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Abstract

We propose an innovative statistical method, called Ordinal Mixed-Effect

Random Forest (OMERF), that extends the use of random forest to the analysis

of hierarchical data and ordinal responses. The model preserves the flexibility

and ability of modeling complex patterns of both categorical and continuous

variables, typical of tree-based ensemble methods, and, at the same time, takes

into account the structure of hierarchical data, modeling the dependence struc-

ture induced by the grouping and allowing statistical inference at all data levels.

A simulation study is conducted to validate the performance of the proposed

method and to compare it to the one of other state-of-the art models. The

application of OMERF is exemplified in a case study focusing on predicting

students performances using data from the Programme for International Stu-

dent Assessment (PISA) 2022. The model identifies discriminating student

characteristics and estimates the school-effect.
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1 Introduction

Ordinal-scale observations can be categorized into a finite and ordered set of dis-

crete categories. Distances between categories can be uneven or unknown. These

scales are typically constructed by condensing continuous variables into a set of dis-

tinct categories. An ordinal variable can be considered quantitative since each level of

the scale denotes a greater or lesser magnitude of a particular characteristic compared

to another level. (Agresti, 2010). The growing importance of ordinal categorical data

shows a clear positive trend, driven by the increasing use of surveys and tests (Yang

et al., 2020). This type of data is useful to collect detailed information, especially in

fields like market research, public opinion analysis, and healthcare, where assessing

opinions, preferences, and responses is extremely important. Order becomes relevant

when the categories take on meanings related to strength of opinion, agreement (as

in a Likert-type response) or frequency. An explanatory example is the case where

a response variable takes on four possible values: (1) strongly disagree, (2) disagree,

(4) agree, (5) strongly agree. There is a natural order in the response possibilities.

As data collection expands into various areas, there is a bigger need to model

ordered data. Ordinal classification, often known as ordinal regression (McCullagh,

1980), represents a type of multi-class classification where there is an inherent or-

dering relationship between the classes, but where there is not a meaningful numeric

difference between them. This paper proposes an innovative tool for ordinal classifi-

cation that extends the use of random forest (Breiman, 2001) to the case of ordinal

responses and hierarchical observations (Pinheiro and Bates, 2006). The proposed

method, called Ordinal Mixed-Effects Random Forest (OMERF), fits into the con-

text of tree-based mixed-effects models (Hajjem et al., 2011; Sela and Simonoff, 2012;

Hajjem et al., 2014, 2017; Pellagatti et al., 2021). In particular, the algorithm we im-

plement disentangles the estimations of fixed and random effects, by iteratively fitting
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(i) a random forest (Breiman, 2001), ignoring the grouped data structure, and (ii) a

cumulative mixed-effects model (Grilli and Rampichini, 2011; Tutz and Hennevogl,

1996), based on the residuals of the random forest structure. A final mixed-effects

random forest is reported. To the best of our knowledge, this is the first time that a

multilevel random forest for ordinal response is constructed.

The paper is structured as follows. Section 2 conducts a review of the literature

related to analogous methods. Section 3 articulates the OMERF method, outlining its

theoretical foundations and its implementation. Section 4 reports a simulation study

in which we test OMERF and compare it to other counterpart methods. Section 5

delves into a real-world case study, in which the efficacy of the proposed method is

proved through the application to data from the Programme for International Student

Assessment (PISA) 2022. The aim is the model students’ mathematical performance

levels, considering students’ nested structure within schools. Ultimately, Section 6 is

dedicated to highlighting conclusions and fostering a discussion.

All the analysis are performed using R software (R Core Team, 2022) and all the

R codes for the OMERF algorithm and for both simulation and case study are avail-

able in the following Github repository: https://github.com/giuliabergonzoli/

OMERF.
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2 Literature review

The method proposed in this study takes inspiration from tree-based mixed-effects

models, which focus on incorporating tree-based methods (Breiman, 2017) and their

ensembles (Breiman, 2001) into the framework of mixed-effects models (Pinheiro and

Bates, 2006). Tree-based methods are popular for their ability to capture complex

and nonlinear relationships. When declined into the mixed-effects models framework,

they can handle both nested and longitudinal data. The first are data that present a

hierarchical structure, the second refer to the situation where repeated observations

are available for each sampled object. Nested data are not independent and identically

distributed (i.i.d.) as assumed in classical regression and classification models, but

their distribution depends on their grouping structure. Analysing and disentangling

the effects associated to each level of the hierarchy enables a deeper understanding

and investigation of the regression dynamics, thereby increasing the comprehension of

the phenomenon described by the data. It is important to account for this structure,

as it can provide significant insights that might otherwise be neglected, enabling the

quantification of the portion of variability in the response variable that is attributable

to each level of grouping.

Tree-based mixed-effects models developed in statistical literature can be catego-

rized into two groups: the first focuses on Gaussian responses, making it unsuitable for

classification tasks, while the second group extends its applicability to non-Gaussian

responses and is suitable for addressing classification problems. The works in (Sela

and Simonoff, 2012; Hajjem et al., 2011, 2014) pertains to the first collection of models.

In (Sela and Simonoff, 2012), the Random Effects Expectation-Maximization (RE-

EM) tree is implemented; while in (Hajjem et al., 2011), the authors propose the

Mixed-Effect Regression Tree (MERT) model. They both are extensions of conven-

tional regression trees to account for clustered and longitudinal data, substituting the
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fixed effect component of a linear mixed-effects model with a tree structure. Then,

trying to improve prediction accuracy, a method known as Mixed-Effects Random

Forest (MERF), in which the fixed effect component is modelled by a random forest,

is introduced in (Hajjem et al., 2014). With regard to the extensions to other types

of responses, in (Hajjem et al., 2017), the authors propose the Generalized Mixed-

Effects Regression Tree (GMERT), which basically extends the MERT approach to

non-Gaussian responses. An alternative, proposed in (Fontana et al., 2021), is the

Generalized Mixed-Effects Tree (GMET), that follows a three-step procedure: first,

the random-effects are initialised to zero and the systematic component is estimated

through a generalized linear model; then, a regression tree is built using the estimated

systematic component as dependent variable and, finally, a mixed-effects model is

fitted to estimate the random-effects part, using the estimated tree as offset. In

(Fokkema et al., 2018), the authors propose an algorithm known as Generalized Lin-

ear Mixed-effects Model tree (GLMM tree), which iteratively refines the estimates of a

generalized linear model tree and a mixed-effects model until convergence is achieved.

Lastly, in (Speiser et al., 2020), a decision tree method for modeling clustered and lon-

gitudinal binary outcomes within a Bayesian framework, called Binary Mixed Model

tree (BiMM tree), is introduced. A step forward in the field of tree-based aggregated

models has been done in (Pellagatti et al., 2021), in which the authors implement

the Generalized Mixed-Effects Random Forest (GMERF), thus extending for the first

time random forest, and not only simple trees, to deal with hierarchical data, both

for regression and classification (for any response variable in the exponential family).

Contributing to this branch of the literature, the current research work proposes a

novel method called Ordinal Mixed-Effects Random Forest (OMERF), that is inspired

by the GMERF model, but extends the multilevel random forest approach to deal

with ordinal data, namely, with ordinal regression problems.

Concerning the statistical literature about ordinal data, one of the early contribu-
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tions to classification techniques for ordinal data can be found in (McCullagh, 1980),

where a regression model is introduced. Moving to a multilevel setting, the random

effects cumulative model, described in (Tutz and Hennevogl, 1996), addresses ordinal

regression models as special cases of multivariate generalized linear models, adjusting

them to include random effects in the linear predictor. With regard to the implemen-

tation of nonlinear ordinal models, some attempts can be found in the literature. The

work in (Tutz, 2003) proposes an extension of ordinal regression through the general-

ization of the additive model by incorporating nonparametric terms; in (Shashua and

Levin, 2002) the authors introduce a generalised formulation for the support vector

machine for ordinal data. The ordinal random forest method is presented in (Hor-

nung, 2020), which is a random forest-based prediction method for ordinal response

variables. Finally, in (Tutz, 2022), an extension with score-free recursive partitioning

and ensembles that include parametric models is proposed.

Within this literature, OMERF, combining random effects cumulative models

(Tutz and Hennevogl, 1996) with the ordinal random forest (Hornung, 2020), is the

first tree-based method for nested data and ordinal responses and paves the way for

a new class of models of increasing interest.
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3 Model and Methods

In this section, a concise overview of cumulative link models for ordinal data

(Section 3.1.1) and random forest (Section 3.1.2) is provided. This will serve to set

the notation and to understand the OMERF method, detailed in Section 3.2.

3.1 Background and state of the art models

3.1.1 Cumulative link mixed models

Ordinal observations can be expressed through a random variable, Yj, which takes

on the value c when the j-th ordinal observation assumes the c-th category. The

support of Yj includes the integer values from 1 to C, where C ≥ 2. Cumulative Link

Models (CLM) (Agresti, 2010; Ananth and Kleinbaum, 1997; McCullagh, 1980) deal

with observations on an ordinal scale and apply an arbitrary link function to link

the cumulative probabilities to a linear predictor. Cumulative Link Mixed Models

(CLMM) (Grilli and Rampichini, 2011; Tutz and Hennevogl, 1996) extends CLMs

to deal with nested observations, by including normally distributed random effects.

These models are suited to handle data with a hierarchical structure. Given yi =

yi1, . . . , yini
the ni-dimensional response vector for observations in the i-th group, the

configuration of a CLMM with a random intercept and Q random slopes in a two-level

hierarchy can be written as:

ηijc = g(γijc) = θc − (xT
ijβ + zT

ijbi), c = 1, . . . , C − 1

bi ∼ NQ(0,Σb)

(1)

where i = 1, . . . , I is the level 2 (group) index and j = 1, . . . , ni (with
∑I

i=1 ni = J)

is the nested level 1 index. γijc = P(yij ≤ c) = πij1 + · · · + πijc (with
∑C

c=1 πijc = 1

and πijc = P(yij = c)) is the cumulative probability up to the c-th category for unit j
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in group i. ηijc is the linear predictor, xij is a P -dimensional vector of predictors, to

which corresponds the fixed effects vector β, associated to the entire population, and

zij is a (Q + 1)-dimensional vector of predictors, to which correspond group-specific

parameters bi. The elements yij are supposed to be conditionally independent on the

random effects bi. Moreover, random effects bi, conditionally on the fixed effects, are

assumed to be independent and identically distributed with zero mean and a common

group covariance matrix Σb. Finally, g is a monotonic, differentiable link function

and θc are the strictly ordered thresholds (also known as cut-points or intercepts):

−∞ ≡ θ0 ≤ θ1 ≤ · · · ≤ θC−1 ≤ θC ≡ ∞.

In CLMMs, the ordinal response variable yij with C categories is assumed to be

generated by a latent continuous variable y∗ij with a set of C − 1 thresholds θ∗c such

that yij = c ⇐⇒ θ∗c−1 ≤ y∗ij ≤ θ∗c . The latent continuous variable is modelled as:

y∗ij = xT
ijβ

∗ + zT
ijb
∗
i + ϵ∗ij (2)

where ϵ∗ij is a level 1 error with standard deviation σϵ∗ .

Therefore, the cumulative probabilities are γijc = P(yij ≤ c) = P(y∗ij ≤ θ∗c ) =

P(ϵ∗ij ≤ θ∗c −xT
ijβ

∗−zT
ijb
∗
i ) = g−1(θc−xT

ijβ−zT
ijbi). The underlying linear model (2)

with thresholds θ∗c and level 1 error ϵ∗ij having distribution function g−1 is equivalent

to the cumulative model (1) with link function g.

In the context of CLMMs, model parameters are typically estimated using maxi-

mum likelihood methods, employing techniques such as Adaptive Gaussian Quadra-

ture, Gauss-Hermite Quadrature, or Laplace approximation to the likelihood function.

A Newton-Raphson algorithm updates the conditional modes of the random effects

for the subsequent approximations and finally a nonlinear optimization is performed

over the fixed parameter set to get the Maximum Likelihood Estimation.
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3.1.2 Random forest

Random forests (RFs) are a powerful machine learning algorithm that combines

the predictive power of multiple decision trees to make accurate and robust predic-

tions. In particular, random forest for regression (Breiman, 2001; James et al., 2013)

are tree-based ensemble methods formed by growing regression trees such that the

tree predictor f(x) takes on numerical values, and the random forest predictor is

formed by taking the average over K of these trees fk(x), k = 1, . . . , K.

The extension for ordinal responses, namely ordinal forests (OF) (Hornung, 2020),

involves the construction of regression forests in which traditional class values are

replaced by score values. These score values are optimized to improve out-of-bag

(OOB) prediction performance, evaluated against a designated measure known as

the performance function. This model is based on the assumption that exists a

continuous variable, denoted as y∗, underlying the observed ordinal variable y, known

or unknown, indicating the ordinal variable’s values. Specifically, the relationship

dictates that as the value of y∗ increases for an observation, so does the corresponding

class of the ordinal response variable. Class widths are the widths of J adjacent

intervals and can vary between class and class.

3.2 Ordinal mixed-effects random forest

The proposed statistical method, called Ordinal Mixed-Effects Random Forest

(OMERF), extends the use of random forest to the analysis of hierarchical data, for

categorical ordinal response variables. It models the fixed effects through a random

forest, combining them to the random effects obtained using a CLMM, in order to

take into account both possible complex functional forms in the fixed effect component
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and the nested structure of data. The model can be formulated as follow:

ηijc = g(γijc) = θc − (f(xij) + zT
ijbi)

g(γijc) = logit(γijc) = ln(
γijc

γijc − 1
)

γijc = P(yij ≤ c)

bi ∼ NQ(0,Σb)

j = 1, . . . , ni i = 1, . . . , I c = 1, . . . , C − 1

(3)

where f(xij) is the unknown and nonlinear structure estimated through the random

forest, γijc are cumulative probabilities, πijc = P(yij = c) = P(yij ≤ c) − P(yij ≤

c−1) = logit−1(θc−(f(xij)+zT
ijbi))−logit−1(θc−1−(f(xij)+zT

ijbi)) is the probability

that the j-th observation, within the i-th group, falls in the c-th category. Similarly

to CLMM model, OMERF model assumes that the random effects bi and bi′ are

independent for i ̸= i′. The fixed component is described by a RF object and,

consequently, its exploration relies on familiar tools such as partial plots and variable

importance plots.

The OMERF algorithm is inspired by the one proposed in (Pellagatti et al., 2021)

and estimates fixed and random effects by following an iterative procedure in which

the two components are estimated separately. To perform this estimation, it can be

observed that if the random effects were known in advance, a RF could be fitted to

estimate the fixed part f(xij) by using ηijc+zT
ij×bi as dependent variable. Similarly,

if the population-level effects were known, the random effects could be estimated using

a CLMM with the response corresponding to ηijc and using f(xij) as an offset of the

model. Since neither of them is known, an iterative approach that alternates between

estimating the RF for the fixed component and estimating the CLMM for the random

one is employed. Convergence is considered achieved when the difference between the

random effects estimates in two consecutive iterations is less than a predetermined
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tolerance.

The pseudo-code outlining this estimation process is provided in Algorithm 1.

The random forest model is constructed using the R package randomForest (Liaw

and Wiener, 2002), which implements the original algorithm described in (Breiman,

2001). Meanwhile, the CLMM is built using the clmm function from the R package

ordinal (Christensen, 2022). The CLMM model allows for different offsets in the

formula and scale effects, which are considered as components of the linear predictor

that are known in advance and thus they require no parameter to be estimated from

the data. The implemented method in particular will make use of an offset modelled

as:

ηijc = g(γijc) = θc − zT
ijbi − offsetij,

j = 1, . . . , ni i = 1, . . . , I c = 1, . . . , C − 1

(4)

where offsetij = f(xij), i.e., the random forest estimates of the fixed component.

Addressing the initialization of the unknown systematic component ηijc represents

a delicate challenge, as it cannot be directly inferred from the data. To tackle this

issue, we utilize a traditional Ordinal Forest model incorporating covariates of the

fixed component as predictors and the vector with ordinal categorical responses yij as

target. This model is used to estimate the cumulative probabilities γijc and, then, the

inverse link function g−1 is applied to initialize ηijc = g−1(γijc). The implementation

of the ordinal forest can be found in the ordinalForest R package (Hornung, 2020).

This approach represents an enhancement compared to similar methods like GMERF

(Pellagatti et al., 2021), which employs a GLM for initializing ηij, thereby missing

out on the benefits of non-parametric methods, at the step 0 of the algorithm. Specif-

ically, using a GLM for initialization fails to capture potentially nonlinear trends and

interactions, a capability that OMERF aims to achieve.

Once OMERF has been fitted, to make predictions for a new observation [xij; zij],

the following formula is employed: η̂ijc = θ̂c − (f̂(xij) + zT
ij b̂i). Here, f̂ represents the
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random forest model estimated by the algorithm, b̂i is the vector of random effects

associated to the i-th group, and θ̂c is the threshold associated to each predicted

category c.
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Algorithm 1 OMERF
1: Input:

y− vector with ordinal categorical responses yij

cov− data frame with all covariates

group− vector with the grouping variable for each observation

xnam− vector with names of the covariates to be used as fixed effects

znam− vector with names of the covariates to be used as random effects

b0− optional matrix of initial values for each bi

toll− threshold to decide whether our estimation converged or not (default value of 0.05)

itmax− maximum number of iterations (default value of 100)

2: Z ← (1;cov[znam]): it includes also the random intercept

3: Initialize b to a matrix of zero (if b0 is not given): each column b[, i] of b will be the i-th random coefficients bi

4: all.b[0] = b

5: fit a Ordinal Forest model using y as response and cov as matrix of covariates

6: eta← estimated ηijc by the Ordinal Forest model

7: it← 1

8: while it < itmax and not conv do

9: targ ← eta+ Z × b

10: fit a random forest model using targ as target and cov as predictor matrix

11: fx← fitted values of the forest model

12: fit the CLMM model ηijc = θc − zTijbi − offsetij , with offsetij = fx

13: all.b[it] = b← the estimated b fromm CLMM model

14: M ← max(abs(b− all.b[it− 1]))

15: (i, j)← argmax(abs(b− all.b[it− 1]))

16: tr ←M/all.b[it− 1](i, j)

17: if tr < toll then

18: conv ← true

19: else

20: conv ← false

21: end if

22: it++

23: end while

24: if not conv then

25: give a warning

26: end if

27: Output:

clmm.model− the final CLMM model fitted

forest.model− the final forest model fitted

b− the final estimation of the random coefficients

it− the number of iterations
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4 Simulation study

In this section, we conduct a simulation study to test OMERF and compare it

with similar classification methods under various simulation settings. In Section 4.1,

we describe the design of the data generating process (DGP), while, in Section 4.2,

results are analysed, in order to highlight strengths and weaknesses of OMERF.

4.1 Simulation design

To sample ordered categorical data, we make use of the function genOrdCat()

from the R package simstudy (Goldfeld and Wujciak-Jens, 2020). This function

takes as input an underlying (continuous) latent process wij as the basis for data

generation. Assuming that probabilities are determined by segments of a logistic

distribution, it defines the ordinal mechanism using thresholds along the support of

the distribution. In case of C possible responses, there will be C − 1 thresholds.

The area under the logistic density curve of each of the C regions defined by those

thresholds represents the probability of each possible response tied to that region.

In our simulation, we set C = 3 and we generate the underlying latent process as:

wij = f(xij) +

Q∑
q=0

zTqijbqi j = 1, . . . , ni i = 1, . . . , I (5)

where f is the fixed component functional form which takes in input the P -

dimensional vector of fixed effects covariates xij and
∑Q

q=0 z
T
qijbqi is the random

component. The ordinal response Y is generated from wij by using the function

genOrdCat() assuming balanced categories.

Regarding the fixed effects part, we use a variation of the simulation design pro-

posed in (Pellagatti et al., 2021). The design for f incorporates both a linear compo-

nent and a tree-like component, along with interactions among the covariates. This
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approach allows to simulate scenarios with highly diverse structure, which will chal-

lenge the flexibility and adaptability of our method.

Specifically, P = 7 fixed effects covariates are taken into account and f is modelled

as follows:

f(X1, . . . , X7) = α(3 + 7X2
1 − 5X2 +X2X

2
3 ) + βtree(X4, X5, X6) (6)

where α and β represent two design parameters employed to regulate the importance

given to the linear and tree-based components in the various DGPs. The function

tree(X4, X5, X6) follows the tree like stucture outlined in Figure 1. The variable X7 is

included even though it is not significant, in order to assess whether the algorithm is

influenced by it. Indeed, while all of the seven variables are being used as predictors

in the compared models, only the first six of them are actually used to generate f .

The seven variables are generated randomly in accordance with the following dis-

tributions: X1, X2, X3 ∼ N(0, 1);X4 ∼ U(−3, 3);X5 ∼ U(−6, 6);X6 ∼ U(−5, 5);X7 ∼

U(−4, 4).

Figure 1: Tree-like structure tree(X4, X5, X6) of the fixed effects part in Equation 6.

The random effects are drawn from a normal distribution for two distinct scenarios:
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• Random intercept only :
∑Q

q=0 z
T
qijbqi = b0i ∼ N (0, σ2

1), where σ
2
1 is a design

parameter which gives the possibility to change the variability of the effects in

the different simulations. Indeed, within each scenario, two specifications (low

and high) for the parameter σ2
1 are considered in order to account for different

levels of magnitude of the between-group variability;

• Random intercept and slope :
∑Q

q=0 z
T
qijbqi = b0i + xT

1ijb1i, where X1 has

been previously defined and bi ∼ N2(0,Σ), with Σ = diag(σ2
1;σ

2
2). It is im-

portant to note that the random effects b0i and b1i are treated as independent

for any given value of i, and, as in the previous scenario, σ2
1 and σ2

2 regulate

the random effects variance. In this setting, the covariate X1 is not assumed

to have a fixed effect that applies uniformly to the entirety of observations. In-

stead, its association to the response is considered group-specific, meaning that

X1 is assumed to have different effects across observations belonging to distinct

groups.

A two-level data structure of I = 10 groups with ni = 100 observations each is

simulated, for a total number of 1000 units. Note that for simplicity, an equal number

of observations for each group is taken to ensure a balanced dataset. However, the

model is, of course, capable of handling datasets with varying group sizes.

In addition to this simulation design, a full linear DGP is implemented in order

to observe how OMERF performs in a parametric context. In this case, the fixed

component includes only the first three variables previously described and is defined

as:

f(X1, . . . , X3) = 3 + 7X1 − 5X2 +X2X3. (7)

Only the case of a single, normally distributed random intercept is considered: b0i ∼

N (0, σ2
1).

The parameters listed in Table 1 are chosen in order to obtain balanced datasets
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regarding the classes of the ordinal response. Moreover, several combinations of

parameters are tested to observe how the model reacts in the case of a more polynomial

or more tree-like systematic component and with the variance related to random

effects being higher or lower. Thus, a total of 10 DGPs summarised in Table 1 are

obtained. The main objective of the designed DGPs is to show how our algorithm

is able to capture the heterogeneity across groups and the structure of the fixed

component.

OMERF performance is evaluated in comparison to other three models:

• CLM and CLMM, from the ordinal R package (Christensen, 2022), which are

expected to perform better in a full linear context, but worse in cases of more

complex structures, and CLM is expected not to grasp the hierarchical structure

of data;

• Ordinal random forest, from the ordinalForest R package (Hornung, 2020),

which, as typical of ensemble tree-based models, is able to capture nonlinear

relationships, but not to catch the nested structure.

These methods are chosen in order to, at least to some extent, include a range of

both cumulative link and tree-based models.

The choice of appropriate performance metrics for ordinal models is not straight-

forward and is an area of research still not widely explored (de Raadt et al., 2021).

Therefore, we compare the performance of the tested methods by employing multiple

godness of fit (gof) metrics. We consider the accuracy, that is designed to deal with

categorical data and allows to track the percentage of correctly classified observation,

but not the error severity, and the Mean Square Error (MSE), that treats the ordinal

scale as real number Gaudette and Japkowicz (2009). Furthermore, we incorporate

two indexes that assess the similarity between two classifications of the same objects

by quantifying the agreement proportions between the two partitions. These are the
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Adjusted Rand Index (Hubert and Arabie, 1985) and Cohen’s kappa (Cohen, 1960).

Both of these indices have a range from -1 to 1. Positive values in this range indicate

agreement between the two sets, with 1 denoting perfect agreement. Negative values

imply disagreement, and the magnitude of the negative value reflects the extent of

this disagreement. A value equal to 0 suggests that the agreement is no different from

what would be expected by chance. Lastly, we select among the recent developments

in the field the two indexes implemented by J. S. Cardoso (Cardoso and Sousa, 2011)

and E. Ballante (Ballante et al., 2022). These last two indexes are novel metrics

specifically adapted to ordinal data classification problems, they allow values in the

range [0;1] with the optimal value in 0.

f(xij) α β σ2
1 σ2

2

DGP 1 α(3 + 7X2
1 − 5X2 +X2X

2
3 ) + βtree(X4, X5, X6) 0.3 0.7 1 -

DGP 2 α(3 + 7X2
1 − 5X2 +X2X

2
3 ) + βtree(X4, X5, X6) 0.7 0.3 1 -

DGP 3 α(3 + 7X2
1 − 5X2 +X2X

2
3 ) + βtree(X4, X5, X6) 0.3 0.7 5 -

DGP 4 α(3 + 7X2
1 − 5X2 +X2X

2
3 ) + βtree(X4, X5, X6) 0.7 0.3 5 -

DGP 5 α(3 + 7X2
1 − 5X2 +X2X

2
3 ) + βtree(X4, X5, X6) 0.3 0.7 0.3 0.5

DGP 6 α(3 + 7X2
1 − 5X2 +X2X

2
3 ) + βtree(X4, X5, X6) 0.7 0.3 0.3 0.5

DGP 7 α(3 + 7X2
1 − 5X2 +X2X

2
3 ) + βtree(X4, X5, X6) 0.3 0.7 1 1

DGP 8 α(3 + 7X2
1 − 5X2 +X2X

2
3 ) + βtree(X4, X5, X6) 0.7 0.3 1 1

DGP 9 3 + 7X1 − 5X2 +X2X3 - - 1 -

DGP 10 3 + 7X1 − 5X2 +X2X3 - - 5 -

Table 1: Simulation parameters of both fixed and random effects parts for 10 different

DGPs.
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4.2 Simulation results

For each of the ten DGPs described in Table 1, we simulate 100 datasets. In order

to evaluate the predictive performances of the four compared models, each dataset is

randomly split into training and test sets, with a ratio of 80% for training and 20% for

testing. Simulation results, in terms of mean and variance of gof metrics computed

across the 100 runs, are reported in Table 21.

For DGPs from 1 to 4 (i.e., fixed component incorporating both polynomial and

tree-based structures and random intercept with varying effect), OMERF consistently

emerges as the optimal choice across all reported metrics. Notably, the efficacy gap

between tree-based methods (ordinal forest and OMERF) and linear models (CLM

and CLMM) can be appreciated both in scenarios with a preponderant tree-like struc-

ture and in the ones with a preponderant polynomial structure. The performances of

the OMERF method in these scenarios highlights its ability to best capture complex

relationships between target and covariates.

With the introduction of a random slope (namely in the DGs 5-8), the models

performance remains consistent with those analysed so far. Notably, random for-

est consistently outperforms linear models, although OMERF does not consistently

emerge as the best performer across all indices. Moreover, in all the simulations there

appear to be no major differences between the cases with small or large variability of

random effects.

On the contrary, in DGPs 9 and 10, in which the predictor is linear, CLM and

CLMM tend to perform better with respect to the other models. This result con-

firms that tree-based methods better capture nonlinear dependencies, but when the

data structure is linear parametric, linear models are preferable, additionally yielding

results that are usually more easily interpretable.

Overall, results confirm that, in a nonlinear setting, OMERF performs better

1OMERF and the ordinal forest are run with default inputs.
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(a) Distribution of random intercepts sampled
from N (0, 1).

(b) Distribution of random intercepts with
their 95% confidence intervals estimated by
OMERF.

Figure 2: Sampled and estimated random intercepts in one of the runs of DGP 1,
described in Table 1.

with respect to CLM and CLMM, and slightly better or comparably to ordinal ran-

dom forest, still having the advantage of extracting knowledge from the nested data

structure.

For what concerns the estimation of the predictor, we provide an example of the

OMERF output by reporting, in Figures 2 and 3, the results, in terms of fixed and

random effects, in one of the runs of DGP 12. Figure 2 reports the sampled (Figure

2(a)) and estimated (Figure 2(b)) random intercepts in one of the runs of DGP 1 and

shows how OMERF succesfully manages to capture the heterogeneoty at the group

level.

Regarding the fixed effects, Figure 3 shows the net association between the covariates

and the response, by means of the partial plots extracted from the RF, giving an

insight into the underlying latent process behind the ordinal model. It can be observed

that the algorithm captures the quadratic and inverse linear trend in the variables x1

and x2, respectively.

2The choice of reporting results for a single run is forced by the impossibility of summarizing this
type of outcome across the runs.
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Figure 3: Partial plots for the fixed component of OMERF, for the seven covariates
of DGP 1, described in Table 1. The y-axis reports the increment/decrement of the
target variable of the random forest in the iterative procedure, given the covariate on
the x-axis.

DGP Model Acc MSE ARI Cohen’s k Cardoso Ballante

1 clm 0.5729 0.7074 0.1228 0.1650 0.5498 0.2731

(0.0019) (0.0109) (0.0018) (0.0032) (0.0022) (0.0013)

1 clmm 0.5713 0.7127 0.1176 0.1535 0.5503 0.2742

(0.0018) (0.0103) (0.0017) (0.0031) (0.0021) (0.0014)

1 ordforest 0.6491 0.5076 0.2588 0.3346 0.4620 0.1991

(0.0009) (0.0046) (0.0024) (0.0039) (0.0013) (0.0007)

1 omerf 0.6559 0.4506 0.2977 0.3963 0.4619 0.1983

(0.0011) (0.0037) (0.0023) (0.0028) (0.0014) (0.0006)

2 clm 0.7496 0.5047 0.1923 0.2042 0.3811 0.1704

(0.0008) (0.0067) (0.0035) (0.0036) (0.0016) (0.0032)

2 clmm 0.7512 0.5061 0.1812 0.1962 0.3791 0.1806

(0.0008) (0.0063) (0.0033) (0.0035) (0.0015) (0.0040)
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2 ordforest 0.8025 0.3148 0.3997 0.3954 0.2909 0.0843

(0.0006) (0.0026) (0.0042) (0.0047) (0.0011) (0.0003)

2 omerf 0.8089 0.2565 0.5330 0.5066 0.2836 0.0899

(0.0007) (0.0021) (0.0036) (0.0037) (0.0013) (0.0004)

3 clm 0.6238 0.6589 0.2182 0.2943 0.5082 0.2314

(0.0031) (0.0197) (0.0043) (0.0054) (0.0041) (0.0025)

3 clmm 0.6236 0.6646 0.2156 0.2893 0.5082 0.2330

(0.0031) (0.0202) (0.0044) (0.0059) (0.0041) (0.0025)

3 ordforest 0.6705 0.5371 0.2853 0.3576 0.4490 0.1829

(0.0016) (0.0079) (0.0038) (0.0082) (0.0022) (0.0010)

3 omerf 0.6748 0.4589 0.3334 0.4237 0.4464 0.1792

(0.0016) (0.0050) (0.0032) (0.0036) (0.0020) (0.0008)

4 clm 0.7532 0.5372 0.2389 0.2725 0.3843 0.2100

(0.0015) (0.0143) (0.0036) (0.0043) (0.0031) (0.0069)

4 clmm 0.7536 0.5377 0.2327 0.2659 0.3839 0.2118

(0.0015) (0.0138) (0.0036) (0.0047) (0.0030) (0.0071)

4 ordforest 0.7953 0.3708 0.3583 0.3722 0.3102 0.0998

(0.0009) (0.0059) (0.0075) (0.0080) (0.0019) (0.0010)

4 omerf 0.8069 0.2865 0.5126 0.5063 0.2914 0.0869

(0.0011) (0.0039) (0.0043) (0.0036) (0.0022) (0.0005)

5 clm 0.5598 0.7261 0.0970 0.1288 0.5604 0.2819

(0.0009) (0.0045) (0.0012) (0.0026) (0.0008) (0.0006)

5 clmm 0.5586 0.7315 0.0940 0.1206 0.5611 0.2851

(0.0009) (0.0048) (0.0014) (0.0029) (0.0021) (0.0009)

5 ordforest 0.6409 0.5002 0.2541 0.3283 0.4659 0.2038

(0.0009) (0.0033) (0.0025) (0.0033) (0.0013) (0.0005)
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5 omerf 0.6342 0.4938 0.2645 0.3623 0.4866 0.2166

(0.0012) (0.0041) (0.0033) (0.0032) (0.0014) (0.0005)

6 clm 0.7489 0.4900 0.1803 0.1854 0.3786 0.1653

(0.0005) (0.0036) (0.0038) (0.0039) (0.0008) (0.0025)

6 clmm 0.7503 0.4927 0.1699 0.1812 0.3776 0.1770

(0.0005) (0.0041) (0.0038) (0.0038) (0.0008) (0.0034)

6 ordforest 0.8063 0.2986 0.4187 0.4089 0.2834 0.0824

(0.0004) (0.0023) (0.0040) (0.0049) (0.0008) (0.0003)

6 omerf 0.8104 0.2569 0.5395 0.5119 0.2830 0.0910

(0.0007) (0.0021) (0.0042) (0.0043) (0.0013) (0.0003)

7 clm 0.5696 0.7339 0.1205 0.1691 0.5571 0.2791

(0.0015) (0.0133) (0.0020) (0.0039) (0.0019) (0.0020)

7 clmm 0.5643 0.7491 0.1119 0.1571 0.5630 0.2848

(0.0018) (0.0127) (0.0021) (0.0045) (0.0021) (0.0022)

7 ordforest 0.6414 0.5334 0.2554 0.3254 0.4719 0.2074

(0.0011) (0.0047) (0.0022) (0.0031) (0.0015) (0.0008)

7 omerf 0.6339 0.5121 0.2714 0.3589 0.4882 0.2169

(0.0016) (0.0071) (0.0035) (0.0036) (0.0021) (0.0012)

8 clm 0.7507 0.4943 0.2032 0.2139 0.3774 0.1729

(0.0008) (0.0073) (0.0040) (0.0040) (0.0017) (0.0036)

8 clmm 0.4985 0.4927 0.1908 0.2029 0.3789 0.1809

(0.0008) (0.0069) (0.0042) (0.0047) (0.0016) (0.0040)

8 ordforest 0.8011 0.3235 0.4025 0.3995 0.2947 0.0885

(0.0005) (0.0032) (0.0047) (0.0041) (0.0011) (0.0003)

8 omerf 0.8018 0.2766 0.5195 0.4942 0.2955 0.0965

(0.0007) (0.0034) (0.0032) (0.0031) (0.0016) (0.0004)
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9 clm 0.8711 0.1610 0.7291 0.7761 0.1979 0.0419

(0.0005) (0.0016) (0.0021) (0.0015) (0.0012) (0.0001)

9 clmm 0.8716 0.1609 0.7297 0.7769 0.1977 0.0417

(0.0004) (0.0014) (0.0019) (0.0012) (0.0009) (0.0001)

9 ordforest 0.8544 0.2145 0.6858 0.7414 0.2262 0.0484

(0.0004) (0.0024) (0.0022) (0.0013) (0.0012) (0.0002)

9 omerf 0.8389 0.2704 0.7127 0.6167 0.2510 0.0818

(0.0004) (0.0028) (0.0024) (0.0011) (0.0011) (0.0002)

10 clm 0.8756 0.1559 0.7376 0.7824 0.1919 0.0386

(0.0004) (0.0012) (0.0019) (0.0013) (0.0009) (9.1742e-05)

10 clmm 0.8755 0.1559 0.7376 0.7821 0.1920 0.0385

(0.0004) (0.0011) (0.0017) (0.0012) (0.0009) (9.0919e-05)

10 ordforest 0.8420 0.2610 0.6492 0.7154 0.2486 0.0523

(0.0005) (0.0031) (0.0025) (0.0013) (0.0012) (0.0001)

10 omerf 0.8214 0.3340 0.6004 0.6779 0.2845 0.0911

(0.0005) (0.0054) (0.0037) (0.0015) (0.0015) (0.0005)

Table 2: Mean and variances of prediction performances,

measured by six indices, of the four compared methods

across 100 runs of the 10 DGPs listed in Table 1.
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5 Case study

In this section, we delve into a real-world application of the OMERF method in

learning analytics.

5.1 The dataset

The data employed in the study concern 15-year-old students attending Italian

schools who completed the PISA 2022 survey questionnaire. The dataset comprises

information about 10,552 students across 340 schools. After filtering for complete

cases and schools with more than 10 students, the processed dataset consists of 7,639

observations, representing students enrolled in 293 schools. For model training and

evaluation, a random sample comprising 80% of the observations is designated as the

training set, while the remaining 20% constitutes the test set.

The objective of this case study is to evaluate the performance of OMERF in pre-

dicting and modelling students’ mathematical performance, accounting for student

characteristics and attended schools. In accordance with the threshold established

by the OECD, the output variable, that is the student PISA score, is categorized

into three ordinal levels: the lowest level encompasses students classified in levels 1

or 2, while the highest level includes those achieving levels 5 or 6, with the remaining

students falling within the intermediate class 3. The student-level variables, extracted

from the OECD-PISA database, used to predict the mathematics test scores include

demographic factors, educational indicators, family background information, factors

related to home and school environment, and self-perception attributes. A detailed

description of these variables, along with corresponding descriptive statistics, is pro-

vided in Table 3. All indicators variables are build by PISA by combining multiple

3Levels 5 and 6 are designated to students with high abilities, levels 3 and 4 to students with
moderate abilities, and the remaining two levels to those with basic or no abilities. For more details
about the PISA proficiency levels, please refer to https://www.oecd.org/pisa/.
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responses to questionnaires in numerical indicators.

Variable name Variable description Variable type Distribution

mate3 Output variable, mathe-

matics test score

ordered factor 1:48%

2:44%

3:8%

gender Student gender (0 = male,

1 = female)

factor 1:53%

0:47%

immig Student immigration status

(0 = native Italian; 1 = 1st-

generation immigrant; 2 =

2nd-generation immigrant)

factor 0:89%

1:8%

2:3%

grade School grade attended (10

= regular student; 9 = late

enrolled student; 11 = early

enrolled student)

factor 9:10%

10:85%

11:5%

video games Indicator of frequency of

use at home of video or on-

line games

numeric Mean:3.27; SD:1.59;

Range: [1.00;6.00]

internet quality Indicator of quality of ac-

cess to ICT at school

numeric Mean:-0.18; SD:0.83;

Range: [-2.80;2.89]

internet availability Indicator of ICT availabil-

ity outside of school

numeric Mean:5.70; SD:0.91;

Range: [0.00;6.00]

SCHRISK Indicator of perceived

school safety risks

numeric Mean:0.01; SD:0.82;

Range: [-0.46;3.05]

BULLIED Indicator of being bullied numeric Mean:-0.47; SD:0.87;

Range: [-1.23;4.69]

BELONG Indicator of sense of belong-

ing to school

numeric Mean:0.01; SD:0.89;

Range: [-3.26;2.78]

COOPAGR Indicator of cooperation

(agreement)

numeric Mean:0.12; SD:1.00;

Range: [-5.24;6.13]

Continued on next page
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Variable name Variable description Variable type Distribution

TEACHSUP Indicator of perceived

teachers support

numeric Mean:-0.20; SD:1.11;

Range: [-2.91;1.56]

FAMSUP Indicator of perceived fam-

ily support

numeric Mean:-0.02; SD:0.93;

Range: [-3.01;1.96]

PERSEVAGR Indicator of perseverance

(agreement)

numeric Mean:0.07; SD:0.98;

Range: [-5.91;4.89]

ASSERAGR Indicator of assertiveness

(agreement)

numeric Mean:-0.03; SD:1.01;

Range: [-8.23;7.23]

EMPATAGR Indicator of empathy

(agreement)

numeric Mean:0.01; SD:0.99;

Range: [-6.46;4.69]

EMOCOAGR Indicator of emotional con-

trol (agreement)

numeric Mean:-0.09; SD:0.98;

Range: [-5.17;5.58]

STRESAGR Indicator of stress resis-

tance (agreement)

numeric Mean:-0.18; SD:1.00;

Range: [-5.26;5.49]

CURIOAGR Indicator of curiosity

(agreement)

numeric Mean:0.09; SD:0.96;

Range: [-4.95;4.18]

study time Total time for all homework

in all subjects per week

numeric Mean:3.50; SD:1.51;

Range: [1.00;6.00]

HISCED Highest level of education of

parents

numeric Mean:7.03; SD:2.14;

Range: [1.00;10.00]

ESCS socio-economic family in-

dex

numeric Mean:-0.01; SD:0.87;

Range: [-3.23;2.78]

Table 3: Student-level variables extracted from the OECD-PISA

database.

5.2 Model results

We run OMERF to predict the student mathematics level mate3, that is the

ordinal target variable, by including all other variables listed in Table 3 as fixed-effects

covariates and considering a random intercept (Q = 0) to estimate the school-effect
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(Raudenbush and Willms, 1995). We compare the performance of OMERF with the

ones of CLM, CLMM and Ordinal Forest4. For CLM and Ordinal Forest, the random

intercept is not considered.

In Table 4, the predictive performance (computed on the test set) of the four

methods are reported.

Model Acc MSE ARI Cohen’s k Cardoso Ballante

clm 0.5938 0.4573 0.0739 0.2484 0.5073 0.2835

clmm 0.6699 0.3339 0.1884 0.3963 0.4228 0.2121

ordforest 0.6010 0.4383 0.0914 0.2597 0.4937 0.2607

omerf 0.6444 0.3734 0.1496 0.3546 0.4527 0.2402

Table 4: Prediction performances (computed on the test set) of the four compared

methods applied to the real-world case study.

CLMM consistently outperforms other methods across all metrics considered,

closely followed by OMERF, which achieves slightly lower but comparable results.

This underscores the importance of accounting for the hierarchical structure of the

data. The fact that CLMM performs slightly better than OMERF could be explained

by the presence of a strong linear relationship between predictors and response. To

check that, Figures 4 and 5 illustrate the variable importance plot (VIMP) and the

partial plots produced by OMERF, that enable examination of the relationship be-

tween predictors and the output variable. From the VIMP (4), we observe that ESCS

is the most important predictor, consistent with existing literature. In the partial plot

(5), ESCS demonstrates a quasi-linear relationship with the response, potentially ex-

plaining the comparable performance of OMERF and CLMM, as linear models can

adequately capture such relationships. On the other hand, Figure 5 highlights the

nonlinear association between some of the most important variables, such as EMO-

4OMERF and the ordinal forest are run with default inputs.
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COAGR, CURIOAGR and FAMSUP, and the output variable. For instance, for what

concerns the student emotional control (EMOCOAGR), we observe a steep increment

of the response when this covariate exceeds its average value of 0, while we observe

slight variations in the response for both high and low values of the covariate, with

high values being associated to higher values of the response. Concerning student

curiosity (CURIOAGR), we observe a clear increase in the response when the value

of this covariate moves from 0 to the right limit of its range, while we observe no

significant variations across its negative values. One of the strengths of OMERF is

its ability to capture these types of relationships, which CLMM can not. However,

the variable importance plot indicates that these covariates are not the most influen-

tial variables. This, combined with the quasi-linear relationship between ESCS and

the output variable, likely explains the higher performance of CLMM compared to

OMERF.

Figure 4: Variable Importance plot for the fixed component of OMERF, in the real-

world case study.
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The estimated variance of the random effects results to be σ̂2 = 1.695 for OMERF,

leading to the following Intraclass Correlation Coefficients (ICC) (Grilli and Rampi-

chini, 2011) for the underlying linear model:

ICC =
σ2

σ2 + π2/3
= 0.340.

This value of ICC, measuring the unexplained variance in the response that can be

attributed to the nested structure of students, implies the existence of a substantial

heterogeneity in the achievements among various classes. This highlight once again

the importance of considering the hierarchical structure of these data.

Figure 6 reports the estimated random intercepts, that in this case are interpreted

as school-effects, of OMERF and CLMM, that result to be coherent. Their distribu-

tion around 0, together with the high ICC, confirms that the likelihood of a student to

be in different proficiency levels, net to the effect of his/her personal characteristics,

is influenced by the attended school.
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(a) ESCS (b) EMOCOAGR (c) CURIOAGR

(d) FAMSUP (e) ASSERAGR (f) gender

(g) STRESAGR (h) COOPAGR (i) HISCED

(j) PERSEVAGR (k) internet quality (l) EMPATAGR

(m) BELONG (n) SCHRISK (o) BULLIED

(p) study time (q) TEACHSUP (r) video games

(s) grade (t) internet availability (u) immig

Figure 5: Partial Plots for the fixed component of OMERF, in the real-world case
study. The y-axis reports the increment/decrement of the target variable of the
random forest in the iterative procedure, given the covariate on the x-axis.
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(a) OMERF methos (b) CLMM method

Figure 6: Estimated Random intercepts with their 95% confidence intervals

32



6 Conclusions

In this study, we propose the Ordinal Mixed-Effects Random Forest (OMERF),

a novel method that expands the utility of random forests to analyze hierarchical

data with ordinal response variables. OMERF adopts the framework of cumulative

linear mixed models but employs a random forest to estimate the fixed component.

By doing so, it inherits the flexibility and predictive power of random forests while

preserving the structure of mixed-effects models for ordinal response. This novel

approach makes a valuable contribution to two branches of statistical literature: the

one on tree-based mixed-effects models and the one on ordinal models.

A simulation study shows that OMERF outperforms the counterpart methods

when the fixed component exhibits complex non linear structures, in presence of both

light and strong heterogeneity at the group level, while linear models still perform

better in case of linear predictors.

When applied to a real-world case study to predict mathematics proficiency levels

of Italian students in the PISA 2022 test, OMERF performs similarly but slightly

worse than CLMM, in terms of predictive power. Indeed, the strong linear relationship

of the most important predictor (ESCS) with the response favors the linear model.

Nonetheless, OMERF offers the advantage of investigating potential interactions and

non linearities of other covariates, still disentangling the school effect on student

outcomes, that, in the educational data mining context, as in many other contexts,

is essential to properly understand students and the settings in which they learn.

In conclusion, OMERF proves to be a powerful and an easily interpretable method,

that can deal with grouped data structures and can be applied to face complex real

data challenges. Future developments might consider to enrich the modeling of the

fixed-effect part by incorporating both a linear component and a tree-based compo-

nent (see, for example, Gottard et al. (2019)). Moreover, OMERF should be employed
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to deal with more complex real-world data to test its efficacy in absence of clear linear

predictors.

Acknowledgements: The present research is part of the activities of “Diparti-
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