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Abstract
An innovative nonparametric method for density estimation over general two-dimen-
sional Riemannianmanifolds is proposed. Themethod follows a functional data analy-
sis approach, combiningmaximum likelihood estimationwith a roughness penalty that
involves a differential operator appropriately defined over the manifold domain, thus
controlling the smoothness of the estimate. The proposed method can accurately han-
dle point pattern data over complicated curved domains. Moreover, it is able to capture
complex multimodal signals, with strongly localized and highly skewed modes, with
varying directions and intensity of anisotropy. The estimation procedure exploits a dis-
cretization in finite element bases, enabling great flexibility on the spatial domain. The
method is tested through simulation studies, showing the strengths of the proposed
approach. Finally, the density estimation method is illustrated with an application to
the distribution of earthquakes in the world.
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1. Introduction

This work introduces an innovativemethod for density estimation over general two-
dimensional Riemannian manifolds. The method follows a functional data analysis
approach, combining maximum likelihood estimation with a roughness penalty, that
involves a differential operator appropriately defined over the manifold domain, thus
controlling the smoothness of the estimate. The proposed technique can deal with
data scattered over two-dimensional curved domains with complicated geometries.
Moreover, it accurately estimates complex multi-modal densities, with highly skewed
modes or ridges. Figure 1 shows an example of a particular setting that can be efficiently
treated with the proposed method. The points are the locations of earthquakes, of
magnitude greater than 4.5, occurred across the world in the period from 1st March

?Supplementary material providing the code and data for the simulation studies is provided online.
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Figure 1: This figure shows the locations of earthquakes in the world which occur in the period from
1st March 2019 to 1st March 2020 with a magnitude greater then 4.5. The peculiarity of this dataset is
that points are mainly on stretched regions and therefore the signal turns out to be very skewed and
anisotropic.

2019 to 1st March 2020. Most data are are observed along elongated narrow regions,
that are the faults on the earth’s crust.

Density estimation over parametric manifolds has attracted lots of attention. The
special case of density estimation over a spherical domain has been extensively studied.
Many examples can for instance be found in the literature on directional and axial
statistics; see, e.g., Mardia [28], Watson [41] and Jupp and Mardia [23]. In particular,
Hall et al. [20] and Fisher et al. [13] study kernel methods for axial or directional data.
Axial or directional data also offers problems of density estimation over cylinders and
tori. For instance, the studyof temperatures andwinddirections, that are a combination
of scalar data (the temperature) and circular data (thewind direction) leads to problems
of density estimation over cylinders [see, e.g., 22]. The study of the joint distribution
of multiple circular data, such as joint distributions of angles, leads instead to densities
over tori [see, e.g., 12, 8].

Fewer methods are instead available for density estimation on manifolds of generic
shapes. Some theoretical studies concerning point data scattered over general compact
manifolds without boundary are done in Hendriks [21], in which a method based on
estimation with Fouries series is presented, and in Pelletier [33] and in Kim and Park
[25], in which authors adapt kernel density estimation to the non-Euclidean setting.
These works establish the good asymptotic properties of the proposed estimators;
however their implementation for general manifolds is not straightforward and is not
discussed. Berry and Sauer [4] instead presents a boundary correction for the kernel
density estimator and provides an algorithm that works withmanifolds with unknown
boundary. Finally, the log-Gaussian Cox Processes proposed in Simpson et al. [39]
can handle point data over domains with irregular shapes, including possibly curved
domains. In a similar spirit, some recent works address density and point processes
estimation on complicated domains such as networks [see, for example, 29, 36, 31, 30].

Here we propose a flexible density estimation method, based on a nonparametric
maximum likelihood approach with a roughness penalty. Similar approaches have
been considered for density estimation over one-dimensional domains by Silverman
[38] and Good and Gaskins [17], over regular planar two-dimensional domains by Gu
and Qiu [19] and Gu [18], and over bounded and irregularly shaped planar domains by
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Ferraccioli et al. [11]. In particular, we here extend the method by Ferraccioli et al. [11]
to the case of curved two-dimensional domains, considering both bounded manifolds
and closed manifolds (i.e., manifolds that do not posses a boundary, as for instance
spheres), possibly with non-trivial geometries. The method permits to handle point
patterns arising over general two-dimensional Riemannian manifolds, as for instance
data observed over complicated earth orographies or over life tissues with complex
anatomies, such as the brain surface.

The extension from theplanar domains considered in Ferraccioli et al. [11] to the gen-
eral two-dimensional Riemannian manifolds here considered requires the definition of
appropriate partial differential operators over themanifold, and suitable Sobolev spaces
of functions on the manifold [see, e.g., 10]. In particular, the roughness penalty we here
consider involves the Laplace-Beltrami operator defined on the manifold domain. This
partial differential operator provides a measure of the local curvature of a function
defined over a surface domain, enabling us to appropriately control the smoothness of
the estimate. We demonstrate the good asymptotic properties of the method, proving
the consistency of the proposed estimator. We hence describe a computational method
to solve the estimation problem. Partial differential problems over Riemmanian man-
ifolds requires appropriate numerical techniques [see, e.g., 10]. Specifically, we here
resort to surface finite elements, which enable us to represent functions defined over
triangulated surfaces. Non-planar triangular meshes enable us to appropriately repre-
sent curved domainswith general and possibly complicated shapes, as shown in Figure
2. Moreover, these unstructured meshes and the localized support of finite element
bases make the proposed technique able to accurately capture highly localized features
and lower dimensional structures such as ridges, as demonstrated by simulation stud-
ies. Comparison to kernel density estimation over spherical domains highlights the
superiority of the proposed method.

The method proposed is part of a class of models for the analysis of functional
and of spatial data over complex multidimensional domains, that relies on statistical
approaches with regularizing terms involving Partial Differential Equations (PDEs)
[see, e.g., 37], and it is implemented in the R package fdaPDE [27, 35].

The article is organized as follows. In Section 2 we introduce the proposedmodel in
its infinite-dimensional form. In Section 3 we derive its asymptotic properties. Section
4 details the discretization of the estimation problems through finite elements. Section
5 reports some simulation studies, which compare the proposed method to kernel
density estimation on the sphere. Section 6 shows the application to the study of the
distribution of earthquakes across the world, shown in Figure 1. Finally, Section 7
outlines some possible future developments of the proposed method.

2. Density estimation over two-dimensional manifolds

In this section we first introduce some concepts of differential geometry, giving
the definition of the Laplace-Beltrami operator; we then present the model for density
estimation over a two-dimensional manifold.
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Figure 2: The discretization procedure. On the top left the truemanifold; on the top right the domain ap-
proximated by a triangulation; on the bottom an example of a finite element function on the triangulated
domain.

2.1. Review of some basic concepts from differential geometry
Amanifold is a topological space that locally resemblesEuclidean space, but globally

can have different properties. More precisely, each point x of a d-dimensional manifold
has a neighborhood that is homeomorphic to the Euclidean space of dimension d. In
this more precise terminology, a manifold is referred to as a d-manifold.

In this work we consider two-dimensional Riemannian manifolds. A Riemannian
manifoldℳ is a differentiable manifold equipped with an inner product gx defined on
the tangent space Txℳ of each point x ∈ ℳ. Let ϕ : U ⊂ ℝ2 → V ∩ℳ, with V an
open set inℝ3, be the bĳective and smooth function that locally parametrizes the point
x ∈ ℳ. Let θ ∈ U ⊂ ℝ2 be such that θ = ϕ−1(x). The couple (V,ϕ) is called local
chart, and {

∂ϕ

∂θ1
(θ), ∂ϕ

∂θ2
(θ)

}
defines a basis for the local tangent space Txℳ. Finally, the collection of charts
{(Vi,ϕi)}i∈I such that

⋃
i∈I(Vi ∩ℳ) =ℳ is called atlas. Figure 3 shows an example

of a two-dimensional manifold with a local chart.
The scalar product gx can be represented as the matrix G = (gij)i,j=1,2 such that

gx(v,w) =
2∑
i,j=1

gijviwj

for all v =
∑2
i=1 vi

∂ϕ
∂θi
(θ) and w =

∑2
i=1wi

∂ϕ
∂θi
(θ), where vi and wi are the coordinates

of v andw on the local chart. Considering the scalar product induced by the Euclidean
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Figure 3: A two-dimensional Riemannian manifold with a graphical description of the tangent space
and the local chart. Txℳ is the tangent space ofℳ in x, with the associated scalar product gx, while ϕ
is the bĳection from a neighborhoodU of θ to a neighborhoodV ∩ Txℳ of x.

embedding space ℝ3, we have

gij(θ) =
∂ϕ

∂θi
(θ) · ∂ϕ

∂θj
(θ).

Let G−1 = (gij)i,j=1,2 be the inverse of the matrix G and det(G) its determinant. Let
now f :ℳ → ℝ be a real valued and twice differentiable function on the manifoldℳ.
Let f̃ = f ◦ϕ, then the gradient ∇ℳ is defined as

∇ℳf(x) =
2∑
i,j=1

gij(θ) ∂f̃
∂θj
(θ) ∂ϕ
∂θj
(θ).

In the case of a flat manifoldℳ, the last expression reduces to the expression of the
gradient in ℝ2, that is, ∇ = ( ∂∂θ1 ,

∂
∂θ2
). In fact, in this case, ϕ is the identity map,

implying that f̃ = f and ∂ϕ
∂θj
(θ) = 1, and g is the Euclidean metric, so that gij = gij = 1

if i = j and gij = gij = 0 if i ≠ j.
The Laplace-Beltrami operator ∆ℳ is hence defined as

∆ℳf(x)= ∇ℳ · ∇ℳf(x) =
1√

det(G)(θ)

2∑
i,j=1

∂

∂θj
gij

√
det(G)(θ) ∂f̃

∂θj
(θ).

The Laplace-Beltrami operator ∆ℳ is a measure of the local curvature of the function.
Ifℳ is a planar domain, thanks to the simplifications highlighted above, this operator
coincides with the standard Laplacian ∆, defined on ℝd as

∑d
i=1

∂2

∂2θi
.

Finally, we define the integral overℳ. Let f̃ : U → ℝ be an integrable function
overU . Then f = f̃ ◦ϕ−1 is an integrable function onℳ and the integral is defined as∫

ℳ
f =

∫
U
f̃
√
g.
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2.2. Model description
Let x1, . . . , xn be independent observations drawn from a distribution with density

f on a two-dimensional Riemannian manifoldℳ. The problem that we consider is to
estimate f by a nonparametric model. The idea would be to maximize the likelihood
function L(f|x1, . . . , xn) =

∏n
i=1 f(xi) in a proper functional space. However, without

further assumptions, themaximum likelihood estimator for f is notwell defined. In fact,
the likelihood L(f|x1, . . . , xn) is unbounded from above: its maximization over a rich
enough functional spacewould thus return the trivial solution of sumof delta functions
centered at the observations. We hence consider a regularization of the estimation
problem, in order to restrict the class of possible solutions and avoid degenerated
solutions. In particular, we propose to estimate f byminimizing the penalized negative
log likelihood

− 1
n

n∑
i=1

log f(xi) + λ
∫
ℳ
(∆ℳ log f)2, (1)

subject to:

1. f ≥ 0 inℳ,

2.
∫
ℳ f = 1.

As explained in the previous section, the Laplace-Beltrami operator ∆ℳ measures the
local curvature of a function; therefore, the regularization in (1) controls the roughness
of the estimate. The smoothing parameter λ > 0 balances the adherence to the data
and the smoothness of the estimated density.

Following the approach in Silverman [38], Ferraccioli et al. [11], we consider the
logarithm transformation u = log f and, instead of performing the constrained mini-
mization problem above, we carry out the unconstrained minimization of

L(u) = − 1
n

n∑
i=1
u(xi) +

∫
ℳ
eu + λ

∫
ℳ
(∆ℳu)2. (2)

The first and the last term in (2) come directly from (1), while the second term in (2)
ensures that f integrates to one. Theproof of the equivalence between theunconstrained
problem (2) and the constrained problem (1) is reported inAppendixA. Ifℳ is a planar
domain, the Laplace-Beltrami reduces to the standard Laplacian, and the estimation
problem (2) coincides with the one considered in Ferraccioli et al. [11].

Let L2(ℳ) denote the space of square integrable functions overℳ equipped with
the norm ‖u‖2

L2(ℳ) =
∫
ℳ u

2, and let Hk(ℳ) denote the Sobolev space

Hk(ℳ) :=
{
u ∈ L2(ℳ) s.t. Dαu ∈ L2(ℳ) ∀|α| ≤ k

}
,

equipped with the norm ‖u‖2
Hk(ℳ) :=

∑
|α| ‖Dαu‖2L2(ℳ) where the symbol Dαu denote

the weak derivative of order α [see, e.g., 5, 10, for the general theory of Sobolev spaces
and Sobolev spaces on manifolds]. In this work we consider both bounded manifolds
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and closed manifolds (i.e., manifolds that do not posses a boundary, as for instance
spheres). We define the space V as the space of functions inH2(ℳ)with homogeneous
Neumann conditions at the boundary of the domain, that is

V = {u ∈ H2(ℳ) : ∂u
∂ν

= 0 on ∂ℳ},

where ∂ℳ denotes the boundary of the manifold, ν denotes the normal unitary vector
to the boundary, and ∂u

∂ν is the derivative of u in the normal direction. Whenℳ is a
closed manifold, V = H2(ℳ).
Theorem 1. The penalized negative log likelihood L(u) defined in equation (2) has a unique
minimizer û in V .
Proof. The proof is deferred to Appendix B. �

3. Asymptotic properties

We now study the asymptotic properties of the estimator when the number of
observations goes to infinity. Let u0 be the true log density function.

Assumption 1. The log densityu0 is bounded above and below, and is such that
∫
ℳ(∆ℳu0)

2 <
∞.

Assumption 1 guarantees that the weighted L2(ℳ) norm with the density function
exp (u0) is equivalent to the standard L2(ℳ) norm.

Denote with DsKL(u1,u2) the symmetrized Kullback–Leibler distance between u1
and u2, that is µu1(u1 − u2) + µu2(u2 − u1), where µu(h) is the mean of h(X) when X
has log density u. Denote with Varu(h) the variance of h(X)when X has log density u.
Following the same approach as in Silverman [38], Gu and Qiu [19], Ferraccioli et al.
[11], we introduce u∗, an approximation of û, which is the minimizer of

L∗(u) = −
1
n

n∑
i=1
u(xi) + 1 + µu0(u) +

1
2Varu0(u − u0) + λ

∫
ℳ

(
∆ℳu

)2 .
L∗(u) is the quadratic form which has second order contact with the functional L at u0.
We make the following assumption on u∗.
Assumption 2. For u in a convex set B0 around u0 containing û and u∗, there exists a positive
constant c such that cVaru0 ≤ Varu uniformly with respect to u.

Assumption 2 is satisfied whenever the members of B0 are bounded from above
and below. The assumption requires that the functions near u0 (û and u∗, in particular)
satisfy the property in Assumption 1.

We are now able to state the consistency of the proposed density estimator.
Theorem 2. Letℳ be a two-dimensional compact Riemannian manifold. Under Assumptions
1 and 2, as λ→ 0 and nλ1/2→∞, the estimator û that minimizes (2) is consistent and

DsKL(û,u0) = O(n−1λ−1/2 + λ). (3)

Proof. The proof is deferred to Appendix C. �
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4. Computation of the estimator

The infinite dimensional problem of minimizing functional (2) in the space V does
not have an analytical solution. Therefore, it is necessary to compute an approximated
solution. Following the standard approach in functional data analysis, we introduce a
finite dimensional space VT , we hence approximate the functional (2) in this space, and
finally we solve the resulting minimization problem. The rest of the section describes
these steps in details.

4.1. Surface finite elements
We start the discretization procedure by approximating the original manifold ℳ

withℳT , that is a discretized version of the domain, composed by triangles. Wedenote
with T the set of all the triangles τ composingℳT .

Meshes composed by quadrilateral or general polygonal elements can also be em-
ployed, but are not considered in this work. We approximate the infinite dimensional
functional space V with the space:

VT = {uT ∈ C(ℳT ) s.t. uT |τ is linear ∀τ ∈ T } .

VT is the space of linear finite element functions. Polynomial of higher order can also
be considered [see 10, for more information on surface finite elements]. In particular,
linear and quadratic finite elements are implemented in the fdaPDE package.

We now introduce the finite element basis functions {ψi}i=1,··· ,K for VT . Denote ξk
the nodes of the mesh. In the case of linear finite elements, the nodes coincide with
the vertices of the triangles. The linear finite elements basis functions {ψi}i=1,··· ,K are
defined as piecewise linear functions overℳT , such that ψi(ξj) = δij for i, j = 1 . . . K,
where δij is the Kronecker delta δij = 1 if i = j, δij = 0 otherwise. Each finite element
basis function ψi has a small support, since it is zero over all the triangles that do not
have ξi as a vertex.

Within this setting, any function u which belongs to the infinite dimensional space
V can be approximated by a function uT ∈ VT , and it can be written as a linear
combination of the basis functions:

uT (x) =
K∑
k=1

ukψk(x),

where the coefficients of the linear combination uk are the values of the function
u evaluated on the mesh nodes, that is uk = u(ξk) ∀k = 1, . . . ,K. Therefore, any
function uT ∈ VT is completely defined by specifying the values of the function at
the K mesh nodes. In a more compact way, calling ψ := (ψ1, . . . ,ψK)> and uT :=
(u(ξ1), . . . ,u(ξK))>, the function uT (x) is

uT (x) = u>Tψ(x) (4)

and the problem of finding the function u becomes a problem of finding the coefficients
uT .
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Figure 2 is a schematic drawing of this procedure. The top left panel shows a
manifoldℳ, the top right panel shows a triangular mesh ofℳ, while the bottom panel
displays a function uT in VT .

We point out that the number of basis functions (i.e., the number of mesh nodes)
influences both the accuracy of the estimate and the accuracy of the approximation
of the manifold itself. Therefore, if not provided with the data, the mesh should be
chosen rich enough to ensure an adequate approximation of the domain geometry and
to accurately capture the features of the signal over the domain.

4.2. Discretization and minimization of the functional
We now want to compute the functional L(u) defined in equation (2) for functions

in VT . More precisely, we compute an approximated version of the functional L(u) that
we denote by LT (uT ).

Approximation of − 1
n

∑n
i=1 u(xi). We introduce the n × K matrix Ψ which contains the

values of the K basis functions {ψi}i=1,··· ,K evaluated at the n data,

Ψ =


ψ1(x1) . . . ψK(x1)

... ... ...
ψ1(xn) . . . ψK(xn)

 .
This is a sparse matrix thanks to the properties of the finite element bases. With
this notation and using (4), the first term of the functional (2) can be expressed in a
discretized way as

− 1
n

n∑
i=1
u(xi) ≈ −

1
n

1>ΨuT ,

where 1 denotes the n-vector with all entries equal to 1.

Approximation of
∫
ℳ expu(x)dx. For the second term of the functional L(u), we use (4)

to obtain the discretized expression:∫
ℳ

expu(x)dx ≈
∫
ℳT

exp (ψ(x)>uT )dx =
∑
τ∈T

∫
τ

exp (ψ(x)>uT )dx.

The integrals over the triangles are approximated using a quadrature formula and
have the expression

cτw> exp (ΨτuT ),
where w ∈ ℝq in the vector of quadrature weights, Ψτ ∈ ℝq×K is the matrix having as
entries the evaluations of the basis functions at the q quadrature nodes in the triangle τ,
and cτ is the determinant of the transformation matrix that maps the reference triangle
{(0, 0), (0, 1), (1, 0)} on the triangle τ.
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Approximation of λ
∫
ℳ(∆ℳu)

2. Let

R0 :=
∫
ℳT
(ψψ>) and R1 :=

∫
ℳT
(∇ℳTψ)(∇ℳTψ)>.

R0 is called mass matrix and R1 is called stiffness matrix. Relying on these matrices, it
is possible to introduce a discretization of the regularization term in (2) that does not
not involve second order derivatives, and is given by

λu>
T
R1R

−1
0 R1uT .

See Lila et al. [26] for details on the derivation of this discretization for an analogous
estimation problem.

Summarizing, the discrete penalized negative log likelihood is

LT (uT ) = −
1
n

1>ΨuT +
∑
T∈T

cTw> exp (ΨTuT ) + λu>T R1R
−1
0 R1uT , (5)

and the estimation problem becomes: find uT ∈ ℝK such that it minimizes LT (uT ).
Thanks to Lemma 2 in Appendix B, we know that the functional LT (uT ) is convex

and therefore its minimization can be performed with standard optimization algo-
rithms, such as gradient descent or quasi Newton methods. In particular, in the sim-
ulation studies and in the application we used a quasi Newton with BFGS direction.
Since the functional is convex, the minimization converges regardless of the initializa-
tion, therefore a constant initialization (that corresponds to a uniform distribution) can
be used. When the observed point pattern suggests a true density far from the uniform
distribution, a data-driven initialization can significantly reduce the computational
cost. In particular, an initialization such as the one detailed in Section 4.3 of Ferraccioli
et al. [11], that relies on a heat-diffusion density estimation computed on the Voronoi
tessellation associated with the triangulation, can save up to 40% of computational
time, for highly non-uniform densities.

4.2.1. Selection of the smoothing parameter
The choice of the smoothing parameter λ is crucial for an accurate estimation. For

this purpose, a k-fold cross-validation procedure is considered to select the optimal λ
among a set of possible values.

We consider the squared L2-norm of the difference between the true density f(x)
and the estimated one f̂λ(x):

l(λ) =
∫
ℳ
(f̂λ(x) − f(x))2dx =

=

∫
ℳ
f̂2λ(x)dx − 2

∫
ℳ
f̂λ(x)f(x)dx +

∫
ℳ
f2(x)dx.

The first term is easily computed thanks to the finite element formulation and the
quadrature rules; the second term is approximated evaluating the estimated density
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on the validation data; the third term can instead be omitted since it does not depend
on λ. Therefore, the cross-validation error is defined as

R̂(λ) =
∫
ℳT

(
f̂
−[k]
λ
(x)

)2
dx − 2

m

∑
i∈[k]

f̂
−[k]
λ
(xi),

where [k] is the set of indices of data in the k-th fold,m is its cardinality, and f̂−[k]
λ
(x) is

the density estimated without the data in the k-th fold.

5. Simulation studies

In this section we illustrate the good performances of the proposed nonparametric
Density Estimator with Partial Differential Equation regularization (DE-PDE).

In Sections 5.1 and 5.2 we compare DE-PDE to Kernel Density Estimation (KDE).
To enable the comparison with KDE, we take as domain the unitary sphere S2 in ℝ3.
We consider two different test functions. In Simulation 1 (Section 5.1) we consider a
mixture of fiveKent distributions, shown in the first column of Figure 4. In Simulation 2
(Section 5.2) we consider a highly localized and skewed density with elongated ridges,
shown in the first column of Figure 5; this test function is used to mimic earthquakes
data.

In Simulation 3 (Section 5.3) we instead consider a density on themanifold in Figure
2, to show the performances of the proposed DE-PDE on a general two-dimensional
curved domain. In this context KDE cannot be applied.

The meshes that approximate the manifold domains are created using Gmsh [16].
The number of nodes is chosen according to the complexity of the manifold and of
the point pattern, in order to obtain a good approximation of the domain as well as
to capture the features of the signals highlighted by the point pattern. The proposed
DE-PDE method is implemented using the function DE.FEM of the R package fdaPDE;
the smoothing parameter is chosen by cross validation. KDE is implemented using the
function kde.fhat.cart of the R package retistruct [40]. This function implements
the method described in [20]; it considers a Fisherian density and automatically selects
the concentration parameter with the function kde.compute.concentration. Each
simulation is repeated 30 times. Estimation accuracy of the two methods is measured
in terms of the Mean Integrated Squared Error with respect to true density function f0,
namely: MISE(f̂) = �

∫
ℳ(f̂ − f0)

2. The MISE is evaluated over 30 simulation repetitions
and computed numerically on a fine grid over the manifold.

5.1. Simulation 1: mixture of five Kent distributions
We sample 800 data from the mixture of five Kent distributions displayed in the

first column of Figure 4. The components of this mixture present anisotropies along
different directions. The detailed definition of the density is reported in Appendix D.

DE-PDE estimates use a mesh with 606 nodes. Figure 4 shows the mean estimates
obtained by DE-PDE and by KDE over 30 simulation repetitions and the boxplot of
the MISE over the 30 repetitions. Both the mean estimates and the boxplots of the
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Figure 4: Simulation 1. On the left: two views of the true density (first column), of DE-PDE mean
estimate over 30 repetitions (second column), and of KDE mean estimate over 30 repetitions (third
column). On the right: boxplots of the MISE of DE-PDE estimates and KDE estimates over the 30
simulation repetitions.

MISE highlight the advantage of DE-PDE estimates over KDE estimates. In particular,
DE-PDE appears to better capture skewed modes.

Analogous conclusions are obtained when considering different sample sizes. As
expected, theMISE decreases as more data are sampled, both for DE-PDE and for KDE.
The ordering of the methods remains the same, and the difference in performances
increases as the sample size increases. In particular, with a sample size of n = 200
we get a median MISE of 0.0301 (with an IQR of 0.0098) for DE-PDE, and a median
MISE of 0.0324 (with an IQR of 0.0107) for KDE; while, with a sample size of n = 7500
(approximately as in the application considered in Section 6) we get a median MISE of
0.0033 (with an IQR of 0.0011) for DE-PDE and a median MISE of 0.0046 (with an IQR
of 0.0009) for KDE.

5.2. Simulation 2: highly localized and skewed density
The goal of this simulation study is to mimic the earthquake data. Earthquakes

occur mainly on faults. Therefore our aim is to sample data that lies on elongated
narrow regions over the sphere. To do this, data are generated from a mixture of 25
highly anisotropic Kent distributions, with means that lie along lines on the sphere, as
detailed in Pigolotti [34]. The true density is displayed in the first column of Figure 5.

We generate 30 samples of 1000 data each from the true density, and compare
DE-PDE to KDE. DE-PDE is implemented using a regular mesh with 3097 nodes.
The results are shown Figure 5. The first column shows different views of the true
density. The second and third column show, respectively, the mean estimates over 30
repetitions obtained by DE-PDE and KDE. In this setting the DE-PDEmethod is clearly
better then KDE in representing the true density, as pointed out also by the boxplots of
the MISE on the right panel of the same figure. The KDE method seems to flatten the
density too much and it turns out to be worse than DE-PDE in assigning high density
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Figure 5: Simulation 2: results obtained with samples of 1000 data. On the left: first column: true
density; middle column: DE-PDEmean estimate; third column: KDEmean estimate. The different rows
show different components of the mixture. The results are averaged over 30 repetitions. On the right:
boxplots of theMISE, over the 30 simulation repetitions, of the estimates provided by the two estimators.

along lines. The proposed DE-PDE method is instead particularly suited to work with
data characterized by highly localized structures and skewed signals, thanks to the
localized support of finite element basis and the associated unstructured meshes. We
repeated the simulation with samples of 7500 data. Also in this case DE-PDE attains
a significantly lower MISE and the difference in the performances of the two methods
increases: we obtain a median MISE of 0.0742 (with an IQR of 0.0075) for DE-PDE, and
a median MISE of 0.1587 (with an IQR of 0.0043) for KDE.

The tendency of kernels to over-smooth may result from the fact that the function
kde.fhat.cartof theRpackageretistruct, that implements kernel density estimation
on the sphere, is based on the von-Mises Fisher distribution and has only a scalar
concentration parameter. This certainly implies a reducedflexibility in capturing highly
localized features such as the one presented in this simulation and in the application to
earthquake data. Moreover, the problem of optimal parameter selection has not been
adequately addressed in the case of manifold domains. In contrast, for kernel density
estimation over planar domains, it is possible to consider a full bandwidth matrix, thus
allowing an accurate estimation of a richer class of signals [see, e.g., 32] and the problem
of optimal parameter selection has been thoroughly studied [see, e.g., 6]. Nevertheless,
the tendency of kernel estimates to over-smooth highly localized and skewed modes
can be observed also over planar domains, as highlighted by the simulations in [11].

5.3. Simulation 3: manifold with boundary
Wehere consider themanifold in Figure 2. We sample 800 data from the true density

shown in the left panel of Figure 6: the density is multimodal and presents modes far
from the boundary as well as close to the boundary of the domain. The central panel
of the Figure 6 shows a sample of the data.
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True density Sample Data DE-PDE

Figure 6: Simulation 3: results obtainedwith samples of 800 data. Left panel: true density; central panel:
a sample of the data; right panel: DE-PDE mean estimate over 30 repetitions.

We use the mesh shown in Figure 2, that has 964 nodes. The right panel of Figure
6 shows the mean estimate over the 30 repetitions. The proposed DE-PDE is able
to accurately estimate all the modes of the true density, also those falling close the
boundary.

6. Earthquakes in the world

We apply the method to the problem of estimating the earthquakes distribution
over the globe. The data are taken from the earthquake catalog of the USGS website
(https://earthquake.usgs.gov/earthquakes/search/). Earthquakes with a magni-
tude greater than 4.5, occurred in the world in the period from 1st March 2019 to 1st
March 2020, are considered. The dataset contains 7715 observations and locations are
displayed as in Figure 7. The same data are displayed on the sphere in Figure 1.

The particularity of this dataset is that locations lie mainly on elongated narrow
regions, that are the faults. Earthquakes in fact occur on these fractures of the earth’s
crust, where the mechanical stress induced by tectonic movements accumulates. The
proposed DE-PDE method is particularly suitable for working with this kind of data,
as shown by Simulation 2 in Section 5.2.

Figure 8, first row, shows the distribution of earthquakes in theworld estimatedwith
the proposed DE-PDE, on a mesh with 5016 nodes. The estimate is able to capture the
distribution of earthquakes. A particularly high density is visualized in the area of the
Pacific Ocean, between the Eurasian and the Pacific Plates, in northern hemisphere, and
between the Indo-Australian and the Pacific Plates, in southern hemisphere; see the first
panel of Figure 8. In particular the area around Japan is markedwith an high estimated
density; in fact, this is a well known high seismic risk area, along the Itoigawa-Shizuoka
Tectonic Line and the JapanMedianTectonic Line, due to the presence of the boundaries
of some of the major tectonic plates: the North American Plate, the Eurasian Plate and
the Philippine Plate. As shown in second panel of the same figure, also the area nearby
Indonesia is characterized by a significant density, along the Sunda megathrust and
the Great Sumatran fault. These regions are indeed marked in history by important
earthquakes and tsunamis, which caused lots of damages, such as the 2004 Indian
Ocean earthquake and tsunami. The third panel in Figure 8 shows the estimated signal
along the west coast of the American continent. In particular, in the North, the high
density is along the Cascadia Subduction Zone and the Saint Andreas Fault, while in
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Figure 7: Locations of earthquakes with a magnitude greater then 4.5, in the period from 1stMarch 2019
to 1stMarch 2020. The dataset contains 7715 observations. The plot is made with the R package mapview
[1].

the South it is along the Peru-Chile Trench, that separates the Nazca Plate and the
South American Plate. Finally, in the last panel we can see that the estimate is also able
to capture the lower signal along the Mid-Atlantic Ridge, that separates the American
Plates from the Eurasian and African Plates.

The bottom panels of Figure 8 shows the same views of the estimate obtained by
KDE. As already pointed out in Simulation 2, KDE is not able to accurately estimate
highly localized and skewed modes and returns an over-smoothed density.

7. Conclusions and future developments

The proposed DE-PDE method is able to accurately capture highly complicated
multi-modal densities over two-dimensional manifolds. DE-PDE is amenable to vari-
ous extensions. A particularly interesting generalization concerns the development of
a method to estimate time-dependent densities over two-dimensional manifolds. The
modeling of densities over time permits the understanding of the evolution of under-
lying processes generating the data [see, e.g. 14, 42, 15, 9, in the case of densities over
planar domains]. In particular, the proposed DE-PDE method could be generalized to
space-time point data, either by considering two regularizations, one in time and one
in space, or alternatively by using a unique regularization involving a time-dependent
differential operator, in analogy to the spatio-temporal regression methods presented
in Bernardi et al. [3] and Arnone et al. [2]. Another interesting line of research goes
in the direction of intensity estimation in marked point processes. In the application
to earthquake data this would for instance permit to include the magnitude of the
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Figure 8: Distribution of earthquakes in the world. Estimate obtained by DE-PDE (top panels) and by
KDE (bottom panels).

earthquake in the data analysis.

Appendix A The estimate as an unconstrained optimum: proof

We report the proof of the fact that theminimumof the functional (2) corresponds to
the constrainedminimumof the functional (1). The proof follows closely the one for the
one dimensional case in Silverman [38]. Consider the space V0 = {u ∈ V s.t.

∫
eu = 1},

and define the functional L0(u) as

L0(u) = −
1
n

n∑
i=1
u(xi) + λ

∫
Ω

(∆u)2.

Lemma 1. The function û minimizes L0(u) over u ∈ V0 if and only if û minimizes L(u) over
V .

Proof. First of all, observe that if u ∈ V0 we have L(u) = L0(u) + 1, therefore the
minimization of L in V0 is equivalent to the minimization of L0 in V0. Take u ∈ V and
define u∗ = u − log

∫
eu, so that

∫
eu
∗
= 1, i.e., u∗ ∈ V0. Since u and u∗ differ only by a

constant, we have ∆u = ∆u∗, and therefore

L(u∗) = − 1
n

n∑
i=1
u∗(xi) + 1 + λ

∫
Ω

(∆u∗)2

= − 1
n

n∑
i=1
u(xi) + log

∫
eu + 1 + λ

∫
Ω

(∆u)2

= L(u) −
∫
eu + log

∫
eu + 1.
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Since−t+log t+1 ≤ 0 for all t > 0, with equality only if t = 1, we have that L(u∗) ≤ L(u),
with equality only if

∫
eu = 1. This implies that the minimizer of L in V is in V0, and

therefore satisfies the constrain
∫
eu = 1. �

Appendix B Proof of Theorem 1

Let V0 denote the null space of the Laplace-Beltrami operator in V , i.e., V0 = {u ∈ V :
| |∆ℳu| |L2 = 0}. Let V∆ denote the complementary space of V0 in V , i.e., V = V0 ⊕ V∆,
where ⊕ denotes the direct sum. The proof of the Theorem 1 relies on the following
two lemmas.

Lemma 2. The functional J(u) = − 1
n

∑n
i=1 u(xi)+

∫
ℳ e

u(x) is continuous and strictly convex
in V .

Lemma 3. V0 is of finite dimension. Moreover | |∆ℳ · | |L2 is a norm in the space V∆, equivalent
to the H2 norm.

The proof of Lemma 2 can be derived analogously to the one in Ferraccioli et al.
[11], that considers the simpler case of planar domains. Concerning Lemma 3, observe
that the space V0 is the eigenspace of the Laplace-Beltrami operator and thus is of finite
dimension. Moreover, the eigenvalue zero has multiplicity one and the corresponding
eigenfunction is the constant function over the domain. In addition, if ℳ is a two-
dimensional Riemannian manifold, then | |∆ℳ · | |L2 is equivalent to | | · | |H2 [see 7].

Thanks to the two lemmas above, we can leverage on Theorem 4.1 of Gu and Qiu
[19]. This theorem states that the functional L(u) in (2) has a unique minimizer in
V if and only if − 1

n

∑n
i=1 u(xi) +

∫
ℳ e

u(x) has a minimizer in V0. Since V0 is a finite
dimensional space, the latter condition is verified and therefore the functional L(u) in
(2) has a unique minimizer in V .

Appendix C Proof of Theorem 2

The proof of Theorem 2 relies on the following two lemmas.

Lemma 4. Let u0 be the true log likelihood and û the minimizer of (2). Then

DsKL(u0, û) = 2λ
∫
ℳ
û(u0 − û) +

[
1
n

n∑
i=1
(û − u0)(xi) − µu0(û − u0)

]
. (6)

Lemma 5. Under Assumption 1, there exists an infinite set of functions ϕk such that

Cov(ϕk,ϕj) = δk,j and
∫
ℳ
∆ℳϕk∆ℳϕj = η

2
kδk,j

where δk,j is the Kronecker delta and 0 ≤ ηk→∞. In additions, ifℳ is a compact Riemannian
manifold, there exist two positive constants α and β such that, for all k ≥ 0,

ηk = ckk, α ≤ ck ≤ β. (7)
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The proofs of Lemma 4 and 5 and of Theorem 2 can be derived along the lines of
Ferraccioli et al. [11], that considers the case of bounded planar domains. In particular,
the proof of Lemma 4 is derived settingAu,h(t) := − 1

n

∑ (u + th)(Xi) + ∫
exp (u + th) +

λ
∫
∆(u + th)2, differentiating it in t, and evaluating it in t = 0. The proof of Lemma

5 relies on the eigenvalue problem associated with the Laplace-Beltrami operator, and
exploits results of functional analysis on manifolds; in particular, the rate in equation
(7) can be found, e.g., in Chavel [7].

Appendix D Simulation 1: test function

The test function in Simulation 1 in Section 5 is a mixture of five Kent distributions
[24] with the following scale parameters:

k1 = 18, k2 = 15, k3 = 20, k4 = 20, k5 = 20,
β1 = 0, β2 = 7, β3 = 10, β4 = 7, β5 = 4,

and position parameters:

γ1,1 =
©­«
−0.5
−0.5
0.8

ª®¬ , γ1,2 =
©­«
−0.3
−0.3
0.2

ª®¬ , γ1,3 =
©­«
0.5
−0.5
0.8

ª®¬ , γ1,4 =
©­«
0.2
−1
0

ª®¬ , γ1,5 =
©­«
0.6
−0.5
0.3

ª®¬ ,
γ2,1 =

©­«
−0.7789
0.6157
0.1188

ª®¬ , γ2,2 =
©­«
−0.8651
0.3803
−0.3269

ª®¬ , γ2,3 =
©­«
−0.6664
−0.7432
−0.0584

ª®¬ , γ2,4 =
©­«
0.5753
−0.4629
−0.6742

ª®¬ , γ2,5 =
©­«
0.7545
−0.2314
−0.6140

ª®¬ ,
γ3,1 =

©­«
−0.5695
−0.6154
−0.5448

ª®¬ , γ3,2 =
©­«
0.1482
−0.4288
−0.8911

ª®¬ , γ3,3 =
©­«
0.5753
−0.4629
−0.6742

ª®¬ , γ3,4 =
©­«
0.6364
−0.0303
−0.7707

ª®¬ , γ3,5 =
©­«
0.6364
−0.0303
−0.7707

ª®¬ .
Themean directions γ1,1, . . . ,γ1,5 are then normalized to lay on the unitary sphere. The
mixing weights are set as:

π =
( 1
5 ,

1
5 ,

1
5 ,

1
5 ,

1
5
)
.
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Supplementary material for: A roughness penalty approach
to estimate densities over two-dimensional manifolds
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This document describes the contents of the supplementary material. The supple-
mentary material contains the data and the scripts to reproduce the results in Section 5
of the paper.

1. R files

Simulation1.R the main to run the first simulation study (Section 5.1).

Simulation2.R the main to run the second simulation study (Section 5.2).

Simulation3.R the main to run the third simulation study (Section 5.3).

Generate.samples.R the scripts used to generate the samples in the data files. It is not
needed to run the simulations in the paper, but it can be used to generate other
samples from the densities used in the paper.

plot.R a function to plot functions on a manifold with the possibility to specify the
range of the colormap (the default is that the range of the colormap is equal to
the range of the function to be plotted).

sample.functions.R the functions to sample from the density used in the simulations.

2. Data files

simulation1.200data.txt the data for the 30 processes, with 200 observations each,
considered in the Simulation 1, Section 5.1. The first 200 rows correspond to
the first generated point process, the second 200 rows correspond to the second
generated point process, and so on.

simulation1.800data.txt the data for the 30 processes, with 800 observations each,
considered in the Simulation 1, Section 5.1. The first 800 rows correspond to
the first generated point process, the second 800 rows correspond to the second
generated point process, and so on.
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simulation1.7500data.txt the data for the 30 processes, with 7500 observations each,
considered in the Simulation 1, Section 5.1. The first 7500 rows correspond to
the first generated point process, the second 7500 rows correspond to the second
generated point process, and so on.

simulation2.1000data.txt the data for the 30 processes, with 1000 observations each,
considered in the Simulation 2, Section 5.2. The first 1000 rows correspond to
the first generated point process, the second 1000 rows correspond to the second
generated point process, and so on.

simulation2.7500data.txt the data for the 30 processes, with 7500 observations each,
considered in the Simulation 2, Section 5.2. The first 7500 rows correspond to
the first generated point process, the second 7500 rows correspond to the second
generated point process, and so on.

simulation3.800data.txt the data for the 30 processes, with 800 observations each,
considered in the Simulation 3, Section 5.3. The first 800 rows correspond to
the first generated point process, the second 800 rows correspond to the second
generated point process, and so on.

simulation3.fullPoints.proj.RData a set of approximately 105 points, regularly spaced
on the manifold domain of Simulation 3, used for the sampling on the manifold.

3. Mesh files

simulation1.sphere.vertices.txt the coordinates of the 606 vertices of the mesh in Sim-
ulation 1.

simulation1.sphere.triangles.txt the elements of the mesh with 606 nodes in Simula-
tion 1.

simulation1.sphere.vertices.eval.txt the coordinates of the points to evaluate theMISE
in Simulation 1.

simulation1.sphere.triangles.eval.txt the elements of a fine mesh to plot the results of
Simulation 1.

simulation2.sphere.vertices.txt the coordinates of the 3097 vertices of the mesh in
Simulation 2.

simulation2.sphere.triangles.txt the elements of the mesh with 3097 nodes in Simula-
tion 2.

simulation3.surface.vertices.txt the coordinates of the 964 vertices of the mesh in Sim-
ulation 3.

simulation3.surface.triangles.txt the elements of the mesh with 964 nodes in Simula-
tion 3.
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