness of the digital state estimates. Indeed, the ∆G indicator
quantifies the misalignment in belief-driven action planning between the ADT and an idealized agent with
access to the true physical state. As a result, ∆G remains low simply because the ADT is (mistakenly) confi-
dent in its estimated behavior, just as the ground-truth-informed agent is confident in its own. However, the
resulting control actions differ. To address this limitation, one could instead employ objective performance
indicators derived from the generative process. Examples include utility scores evaluated on realized system
outcomes, or the survival time before reaching a critical condition.
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Figure 9: Failed active digital twin using purely goal-directed (pragmatic) behavior. Probabilistic and best-point estimates
of: (top two panels) digital state evolution compared to the ground-truth physical state; (penultimate panel) control actions
recommended by the digital twin versus the optimal action under the ground-truth generative process. In the top panels,
background colors represent the belief distribution over the digital state at each time step. In the penultimate panel, background
colors indicate the belief distribution over the control actions. The bottom panel quantifies simulation quality in terms of the
percentage absolute discrepancy between the sum of the policy-specific expected free energies computed by the digital twin and
those obtained under the ground truth.

4.6. Results: Combining goal-directed and information-seeking behaviors

In this section, we present the results of ADT simulations combining goal-directed (pragmatic) and
information-seeking (epistemic) behaviors. For this, we adopt the complete EFE formulation including both
pragmatic and epistemic terms; furthermore, we include the epistemic RE action in the available actions.
All other settings remain unchanged from the simulations presented earlier.

Figure 10 illustrates a representative simulation. The ADT initially exhibits information-seeking (epis-
temic) behavior, executing a sequence of RE actions to gather information about damage onset. Once the
posterior Q∗(Dtc) identifies evolving damage within Ω1 with relatively low uncertainty, the ADT shifts to
DN actions aimed at (pragmatic) utility maximization. When a significant portion of Q∗(Dtc) supports
Dδ ≥ 45%, RO actions begin to emerge. An MA action is eventually selected when the risk of structural
failure becomes substantial, i.e., for a significant probability mass over Dδ ≥ 65%. A similar pattern is
observed during the subsequent damage event in Ω6. In this case, sporadic RE actions are also triggered
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Figure 10: Active digital twin using a combination of goal-directed (pragmatic) and information-seeking (epistemic) behaviors.
Probabilistic and best-point estimates of: (top two panels) digital state evolution compared to the ground-truth physical
state; (penultimate panel) control actions recommended by the digital twin versus the optimal action under the ground-truth
generative process. In the top panels, background colors represent the belief distribution over the digital state at each time
step. In the penultimate panel, background colors indicate the belief distribution over the control actions. The bottom panel
scores simulation quality in terms of the percentage absolute discrepancy between the sum of the policy-specific expected free
energies computed by the digital twin and those obtained under the ground truth.

whenever the entropy of Q∗(Dtc) increases, to prevent desynchronization from the physical state. These
RE actions are interleaved with extended sequences of DN and RO decisions, depending on the evolving
health state and the interaction between the sensory likelihood and the transition model. For instance, RE
actions at t = 35 and t = 51 are deployed to disambiguate the digital state just before executing costly
MA interventions. In contrast, the first MA action at t = 15 is not preceded by RE behavior, as the ADT
maintains a confident, low-entropy belief at that point. Note that the epistemic RE action carries a lower
prior preference p̃(Ou) than DN or RO actions and does not directly affect damage progression. As a re-
sult, it is employed only under epistemic-driven behavior, where its role is to support future goal-directed
(pragmatic) decisions. Similarly, RE actions occurring immediately after MA interventions reflect the ADT
effort to resolve uncertainty via active exploration of maintenance outcomes. In contrast, under the ground-
truth generative process, RE actions are triggered exclusively to gather initial evidence about damage onset.
Corrective inference is unnecessary in this setting due to perfect, uncertainty-free access to the physical state.
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Figure 11: Active digital twin using a combination of goal-directed (pragmatic) and information-seeking (epistemic) behaviors.
Posterior predictive densities beyond data assimilation over (future) digital states and control states, starting at tc = 60. In
the top panel, background colors represent the belief distribution over the digital state at each time step. In the bottom panel,
background colors indicate the belief distribution over the control actions.

Figure 11 shows the posterior predictive densities for the future digital states Q∗(Dtc:tp) and the cor-
responding control states Q∗(Utc:tp), starting at tc = 60 and spanning four time steps. These predictions
capture the expected progression of structural health, conditioned on the posterior over policies Q∗(π),
thereby supporting the planning of preventive interventions. When belief propagation leads to an overly flat
digital state distribution, the likelihood of selecting an RE action increases, mitigating the risk of decisions
based on unreliable or uncertain belief states.

By running a second cluster of 100 simulations, each initialized with a different random seed, the ADT
operating under combined goal-directed (pragmatic) and information-seeking (epistemic) behaviors consis-
tently succeeds, with zero failures observed. This result underscores the potential of fully equipped ADTs
compared to the purely pragmatic baseline discussed in Sec. 4.5. In this configuration, the ADT is able to
autonomously cope with highly corrupted observations by actively exploring its environment in response to
potentially critical uncertainty.

The results of a complete ADT simulation, combining goal-directed (pragmatic) and information-seeking
(epistemic) behaviors and additionally incorporating learning updates to the generative model, are shown
in Fig. 12 for the same initialization seed as in Fig. 10. This scenario spans 80 time steps and introduces
learning via updates to the transition model array B, with a learning rate of ηB = 0.1. Learning demon-
strates beneficial in several aspects. First, it reduces the frequency of incorrect digital state inferences,
thereby shortening the average response delay relative to the ground-truth agent. Second, as the transition
dynamics become progressively tailored to the (unknown) generative process, the ADT gains confidence in
its predictions, resulting in a reduced need for (corrective) RE actions. Third, the gradual reduction of
uncertainty in the transition model enables the ADT to safely delay maintenance toward the end of the
simulation. For example, the third maintenance action, previously triggered at t = 52, is now postponed to
t = 74. Moreover, this intervention is no longer based on a maximum a-posteriori estimate of Dδ within the
[55%, 65%] range, but instead within the higher [65%, 75%] range – highlighting the potential for resource
savings across the system operational lifespan. The runtime for this simulation is about 130 s, averaging
1.6 s per time slice.
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Figure 12: Active digital twin using a combination of goal-directed (pragmatic) and information-seeking (epistemic) behaviors
and additionally incorporating learning updates to the generative model. Probabilistic and best-point estimates of: (top two
panels) digital state evolution compared to the ground-truth physical state; (penultimate panel) control actions recommended
by the digital twin versus the optimal action under the ground-truth generative process. In the top panels, background colors
represent the belief distribution over the digital state at each time step. In the penultimate panel, background colors indicate
the belief distribution over the control actions. The bottom panel quantifies simulation quality in terms of the percentage
absolute discrepancy between the sum of the policy-specific expected free energies computed by the digital twin and those
obtained under the ground truth.

5. Conclusions

This paper introduces active digital twins based on the active inference paradigm. By unifying proba-
bilistic modeling and inference with perception, learning, and decision-making under uncertainty, the pro-
posed approach enables digital twins to autonomously balance both goal-directed (pragmatic or utility-
maximization) and information-seeking (epistemic or uncertainty-resolving) behaviors. This is because both
factors are included in the variational free energy minimization process that drives active inference agents
[4, 6]. Active inference endows active digital twins with the capacity to adaptively monitor, interact with,
and learn from uncertain and dynamic environments. We have presented a case study in the context of
structural health monitoring for a railway bridge, which demonstrates that active digital twins can achieve
a new level of autonomy and resilience, surpassing traditional (more passive) approaches.
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The active digital twin paradigm has been realized by leveraging active inference agents [4] to navigate
the partially observable Markov decision process underlying the abstraction of physical-digital systems pro-
posed by Kapteyn et al. [26]. At the core of this framework lies a self-updating generative model that enables
intelligent automation through data assimilation, state estimation, prediction, planning, and learning – all
with quantified uncertainty. Digital state estimation is performed via inference over dynamically evolving
latent states, using variational free energy minimization. Action selection is framed as an inference process,
wherein the agent infers a distribution over control policies that minimizes expected free energy, effectively
closing the loop between perception and action. Finally, learning emerges from the (slow-timescale) inference
of hyperparameters that define the generative model itself.

The considered case study is among the few active inference applications in engineering, focusing on
the step-by-step construction of a physics-based generative model that enables bidirectional perception-
action interaction. Simulations of both purely goal-directed (pragmatic) and combined goal-directed and
information-seeking (pragmatic-epistemic) behaviors have demonstrated that the proposed framework sup-
ports a wide range of adaptive responses, where actions emerge from internal beliefs and their entropy. By
incorporating all components of the expected free energy, the active twin effectively balances pragmatic goals
and epistemic drives. Active exploration has proven essential for maintaining synchronization between the
digital and physical states, particularly when the generative model must uncover key system features or when
belief states become outdated. Moreover, including learning updates has shown that personalized generative
models can improve inference accuracy, reduce the need for corrective epistemic actions, and enable the safe
postponement of costly interventions. Crucially, the behavior of the twin is not fixed but remains customiz-
able. There is no universally optimal behavior; rather, the performance and role of an active digital twin
should be assessed in light of the objectives encoded in its generative model. For example, prior preferences
on the structural health can be adjusted to reflect specific operational or safety requirements, and even
treated as sweep parameters to derive meta-decision curves providing insight into how risk sensitivity can
be modulated by the decision-maker.

Beyond the structural health monitoring application presented here, the proposed framework offers a
generalizable methodology applicable across a wide range of domains. Active digital twins are envisioned
as key enablers of autonomous agents in the development of smart structures and systems, as well as in
fields such as medicine and neuroscience [81]. Future extensions will target self-healing structures and multi-
agent physical systems capable of self-organization and continual self-learning. In addition, future work will
investigate the scalability of the approach to higher-dimensional continuous state spaces, the multi-agent
coordination of digital twin networks, and online learning from real-world data. This online learning will
be complemented by offline updates via Bayesian model reduction [82], allowing the generative model to be
periodically simplified by pruning uninformative concentration parameters. This process will enable an op-
timal trade-off between model complexity (quantifying the magnitude of belief updates required to maintain
predictive performance) and model accuracy (reflecting the model fit to observed data). Competitive gener-
ative models will be compared to select the most parsimonious explanation of recent experience, retaining
only those latent causes that meaningfully contribute to accurate inference.

Data Accessibility: The implementation code used for the experiments presented in Sec. 4 is available in
the public repository ADT-code [83]. The code implements the proposed active digital twin framework and
can be used to simulate and generate the plots for digital state estimation, future prediction, and policy
inference, as reported in this paper. The observational data used to run the experiments, along with the
deep learning models trained according to the implementation details provided in the Appendix of [10], are
also available in the same repository. The Matlab library for finite element simulation and reduced-order
modeling of partial differential equations employed to generate these data is available in the repository
Redbkit [73].
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[52] E. Garćıa-Maćıas, F. Ubertini, Integrated SHM Systems: Damage Detection Through Unsupervised
Learning and Data Fusion, in: A. Cury, D. Ribeiro, F. Ubertini, M. D. Todd (Eds.), Structural Health
Monitoring Based on Data Science Techniques, Springer International Publishing, Cham, Switzerland,
2022, pp. 247–268. doi:10.1007/978-3-030-81716-9\_12.

[53] A. Thelen, X. Zhang, O. Fink, Y. Lu, S. Ghosh, B. D. Youn, M. D. Todd, S. Mahadevan, C. Hu,
Z. Hu, A comprehensive review of digital twin – part 1: modeling and twinning enabling technologies,
Structural and Multidisciplinary Optimization 65 (2022) 354. doi:10.1007/s00158-022-03425-4.

[54] M. Torzoni, A. Manzoni, S. Mariani, Enhancing Bayesian model updating in structural health moni-
toring via learnable mapping, arXiv preprint arXiv:2405.13648v1 (2024). doi:10.48550/arXiv.2405.

13648.

[55] Matteo Torzoni, Model-based and data-driven methodologies toward predictive digital twins of struc-
tures, Ph.D. thesis, Politecnico di Milano (2024).

[56] B. Zakić, A. Ryzynski, C. Guo-Hong, J. Jokela, Classification of damage in concrete bridges, Materials
and Structures 24 (1991) 268–275. doi:10.1007/BF02472082.

[57] K. Friston, S. Samothrakis, R. Montague, Active inference and agency: optimal control without cost
functions, Biological Cybernetics 106 (8) (2012) 523–541. doi:10.1007/s00422-012-0512-8.

[58] A. Kamariotis, K. Vlachas, V. Ntertimanis, I. Koune, A. Cicirello, E. Chatzi, On the Consistent Clas-
sification and Treatment of Uncertainties in Structural Health Monitoring Applications, ASCE-ASME
Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering 11 (1) (2024)
011108. doi:10.1115/1.4067140.
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Appendix A. Expected free energy derivations

In this Appendix, we provide the complete derivation of the expected free energy expressions (10) and
(35), as adapted to the adaptive digital twin framework from [63]:

Expected free energy.

Gπt = EQ(Ot,Dt|π)[lnQ(Dt | π)− ln p̃(Ot, Dt | π)]

= EQ(Ot,Dt|π)[lnQ(Dt | π)− ln p̃(Ot, Dt | π) + lnQ(Dt | Ot, π)− lnQ(Dt | Ot, π)︸ ︷︷ ︸
=0

]

= EQ(Ot,Dt|π)[lnQ(Dt | π)− lnQ(Dt | Ot, π)− ln p̃(Ot)

− ln p(Dt | Ot, π) + lnQ(Dt | Ot, π)]

= −EQ(Ot,Dt|π)[lnQ(Dt | Ot, π)− lnQ(Dt | π)]− EQ(Ot,Dt|π)[ln p̃(Ot)]

+ EQ(Ot,Dt|π)[lnQ(Dt | Ot, π)− ln p(Dt | Ot, π)]

= −EQ(Ot|π)[DKL[Q(Dt | Ot, π) || Q(Dt | π)]]
︸ ︷︷ ︸

Epistemic value (information gain)

− EQ(Ot|π)[ln p̃(Ot)]︸ ︷︷ ︸
Pragmatic value (utility)

+ EQ(Ot|π)[DKL[Q(Dt | Ot, π) || p(Dt | Ot, π)]]
︸ ︷︷ ︸

Expected variational approximation error (≥ 0)

.

(A.1)

Expected free energy with model parameters.

Gπt = EQ(Ot,Dt,φ|π)[lnQ(Dt,φ | π)− ln p̃(Ot, Dt,φ | π)]

= EQ(Ot,Dt,φ|π)[lnQ(Dt,φ | π)− ln p̃(Ot, Dt,φ | π)

+ lnQ(Dt,φ | Ot, π)− lnQ(Dt,φ | Ot, π)︸ ︷︷ ︸
=0

]

= EQ(Ot,Dt,φ|π)[lnQ(Dt | π) + lnQ(φ | π)− ln p̃(Ot)− ln p(Dt,φ | Ot, π)

+ lnQ(Dt,φ | Ot, π)− lnQ(Dt,φ | Ot, π)]

= EQ(Ot,Dt,φ|π)[lnQ(Dt | π)− lnQ(Dt | Ot, π) + lnQ(φ | π)− lnQ(φ | Ot, π)

− ln p̃(Ot)− ln p(Dt,φ | Ot, π) + lnQ(Dt,φ | Ot, π)]

= −EQ(Ot,Dt,φ|π)[lnQ(Dt | Ot, π)− lnQ(Dt | π)]

− EQ(Ot,Dt,φ|π)[lnQ(φ | Ot, π)− lnQ(φ | π)]− EQ(Ot,Dt,φ|π)[ln p̃(Ot)]

+ EQ(Ot,Dt,φ|π)[lnQ(Dt,φ | Ot, π)− ln p(Dt,φ | Ot, π)]

= −EQ(Ot|π)[DKL[Q(Dt | Ot, π) || Q(Dt | π)]]
︸ ︷︷ ︸

Epistemic value (digital state information gain)

− EQ(Ot|π)[DKL[Q(φ | Ot, π) || Q(φ | π)]]
︸ ︷︷ ︸

Epistemic value (model parameters information gain)

− EQ(Ot|π)[ln p̃(Ot)]︸ ︷︷ ︸
Pragmatic value (utility)

+EQ(Ot|π)[DKL[Q(Dt,φ | Ot, π) || p(Dt,φ | Ot, π)]]
︸ ︷︷ ︸

Expected variational approximation error (≥ 0)

.

(A.2)
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