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Abstract

According to OECD, almost 30 per cent of students leave tertiary education programs without obtain-
ing a degree. This number measures a dead loss of human capital and a waste of public and private
resources. This paper contributes to the existing knowledge about students dropout by combining a
theoretical-based model with a data-driven approach to detect students who are more likely to leave
university in the first year. We propose the use of multilevel statistical models and machine learning
methods, applied to administrative data from a leading Italian university. The findings are encour-
aging, as the methodology is able to predict at-risk students very precisely. We provide evidence of
the essential role of data relative to early performance (i.e. grades obtained in the first semester).
Moreover, the selection of major strongly influences the probability of dropping out.

Keywords: Learning Analytics, Early Warning Systems, Student dropout, Machine Learning,
multilevel models, HE students.
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“Universities should use data regularly and systematically to
identify high-risk students, target them with interventions, and
evaluate those interventions’ effectiveness”

von Hippel and Hofflinger, 2020

1 Introduction
The Italian Higher Education (HE) system is plagued by a high level of dropout, with many students
abandoning their Bachelor courses during the first or second year. According to the Italian National
Agency for the Evaluation of Universities and Research Institutes (ANVUR), the dropout rate for
the cohort of students from whom complete data are available is around 28.2 per cent, with almost
two-thirds of them (20 per cent) dropping out in the first two years (“ANVUR: Rapporto biennale sullo
stato del Sistema Universitario e della ricerca”, 2018). This data is particularly worrying because of
the low proportion of people holding a tertiary education degree in Italy. OECD (2019) indicates that
the percentage of 25-34 years old adults with higher education was 28 per cent, with the same share
being 19 per cent for the adults 25-64 years old (reference year: 2018) - both indicators are well below
the OECD average. Understanding the dropout phenomenon is so important, in Italy, that a number
of academic studies explored it under many different viewpoints. For example, Belloc, Maruotti,
and Petrella (2010) aims at individuating personal features of students who are more likely to dropout
(instead of universities’ institutional factors), administering a questionnaire directly to the students. In
the related study in Belloc, Maruotti, and Petrella (2011), the authors utilise administrative data from
one university for the same purpose, employing novel statistical techniques in the analysis. The authors
in Aina (2013) use (Italian) data from the European Community Household Panel and detects the
strong role of parental background in affecting persistence - with students from disadvantaged families
more likely to dropout, all other factors held constant. Such difference related with socioeconomic
background has been confirmed more recently by Ghignoni (2017) as well as by Contini, Cugnata,
and Scagni (2018). The work in Di Pietro and Cutillo (2008) suggests that degree flexibility can
help reducing likelihood to dropout - and employ data about a national reform undertaken in Italy
2001 for testing this intuition. A high incidence of dropout rates in the functioning of the HE system
generates equity and efficiency issues. On the equity side, various students demonstrate how there is a
correlation between socioeconomic background and dropout, and the academic literature confirms that
disadvantaged students are more at-risk of dropping out. Unfortunately, reforms and interventions for
expanding the access to HE were not successful in reducing the socioeconomic gradient of the dropout
(Bratti, Checchi, & De Blasio, 2008; Brunori, Peragine, & Serlenga, 2012; Oppedisano, 2011). When
considering efficiency, dropout represents a net waste of resources. Indeed, educating students is a
costly activity, which generates returns in the long run due to the credentials acquired and the human
capital accumulated. When students do not conclude their courses with a degree, these benefits are
not realised and only the costs accrue to the educational activities. A recent trend in the interventions
for improving retention and reducing dropout rates is the use of Learning Analytics tools (De Freitas
et al., 2015). Specifically, the use of advanced techniques, rooted in both the statistical and Machine
Learning domains, is applied to predict the students who are more at-risk of dropping out. If algorithms
demonstrate to be effective in predicting students’ performance, the early identification of students at-
risk can be helpful for designing targeted interventions for improving their chances of retention (Burgos
et al., 2018). While a growing number of studies starts considering the specific use of predictions for
remedial education, the debate about the best models to be employed for predictions is far from
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being concluded, and the empirical solutions proposed are not widely accepted. In this paper, we use
administrative data from Politecnico di Milano (PoliMi), Italy, to test some novel models to formulate
predictions of at-risk students. The database gathers various cohorts of first-year Bachelor students (in
Engineering) and covers 9 years (from 2010 to 2019); overall, it includes more than 110,000 students,
with associated 10,000,000 entries, each of which is a specific event related with the student journey
(her initial administrative record, exams, etc.). The research stems from an institutional initiative
launched by PoliMi under the label “Data Analytics for Institutional Support”, which broad aim is
to leverage the available (administrative) datasets of the university to analyze many aspects of the
academic life, and support better decision-making. The priority assigned to the Research Group is to
detect the main causes of students’ dropout, which is substantial in PoliMi (about 30 per cent). At
the same time, the initiative’s objective is to create remedial initiatives, for helping students at-risk to
avoid giving-up. The primary step consisted in the development of an algorithm that should be able to
identify students at-risk early in their academic career, i.e. at the end of the 1st semester of the 1st year.
The Research Group performed various analyses for setting the best performing algorithms as possible,
embarking a profound methodological work along with deep empirical testing. This fundamental step
will pave the way to subsequent interventions for reducing dropout and for testing their effectiveness,
which represents the most recent frontier of the academic literature on this specific use of Learning
Analytics (Larrabee Sønderlund, Hughes, & Smith, 2019). In this work, we report the findings from
the application of newly developed algorithms to the problem of early detecting students who are
potentially at-risk of dropout. We use various cohorts of 1st year Bachelor students as the applicative
case, including Engineering students only (thus, excluding Architecture and Design). This paper
answers three research questions:

a. How important is that the predictive algorithm takes into account the grouped nature of data,
i.e. considering that students are enrolled to different degree programs - so that their probability
of dropping out is conditional to the degree program they chose?

b. Which characteristics are more frequently associated to the risk of dropping out? And specifically,
how important are the different groups of variables that are available in improving prediction?
- please note that we have data about individual demographics, prior achievement and current
academic results.

c. How do alternative algorithms’ types (Machine Learning vs generalised linear models) perform
in predicting actual dropout?

This paper innovates the current state-of-the-art of the field in two main directions. First, we develop
a comprehensive theoretical model for studying dropout in a data analysis perspective, complement-
ing the application of techniques to the existing data with a conceptual approach for exploring the
determinants of dropout. The current approaches based on Learning Analytics are indeed very much
data-driven, while paying less attention to the theoretical foundations of the models developed for
the empirical analyses. We build a bridge between the literature about university dropout/success
(Aljohani, 2016) and the one about the use of Learning Analytics techniques in the field (Daniel, 2015;
Leitner, Khalil, & Ebner, 2017). Second, we compare different algorithms, built following alternative
hypotheses and specifications, to test the validity and robustness of a number of statistical and Machine
Learning methods. Given that the practical use and application of predictive models will produce real
effects on the academic life of students (for example, by activating targeted interventions), assessing
the reliability of the algorithms and their stability across specifications becomes a crucial feature of
any exercise of this kind. The remainder of the paper is organised as follows. In the section 2, we
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develop the theoretical framework for deriving the empirical models in the Learning Analytics perspec-
tive. Section 3 describes the available data, together with a background about the main characteristics
of PoliMi - which are necessary to put the case in perspective and it illustrates the methodologies
employed for the empirical analysis. Section 4 reports the main results, ordered according to the three
research questions. Lastly, Section 5 discusses the main implications and general suggestions towards
implementing future interventions for helping at-risk students.

2 Theoretical framework

2.1 The individual educational timeline - an overview
The investigation of dropout phenomenon within Higher Education Institutions (HEIs) has been a
concern for educators, university managers and policy makers. The academic literature distinguishes
between two approaches investigating the features of this phenomenon: theory-driven and data-driven.
The first stream deepens the reasons and the psychological constructs behind withdrawing decisions,
identifying theoretical fundamentals and drawing a conceptual model to guide the inquiry. Different
authors (Cabrera, Stampen, & Hansen, 1990; John, Paulsen, & Starkey, 1996; Pascarella & Terenzini,
1980; Spady, 1970; Tinto, 1975) propose their models to show the processes of interactions between
students, their characteristics and the institutions that lead to dropout (Tinto, 1975). In particular,
the model considers the interaction between the student and the university environment in which
individual attributes are exposed to influences, expectations, and demands from a variety of sources
(such as courses, faculty members, administrators, and peers). The interaction between these two
aspects allows the student to have success or failure in both the academic and social system (Spady,
1970). Hence, these studies focus on the necessity to contextualise the student’s educational career in
a specific community and situation.

An alternative approach deals with data-driven studies, in which students’ characteristics are anal-
ysed longitudinally to find the best statistical models predicting dropout or graduation (Barbu et al.,
2019; Korhonen & Rautopuro, 2019; Li, Rusk, & Song, 2013; Seidel & Kutieleh, 2017; Sothan, 2019;
Vicario et al., 2018). In this case, researchers are less interested in explaining the phenomenon per se,
while the focus is on finding the most performing model to forecast students who withdraw. In fact,
the prediction of low performers is increasingly getting the attention of academics (Saa, Al-Emran,
& Shaalan, 2019). In addition, data mining approach to education is fastly becoming an important
field of research due to its ability to extract new knowledge about this aspect from a huge amount of
students’ data (Wook, Yusof, & Nazri, 2017).

The efforts behind the present study converge into the development of a clear theoretical framework,
placed in midway between the two approaches, considering the educational process and the need of
predicting students’ outcome as early as possible. On one side, the environmental factors appeared not
as external but as student’s attributes; while, on the other side, the data-driven approach is substituted
with an information-driven modelling. This study wants to go beyond traditional data-driven models;
indeed, they focus attention on the algorithms’ composition to improve prediction’s performance, which
depends on data typology and availability.

With the aim of filling the gaps within the two approaches, the theoretical framework proposed in
this paper poses its basis on students’ educational journey. This concept lays its foundation on Cunha
and Heckman (2007), where the formation of individual skills (both cognitive and non-cognitive) is
the result of a process where investments, environments and genes intervene. These factors interact
and influence each other, to produce behaviours and abilities, overcoming the old “nature vs. nurture”
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distinction. In fact, the individual characteristics are the results of both innate and acquired factors.
The technology that governs this process is formed by sequential periods, which are multistage and
interrelated, so each period is influenced by the previous one and, in turn, influences the next. This
means that inputs and investments in each stage produce outputs, which will be inputs of next stages
themselves. For the purpose of our framework, we consider the Cunha and Heckman (2007) educational
stages as school cycles (see Figure 1): childhood, primary school, middle school and high school (we
use “K12” to refer to all school’s grades until the 12th) and university.

Figure 1: The educational stages according to student’s timeline.

During each stage, it is possible to gather different types of information about students. The col-
lected information deal with educational path, such as grades or school data, or with personal and
demographic information, for instance the citizenship or family’s situation. It is highly relevant the
moment in which information is collected: some demographic characteristics appears in the timeline
at individuals’ birth (for example, gender or date and place of birth), while examinations at middle
schools are stored within the K12’s group. The key feature of this model is that individual experiences
enrich students’ personal timeline.

Starting from the assumption that the process of skills’ formation is multistage and interrelated
(Cunha & Heckman, 2007), the milestone of the proposed framework relies on the possibility to predict
student’s dropout, considering groups of variables related to the educational stages, in different periods
of time. In the perspective described above, educational data scientists may take into consideration
how a single piece of information (e.g. single variable) may add an informative advantage to the
prediction of dropout, in relation to the various educational stages. This approach allows the analysts
to consider students’ performance as the result of a cumulative process over time. Further and most
important, educational data scientists may predict students’ outcome (in this case dropout) standing
on different points along the timeline. In other words, it is possible to predict student’s outcome
considering new variables or variables’ group each time. This conception allows finding the optimal
stage to observe student’s outcome, facing the trade-off between prediction accuracy, which normally
improve when adding more features, and the potential timing to intervene, that needs to be reduced as
much as possible, so with early predictions. The proposed framework aims at addressing the managerial
challenge for education: helping students deemed as at-risk the earliest moment possible.

2.2 The theoretical framework for Higher Education Institutions: practical
application and academic literature

From an operational standpoint, a complete picture about students’ career and personal characteristics
cannot be obtained, so a reduced view of the proposed theoretical framework needs to contextualise
it into real-world practice. Institutions have an incomplete outlook about student’s educational path,
mostly based on two types of variables: dynamic, such as the digital footprints students leave within
their organization (Azcona, Hsiao, & Smeaton, 2019), and static, with demographic information usually
registered at the enrolment moment and data about educational performance over time. Higher Edu-
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cation Institutions (HEIs) observe students’ academic performance and the associated characteristics,
without knowing the broader picture of previous history. Universities can make hypotheses about their
students’ previous career, using available information. The practical action is that institutions and
educational data scientists need to position themselves along the student’s timeline and look at their
present, past and available characteristics, to predict future outcome (for example, graduation versus
dropout). Intuitively, the more information is available, the more accurate is the prediction. However,
this is an optimization problem: from a managerial perspective, the timing of the prediction is equally
important to its accuracy, e.g. an early prediction with 85 per cent of dropout prediction accuracy is
preferable to a late one with 95 per cent of accuracy. The complete timeline from HEIs’ perspective
comprises students’ information, grouped according to educational path stages, as illustrated in the
previous paragraph: (i) demographic characteristics, (ii) previous studies information (K12 informa-
tion) and (iii) academic performance. To confirm the choice of these groups of variables, Saa et al.
(2019) develops an interesting meta-analysis taking into consideration 36 studies about dropout predic-
tion at universities: it emerges that the determinants mostly related to dropout are previous grades and
class performance, demographics, social information, instructor attributes, course attributes, course
evaluations, environment, eLearning activity. From these results emerges that the selection of the three
groups of features, as proposed in the current paper, is acceptable and generalisable.
From the university’s standpoint, it is worth considering the academic performance group as the
central one in the analysis. It can be divided into sub-groups, seeing academic career as a timeline
too, composed by within-year periods (e.g. Winter and Spring terms). The various stages influence
each other to contribute to the final outcome.

The reference theories concerning dropout started in 1970 when Spady (1970) associates the
Durkheim theory of suicide (Friedman, 1952) with withdrawing. Breaking the ties with society, or
university environment, means a lack of integration. The social interactions are the basis to be inte-
grated into a community. Starting from Spady’s work, many researchers retake this concept trying to
figure out forces and features mostly explaining social integration (Cabrera & La Nasa, 2000; Cabr-
era et al., 1990; John et al., 1996; Pascarella & Terenzini, 1980; Tinto, 1975). These authors invest
efforts in mapping and identifying the forces which are conducive to students’ dropout. To confirm
the choice of variables to be considered, most of these theories utilises demographic and academic in-
formation (i.e. family conditions, previous studies, experiences and academic performance) as inputs.
Authors also map non-measurable factors to explain dropout, such as motivation, social integration
and other non-cognitive features. The psychological aspects related to dropout decisions opens the
discussion about the features which are too complicated and difficult to be integrated into a Machine
Learning algorithm. Anyway, this interesting part requires separate discussions, combining different
methodologies for its study.

When focusing only on the data-driven studies, the framework proposed is based on the academic
articles, selected according to three conditions: (a) published after 2009, (b) apply Machine Learning
techniques to predict dropout and (c) published on highly-ranked academic journal. The analysis of
these academic papers focuses on highlighting the most powerful predictors of student’s dropout. In
particular, each study adopting Machine Learning algorithms, aside from showing algorithms’ perfor-
mance in terms of accuracy of predictions, displays individual determinants most correlated to dropout
decision than institutional features. Based on this information, we aim at categorizing such determi-
nants according to the variables’ groups already defined in the theoretical framework. In particular,
demographic information (it collects data about the individual, such as place and year of birth, gender,
parents’ info, etc.), previous studies (it collects information about previous schools, such as grades or
school’s information) and academic performance (it collects academic performance measurements, such
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as exams, credits, course, etc.). For this reason, as shown in the Table 1, the cited studies are useful
in justifying the adoption of the three variables’ groups: both academic literature’s streams, in fact,
take into consideration, for the explanation of dropout phenomenon, a series of social and educational
factors, which can be categorised into one (or more) of the three groups’ variables. In this sense, Table
1 resumes the studies supporting each group in their prediction analysis. The proposed theoretical
framework is useful for identifying factors associated with the risk of dropout, and as a consequence can
represent a valuable help for decision-makers in setting remediation interventions to increase retention
(something which is beyond the scope of the current paper, though). The present research helps to
underline how the variables’ groups may add a comprehensive advantage to this kind of modelling. In
fact, this allows to take into consideration the educational history of the student, when predicting her
future outcome.

Table 1: Variables’ groups: their definitions and the supporting literature of data-driven studies.

Demographic information Previous studies Academic performance

Definition Personal characteristics Information about
previous schooling

Academic key
performance indicator

Data-driven
studies

(Belloc et al., 2010)
(Seidel & Kutieleh, 2017)
(Korhonen & Rautopuro, 2019)
(Kotsiantis, Pierrakeas, & Pintelas, 2003)
(Sothan, 2019)
(Stratton, O’Toole, & Wetzel, 2008)
(Arulampalam, Naylor, & Smith, 2004)
(Caison, 2005)
(Perez, Castellanos, & Correal, 2018)
(Raju & Schumacker, 2015)

(Belloc et al., 2010)
(Sothan, 2019)
(Stratton et al., 2008)
(Arulampalam et al., 2004)
(Raju & Schumacker, 2015)
(Seidel & Kutieleh, 2017)
(Korhonen & Rautopuro, 2019)
(Kotsiantis et al., 2003)

(Aulck, Velagapudi, Blumenstock, & West, 2016)
(Stratton et al., 2008)
(Caison, 2005)
(Li et al., 2013)
(Perez et al., 2018)
(Khan, Al Sadiri, Ahmad, & Jabeur, 2019)
(Raju & Schumacker, 2015)

Notes: the choice of each variables’ group is supported by the listed literature. Data-driven studies, selected according
to the date of publishing, the modelling’s choice and the journal, are classified according to the predictors mostly
related to dropout prediction which belong to one or more groups.

3 Materials and Methods

3.1 The context of Politecnico di Milano and technical details about its
data

Politecnico di Milano (PoliMi) trains students in Engineering, Architecture and Design majors. It is
now worldwide recognised as the most prestigious public university, positioning at the 1st place accord-
ing to QS ranking 2020. Worldwide, it is considered reference point for its research activity, appearing
among the first 50 universities for Science, Technology, Engineering and Mathematics (STEM) disci-
plines. PoliMi counts 46, 324 enrolled students in Academic Year 2019/2020 in Bachelor and Master
programs, among which 7, 260 are future architects, 4, 305 designers and 34, 759 engineers. On the
teaching side, the university relies on 1, 430 professors, divided into the three disciplines - Engineer-
ing, Architecture and Design. In 2019, the Rector of the university creates a central team of Data
Analytics for Institutional Support to improve decision-making process with an evidence-based ap-
proach. Extracting valuable information from students’ learning behavior is one of team’s main task,
in the perspective of improving student life at PoliMi, defining new support activities for students and
decreasing the number of students who dropout.
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This study investigates the dimensions and characteristics of student dropout at PoliMi, making
a further distinction between early and late dropout. In particular, early dropout occurs when the
student drops within the 3rd semester after enrolment, while late dropout when the student drops later
on. For instance, let us suppose the student enrolled in September of the Academic Year 2009/2010,
if she dropped before February 2011, it will be labelled as “early dropout”, while if she dropped later
as “late dropout” (see Figure 2).

Figure 2: Student’s timeline to distinguish between early and late dropout.

From a methodological viewpoint, in an early warning system perspective, the group of variables
about academic performance includes those until the end of first semester of the first year. Appendix
A reports the list of variables used in the analysis with their explanation and descriptive statistics.

3.2 Methodology
The data we analyse cover students enrolled in different engineering programs at Politecnico di Milano.
Students are nested within different degree programs, this induces a natural source of dependence
among students enrolled in the same degree program. Therefore, the dependence structure among
students is not homogeneous across the sample (i.e. it can be different across programs), but it has
a latent structure, that is relevant and deserves to be taken into account. Classical regression models
assume independence among observations and, therefore, they do not take into account this latent
structure. On the other hand, multilevel regression models (Agresti, 2018; Goldstein, 2011; Pinheiro &
Bates, 2006) are able to handle the hierarchical structure within the data and to model the structural
dependence among them. These models disentangle the variability explained by each level of grouping
of data and, therefore, help us in understanding the contribution given to each different aspect to the
phenomenon of student dropout.

A second methodological aspect concerns the informative groups of variables as introduced in the
theoretical framework. The academic literature indicates that the most powerful predictors for student
dropout are categorised within three groups, that are (i) demographic information, (ii) previous studies
and (iii) academic performance. These three areas of information are somehow sequential, in the sense
that each group adds information, later in time, to the previous ones. Table 6 reports the list of variables
we consider for each group. We are interested in measuring the importance of each group and, in the
perspective of predicting student dropout as soon as possible, in identifying the minimum set - early
in time - of information that allows us to have good predictions for student dropout. To this end, we
start running our model considering only the first group and then adding the others sequentially, with
the aim to see how the predictive power increases by adding each group of information and which is
minimum amount of information we need to have an “accurate prediction”. We start with the “poorest”
model that considers only demographic information and we conclude with the most complete one, that
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contains all the information (including early academic performance). In this way, we investigate both
how much the predictive power increases by adding each group and which group registers the highest
informative gain.

Lastly, generalised linear models are the most frequently used techniques in the literature to predict
student dropout. Nonetheless, they impose a parametric functional dependence between the covariates
and the response that sometimes may be too restrictive or unrealistic for data that describe complex
contests (as the one we are exploring now). For this reason, we compare the results of generalised
linear models with the ones obtained applying Machine Learning techniques, such as classification
trees and Random Forest (Breiman, 2001; Hastie, Tibshirani, & Friedman, 2009). These are flexible
methods able to investigate non linear associations among the covariates and the response and to model
interactions among the covariates. Moreover, recent developments in this context allow classification
trees to handle hierarchical data: in Fontana, Masci, Ieva, and Paganoni (2018) the authors propose a
method to fit generalised mixed-effects regression trees (GMERT), while in Pellagatti, Masci, Ieva, and
Paganoni (2020) the authors extend GMERT developing a new method to fit generalised mixed-effects
random forest (GMERF). These methods have the strength and the flexibility of Machine Learning
techniques and they still consider the nested structure of data.

In the light of this discussion, we run 18 different models, that are listed in Table 2.

Table 2: The different models for analysing early and late dropout prediction.

Set of covariates included in the model
demographic info demographic info + demographic info +

previous studies previous studies +
academic performance

generalised linear model not nested nested not nested nested not nested nested
classification tree not nested nested not nested nested not nested nested
random forest not nested nested not nested nested not nested nested

Our aim in specifying the different models is twofold: (i) the former is to find out which kind of models
is able to well predict student dropout; (ii) the latter is, applying different models, to investigate how
this predictive accuracy does change across models, how and when it increases and which kind of
information we can derive from different model assumptions.

We recall now the basics of multilevel models, specifying their modelling both for the generalised
linear models and for the tree-based methods. Let Yij be the binary variable that is equal to 1 if the
j−th student within the i−th degree program, for j = 1, . . . , ni and i = 1, . . . , N , dropped his/her
studies and equal to 0 otherwise. ni is the total number of students who concluded their career
(either dropped or graduated) enrolled in the i−th degree program and N = 20 is the total number of
degree programs. Being Yij a Bernoulli variable where Yij = 1 with probability pij and Yij = 0 with
probability (1− pij), the classical logistic regression model (Agresti, 2018) takes the form:

µij = E[Yij ] j = 1, . . . , ni, i = 1, . . . , N

g(µij) = ηij

ηij =

P+1∑
p=1

βpxijp (1)
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where µij = pij . pij is the probability that student j within degree program i drops, g(µij) is the logit
link function, i.e. g(µij) = logit(µij) = logit(pij) = log

(
pij

1−pij

)
, P is the total number of predictors,

β is the (P + 1)−dimensional vector of coefficients and xij is the (P + 1)−dimensional vector of the
covariates (including 1 for the intercept) relative to the (ij)-th observation. This modelling assumes
that all the observations Yij (i.e. single students) are independent, that is to say, the production
process of the outcome (dropout or not) is not affected by common factors across students.

If we now take into account the nested structure of data (i.e. students being enrolled into degree
programs), the multilevel logistic regression model (Agresti, 2018), considering two levels, takes the
following form:

µij = E[Yij |bi] j = 1, . . . , ni, i = 1, . . . , N

g(µij) = ηij

ηij =

P+1∑
p=1

βpxijp +

Q+1∑
q=1

biqzijq

bi ∼ N (0,Ψ). (2)

Conditionally on the random effects coefficients denoted by bi, the multilevel logistic regression model
assumes that the elements ofYi are independent. zij is the (Q+1)−dimensional vector of predictors for
the random effects, bi is the (Q+1)−dimensional vector of their coefficients and Ψ is the (Q+1)×(Q+1)
within-group covariance matrix of the random effects. In multilevel models, fixed effects are identified
by parameters associated to the entire population, while random ones are identified by group-specific
parameters. In our case study, bi are the coefficients relative to the i−th degree program.

Moving now to a Machine Learning (ML) approach, multilevel classification trees (Fontana et al.,
2018) basically substitute the linear fixed-effects part in Eq. (2) with a classification tree structure:

µij = E[Yij |bi] j = 1, . . . , ni, i = 1, . . . , N

g(µij) = ηij

ηij = f(xij) +

Q+1∑
q=1

biqzijq

bi ∼ N (0,Ψ) (3)

where f(xij) is not a linear combination of the coefficients β but it is a partition of the covariates
space into boxes (or rectangles) and the prediction within each box is the mode of all the observations
that belong to that box. The absence of a specific functional form makes this method very flexible and
able to better model interactions among the covariates. Similarly, multilevel random forest (Pellagatti
et al., 2020) takes the form in Eq. (3), where f(xij), instead of being a standard classification tree, is a
random forest, that is an ensemble of classification trees. Random forest basically works taking many
training sets from the entire population, building a separate prediction model using each training set,
and averaging the resulting predictions. Moreover, during this process, it considers different subsets
of covariates for each training set, in order to give all variables the possibility to be taken into account
in the tree splits - avoiding the risk that some variables cover the effect of other less significant ones
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(Hastie et al., 2009). Therefore, the advantage of random forest is twofold: it reduces the model
variance and it handles the presence of highly correlated covariates, disentangling their associations
with the response variable. Random forest gives as output the importance ranking of the covariates
in predicting the response, measured as the mean decrease in Gini index - i.e. we can add up the total
amount that the Gini index is decreased by splits over a given predictor, averaged over all trees of the
ensemble (Raileanu & Stoffel, 2004).

4 Results
The sample of students with ended career that we consider is composed by three categories of students:
(i) graduated students, (ii) students who early dropped out (within the first three semesters after the
enrolment), (iii) students who late dropped out (after the first three semesters after the enrolment).
Since our aim is to investigate the determinants of both the two types of dropout, we run the models
in Table 2 twice: one considering graduated students versus early dropout students, and the other
considering graduated students versus late dropout students.
We train our models on a training set, that is composed by students with ended career enrolled between
a.y. 2010/2011 and a.y. 2014/2015 and we test it on a test set composed by students with ended careers
enrolled in a.y. 2015/2016.

In particular, in our models, Yij = 1 when student j within degree program i dropped, early or
late depending on the model setting, and Yij = 0 when he or she graduated; X is the matrix of
the fixed-effects covariates that contain all student-level characteristics shown in Table 6 (sequentially
included in the models, according to the different groups) and, lastly, when running multilevel models,
i.e. when we take into account the hierarchical structure of students nested within degree programs,
we include in the random effects part only a random intercept, i.e.

µij = E[Yij |bi] j = 1, . . . , ni, i = 1, . . . , N

g(µij) = ηij

ηij = f(xij) + bi

bi ∼ N (0, σ2
ψ) (4)

where bi is the value-added given by the i−th degree program to the dropout probability: if bi is
negative, students within the i−th degree program are on average less likely to drop with respect to
the others; while, if bi is positive, students within the i−th degree program are on average more likely
to drop with respect to the others.

Given Eq. (4), f(xij) is equal to a linear combination of the fixed-effects covariates in the case of
a multilevel linear model, to a classification tree in the case of a multilevel classification tree and to a
random forest in the case of a multilevel random forest.

In order to compare the performance of the fitted models, we compute two indexes: (i) the Area
Under the ROC Curve (AUC), that provides an aggregate measure of performance across all possible
classification thresholds; (ii) the sensitivity index. We choose to measure the sensitivity index among
the set of possible performance indexes because we are interested in finding the model that better
identifies the students at risk, i.e., the model with highest sensitivity. In Tables 3 and 4, we report
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the results of the fitted models in terms of AUC and sensitivity, for early and late dropout prediction,
respectively.

Table 3: Area Under the Curve (AUC) and sensitivity index (sens) of the 18 models run for early
dropout versus graduated.

Set of covariates included in the model
demographic info demographic info + demographic info +

previous studies previous studies +
academic performance

generalised not nested nested not nested nested not nested nested
linear model AUC: 0.568 AUC: 0.593 AUC: 0.626 AUC: 0.641 AUC: 0.971 AUC: 0.972

sens: 0.099 sens: 0.312 sens: 0.465 sens: 0.506 sens: 0.888 sens: 0.889
not nested nested not nested nested not nested nested

classification tree AUC: 0.532 AUC: 0.581 AUC: 0.533 AUC: 0.621 AUC: 0.887 AUC: 0.946
sens: 0.083 sens: 0.267 sens: 0.075 sens: 0.507 sens: 0.778 sens: 0.888
not nested nested not nested nested not nested nested

random forest AUC: 0.528 AUC: 0.583 AUC: 0.586 AUC: 0.639 AUC: 0.967 AUC: 0.968
sens: 0.006 sens: 0.291 sens: 0.101 sens: 0.415 sens: 0.870 sens: 0.871

Notes: The sensitivity is obtained as sensitivity = # true positive
# true positive+# false negatives , where the true

positives are the students correctly classified as dropout by the model and the false negatives are the
students that are wrongly identified as graduated by the model.

Table 4: Area Under the Curve (AUC) and sensitivity index (sens) of the 18 models run for late
dropout versus graduated.

Set of covariates included in the model
demographic info demographic info + demographic info +

previous studies previous studies +
academic performance

generalised not nested nested not nested nested not nested nested
linear model AUC: 0.689 AUC: 0.719 AUC: 0.768 AUC: 0.783 AUC: 0.956 AUC: 0.957

sens: 0.403 sens: 0.443 sens: 0.566 sens: 0.601 sens: 0.822 sens: 0.824
not nested nested not nested nested not nested nested

classification tree AUC: 0.662 AUC: 0.696 AUC: 0.620 AUC: 0.751 AUC: 0.869 AUC: 0.946
sens: 0.261 sens: 0.379 sens: 0.261 sens: 0.5526 sens: 0.752 sens: 0.831
not nested nested not nested nested not nested nested

random forest AUC: 0.643 AUC: 0.707 AUC: 0.719 AUC: 0.777 AUC: 0.939 AUC: 0.948
sens: 0.263 sens: 0.388 sens: 0.324 sens: 0.548 sens: 0.774 sens: 0.778

Notes: The sensitivity is obtained as sensitivity = # true positive
# true positive+# false negatives , where the true

positives are the students correctly classified as dropout by the model and the false negatives are the
students that are wrongly identified as graduated by the model.
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Multilevel versus Classical models
From Tables 3 and 4, we can highlight that the predictive performance, both in terms of AUC and
sensitivity, is always higher in multilevel models than the one in the correspondent models that do
not take into account the nested nature of data, all else equal. This finding suggests that taking
into account the nested structure of students within degree programs improves the performance of the
model and identifies a source of variability within students performance that is due to their grouping
structure. The difference between the two types of models - i.e. multilevel and not multilevel - is
particularly relevant when we consider only demographic information or demographic information and
previous studies as covariates while it decreases when we consider also the academic performance.
Hereafter, we focus our attention on the results of multilevel (nested) models.

The importance of student-level covariates
Considering now the three groups of covariates, we observe that the predictive performance of models
when we consider only demographic information of students is quite low and it does not increase
much when we add previous studies among the covariates. Instead, we observe a sharp increase
in predictive power when we add information about the academic performance, reaching very high
predictive performance. This result suggests that the background of students alone is not sufficient
to obtain a good proxy of their academic career, while a very big portion of variability in students
dropout is explained by students academic performance during the first semester. This evidence points
at confirming the importance to monitor the early performance of students as a good indicator for
their subsequent results.

Parametric models versus Machine Learning
From the comparison of generalised linear models with classification trees and random forest, it emerges
that classification trees have almost always lower predictive power than generalised linear models and
random forest. In particular, the performance of multilevel generalised linear models and multilevel
random forest are very close to each other and are the best ones. We therefore focus on the interpreta-
tion of multilevel generalised linear models and multilevel random forest results, to compare them and
to investigate which kind of insights about student dropout phenomenon we can extract from these
two different models.

4.1 Multilevel generalised linear model versus Multilevel random forest
Table 5 reports the results of the multilevel generalised linear models, adding the three groups of
covariates sequentially, both for early and late dropout, respectively.
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Table 5: Results of multilevel linear models in Eq. (4) for early and late dropout respectively, con-
sidering as fixed-effects covariates: (1) demographic information, (2) demographic information and
previous studies, (3) demographic information, previous studies and academic performance in the first
semester.

Dependent variable:

Early dropout vs graduated Late dropout vs graduated

(1e) (2e) (3e) (1l) (2l) (3l)

Constant −5.446∗∗∗ −1.703∗∗∗ 1.499∗∗ −9.866∗∗∗ −4.866∗∗∗ −2.418∗∗∗
(0.338) (0.369) (0.585) (0.378) (0.399) (0.469)

Gender = Male 0.058 0.173∗∗∗ 0.207∗∗ 0.700∗∗∗ 0.799∗∗∗ 0.594∗∗∗
(0.047) (0.049) (0.088) (0.062) (0.064) (0.076)

Student’s origin = −0.028 0.030 0.281∗∗∗ −0.178∗∗∗ −0.128∗∗∗ 0.068
Native Out of Milan (0.043) (0.044) (0.076) (0.045) (0.047) (0.058)

Student’s origin = 0.873∗∗∗ 0.256 −0.208 1.371∗∗∗ 0.697∗∗∗ 0.686∗∗
Non-Italian abroad (0.228) (0.261) (0.474) (0.202) (0.242) (0.311)

Student’s origin = 0.164 −0.189 0.187 0.848∗∗∗ 0.487∗∗∗ 0.537∗∗∗
Non-Italian out of Milan (0.179) (0.191) (0.331) (0.142) (0.155) (0.197)

Student’s origin = 0.352∗∗ −0.351∗ −0.031 1.300∗∗∗ 0.631∗∗∗ 0.477∗∗
Non-Italian in Milan (0.169) (0.193) (0.331) (0.134) (0.153) (0.197)

Access To Studies Age 0.207∗∗∗ 0.156∗∗∗ −0.033 0.411∗∗∗ 0.342∗∗∗ 0.168∗∗∗
(0.018) (0.018) (0.026) (0.019) (0.019) (0.021)

Previous School = 0.302∗∗∗ 0.120 −0.028 −0.181
Classic (0.072) (0.126) (0.094) (0.114)

Previous School = 0.526∗∗∗ 0.214 0.472∗∗∗ 0.174
Other (0.108) (0.191) (0.114) (0.142)

Previous School = 0.019 −0.058 0.138∗∗ 0.230∗∗∗
Technical (0.059) (0.100) (0.056) (0.069)

Admission Score −0.041∗∗∗ 0.012∗∗∗ −0.054∗∗∗ −0.005∗∗
(0.002) (0.003) (0.002) (0.003)

Total Credits 1s −0.223∗∗∗ −0.163∗∗∗
(0.004) (0.003)

Attempts 1s >1 −0.775∗∗∗ 0.361∗∗∗
(0.088) (0.078)
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(1e) (2e) (3e) (1l) (2l) (3l)

Attempts 1s = 0 2.368∗∗∗ 1.161∗∗∗
(0.250) (0.256)

Change Degree 0.084 0.037
(0.086) (0.066)

Income= −0.325 −0.809∗∗∗
DSU (0.282) (0.233)

Income= −0.068 −0.097
high (0.086) (0.068)

Income= 0.003 0.137∗∗
low (0.089) (0.068)

Income= −1.337 −0.816∗
unknown (1.024) (0.450)

Observations 19,803 19,803 19,803 19,660 19,660 19,660
Log Likelihood −9,202.492 −8,867.000 −3,354.970 −8,182.608 −7,691.066 −5,297.633
Akaike Inf. Crit. 18,420.980 17,758.000 6,749.940 16,381.220 15,406.130 10,635.270
Bayesian Inf. Crit. 18,484.130 17,852.720 6,907.812 16,444.310 15,500.770 10,792.990

Notes: Results are reported in terms of regression coefficients point estimates with their standard
deviation (in brackets) Stars represent the statistical significance: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

We observe that, by adding groups of covariates, the importance of the previous group changes, both
for early and late dropout predictions. Since we believe that is essential to take into account at least
the first semester career of students in order to have an accurate proxy of their dropout probability,
we directly look at the complete models, the ones with highest predictive performances, for early and
late dropout, i.e. models (3e) and (3l), that include all the three groups of covariates. In this way,
we can interpret the net associations of the demographics and the previous studies with the dropout
probability, after adjusting for the first semester career. By looking at models (3e) and (3l) coefficients,
several interesting observations emerge: males are more likely to early and especially late drop than
females; Native Italians off-site are more likely to early drop than Native Italians in-site, while they
do not differ in terms of late dropout probability; non-Italian students, either in-site, off-site or not
having residence in Italy, are more likely to late drop than Native Italians in-site; students starting
their careers at PoliMi at an older age than the average, are more likely to late drop; students who
attended technical high schools are more likely to late drop than the ones who attended scientific high
schools; the higher is the admission test score at PoliMi, the higher is the probability of students early
dropout and the lower is the probability of students late dropout; the higher is the number of credits
obtained at the first semester, the lower are both the early and late dropout probabilities; students
doing more than one attempts per exam during the first semester are less likely to early drop and more
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likely to late drop with respect to students doing one attempt per exam; students that do not attempt
any exam during the first semester are more likely both to early and late drop with respect to students
doing one attempt per exam; if students change degree program during their career does not seem
to be significant; lastly, regarding the students family income, it does not result to be significantly
associated to early dropout probability, while students with DSU, low income or unknown income are
more likely to late drop than students with maximum income group.

Regarding the random effects, the estimated random intercepts, b̂i, for i = 1, . . . , N , that represent
the value-added, either positive or negative, of the 20 degree programs to the dropout probability of
their students are reported in Figure 3, together with their confidence intervals. Degree programs with
estimated b̂i whose confidence interval is totally positive (or negative) have on average students more
(or less) likely to dropout, all else equal.

Figure 3: Estimated random intercepts, b̂i, for i = 1, . . . , N , with their confidence intervals, of the 20
degree programs estimated in Eq. (4) for the generalised linear model, for early dropout (panel (a))
and late dropout (panel (b)).

(a) (b)

In order to measure the magnitude of the random effects, we compute the Variance Partitioning
Coefficient (VPC) (Goldstein, Browne, & Rasbash, 2002) that represents the percentage of unexplained
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variability in the response that is given to the grouping level (degree programs). In particular:

V PCearly =
σ2
ψearly

σ2
ψearly

+ π2/3
= 9.6% and V PClate =

σ2
ψlate

σ2
ψlate

+ π2/3
= 8.1%, (5)

meaning that 9.6 per cent of the unexplained variability in student early dropout phenomenon is given
by the grouping of students within degree programs and, equivalently, 8.1 per cent of the unexplained
variability in student late dropout is given by the grouping of students within degree programs. These
percentages reach almost 10 per cent of student variability, suggesting that for equal student character-
istics there is still heterogeneity in the likelihood of student dropout across degree programs, as there
are certain degree programs in which students are more likely to leave their studies than in others, or
vice-versa.

By looking at Figure 3 and considering the VPCs, we observe that the magnitude of the degree
program effects on early and late dropout is similar, but still a bit higher on the early dropout phe-
nomenon. Degree programs that have significantly different from zero effect, vary between early and
late dropout prediction. In particular, there are degree programs whose effect is coherent between early
and late dropout: Students in Engineering 8, 10 and 12 are more likely to both early and late drop
with respect to other students; Students in Engineering 1, 14 and 16 are less likely to both early and
late drop. On the opposite, there are degree programs whose effect is very different between early and
late dropout: students in Engineering 3, for example, are more likely to early drop but less likely to
late drop with respect to the average; students in Engineering 13 are in line with the average regarding
the late dropout but they are less likely to early drop. Differences among degree programs might be
due to various aspects: internal difficulties of degree programs, structural differences or movement of
students from certain engineering courses to other faculties due to external drivers. With the available
data it is not possible to investigate these mechanisms more profoundly, but we will explore this topic
in future research.

We then focus on the results of multilevel random forest. As for the linear case, we extract
information about both the fixed-effects part and the estimates of the random intercepts. Regarding
the fixed-effects part, random forest give us as output the importance ranking of the covariates in
predicting student dropout, measured as the mean decrease in Gini index. Figure 4 reports the
variable importance plots computed by the random forest in Eq. (4) with the 3 groups of covariates
added sequentially, both for early and late dropout. By looking both at the top and bottom panels
of Figure 4, we observe that the importance of the covariates of the first two groups is extremely
small when compared to the one of the covariates in the third group, both for early and late dropout.
Indeed, when considering the entire set of covariates (panels c and f), the most important covariates
are the ones regarding the first semester career at the university. In particular, for early dropout,
the most important covariates are the number of total credits obtained and the average attempts per
exam, while, for late dropout, the number of total credits explains, alone, almost all the variability in
the response. Indeed, the predictive powers of TotalCredits1sem and Attempts1sem have a different
order of magnitude with respect to the other covariates. It is reasonable to think that the average
number of attempts varies more between the ones who drop immediately and the one who graduate
than between the ones who drop after more than one year and the one who graduate. Indeed, it is
likely possible that who drops immediately does neither attempt any exams, while who drops after one
year, attempts more times without succeeding, before to dropout.

Regarding the random-effects part, Figure 5 reports the random intercepts estimated for each
degree program, together with their confidence intervals. Comparing Figures 3 and 5, we observe that
the degree course intercepts estimated by the multilevel generalised linear model and the multilevel
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Figure 4: Variable importance plots computed by the random forest fixed-effects part in Eq. (4),
adding the three groups of covariates sequentially for both early and late dropout prediction.

(a) (b) (c)

(d) (e) (f)

Notes: panels (a), (b) and (c) regard the models for predicting early dropout considering as covariates
demographic information, demographic information + previous studies and demographic information
+ previous studies + academic performance, respectively; panels (d), (e) and (f) regard the models for
predicting late dropout considering as covariates demographic information, demographic information +
previous studies and demographic information + previous studies + academic performance, respectively.

random forest are coherent. In particular, when considering the early dropout phenomenon, the degree
courses that have significant positive or negative effects identified by the two models are the same,
while, regarding the late dropout phenomenon, they are mostly the same apart from Engineering 7
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and 13 whose estimates of multilevel random forest are negative, while and the ones of multilevel
generalised linear model are not statistically different from zero.

Figure 5: Estimated random intercepts, b̂i, for i = 1, . . . , N , with their confidence intervals, of the 20
degree programs estimated in Eq. (4) for the random forest case, for (a) early dropout and (b) late
dropout.

(a) (b)

The VPCs estimated by multilevel random forest models are:

V PCearly =
σ2
ψearly

σ2
ψearly

+ π2/3
= 16.1% and V PClate =

σ2
ψlate

σ2
ψlate

+ π2/3
= 13.3%, (6)

that are slightly higher than the ones in Eq. (5), obtained by multilevel generalised linear models. It
can be the case that random forests are better able to identify the true effect of different programs
on the dropout phenomenon. In all the models, the VPCs estimated for early dropout response are
higher then the VPCs estimated for late dropout response, suggesting that there is more heterogeneity
in student early dropout across degree programs than the heterogeneity in student late dropout.

Variable importance plots showed in Figure 4 identify which are the most important variables in
predicting student dropout, but they do not give us information about the type of associations (either
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direct or inverse) of these variables with the response. To this end, partial dependence plots (Breiman,
2001) show the partial association between the response variable (student dropout probability) and
each covariate, net to the effects of all the other covariates. Taking into account panels (c) and (f) of
Figure 4, we select the most important variables in each of these two panels and we show in Figure 6
their partial dependence plots. These plots are particularly useful for exploring non-linear associations
between the variables of interest.
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Figure 6: Partial dependence plots of the most important variables (extracted from Figure 4) in
predicting early and late student dropout.

(a) (b)

(c)

Notes: The X-axis reports the range of the covariate, while the Y-axis report the change in the
predictor ηij (that is directly proportional to the dropout probability pij) relative to the considered
covariate. Panels (a) and (b) show the partial plots of Total Credits 1sem and Attempts 1sem,
respectively, relative to the probability of student early dropout; panel (c) shows the partial dependence
plot of Total Credits 1sem relative to the probability of student late dropout.

By looking at panel (b) of Figure 6, we see that doing zero attempts per exam, is associated to
higher early dropout probability, while doing one and especially more than one attempts per exam
is associated to lower early dropout probability. By looking at panels (a) and (c), we see that the
probability of both early and late student dropout decreases when the number of credits obtained
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at the first semester increases and, moreover, the number of credits is linear with the predictor η.
This evident linear association is confirmed also by the very low p-value that this covariate has in
the multilevel generalised linear model and explains the reason why the performances of multilevel
generalised linear models are at the same level or even better than the ones of multilevel random
forest. Indeed, being Total Credits 1sem the most significant covariate, i.e. the one with the highest
predictive power, and having it a linear association with the predictor η, generalised linear models
perform better than random forest. This evidence explains also the higher VPCs of multilevel random
forest with respect to the ones of multilevel generalised linear models. Indeed, given that the tree-based
structure worse fit the fixed-effects part (whose most important characteristic is the linearity of the
Total Credits 1sem effect), the percentage of unexplained variability at student level is higher and the
random effects part gains power.

This specific finding raises a final reflection about the use of ML techniques. They are known
to be very flexible and to perform good prediction results in complex data structures, when non-
linearities and interactions are at play. In our case, the situation is partly different. Here, the dropout
phenomenon is characterised by some important linear relationships. Moreover, the theory helps us
in identifying some important variables a priori. In these circumstances, the parametric models (well
trained to fit the unknown functional form) are actually able to obtain good predictions.

Appendix B reports a reflection about the robustness of model choices. In particular, we run a
sensitivity analysis comparing the performances of the model when considering first semester versus
first year (first two semesters) student career information. Results confirm that the early warning
system (first semester information model) works sufficiently well: the gain in prediction performance
when considering the entire first year is not so high to justify the waiting until the end of the first year
to identify the students at risk.

5 Concluding remarks
This paper demonstrates how useful and powerful can data analysis be, which estimates the likelihood
that a student drops out in the first year of university attendance, or even later. Providing decision-
makers with adequate tools for such predictions is a critical development of HE management nowadays.
If properly used, the quantitative evaluation of factors associated with higher dropout risk can help
reducing the loss of human capital, by retaining more students. Moreover, these systems hold the
promise of improving the efficiency and effectiveness of universities’ operations. In such a perspective,
a functioning Early Warning System (EWS) should become part of the toolbox of any HE institution
in the next years.

University managers and decision-makers should become familiar with data produced by EWSs.
This is a new core competence, that can be acquired and/or strengthened with some formative interven-
tions. The findings presented in this research advance the state-of-knowledge in this field. Specifically,
the main results derived from the empirical analysis can be summarised in three key messages.

First, the different algorithms developed and tested in developing the empirical (final) model per-
form very similarly. This evidence should reassure the analysts and decision makers about the ro-
bustness of the findings - with the consequence that the algorithms can be used immediately. Second,
the inclusion of academic results at the end of the first semester dramatically improves the quality
of predictive modelling of dropout. Interestingly, these variables are much more predictive and rel-
evant than demographic characteristics and previous achievement during high school (this finding is
consistent with (Von Hippel & Hofflinger, 2020)). Third, the consideration of the grouping variable
(i.e. the degree program chosen by each student) also plays a central role. Indeed, the outcomes of
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the empirical analysis clearly reveals heterogeneous incidence of attending a specific degree program.
Thus, a multilevel structure of both linear models and ML techniques has been specifically set and
employed for developing the final version of algorithms to be used.

The critical reading of these messages, coupled with the interpretation of the theoretical framework
that we propose in Section 2, suggests two major practical implications of the present study. (i) On
one side, the amount and quality of available information is a notable condition for the EWS to work
properly. The database built with PoliMi data is enough broad and complete - indeed, the prediction of
at-risk students works pretty well. At the same time, the collection of data might be expanded in scope
for taking individuals’ beliefs, motivation and attitudes into account. These soft elements are central
for maximizing students’ performance, but they are not monitored regularly and in a structured way.
A clear suggestion is to create surveys and automated collection methods for asking students more
details about perceptions of their own internal life. Self-reported information can be important here.
(ii) On the other side, the systematic adoption of an online platform and digital evaluation systems can
further improve the institution’ s ability of monitoring at-risk students. To the extent that teaching
activities are weekly supported by digital platforms, the (dynamic) analysis of students’ performance
over time can be added to the model for detecting poor-performers and at-risk students early on time.

If the findings presented in this paper are accepted as credible and relevant, the way forward is
constituted by two steps. The first consists of the establishment of a Unit dedicated to Data Analytics
at the level of the single institution. Building capacity in each university is useful, and creating internal
units for “learning from its data” is a necessary development of managerial responsibilities. The second
step deals with the design and implementation of interventions for supporting at-risk students. The
literature highlights and suggests different experiences, which validity and replicability must be assessed
carefully. Also, each intervention must be accompanied by a rigorous evaluation procedure, aiming
at understanding “what works” and weaknesses. Overall, experimental design can be favored when
possible. Politecnico di Milano undertakes this approach, and we hope to validate soon a rigorous
protocol for remedial interventions, as well as for the evaluation of their impact.
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Appendices

Appendix A: Technical details about data
The dataset: characteristics and variables

PoliMi Information Technology (IT) system collects both dynamic and static data about enrolled
students. The former ones are the so-called “digital prints” left in correspondence to some key ad-
ministrative facts, such as register at exams’ sessions, accept or retake grades or pay university’s fees.
Static data comprises all the information that administrative office registers at the moment of enrol-
ment, such as citisenship, gender or date/place of birth, previous school performance or the university
admission test score. The university Administration and IT offices supply the dataset used in the
analysis, recording students’ information from 2010 to 2019. The number of observations is more than
10 million and each of them represents an administrative event or a student’s set of features. The
whole dataset is divided into multiple sub-datasets, according to type of information. Hence, data
cleaning activity requires to merge the datasets through their linkage with unique encrypted key and
to keep only concluded careers, using the student as a unit of analysis, so that we finally consider
around 110, 000 students for the analysis. The students’ features lastly selected and included into the
analysis are summarised in Table 6. The variables are presented and classified in the different groups
described in the Section 2.2.
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A key methodological point consists in the definition of dropout. Indeed, the career of each student is
classified as active, if the student is actually enrolled, as suspended, if the student temporally suspends
the career (for example for long trip or pregnancy), as graduated, if the student obtained the degree, or
dropout. This last label identifies students with career’s status “definitely closed for a reason different
from graduation”. In this view, a further clarification is needed: we do not know if dropout students
withdraw from Higher Education completely, or just move to another university, changing their aca-
demic career. Anyway, this study adopts the university’s perspective, providing insights to improve its
own retention strategy (i.e. not caring about whether the students succeed in a different institution
once moved from it).

The empirical model also includes the different study programs as key variables. Politecnico di
Milano offers three kinds of degree courses, grouped in three Schools: Engineering, Architecture and
Design. This paper only includes results for the Engineering courses, but the same analysis has been
extended for the remaining ones (results available on request from the authors). Specifically, this paper
considers the various programs within the School of Engineering as an important element, to detect
whether dropout is systematically different across programs. The model considers this important
feature of the dataset: its hierarchical structure (students nested into programs) — see details in
Section 3.2.

Some evidence from descriptive statistics

This paragraph provides an overview of main information coming from descriptive statistics of variables
(See Table 7). In general, students at PoliMi are mainly male (77.7 per cent), Italian (95.1 per cent)
and holding a scientific degree from secondary schools (72.4 per cent). The academic path is, in the
17.4 per cent of the cases, not linear, registering a change in their degree program within the university
- representing a quite high internal mobility. It is relevant to note that the first year is quite similar
to all the courses, allowing students to move among them without losing the formative credits already
acquired. When looking at the academic careers, the graduated students register 25 credits earned
in the first semester of the first year, against the 5 of dropout students. The situation seems more
worrying if we look at the first year: in fact, the cumulative amount of credits earned by graduated
students is 52, while the dropout ones is 9. To capture the dimensions of dropout phenomenon, the
graduated students are 62.6 per cent of the total considered into the analysis; while dropout occupies
the remaining 37.4 per cent, which is composed by 21.6 per cent of early dropouts and 15.8 per cent
of late ones.
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Table 7: Descriptive statistics of variables used in the models.

Total Graduated Dropout
Mean St. Dev. Mean St. Dev. Mean St. Dev.

AccessToStudiesAge 19.215 2.73 18.813 1.708 19.884 3.781
AdmissionScore 72.453 12.526 75.194 10.854 67.619 13.757
Total Credits 1y 36.064 25.986 52.258 15.919 9.093 14.619
Total Credits 1y1s 18.08 13.099 25.549 8.822 5.641 8.947
AvgAttempts 1y 1.441 0.743 1.606 0.499 1.167 0.967
Avg Attempts 1y1s 1.428 0.809 1.575 0.575 1.183 1.048

Gender
Female 0.223 0.237 0.198
Male 0.777 0.763 0.802
Income
Highest income 0.338 0.274 0.445
DSU 0.029 0.043 0.005
High income 0.333 0.401 0.219
Low income 0.286 0.277 0.301
Unknown 0.004 0 0.011
Student’s origins
Native in Milan 0.261 0.262 0.259
Native out of Milan 0.69 0.712 0.652
Non-italian abroad 0.019 0.008 0.037
Non-italian out of Milan 0.013 0.009 0.022
Non-italian in Milan 0.017 0.009 0.029
PreviousSchool
Scientific 0.724 0.782 0.629
Classic 0.062 0.061 0.065
Technical 0.158 0.127 0.209
Other 0.056 0.03 0.098
ChangeDegree
FALSE 0.826 0.823 0.83
TRUE 0.174 0.177 0.17

Note: Total contains all the students with concluded careers at PoliMi, Graduated contains only
graduated students at PoliMi and Dropout contains only dropout students at PoliMi.

Appendix B: Sensitivity analysis: does this early warning system work well?
In Section 3.2, for both early and late dropout prediction, we included in the third group of covariates
of the model, i.e. the group regarding the university career, only the information of the first semester
of the first year. This choice is driven by the aim of implementing an early warning system able
to predict the wright response as soon as possible. When predicting late student dropout, since the
students considered in the model are the ones who attended at least three semester of university, it is
possible to consider among the covariates the information of the entire first year of career, instead of
only the first semester. This choice should improve the predictive performance of the model, at the
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cost of identifying the at risk students later in time, i.e. at the end of the first year instead of at the
end of the first semester. In the perspective to analyze whether it is worth to “wait”, we run multilevel
generalised linear models and multilevel random forest, including all the three groups of covariates,
but considering TotalCredits1y and the Attempts1y instead of TotalCredits1s and the Attempts1s, i.e.
the number of credits obtained and the average attempts per exam computed in the first year instead
of in the first semester. The response variable is the binary variable that takes value 1 if the student
is a late dropout student and 0 if the student graduated. Table 8 reports the comparison in terms of
AUC and sensitivity indexes, of the models considering only first semester information and first year
information.

Table 8: Area Under the Curve (AUC) and sensitivity index (sens) of Multilevel generalised linear
models and Multilevel random forest with the complete set of covariates considering, among the career
information, (i) only the first semester and (ii) the first year, for late dropout prediction.

Set of covariates included in the model
demographic info + demographic info +
previous studies previous studies +

academic performance 1semester academic performance 1year
Multilevel generalised AUC: 0.957 AUC: 0.980

linear model sens: 0.824 sens: 0.892
Multilevel AUC: 0.948 AUC: 0.979

random forest sens: 0.778 sens: 0.890

Results show that, even if the predictive performances increase by adding to the first semester career
information the second semester career information, the gain is not so high to justify the waiting
until the end of the first year to identify the students at risk. The small difference between the two
models predictive performance suggests that the first semester information is by itself very informative
and sufficient to quite precisely predict the students dropout probability and, therefore, it is possible
to accurately predict the student dropout probability just observing the beginning of the student
university career. This result is very important for a practical viewpoint, as it suggests to use the
model for proposing supporting interventions to students as soon as at the end of the first semester.
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