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Abstract

This review paper addresses the so called geometric multiscale approach
for the numerical simulation of blood flow problems, from its origin (that we
can collocate in the second half of '90s) to our days. By this approach the
blood fluid-dynamics in the whole circulatory system is described math-
ematically by means of heterogeneous featuring different degree of detail
and different geometric dimension that interact together through appropri-
ate interface coupling conditions.

Our review starts with the introduction of the stand-alone problems,
namely the 3D fluid-structure interaction problem, its reduced representa-
tion by means of 1D models, and the so-called lumped parameters (aka 0D)
models, where only the dependence on time survives. We then address spe-
cific methods for stand-alone 3D models when the available boundary data
are not enough to ensure the mathematical well posedness. These so-called
“defective problems” naturally arise in practical applications of clinical rel-
evance but also because of the interface coupling of heterogeneous problems
that are generated by the geometric multiscale process. We also describe
specific issues related to the boundary treatment of reduced models, par-
ticularly relevant to the geometric multiscale coupling. Next, we detail the
most popular numerical algorithms for the solution of the coupled problems.
Finally, we review some of the most representative works - from different
research groups - which addressed the geometric multiscale approach in the
past years.



A proper treatment of the different scales relevant to the hemodynamics
and their interplay is essential for the accuracy of numerical simulations and
eventually for their clinical impact. This paper aims at providing a state-of-
the-art picture of these topics, where the gap between theory and practice
demands rigorous mathematical models to be reliably filled.

1 Introduction

In the last two decades mathematical and numerical modeling of cardiovascular
diseases has been progressively used to support medical investigations from ba-
sic research to clinical practice. This success of applied mathematics in such an
important field of life sciences is not only due to the general improvement of high
performance computing hardware, but also - and perhaps most importantly - to
the development of more insightful and accurate mathematical models and effec-
tive numerical methods. As a matter of fact, these models have been specifically
devised to include many features of medical interest in the simulation process
with progressively more accuracy and precise quantification of the errors.

One of the aspects that engaged for several years bioengineers and mathe-
maticians and promoted the development of special methodologies - that even-
tually found applications in other contexts - is the treatment of boundary condi-
tions. This issue is particularly sensitive for the reliability of numerical solutions
and it is particularly challenging for at least two reasons.

1. Lack of available data: the mathematical boundary might not be a real
physical one. This is e.g. the case of the inlet and outlet of arteries “artifi-
cially chopped” for computational purposes. For this reason, a significant
gap between data available in practice from measurements and boundary
conditions required by the mathematical problem occurs systematically;
more than in other engineering fields, either practical or ethical reasons
prevent to obtain all the data that are required by the mathematical model.

2. Reciprocal influence of the local and systemic dynamics: circulation is a
closed network of vessels featuring different properties (both geometrical
and mechanical) in different regions, where local disturbances (induced for
instance by a pathology or a surgery) may have a global impact. When
setting up the simulation of a local vascular district, it is generally re-
quired to include this mutual influence; this eventually resorts to a proper
boundary treatment, where the (artificial) boundaries represent in fact the
interface between the local region of interest and the rest of the system.

The latter issue somehow justifies the introduction of the term “multiscale”,
since it basically stems from the coupling of dynamics acting on scales of cen-
timeters (a single vascular district) and of meters (the entire network). However,
since this term may assume different meaning in different engineering and mod-
elling fields, it seems appropriate to specify that here with multiscale we mean



the coupling of different length scales, so that we will use this term in com-
bination with the adjective “geometric”. While a local detailed hemodynamic
analysis requires in general the accurate solution of fluid-structure interaction
problems (blood and vascular walls), henceforth in the true 3D domain, quan-
titative investigations of the cardiovascular system have often been based on
surrogate models featuring lower geometric dimensions. We recall the pioneer-
ing work by Otto Frank [70], followed up by the simulators of Nico Westerhof
[205], based on the analogy of the circulatory network with electrical circuits.
These are lumped parameter or - with a popular notation that follows from dis-
carding an explicit dependence on any space dimension and that will be used
extensively later on - 0D models. Even earlier (two centuries!) L. Euler proposed
his equations for describing the motion of a fluid in elastic pipes, having in mind
blood flow in arteries [53]. This system of equations has then provided the base-
line for assembling mathematical models of several arterial segments, in each
of them the axial dynamics is the only one retained, resorting to what we will
denote as 1D models. Because of their hyperbolic nature, these models turned
out to be particularly effective in capturing the pressure wave propagation along
the arterial tree.

The two issues listed above turn out to be strictly related. In order to address
point 2 above bioengineers looked for reliable boundary conditions for a district
of interest by solving Westerhof-like 0D models to be prescribed in a specific
district. Then, to solve the incompressible Navier-Stokes equations in that dis-
trict, this naturally brought up the problem of defective data set, as for point 1.
For example, a lumped parameter as well as 1D model can provide a flow rate
incoming a district of interest. However a Navier-Stokes solver for that district
requires the whole velocity field at the boundaries. A practical and popular ap-
proach consists in conjecturing an a priori velocity profile (typically a parabolic
one) to be fitted with the flow rate available from the systemic model. Similar
considerations hold for Neumann-like conditions such as those prescribing the
traction or the pressure. However, the accuracy of these heuristic approaches
may be sometimes questionable. A more sound mathematical approach was
deemed in order to enhance both reliability and accuracy. Starting from the
second half of 90’s with the paper [165], this problem challenged several groups
and led to many different ideas.

The purpose of this work is to critically review these topics in order to
highlight the important impact that mathematically sound methods may have
on the accuracy of the results. Nevertheless, we will include in our discussion
also practical aspects that need to be considered when performing geometric
multiscale simulations on real problems.

Moving from a brief description (Sect. 2) of the different models that can be
used in a stand-alone fashion to describe the circulation with a different level of
detail (3D, 1D or 0D), we consider more specifically the issues related to their
boundary treatment in Sect. 3. While for the 3D problem we need to consider
how to fill the gap between insufficient available data and a complete data set,



for 1D problems the treatment of the boundary requires special techniques to
avoid numerical artifacts in computing the pressure wave propagation. Finally,
for 0D models the concept of “boundary” is actually inappropriate, since the
model reduction drops the explicit space dependence. However, in view of cou-
pling dimensionally heterogeneous models, we need to address how data at the
interface of the lumped parameter compartment can be spatially localized. In
Sect. 4 we address extensively the coupling of the different models that leads to a
“geometric multiscale* description, whereas we will address different approaches
for the numerical solution of the dimensionally heterogeneous problems in Sect.
5. In Sect. 6 we provide an annotated review of selected works to outline signif-
icant contributions of the literature over the last two decades. Conclusions and
perspectives follow in Sect. 7.

2 Stand-alone models: fluid, structure and their in-
teraction

In this section, we start from the classical 3D model for fluid-structure interaction
in hemodynamics. We then address the 1D and finally 0D models. Each of these
models is standing alone; the analysis of coupling will make the subject of next
sections. We necessarily limit to a brief introduction to this vast and still active
field of research.

2.1 The 3D model
2.1.1 Modeling blood, vascular wall and their interaction

We start considering a 3D high fidelity description of blood flowing in a vessel
of interest, the vascular wall deformation, and their interaction (fluid-structure
interaction - FSI).

It is worth mentioning that many vascular diseases affect large and medium
sized arteries. In such districts, blood is modeled by means of the Navier-Stokes
(NS) equations for incompressible homogeneous Newtonian fluids [149, 184, 185,
64]. Effects related to non-Newtonian rheology such as the ones induced by
pathologies (for instance the sickle cell disease) or in the capillaries need to be
specifically addressed and are not considered in the present work. We refer the
interested reader to, e.g., [171].

As for the structure problem, we assume the arterial wall to obey a (possibly
nonlinear) finite elastic law relating stress to strain in the arterial tissue. This is
clearly a simplification of the indeed far more complex behavior of arterial walls
[90, 91] that however we postulate for the sake of simplicity. In more realistic
settings, strain is function of the stress but also of the loading history [72].

For the mathematical formulation of the problem, we find convenient to
write the fluid equations with respect to an Eulerian frame of reference, and we
denote by Q5 C R3 the time-varying arterial lumen (see Figure 1, left), while



Figure 1: Representation of the two components of the FSI problem: fluid do-
main on the left, structure domain on the right. The fluid domain - here we
illustrate a carotid artery - has been reconstructed from MRI images (Courtesy
of Dr. M. Domanin, Fondazione IRCSS Ca Granda, Ospedale Maggiore Policlin-
ico, Milan, Italy), whereas the structure domain has been obtained by extrusion
of the fluid one - see Sect. 2.1.3.

the structure problem is usually written in a reference domain ﬁs C R? using
a Lagrangian framework. For any ¢ > 0 the material domain 2, (depicted in
Fig. 1, right) is then regarded as the image of 5 by a proper Lagrangian map
L: Qs = Q. We use the abridged notation § = g o £ to denote in Qg any
function ¢ defined in the current solid configuration €2;. The interface between
the fluid and the structure domains at time ¢ > 0 is denoted by X.

We denote by F = Va the deformation tensor, the gradient being taken
with respect to the reference space coordinates. Correspondingly, J = det(F)
represents the change of volume between the reference and the current configu-
rations.

Under all the assumptions stated above, we eventually write the 3D fluid-
structure interaction problem as follows. Find, at each time t € (0,77], fluid



velocity w, fluid pressure p and structure displacement n, such that

Jou .
Prg Torw Vyu—=V-Ti(u,p) = f; in Qf, (1a)
V-u=0 in Qy, (1b)
" — %t? on X, (1c)
Ts(n)n—T¢(u,p)n=20 on X, (1d)
0’n ~ n O
psﬁ_v'TS(n):f‘s in £2;. (Le)

In the previous problem py and p, are the fluid and structure densities respec-
tively, f; and f are volumetric forces acting in the two domains (e.g. corre-
sponding to gravity or muscle forces in the walls - quite often these contributions
can be neglected),

Ty(u,p) = —pI + p (Vu + (Vu)) (2)

is the fluid Cauchy stress tensor with p the blood viscosity. As we consider only
Newtonian rheology here, i is assumed to be constant. In addition, n denotes
the outward unit normal from the structure domain and the first Piola-Kirchhoff
tensor T'4(7) and the Cauchy tensor T's(n) are such that Ty = JT,F~. For
an hyperelastic material, the first Piola-Kirchhoff stress tensor is obtained by
differentiating a suitable Strain Energy Density Function (SEDF) © such that
’fs = g—g. For arteries, several non-linear elastic energy functions have been
proposed. A simple choice is provided by the St. Venant-Kirchhoff material, in
which case the first Piola-Kirchhoff tensor is given by

~ Ev

E E
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2(1+v) +2(1+u) ’
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where E is the Young modulus and v the Poisson modulus. To take into ac-
count the stiffening increment for large displacements due to the collagene, an
exponential law is often used

Ts _ GJ—Q/S <F - ;tr(FTF)F—T> eV(J_%tr(FTF)—3)+g (J 14 Lljln(‘])> JF_T,
where k is the bulk modulus, G the shear modulus, and v characterizes the
stiffness of the material for large displacements [71, 90, 168]. More complex
models account for the collagene fibers’ orientation, identified by the unit vector

m. In this case, a popular approach relies on separating the isotropic behavior

of the ground substance given by elastin, described by a neo-Hookian model,
from the anisotropic response due to the collagene fibers, obtaining

T, =k FFT + ky(I — 1)e’T"V*(Fm) ® (Fm),



with I = m - (FTFm) being an invariant of the system and ki, ks suitable
material parameters [91]. More complete laws also account for the symmetrical
helical arrangement of the collagene fibers, with directions m and m/’ lying in the
tangential plane of the artery [91]. The arterial tissue is sometimes considered as
incompressible [38]. In this case, one has to enforce the constraint J = 1 and in
the related Cauchy stress tensor the term —p,[I is added, p; being the hydrostatic
pressure (which plays the role of Lagrange multiplier of the incompressibility
constraint).

The matching conditions enforced at the FS interface follow from the con-
tinuity of wvelocities (kinematic condition) (1c) and the continuity of tractions
(dynamic condition) (1d).

Finally, problem (1) is completed by boundary conditions at 02y \ ¥ and
on

o9 s\fl, and by initial conditions on u, n and ETR

Boundary conditions typically

prescribe:

- for the fluid subproblem, the upstream velocity w,,;, on the proximal boundaries
and absorbing traction conditions T’y - m = h on the distal boundaries, h being
a suitable function [136];

- for the structure subproblem, either n = 0 (fixed boundary) or n-n = 0
together with (T's - m) - 7 = 0, T being the unit tangential directions (displace-
ment allowed in the tangential direction).

Other conditions may be prescribed if patient-specific measured data are avail-
able. However - as pointed out in the Introduction - measures seldom provide
a complete data set to be used in the computation and a preprocessing step is
required as we will illustrate in Sect. 3.

Boundary conditions at the external lateral boundary of the structure ac-
count for the effect of the tissues surrounding the artery. In [126], an algebraic
law is proposed to mimic an elastic behavior of this tissue. This law is meant at
representing the action of these tissues by independent springs characterized by
an elastic space dependent coefficient aegr (ST stands for “surrounding tissues”).
This yields the following Robin boundary condition

aST?’ + Ts('ﬁ) n = Pextﬁv on iemta (3)

where Y..; is the external lateral surface and P.,; the external pressure. For
tuning agr, we refer the reader to [112, 43].

Under several regularity assumptions, these data may guarantee well posed-
ness to the coupled fluid-structure problem, see e.g. [19, 77, 32, 113] for a
comprehensive description of this topic.



2.1.2 Numerical discretization

Numerical approximation of (1) demands an appropriate discretization of time
as well as space variables. One of the challenging aspects here is the movement
of the domain, both for the fluid and the solid. For the structure, deformations
are in general small enough so that a purely Lagrangian description is a viable
option. On the contrary, for the fluid we need to use a Lagrangian description of
the fluid-structure interface and an Eulerian description of the proximal/distal
boundaries. As pointed out in the Introduction, these are artificial portions of
the boundary and their location does not follow the fluid displacement. This
hybrid situation led to the introduction of the so-called Arbitrary Lagrangian-
Eulerian (ALE) formulation [93, 51]. With this approach the displacement field
at the boundary is arbitrarily extended into the domain. For instance, a har-
monic lifting (i.e. the displacement computed by solving a Laplace problem)
is a popular choice. This provides a convenient yet non-inertial frame of ref-
erence where to write the Navier-Stokes equations (ALE formulation). In this
framework, the solution of the fluid and structure problem is supplemented by
the solution of the lifting (hereafter called “geometric coupling problem”). Dif-
ferent methods can be used for the solution of the FSI plus geometric coupling
problem. Time discretization can be obtained by standard finite difference pro-
cedures. Among the others, we mention Backward Difference Formulas (BDF),
successfully adopted for both fluid and structure problems. Alternatively, the
¥—method for fluid and Newmark schemes for the structure are successfully used
e.g. in [133]. For the space discretization, finite elements and finite volumes are
the most popular strategies. Notice however that the movement of the domain
makes the accuracy analysis of the overall procedure quite challenging as the
interplay between space and time accuracy of the discretization of the fluid,
structure and geometric coupling problems is not trivial.

At the algorithmic level, after a suitable treatment of the geometric coupling
(either implicit applying, e.g., the Newton method [134] or explicit by means of
extrapolation from previous time steps [55]), the FSI problem may be solved by
monolithic as well as segregated approaches. In the former case, the complete
non-linear system arising after the space discretization is assembled and solved
with a suitable preconditioned Krylov [86, 15], domain-decomposition [44, 50]
or multigrid [75, 13] methods. In the partitioned case the successive solution
of the fluid and solid subproblems in an iterative framework is carried out (see,
e.g., [39, 55, 11, 46, 9, 105, 134]). In this case, the schemes feature in general
poor convergence properties due to the added mass effect, that predicts a break-
down of performances when the values of the densities of fluid and structure
are close as it happens in hemodynamics [39, 69, 10, 76, 137]. Alternatively, one
could consider space-time finite elements, see, e.g., [187, 17], or the iso-geometric
analysis, see [15].

It is worth noting that for problems related to the movement of structures
floating in incompressible fluids, a successful approach is the so-called Immersed



Boundary Method originated by the work of C. Peskin [153, 34].
Recent introductions to the numerical approximation of FSI problems can
be found in [54] (2009) and [18] (2013).

2.1.3 Further developments and comments

Modeling the structure as a 2D membrane For the sake of simplification,
the structure may be modelled as a 2D membrane whose position in space at
any time exactly coincides with the F'S interface 3. In this case, only the radial
displacement 7, is considered, and a possible mathematical representation is
given by the generalized string model [163]:

07,

=2~V (PV7,) + BHgir = fs  at 3, (4)

psHs
where the manifold ¥ represents the reference membrane configuration, H, the
structure thickness, tensor P accounts for shear deformations and, possibly,
for prestress, f(x) = 1FV2 (4p? — 2(1 — v)p2), where pi(x) and pa(x) are the
mean and Gaussian curvatures of i respectively, [136], and fs the forcing term.
The previous model is derived from the equations of the linear infinitesimal
elasticity (Hooke law) under the assumptions of small thickness, plane stresses,
and negligible elastic bending terms. To account for the effect of the surrounding
tissue, the term (3 in (4) needs to be properly modified. For example, in the case
of an elastic tissue as in (3), we need to substitute 5 with B = B8+ agr, with
agr the elastic coefficient of the tissue.
In the particular case where Y is the lateral surface of a cylinder and any
dependence on the circumferential coordinate is discarded, model (4) reduces to

027, FH,
+ 2 2
(1 —v?)Rg

0?7, =
psH U kGH Hsﬁr = fs at E’ (5)

5 o2 5022

k being the Timoshenko correction factor, G the shear modulus, Ry the cylinder

radius, and z the axial coordinate. Often, in the latter case, also a visco-elastic
33ny
0220t

term of the form -,
[163].

When (4) is coupled with the fluid equations (1a)-(1b), possible matching
conditions read

is added, with -, a suitable visco-elastic parameter

ony
ot
Tf(u,p)n-n:fs at 2.

u-n =

at X,

In fact, the coupling occurs only in the radial direction, so that we have to
complete the conditions at ¥ for the fluid problem by prescribing tangential
information, e.g., homogeneous Dirichlet or Neumann data.



In [57] an effective formulation to solve the FSI problem with a membrane
structure is proposed, whereas in [40] the accuracy of the FSI-membrane problem
is discussed in comparison to full 3D/3D FSI results. For the Hooke law, the
wall shear stresses computed with the two FSI models are in good agreement
for a distal arterial tract such as a femoropopliteal bypass. Instead, when larger
displacements are considered such as in the ascending aorta, the discrepancies
between the two FSI models increase as high as more than 10%. At a theoretical
level, it is interesting to note that the assumption of purely radial displacement
not only simplifies the computation, but also improves the properties of the
associated numerical ALE approximation [135].

Geometrical reconstruction of 3D domains To accurately simulate the
hemodynamics and fluid-structure interaction in patient-specific settings, the in-
dividual morphology needs to be retrieved from available images. This is possible
in different ways, depending on the source of the data (Computed Tomography,
Magnetic Resonance, Intravascular Ultrasound, Optical Coherence Tomography,
Positron Emission Tomography, to mention a few) [186]. This attains to the field
of image and geometric processing and the parallel progress of imaging devices
as well as computational geometry techniques led to terrific advancement in the
field. However, the reconstruction of vascular walls may be still troublesome as
some imaging techniques can reconstruct the interface ¥ (and thus the corre-
sponding lumen €2¢). This can be listed as another example of “lack of data”
and practical gap between data needed and actually available in cardiovascular
mathematics. Black Blood MRI can actually provide wall reconstruction (see
e.g. [5]), but when this is not possible a reasonable approach is to extrude the
interface ¥ along the outward unit vector by postulating a reliable function that
specifies the vessel thickness in the different regions of a district of interest. This
is the case reported in Fig. 1 for a carotid artery. In this example, thickness
was assumed to be constant.

For a comprehensive introduction to image and geometric processing in vas-
cular hemodynamics, see[3].

Parameter estimation for the constitutive laws To estimate the values
of the parameters in the coupled problem (1)-(3) several experimental methods
have been proposed so far, as the pulse wave velocity method, based on mea-
suring the rate of propagation of flow waves coming form the heart, to estimate
vessels compliance [33]. Alternatively, mathematical approaches based on the
solution of inverse problems have been recently proposed, such as a variational
approach based on the minimization of a suitable functional [148] and an ap-
proach based on the Kalman filter [23]. For a review of estimate procedures in
fluid-structure interaction see [20].

10



2.2 The 1D model

Numerical modeling of the whole cardiovascular system by means of 3D models is
currently out of reach because of the complexity of the computational domain,
that would require the acquisition and reconstruction of thousands (or even
more) vessels. This would lead to huge algebraic linear systems to be solved at
each time step, not affordable also for modern supercomputers, at least not for
clinical applications going beyond prototypes and proofs of concept.

On the other hand, in many applications the level of information of 3D
models exceeds the accuracy requested, in particular when we aim at modeling
the dynamics occurring at the systemic more than at a local level. In this case
it is preferable to adopt reduced models for which the computational efficiency
and the systemic breath are considered more important than the local accuracy.
One-dimensional (1D) models for the description of blood flow in a compliant
vessel where the only space coordinate is the one associated with the vessel axis
may provide a good trade-off among the different requirements. They have been
introduced almost 250 years ago by L. Euler [53], and then rediscovered in the
second half of the XX century in [14] - see also [94, 95]. The construction of
these models is the result of two steps.

1. The description of motion of an incompressible fluid in a single compliant
pipe. Only the axial dynamics is included; several simplifying assump-
tions are postulated - as we see later on - to apply conservation of mass
and momentum along one space dimension. A suitable constitutive law is
introduced to describe the relation between pressure and area of the pipe
to include the arterial compliance;

2. The coupling of different segments composing the arterial tree by writ-
ing appropriate interface conditions between the single-segment models
obtained at the previous step.

These reduced models do not allow to describe secondary flows. However,
they provide average quantities at a very low computational time, a desirable
feature that has been exploited since the '80s (see, e.g., [7, 103, 88]). It is worth
reminding the book [145] reporting accurate investigations of the circulatory
systems by means of Euler-like models.

Let us detail hereafter steps 1 and 2.

2.2.1 The Euler model for an arterial segment

One dimensional models may be derived in different ways. One of the most
popular (and more sound from a physical standpoint) moves from the full 3D
model and several simplifying assumptions on the behavior of the flow, the struc-
ture and their interaction. Hereby, we briefly sketch these assumptions and the
consequent modeling procedure. Ample details can be found, e.g., in [160] and
[146].

11



We assume the fluid domain to be represented by a cylindrical geometry or
more generally by a truncated cone. We refer for notations to Figure 2, where
a cylindrical coordinate system (7, ¢, z) is outlined. We make the following
simplifying assumptions: (i) the axis of the cylinder is fixed; (ii) for any z,
the cross section S(t,z) is a circle (i.e. no dependence on the circumferential
coordinate ¢ is assumed) with radius R(t, z); (iii) the solution of both fluid and
structure problems does not depend on ¢; (iv) the pressure is constant over each
section S(t,z); (v) the axial fluid velocity u, is dominant vs the other velocity
components; (vi) only radial displacements are allowed, so that the structure
deformation takes the form 1 = ne,, where e, is the unit vector in the radial
direction; more precisely, we set n(t,z) = R(t,z) — Ro(z) where Ry(z) is the
reference radius at the equilibrium; (vii) the viscous effects are modeled by a
linear term proportional to the flow rate; (viii) the vessel structure is modeled
as a membrane with constant thickness. As for assumption (vii), this is justified
by the well known Poiseuille solution for a 3D Newtonian incompressible fluid
in a circular cylinder, where the effects of viscosity are actually proportional to
the flow rate.

Figure 2: Fluid domain for the derivation of the 1D model.

To write the reduced model, we introduce the following quantities: A(t,z) =
|S(t, 2)| = TR(t,2)? (lumen section area), i(t,z) = A~1 fS(t,z) uy(t, 2)dS (mean
velocity), s(r/R) is a velocity profile such that wu,(t,r, z) = u(t, 2)s (r/R(t, z)),
Q(t,z) = py fS(t,Z) u, dS = prA(t, 2)u(t, z) (low rate), P(t,z) = A1 fs(tvz)p(t, 2)dS
(mean pressure).

As for the structure and its interaction with the fluid, we need a closure
condition that states a functional dependence of the pressure on the lumen area
(or equivalently on the displacement 7,) of the following form

P(t,z) = Pear + Y(A(L, 2), Ao(2), B(2)), (6)

where v is a given function satisfying g—ﬁ > 0, ¥(Ap) = 0 and P,y the external
pressure. Here 3 is a vector of parameters describing the mechanical properties
of the membrane. The condition on g—ﬁ responds to the intuitive expectation

that the area gets larger when the pressure increases.

12



By integrating over the sections & the momentum fluid equation (1a) in the
z— direction and the mass conservation law (1b), we obtain the following system

— +H{U)—+BU)=0 0,L),t>0 7
CRHU)S 4+ BU)=0  2€(0,1),1>0, 7)
T . fs u? 1t
where U = [A Q] is the vector of the unknowns, o = a2 — Al s (y)dy
u 0
is the so called momentum flux correction coefficient (aka Coriolis coefficient),
K, = —2mus'(1) is the friction parameter (due to the viscous nature of the fluid),
cl = %g—jﬁ, while
0 1
HU) = 2 8
(U) c%—a(%) 20[% ’ (8a)
0
BU)=| g @4 A ovod | A0v0B (8b)
A pf 0Ag Oz pf OB 0z

represent the flux matrix and the dissipation vector term. A complete derivation
of the model can be found e.g. in [145, 94], and [146].

Alternatively, one could introduce the conservative form of the 1D system,
which reads

U  OF(U)
=0 L), t
% T o, +8(U) z€(0,L), t>0, 9)
where F = [Q aQ*/A+ 1" and § = B — [0 §34 4+ S0 PBT with

Cl = fz?o C%.

For blood flow a classical choice of the velocity profile is s(y) = v~ !(y +
2)(1 — y7). For v = 1 we have o = 1 (flat profile), for v = 2 we have o = 4/3
(parabolic profile). Accordingly, we have K, = 2mu(y+2)(= 8mu for a parabolic
profile). Other, more sophisticated choices can be operated. For instance in [§]
the pulsatile Womersley profile - that is, the unsteady periodic counterpart of
the Poiseuille solution for the Navier-Stokes problem in a cylinder - is accounted
for, while in [24] an approximated velocity profile is generated at each time step
by solving simplified equations near the wall and in the core of the vessel.

The term aa’io in B is typically non-positive, as it accounts for the so-called
vessel “tapering”, i.e. the fact that the area of the lumen reduces when pro-
ceeding from proximal to distal direction. The term ‘3—[3 originates from possibly
different mechanical properties along the vessel, to describe, for example, the
presence of plaques or vascular prostheses. A special treatment of these terms
obtained by regarding Ay and 3 as fictitious unknowns to be added to the sys-
tem, is proposed in [128].

If A> 0, system (7) has two distinct real eigenvalues (see, e.g., [160])

Mo =oau+ \/c% + wla(a —1), (10)
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hence it is strictly hyperbolic (see e.g. [111]). Under physiological conditions,
c1 >> au, yielding Ay > 0 and Ay < 0, thus we have two waves traveling in
opposite directions.

A simple membrane law (6) can be obtained by (5) by dropping the shear
and inertial terms, leading to the following algebraic relation [60, 65],

VvVA—+A i THE
w(AvA()vB) :6 A 07 with B: { 2 (11)
0 -V
where v is the Poisson modulus of the membrane, F its Young modulus , and H

BVA
2p5 Ao

radial displacement 7, is linearly proportional to the fluid pressure, is successfully
considered in many applications, see, e.g., [181, 118, 80]. Other laws have been
proposed to account for other features of the arterial wall. For example the
following law stems from the generalized string model [163, 194]

24 0A O VA - VA,
V=g =~ g (VA Vi) + g

_ pSHS . . .
where m = J=— Vol the mass of the membrane, v a coefficient accounting for

its thickness, yielding ¢; = . This simple law, stating that the membrane

visco-elastic effects and a for the longitudinal pre-stress [71]. This generates
three differential extra-terms in the momentum equation that account for the
inertial, visco-elastic and pre-stressed effects, respectively (see [60] for the ex-
plicit expression of H and B in (7)). In [60] numerical results show that the
wall-inertia term is important for large mass and/or high frequencies, the visco-
elasticity term gives a small contribution, whereas the longitudinal pre-stress
is important for strong area gradients (i.e. in presence of severe tapering or
stenosis).

Different approaches have been introduced so far to account for visco-elastic
effects. For example, in [7] the author considers a dynamic Young modulus which
introduces a phase difference between applied forces and resulting displacements.
Non-linear elastic effects are described in [89, 169], by splitting the membrane
law in a non-linear elastic part and in a visco-elastic part. The first term is given
by a relation like (11) where however the parameter 8 depends non-linearly on
the pressure. As for the visco-elastic term, the authors consider the convolution
product between the elastic area and the derivative of a suitable creep function.
The numerical results reported in [176, 169] show the importance of including
non-linear terms and visco-elastic effects for the peripheral districts.

A more general membrane law is given by the following expression

(@) -()

see [191]. For collapsible districts such as the veins, in [128] the authors pro-
pose to use n; = 10 and ng = 3/2, which allows to properly describe the high
compliance of the veins. For a recent review on the 1D modelling of the venous
system, see [190].
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2.2.2 Assembling a network of 1D tracts

Once a model to describe a single tract is available, we can connect many of such
districts to represent a network of 1D models, in view of a description of the whole
large size arterial (and, possibly, venous) system. One of key aspects to obtain
realistic networks composed of several districts is modeling the bifurcations. As
a matter of fact, at the continuous level, mass and momentum conservations hold
at the bifurcations too. Referring to Figure 3, let B! be the proximal branch of
the bifurcation and B2, B2 the distal branches. Then, by denoting @° and A°
(i = 1,2, 3) the flow rate and area of the branch B’ at the bifurcation point, the
continuity conditions read

Ql Q2 4 QS
13
{ Ptl — Pt2 — Ptg’ ( )
) . i\ 2
where P} = Py + (A", AL, BY) + 2 (gz) ,1 = 1,23, is the total pressure

in the ¢—th branch. These condltlons descend from the continuity of mass and
momentum, respectively. With these interface conditions at the bifurcations,
the 1D network undergoes a stability estimate that ensures energy conservation
(up to the dissipative terms), see [2, 60, 178].

P}l = Poy + (A% 4}, B D)
42 QZ

Bl Al Q! Ql QQ + Q3
Ptl Ptg

" Q;\

Figure 3: Scheme of a 1D vessel bifurcation.
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2.2.3 Numerical discretization

For the numerical solution of problem (7), a common approach is based on the
Taylor-Galerkin scheme, and more precisely the Lax-Wendroff scheme coupled
with Finite Element space discretization, due to its excellent dispersion prop-
erties [58]. This scheme is explicit, so it is conditionally stable under the CFL
condition

At < 1 h
V3 (\/c% + w?a(a—1) + ]ﬂ\)

where h is the spatial gridsize and At the time step, that for simplicity we have
assumed to be constant.

This method may be used in association with an operator splitting technique
[60, 116], where the flow rate is split into two components, one satisfying the
pure elastic problem and the second one the visco-elastic correction.

A high-order discontinuous Galerkin approximation is considered in [178,
177], allowing to propagate waves of different frequencies without suffering from
excessive dispersion and diffusion errors, so to reliably capture the reflection
at the junctions induced by tapering. Alternatively, a high-order finite volume
scheme is presented in [129] and a space-time finite element method is proposed
in [204]. Recently, a series of benchmark test cases with an increasing degree of
complexity is presented in [35] to compare different numerical schemes.

2.2.4 Further developments and comments

Validation of 1D models. The accuracy of the solution provided by the 1D
model is addressed in several works. Among them, we cite [7], where a network
of 128 vessels is considered for the description of the whole system, and the
numerical results have been compared successfully with measurements taken in
the ascending aorta, descending aorta, brachiocephalic and right common iliac
arteries; [181], where the numerical results obtained in aorta are shown to be in
good agreement with MRI measurements; [118, 128], where a comparison with
in vitro measurements is performed for a complete network of the system; [169],
where a comparison with clinical measurements is addressed, with a particular
focus on the circle of Willis; [181], where a validation is presented for the case
of a by-pass graft.

In order to remove the quite stringent assumption of rectilinear vessels, a 1D
modeling procedure on general axes is investigated in [78]. A follow up of this
seminal paper can be found in [2].

Tuning the parameters. The choice of suitable parameters in the 1D sys-
tem, in particular in the membrane law, is crucial to obtain accurate solutions.
Besides parameters settings based on a “trial and error” approach, a more sophis-
ticated strategy based on the minimization of a suitable functional is proposed
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in [117] and then analyzed and applied to a real case in [120].
An alternative approach based on the so called director theory can be found
in [170].

Accounting for the surrounding tissue. The presence of surrounding tis-
sues can be integrated in 1D models in the description of the vascular membrane.
For example, if the surrounding tissue is supposed to behave as an elastic body,
we deduce from (3) that the effective elastic modulus B\ to be used in the vessel
law is f = B + agr [65].

Hierarchically refined 1D models. One of the possible drawback of 1D
models presented so far is that the dynamics occurring transversally to the axis
of the domain is neglected. Even though over a systemic scale this may be
acceptable, local dynamics may be important and worth to be included in the
model. As an alternative to full 3D modeling (and somehow to the geometric
multiscale models addressed later on), in [151] a form of hierarchical modeling
is introduced to reduce the full 3D problem to a system of “psychologically”
1D models. Conceptually, this approach consists of coupling a classical finite
element discretization along the axial direction with a spectral approximation
of the transversal components. The rationale is that a few modes are expected
to be enough for reliably capturing the transverse dynamics. In addition, the
number of modes may be adaptively selected in different regions of the system
[152, 1]. See [150] for a comprehensive introduction to this method and [25] for
applications to hemodynamics.

2.3 Lumped Parameter Models

In early days, modeling of large portions of the circulation was almost invariably
based on the concept of compartment. A compartment is a functional unit that
makes sense to consider as homogeneous. Per se, this is a quite generic definition,
since “being homogeneous” depends on the application and on the purpose of
the models. We may say that for modeling circulation, a compartment is a set
of vascular districts that is appropriate to regard as a unit for the application
at hand.

For instance, when investigating fluid-dynamics in the aortic arch, local de-
tails of blood flow in the lower limbs are most likely not needed, yet it is impor-
tant to include the macroscopic effects induced by peripheral sites on the region
of interest. This is even more important in case of pathologies. This may also
result in simple “in-out” relations or transfer functions. The latter do not nec-
essarily rely upon physically based arguments and sometimes empirical models
with an accurate parameter identification can work.

In this work we are interested in performing a dimensionally heterogeneous
coupling, where compartment models are eventually coupled with the physically
based 3D and 1D descriptions of the previous two sections. For this reason,

17



~  dQ = = ~ 4P
P=L-= P=R =C—
dt Q @ dt

Resistance <> Viscosity Inductance < Inertia Capacitance <> Compliance

Figure 4: Electric/Hydraulic analogy: the elementary components. In the box
we report the mathematical description of each component.

here we proceed with a bottom-up approach, where we first motivate possible
lumped parameter descriptions of basic functional units like an arterial segment
sticking with a physical modeling and following up the arguments of the previous
section. Moving from these elementary components, we then consider more
complex functional units and show how they can be assembled from elementary
components.

2.3.1 Lumped Parameter Modeling of an Arterial Tract

Let us consider an arterial segment as done in Figure 2. We are not concerned
about the actual shape of the segment and its axis, we simply define the abscissas
zp and z4 corresponding to the proximal and distal boundaries of the segments
respectively. Still using the notation introduced in Section 2.2.1, our aim is to
describe the average flow rate and pressure in this region, defined respectively
as

Zd

O(t) = ;7@(1&,2) iz = plf/d / ws(t, ) dSdz,  P(t) = }/P(t,z)dz _ ;/d / p(t, 2) dSdz,
- ) ()

zp S(t,z Zp zp S(t,z
(14)
where [ is the length of the segment and V' the volume.

Our aim is to describe the dynamics in time of () and P in the compartment.
Moving from the Euler equations (7) we integrate along the axial direction. In
doing this, we add some new simplifications. We drop the nonlinear convective
term as in the peripheral sites the Reynolds number is usually fairly small, hence
the impact of the nonlinear term on the compartment dynamics is secondary. In
addition, we consider the area and the other parameters to be constant in the
region where we perform the average. This basically means that we will retain
nominal values for these parameters, as representative of the entire compartment.
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If we take the longitudinal average of the tract on the momentum equation,
we loose any space dependence and obtain the ordinary differential equation

p142 | piFl

0+P,—DP,=0 15
Ao dt A2 @+ Fy— 1 =0, (15)

where ﬁd and ﬁp are the distal and proximal pressure, respectively. When taking
the longitudinal average of the mass conservation law, under the assumption that
the time variations of pressure are linearly proportional to the time variation of
the area, we obtain [146]

VAol @

5@ +Q4—Qp =0, (16)

where Q\d and @p are the distal and proximal flow rate, respectively.

The two equations (15)-(16) represent a compartment model for an arterial
tract. Notice how three main effects are driving the motion of blood, (i) the
blood inertia, (ii) the interaction with the wall, and (iii) the viscous resistance.
While these effects are distributed along the 1D domain in the Euler equations
(7), theyiire lumped in specific terms of the equations (15)-(16). In fact, the

d l
term Ld—cf, with L = %, corresponds to the blood acceleration, so it is an
0
o . A _ prKRI
inertial term. The algebraic term R(Q), with R = YERR stems from the blood
0

VAol

dP
viscosity, while C e with C' = , is due to the time variation of the section

as a consequence of fluid-structure interaction.

Systems formally similar to (15)-(16) occur in different fields of applied math-
ematics. For instance they are obtained when studying the equations of a hy-
draulic network [97] (with a coupling of 1D-0D models) and of a co-axial cable
(see e.g. [174, 155]). In this respect, it is possible (and popular) to establish an
analogy between terms in the electrical as well as in the fluid-dynamics contexts,
where the role of the flow rate for fluid-dynamics is played by the current, and
the pressure is corresponded by the voltage. This allows to adopt the symbol-
ism of electrical circuits also in modeling the circulation. In particular, the three
contributions mentioned above are mathematically described by simple algebraic
and differential equations, stated in the Table 2.3.1. The corresponding symbols
in Circuits Theory are depicted in Fig. 4.

The parameters involved in these equations depend on the specific features
of the arterial tract. For instance, if we assume a circular cylinder with radius
Ry and a Poiseuille like flow, we obtain the following parameters [146],

_sul . pjl _ 37R3

R=—, = = .
wré 7rR(2) 2FH,
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Fluid-dynamics Electric Parameter | Equation ‘

Viscosity Resistance R P =RQ
Inertia Inertance L P= C;Cf

. dP
Compliance Conductance C Q C I

Table 1: Table of analogy for hydraulic networks-electrical circuits.

In general, the fine tuning of these parameters may be troublesome in particular
in a patient-specific setting. Beyond specific assumptions on the shape and the
flow regime in the artery, this parameter estimation may be pursued also by
experimental or data assimilation procedures [23].

To finalize the circuit analogy, we may conceptually organize the different
lumped contributions to the dynamics into different sequences from the proximal
to the distal side of the artery. For instance, we may consider to localize the
unknown pressure P at the proximal section, so to have P~ ﬁ and to assume
correspondingly that the distal pressure Pd is given. Similarly we assume that
the flow rate Q is approximated by Qd and that the proximal flow rate Qp is
prescribed. Then, from (15)-(16), the Lumped Parameter Model (LPM) reads

P L@ — RQ =Py,
dt
(17)

~

g + Q = Qpa
corresponding to the circuit depicted in Fig. 5(a). Other sequences are depicted
in the other panels of the same figure. Notice that the difference among all
these schemes is drawn by different choices to approximate the unknowns P and
Q. For example, in Fig. 5(b) we have used P ~ P; and @ ~ @), and so on.
With a slight abuse of notations, we may say that the different schemes differ
because of the different “boundary conditions” (the misuse being motivated by
the fact that we have actually lost space dependence in these models) - see [146]
for a more extensive discussion. We can consider likewise different ways for
localizing the different effects (that are actually distributed in space) leading
to different schemes. Even though these schemes are equivalent in terms of
functionality, their different formulation plays an important role when coupling
with dimensionally heterogeneous models, as we will see in Section 5.

A central tool for the quantitative study of linear circuits and then of lin-
earized hydraulic networks is the Fourier transform, that allows to promptly find
the frequency response of the system by downscaling the differential equations
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Figure 5: Different lumped parameter schemes for an arterial tract. (a) £ net-
work. (b) L-inverted network. (c) m network. (d) 7 network.

in time to algebraic equations in the frequency domain [172]. More precisely, let
us denote by R(w) the Fourier transform of a function R(t),
00
R(w) = / e It R(t)dt,
—o0
where w is the frequency and j is the imaginary unit. Then, thanks to the
properties of Fourier transform, we promptly find that for the LPM (17)

7Ed(W)
Qp(w)

where the matrix M(w) is called transfer matriz. The time dependent functions
P(t) and Q(t) can be computed by inverting the transform (antitransform).

1—-w?LC + jwRC R+ jwL
jwC 1 ’

= M(w) ., with M(w):[

2.3.2 From an arterial tract to a compartment

The lumped parameter modeling of an arterial tract was based on averaging
axially the Euler equations with the addition of some simplifying assumptions, so
it was essentially a physically based description. When modeling more complex
vascular districts or regions, we may either adopt empirical arguments aimed
at a pure functional description, or patching together several elementary tracts.
Hereafter, we describe the two approaches, the former in particular is used for
simple descriptions of terminal vessels as the ones depicted in Fig. 6. In this
case, the concept of peripheral impedance, i.e. the transfer function between
the Fourier transform of the peripheral flow rate and pressure, is of primary
relevance.

The latter approach is based on classical continuity arguments and may be
used for an accurate description of several segments of the circulatory network.
Among the compartments that it is worth considering as a unit when described
by a LPM, we include the heart too.
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Lumped Parameter Models of terminal vessels In many applications one
simple compartment is enough to describe the entire arterial system downstream
a region of interest, especially if we are interested just in the effects of peripheral
circulation on that region. We remind here just the most popular LPMs used to
this aim.

(a) In the windkessel model [206], the action of the peripheral districts is modeled
by an average resistance and capacitance, as depicted in Fig. 6(a). The name is
windkessel, after Otto Frank [70], as the device to convert periodic to continuous
water flow by German firemen. The impedance Z(w) at the entrance of the
windkessel model is the transfer function between the Fourier transform of the
flow rate and of the pressure, 73(w) = Zwk (w)@(w) and it reads

R

Z, =
wk (W) 1+ jRCw

(b) In order to have a better fitting with data, this original model has been
modified in the so called 3-element windkessel (sometimes called Westkessel to
honor N. Westerhof). In this model, a second resistance is added before the
windkessel compartment, having the terminal impedance

B Ry + Ro + jwR 1 R2C

Z,
Wkg(w) 1 +jUJRQC

see Fig. 6(b).

(c) A further improvement foresees the addition of an inductance element as
illustrated in Fig. 6(c) (called 4-element windkessel model [182, 183]). The
impedance in this case reads

7 (w) . RiRy — CRleLUJQ +jw(R1 + Rz)
R T TR — CRyLw? + jw(L + CR1Ry)

To complete this description we mention also the low pass filter proposed
in [81] (corresponding to the 3-elements windkessel model with R; = 0) as a
scheme for the distal circulation of cerebral vasculature.

The family of these “windkessel like” models serves the purpose of describing
peripheral districts at a first level of approximation. Unfortunately, it may fail
for a more precise description of propagative dynamics associated with the pe-
ripheral circulation. For this reason, more sophisticated approaches have been
proposed. In particular, the structured tree model [139] assumes an asymmetric
self-similar structure for the peripheral network, where each segment is repre-
sented by a transfer function retrieved from the (linear) wave theory and an
appropriate constitutive law is assumed for branching. Below a certain thresh-
old of the vessel radius a purely resistive impedance is assumed to hold. See [138]
for more details, while recently an alternative formulation has been proposed in
[42]. We also mention [100] and [189] where proper outflow conditions for the
coronary tree and cerebral aneurysms, respectively, are discussed.
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Figure 6: Lumped parameter models of terminal vessels. (a) windkessel; (b)
3-element windkessel; (c) 4-element windkessel.

Connecting different tracts Another way for describing the arterial network
is based on the connection of several elementary tracts like the ones introduced
in the previous section. To do this, we need appropriate matching conditions
at the interface of the different units. These stem from continuity arguments
derived from mass and momentum conservation, similarly to what done for con-
necting different tracts in 1D models as in Sect. 2.2. However, in this case, since
the nonlinear convective term is dropped, the total pressure and the pressure co-
incide. In the analogy between hydraulic and electric networks, these principles
are corresponded by the so called Kirchhoff laws, that formulate conservation of
mass at nodes, while at nets ensure momentum conservation.

In the frequency domain, continuity of flow rate and pressure yields a con-
venient description of the transfer function of the network. If a sequence of two
compartments C; and Cs is described by the transfer matrices M; and My, the
interface conditions read

Pii(t) = Pyalt), Qai(t) = Qpalt),

so that in the frequency domain we have

Ppa| _ M P ’ Ppa| _ M, Paz| _ |Ppr| _ My M, Paz 7
Op.1 Qa1 p2 Q2 Op.1 Qa2
showing that the transfer matrix of the sequence is simply given by the product

of the matrices of the components.
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Figure 7: Connection of different compartments for a carotid bifurcation. The
distal district is given by a 3-element windkessel.

In Fig. 7 we represent the sequence of three compartments, the first two are
two arterial tracts, followed by a 3-element windkessel.

Lumped Parameter Models of the heart The heart is a complex organ
featuring different dynamics (electrical, fluid and structure) ranging over multi-
ple scales, from the cell to the organ one. However, when simulating the entire
circulation in most of the cases we are not interested in all these different aspects
and the heart can be considered just as a functional unit triggering the dynamics
of the entire system. The coupling between the heart and the circulation is a
truly two-way dynamics [131] and the influence of the arterial network on the
heart functionality may be important in particular in presence of pathologies
that induce a cardiac overload. In clinical practice a lumped parameter model
of this coupling may help clarifying these mutual interactions [61].

An empirical and simple description of the heart leading to lumped parameter
models is given for instance in [92] where each ventricle is represented as a
deformable chamber whose compliance is time-dependent. In fact, let E be the
Young modulus of the cardiac tissue. Since muscles exert different actions during
the heart beat, I/ will be in general a function of time. Associated with this we
introduce the compliance

_2nld
o) = E(t)ho’

where [y is a reference length for the ventricle and hg is a reference thickness of
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Systemic Loop

Figure 8: Schematic representation of the circulation by a lumped parameter
model including the heart, the arterial system and the venous one. Adapted
from models.cellml.org. lv=left ventricle, ao=aortic, ml=mitralic, la=left
atrium, as=aortic sinus, at=arteries, ar=arterioles, cp=capillaries, vn= venous.

the myocardium. The classical Laplace law between pressure and volume of a
pressurized chamber leads to the equation

A~ dC' = dP
Q) = S Py + € + Ma(1),
where Mg is the time dependent action of muscles. More complex models can
be considered as well, see e.g. [173]. Coupling with the circulation is mediated
by valves, whose behavior cannot be described by the elementary components
depicted in Fig. 4. In the analogy with electric circuits, valves can be func-
tionally represented by diodes. The latter have a nonlinear two-state behavior
corresponding to the two possible conditions “open” (closed circuit that we may
represent as a zero resistance segment) or “closed” (open circuit, infinite resis-
tance segment).

An example of a complete network including the two ventricles, the arterial
and the venous loop is reported in Fig. 8.

2.3.3 On the numerical solution of Lumped Parameter Models

Linear networks can be solved analytically in the frequency domain, by standard
application of transform techniques. However, in many applications of interest,
the networks feature complex topologies and nonlinear elements like diodes, so
numerical approximation in the time domain provides a viable tool for quan-
titative analysis. In mathematical terms, the combination of constitutive laws
describing each compartment and the continuity interface condition between the
compartments leads to the formulation of a system of differential and algebraic
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equations (DAE systems) that takes the form

AY L fity,2) = gl0), (182)
Gy + Mz = ¢(1), (18b)

t > 0. Here y is the set of n variables whose time dynamics describes the state
of the system (pressure and flow rates in the different locations of the network
associated with capacitance and inductance effects respectively) and z is a vector
of m additional variables needed to close the description of the network by the
application of the balance conditions (Kirchhoff laws, given by (18b)); A is a
n x n matrix, G is m x n and M is m x m. The term f(¢,y,z) is in general
nonlinear for the presence of diodes. g and ¢ represent forcing terms. We assume
that initial conditions y(0) = y, are prescribed at ¢ = 0. In the case of interest
for cardiovascular applications, the square matrix M is generally nonsingular.
This qualifies system (18) as an index 1 DAE system and we may reduce it to a
classical Cauchy problem

AY 4ty M7 (e - Gy) = g(0)

y(0) = yo,

for which several well established numerical methods exist [36]. Among the
others we mention Runge Kutta methods that are particularly prone to time-
adaptive strategies that allow an automatic selection of the time discretization
step to fulfill user-defined accuracy requirements. We do not enter into details
here, the interested reader is referred to [108, 162].

2.3.4 Further developments

The actual functioning of the circulatory system includes effects that cannot
be simply described by fluid-dynamics and fluid-structure interaction equations.
Living systems adapt to different conditions. For instance, running requires
an increment in oxygen delivery to lower limbs that may be obtained by an
increment of the blood pumping rate and a vasodilation in the districts interested
by the physical exercise. These regulatory dynamics involve the interaction
between fluid, mechanics and chemical reactions occurring in several parts of
the network according to different mechanisms. For instance, a constant oxygen
delivery to the brain tissues is guaranteed by complex dynamics that go under
the name of autoregulation.

A comprehensive description of these aspects is out of the scope of the present
work. We remind however that lumped parameter models are particularly fitted
to provide quantitative models since they are able of covering large portions of
the network and of providing simple but reliable empirical models of complex
dynamics occurring at different time scales. The interested reader is referred to
[140, 146] and the references therein mentioned.
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3 Boundary conditions: what we have, what is miss-
ing

When solving blood flow problems with any of the stand-alone models introduced
in the previous section, we are faced with the issue of the data to be prescribed
as boundary conditions for the 3D and 1D models or as forcing terms (that
surrogate boundary conditions) for 0D models.

In clinical settings, data are retrieved from in vivo measures. This can be
done in many different ways and an extensive analysis of possible sources of
data is certainly out of scope of the present work. In general, measures may
refer to pointwise velocities on a (strict) subset of inflow/outflow boundaries
of a vascular district (e.g. with PC-MRI) or indirectly to average quantities
like the flow rate over a section; for the pressure, data (in particular obtained
by noninvasive measures) are almost invariably an average information over a
section of interest. Quite often there are practical difficulties in retrieving data
at the distal (outlet) boundaries and no patient-specific information is available.
These practical problems clearly add specific issues to the boundary treatment
of mathematical and numerical models.

Specifically, if we are using a 3D model in deformable domains that corre-
spond to tracts of arteries that are artificially truncated, the correct prescription
of boundary conditions needs to address several concerns. On the one hand, we
need to prescribe conditions consistent with the propagation dynamics described
by the FSI that in particular avoid spurious reflections at the outlets. On the
other hand, partial (or absent) measures need to be properly completed to make
the 3D model well posed. The additional - somehow arbitrary - conditions need
to be consistent with the physical problem. This is discussed in Sect. 3.1.

When dealing with 1D models, the lack of boundary data is in general less
troublesome (as a matter of fact, one average-in-space quantity per boundary
point makes the continuous problem well-posed). However, the hyperbolic na-
ture of the 1D model still raises issues of prescribing conditions at the outlets
in a way consistent with the propagation dynamics. In addition, numerical dis-
cretization usually requires extra conditions that are absent in the continuous
problem, yet need to be retrieved in a way consistent with the orignal model.
This calls for special care for boundary treatment as we will see in Sect. 3.2.

Finally, we have already pointed out that in spite of the lack of space de-
pendence in 0D models, prescription of input physically corresponds to localized
data and the type of those data needs to be compatible with the nature of the
lumped parameter model. This is discussed in Sect. 3.3.

3.1 3D defective boundary problems

Mathematical theory of the incompressible Navier-Stokes equations states that
we need to prescribe three scalar conditions at each point of the boundary.
This is almost invariably impossible in clinical settings. As pointed out, phase-
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contrast MRI provides for instance velocity data only in selected points of a
vascular domain that typically do not cover the entire entrance section I' of a
vascular district [127]. Alternatively, the flow rate Q(¢) can be obtained at I" by
proper elaboration of data retrieved e.g. by the Echo-Doppler technique based
on ultrasound [175] or by thermal images [114] - see also [208, 99]. Moreover,
as we will see in Sect. 4 and 5, the prescription of defective data for the 3D
model is a crucial issue in view of the geometric multiscale approach we are here
reviewing. For all these reason, we consider the following flow rate condition

pf/ru-nah:@. (19)

Similarly, at both the inlet and outlet sections available pressure data P(t) are
considered representative of an average estimate, i.e. we have

1
|F|/de'y =P (20)

Conditions (19) and (20) are called defective in the sense that they prescribe
just one scalar function over the entire section I', marking a clear gap between
theory and practice that needs to be filled up to get quantitative solutions to the
problem. Hereafter we illustrate some of the most common strategies to pursue
this goal.

3.1.1 Flow rate condition

Empirical approach. The most immediate way to prescribe condition (19)
consists in choosing a velocity profile g such that for each ¢

pr [ 9t)ma = Qo). (21)

In this way, flow rate data are converted into standard Dirichlet conditions. This
is a popular strategy in computational hemodynamics. Classical choices for the
velocity profile are the parabolic one, which works very well for example for flow
simulations in the carotids [37], the flat one, which is quite often used for the
ascending aorta [126], and the one based on the Womersley solution. Notice
that both the parabolic and Womersley profiles require a circular section to be
prescribed on. Non-circular sections require an appropriate morphing [84].

Unfortunately, in spite of its straightforward implementation, the a priori and
arbitrary assumption on the velocity profile has a major impact on the solution,
in particular in the neighborhood of the section. To reduce the sensitivity of the
results to the arbitrary choice of the profile, the computational domain can be
artificially elongated by the so called flow extensions, thus involving additional
computational burden.
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Augmented formulation based on Lagrange multipliers: rigid walls.
The augmented formulation was proposed in [59] for the case of rigid walls and
for a steady/linear Stokes fluid model. Following this approach the flow rate
boundary condition (19) is regarded as a constraint for the solution of the fluid
problem. As such it is enforced by a Lagrange multiplier approach in a way
similar to the incompressibility. Being a scalar constraint, we need a scalar
multiplier A, resulting in the following weak formulation: Find w € V, p € Q
and A € R such that for all v € V, ¢ € Q and ¢ € R, it holds

u(Vu—i—(Vu)T,Vv) — (p,V'v)—l—)\/Fv~ndfy = F(v),
(¢, V- u) = 0, (22)

wpf/ru-nd'y = Y@,

where V = {v € (H'(Qy))? : v|g, = 0}, p being the portion of the boundary
where Dirichlet conditions are prescribed, Q = L?(2), F' accounts for possible
non-homogeneous Dirichlet and/or Neumann conditions on 02y \ I', and (-, ")
denotes the L? inner product.

It is possible to prove that beyond the flow rate condition (19)

1. the augmented formulation prescribes a constant traction on I' aligned
with its normal direction;

2. the constant coincides with the Lagrange multiplier A,

that means
—pn+p (Vu + (Vu)T> n=>M onl.

From the quantitative view point, the overall result is that a constant-in-
space traction is prescribed (the constant being unknown) resulting in a less
stringent condition than the Dirichlet one of the empirical approach. This
method is particularly suited when the artificial cross section is orthogonal to
the longitudinal axis, so that vector n is truly aligned along the axial direc-
tion. Generalization of this strategy to the unsteady/non-linear case can be
found in [195], the unknown Lagrange multiplier variable being a function of
time (A = A(¢)). Inf-sup condition for the twofold saddle point problem (22) is
proved [195].

For the numerical solution of this formulation, one could rely either on a
monolithic strategy where the full augmented matrix is built and solved, or on
splitting techniques. In particular, in [59, 195] it is proposed to write the Schur
complement scalar equation with respect to the Lagrange multiplier, leading to
an algorithm where two standard fluid problems with Neumann conditions on
I" need to be solved at each time step (exact splitting technique). The latter
approach preserves modularity, that is it could be implemented using avail-
able standard legacy fluid solvers in a black box fashion. This is an interesting
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property in view of the application to cases of real interest, as done e.g. in
[203, 200, 154].

To reduce the computational time needed by the exact splitting approach,
in [196] a different splitting procedure is proposed, which introduces an error
near the boundary that is however always remarkably smaller than the one
produced by the empirical approach. This strategy (called inexact splitting
technique) requires the solution of just one standard fluid problem at each time
step, thus halving the computational time with respect to that of the exact
splitting technique.

To extend the augmented approach to the case of n flow rate conditions one
Lagrange multiplier has to be introduced for each condition. In this case, the
exact splitting procedure requires the solution of n 4+ 1 fluid problems at each
time step (see [59]), whereas the inexact procedure still needs to solve just one
fluid problem.

Another approach, holding for the case of single as well as multiple flow rate
conditions, is to perform an appropriate factorization of the augmented algebraic
system that allows to reduce the computational costs with no extra errors, as
recently addressed in [130].

The augmented formulation has been extended to the quasi-Newtonian case
in [52].

Augmented formulation: compliant walls. The extension of the aug-
mented formulation to the case of compliant walls is addressed in [67]. There are
basically two strategies we may consider. In the former (“split-then-augment”)
we first split the fluid-structure interaction problem in a segregated way, so to
apply the augmentation procedure to the fluid subproblem at each iteration of
the partitioned algorithm. In this case, one of the approaches described for the
rigid case can be applied straightforwardly. This method is successfully consid-
ered in real settings in [159].

In the latter strategy (“augment-then-split”) we directly perform the aug-
mentation on the FSI problem. At the numerical level, we still have the option
of pursuing either a monolithic or a partitioned approach. In the former case,
suitable preconditioners are mandatory [44]. In the latter one, the problem can
be formally reduced to the Schur complement equation for the sole A. This ac-
tually implies at each time step the solution of two standard FSI problems with
Neumann conditions on I', thus preserving modularity with respect to available
FSI legacy solvers [67].

3.1.2 Mean pressure boundary conditions

To prescribe the mean pressure condition (20) we can follow an approach similar
to the empirical one, where a velocity profile is arbitrarily selected to fulfill the
given flow rate. In this case, we can postulate that the pressure on I' is constant

30



and that the normal viscous stress can be discarded, so that
pn— (Vu + (Vu)T) n=Pn onl. (23)

The previous assumption is generally acceptable because the pressure changes
in arteries mainly occur along the axial direction.

This approach results in the prescription of a standard Neumann condition,
being the average pressure considered as the boundary traction. In the process
of numerical discretization, for P = 0 it requires no further action than just
assembling the matrix for homogeneous Neumann conditions. Therefore this has
been called “do-nothing” approach [87]. This name is suggestive, however it has
to be kept in mind that an “action” is actually performed (even if implicitly) [194,
193]. For instance, for the Stokes problem, the do-nothing approach corresponds
to the following weak formulation (for the sake of simplicity we still refer to the
steady case): Find w € V and p € @ such that for all v € V and ¢ € @Q, it holds

u(Vu+(Vu)T,Vv)—(p,V-v) = P/F'v-nd7+F(v),
(q,V-u) = 07

(24)

where we have used the same notation introduced for the augmented formula-
tion (22). Even if (23) is an approximation, for a section I' orthogonal to the

longitudinal direction the contribution / 7 (Vu + (Vu)T) ndy is in general
r

expected to be very small if compared to fF pdy.

Besides the grad-grad formulation (24), other weak formulations may be con-
sidered as well for the do-nothing approach, for example the curl-curl formulation
having the pressure as natural condition. In this case, the do-nothing approach
corresponds to the boundary condition

p=PFP onl,

the only assumption being that the pressure is constant on I', without any further
request on the smallness of the viscous boundary term (see [41, 194, 195]).

Remark 1. In principle, also mean pressure conditions (20) can be enforced
using a Lagrange multiplier approach, as done for the flow rate problem. In a
somehow dual situation to the case of flow rate conditions, the Lagrange mul-
tiplier in this case represents the normal velocity to the section I' and the aug-
mented approach is implicitly forcing it to be constant in space. While a constant
pressure over I' is an acceptable approrimation, the same is not true for a normal
constant velocity. For this reason, the augmented Lagrange multiplier approach
for mean pressure conditions does not represent a reliable option.

Remark 2. A do-nothing formulation for the flow rate conditions is possible
too, see [87, 194]. As a matter of fact, this was the first attempt to provide
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a mathematically sound formulation to the flow rate problem. This approach
relies on the introduction of a set of functions that represents the lifting of the
flow rate data inside the domain, in a way similar to what is done for standard
Dirichlet conditions. See also [41] for a curl-curl formulation. However, the lift-
ing functions, called flux-carriers, are not easy to construct in general. Because
of that, the do-nothing approach for flow rate conditions is not very popular.
Nevertheless, it is worth noting that this formulation implies that the traction
on I' is constant and aligned with its normal - see [194] - as for the solution
found with the Lagrange multiplier approach. We argue therefore that the do-
nothing approach for flow rate conditions computes the same solution found by
the augmented formulation (22).

Remark 3. A popular weak formulation of the incompressible Navier-Stokes
equations discards the divergence free term (Vu)T in the definition of the fluid
Cauchy stress tensor (2), so for a constant viscosity we have V - (1 (Vu)') = 0.
This allows to have a block-diagonal pattern in the corresponding Finite Element
stiffness matriz arising after space discretization. It is pointed out in [87] that
with this simplified formulation, the associated do-nothing condition at I, pn —
uNVun = Pn, is more appropriate for artificial boundaries than (23), since it
computes correctly the Poiseuille solution - as opposed to the case with the term
(Vu)'. In [194, 193] it is however pointed out how mized Dirichlet/Neumann
conditions at the artificial boundary (prescribing Neumann conditions only in the
normal direction and homogeneous Dirichlet in the tangential ones) can correctly
capture the Poiseuille solution even with the complete formulation of the fluid
stress tensor.

3.1.3 A control-based approach

A different strategy for the fulfillment of condition (19) is based on the mini-
mization of the mismatch functional

J<v>=§</rv-ndv—c2)2, (25)

constrained by the fact that v satisfies the incompressible Navier Stokes equa-
tions [66].

This strategy is somehow the dual of the augmented strategy, where the de-
fective boundary data were considered as a constraint to the energy minimization
of the fluid. Instead, in the current approach the aim is to minimize (25) with the
constraint given by the fluid equations. The constrained minimization problem
leads to the Karush-Kuhn-Tucker (KKT) conditions, whose numerical solution
can be obtained by iterative algorithms. In particular in [66] the normal traction
on I' is used as control variable for the minimization of the mismatch functional.

In [67], this approach is considered for the compliant case. In particular,
a fast algorithm based on a convenient combination of the iterations of the
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partitioned FSI solver and of the constrained minimization has been introduced.
In [109, 73, 74], the extensions to the non-Newtonian, quasi-Newtonian, and
visco-elastic cases are addressed.

The same approach can also be used to fulfill the mean pressure conditions
(20) over one or several boundary sections. This allows to prescribe a mean
pressure condition on a section oblique with respect to the longitudinal axis too.
In this case the control variable is the complete traction vector, that is also the
direction of the traction is a priori unknown [66].

Two-dimensional numerical results highlight the accuracy of the control-
based approach for the prescription of both defective conditions (19) and (20)
at a computational cost which is comparable with the one featured by the exact
splitting strategy introduced to solve the augmented problem.

Remark 4. The above constrained minimization approach resembles variational
methods of Data Assimilation - see e.g. [47, 48, 20, 197]. In this variational
context, a further possibility consists of including in (25) some sparse measures
available not only on the boundary but also inside the region of interest. The aim
could be to either driving the solution to match (in some sense) these data [48],
possibly including stochastic information on the measurement error to quantify
the uncertainty affecting the final assimilation [49], or obtaining a better estimate
of one or more parameters of physical interest, e.g. the wall compliance [148,
21, 207].

3.1.4 Further developments and comments

A defective Nitsche-like approach. The original idea of Nitsche of prescrib-
ing Dirichlet conditions with a penalization approach [132] has been recently
extended to the case of flow rate boundary conditions in [209]. This strategy
does not augment the variables of the original problem, however it introduces
a parameter for the penalization that needs to be properly tuned. In addition,
it deals with non standard bilinear forms that require ad hoc implementation.
Two dimensional numerical results shown in [209] highlight the accuracy of the
method, whereas three-dimensional results reported in [158] demonstrate that
this is an effective approach for real applications. A similar approach has been
extended to fulfill the mean pressure condition (20) and the FSI case in [198].

Defective boundary conditions for the structure. In some circumstances,
boundary information available on the (artificial) arterial cross section (indicated
by the circular annulus I'y in Figure 9) might be insufficient to provide the
boundary conditions that are required to “close” the structure problem. This
is e.g. the case where the only data available is the area of the cross-sectional
lumen T, that is the real number (function of ¢) A(t). In this case we have

21 rRO(@) 41" (tp)
/ rdrdp = / / rdrde = A(t), (26)
r(t) o Jo
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Figure 9: Artificial section I' for the structure problem.

where r and ¢ are the radial and angular coordinates respectively. Here RY is
the distance of a point of the line ¥ = 9I'y N O from the center of mass of
I'°, and 7" is the radial displacement of the structure. This may be read as an
average condition on the displacement (formulated in polar coordinates) of the
line W.

The single (scalar) condition (26) is (by far!) incomplete to close the struc-
tural problem (le) in I'y (note that Dirichlet or Neumann conditions would
provide three conditions on every point of I'y). We are therefore dealing with a
situation of defective boundary conditions for the structure, similarly to those
already faced for the fluid problem.

Proceeding as for the empirical approach to prescribe flow rate conditions
(that were recast in pointwise conditions by an assumption on the velocity pro-
file), we can here assume that the radial displacement at the line ¥ is independent
of ¢ [62, 98]. To reduce the impact of the arbitrary assumption on the shape of
the section, moving along similar lines as for the flow rate conditions, a control-
based approach can be pursued based on the minimization of an appropriate
mismatch functional [64] .

On the prescription of defective Robin conditions. Often, in computa-
tional hemodynamics one has to deal with the following defective Robin bound-
ary condition

1
R/u~nd’y+ pdy =M, (27)
r T Jr

obtained by a linear combination of conditions (19) and (20); M is a given scalar
function of time, and R is a parameter that can be either measured or set up to
damp spurious reflections induced by the truncation of the domain of interest
[202, 136, 133, 98].
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The prescription of such a condition for R € (0, +00) is discussed in [202],
where a monolithic approach has been proposed, in [68] for the case of the
augmented and control-based formulations, and in [198] for the Nitsche strategy.

Remark 5. Using Neumann conditions at the downstream artificial sections
might induce numerical instabilities. These are usually called backflow instabil-
ities because they are typically triggered by the backflow in diastole at the outlet
sections of a vascular district, see [16, 124]. In this case, using a condition like
(27) will “cure” the problem by setting the (nonlinear) parameter R to be active
only in the presence of a normal velocity component incoming the domain.

Defective conditions alternative to the mean pressure. Another possi-
ble defective condition prescribes the average traction (in place of the average
pressure as done in (20)):

1
F’/FTf(u,p)n-nd7:T, (28)

for a given function of time 7T'(t). Its actual implementation follows closely that
of condition (20). In particular, if a do-nothing approach is considered for (28),
one obtains again formulation (24), which still actually prescribes condition (23),
with the right hand side P replaced by T. However, in this case condition (23)
is consistent with the defective condition (28) (unlike (20), see Sect. 3.1.2).

The optimal control approach can be applied for the prescription of (28)
provided that a suitable functional is considered. In [67], numerical results
highlight the differences between the solutions obtained with this strategy to
prescribe condition (20) and (28). We observe that also the Nitsche-like method
could be extended to prescribe condition (28), as shown in [198] .

In a similar way, given two functions of time P (t) and Ty (t), we can
consider defective conditions involving the total pressure

1
m/ptotd’y = Piot,
r

or the mean total normal traction

1
m/FTf(uaptot)n ‘ndy = Ty,

where P
Prot = p+ 5 uf’ (20)

denotes the total pressure. Notice that using the identity
1
(u-V)u = 5V!u\2 + curlu X u, (30)

the natural boundary conditions associated with the Navier-Stokes problem in-
volve the total pressure or the total traction. The do-nothing procedure can be

performed in these cases as done for the average pressure and traction (see, e.g.,
[193, 194, 62]).
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Applications of clinical interest. We conclude this section by mentioning
some practical applications of the strategies described above for the treatment
of defective boundary conditions, in particular the one based on the augmented
approach.

This strategy has been successfully applied to investigate the jet impinging
the ascending aortic wall downstream a bicuspid aortic valve [203, 200], or in an
abdominal aortic aneurysm to assess the viscous forces [154].

Another application is proposed in [156] to improve approximation of flow
rate measurements obtained by ultrasound devices. Doppler velocimetry is cur-
rently used to provide an estimate of the flow rate in a vascular district starting
from the measurement of the maximum velocity. This estimate is based on the
assumption of parabolic profile (Doucette formula). Despite its popularity and
simplicity, this formula relies on an unrealistic hypothesis, that of parabolic pro-
file, which makes sense only for steady flows in rectilinear circular pipes. The
basic idea in [156] is to extend the Doucette formula including the dependence
of the flow rate also on the pulsatility, by means of the Womersley number. The
fitting of the new formula is performed by running several numerical simulations
in different scenarios by applying the flow rate with the augmented approach.
This choice is motivated by the necessity of finding a relation between flow rate
and maximum velocity not biased by an a priori choice of the velocity profile.
Results prove the reliability of this method, which has then been successively
validated in clinical settings [199, 157].

3.2 The role of the Riemann variables for 1D models

When solving propagative equations like the 1D Euler system (7), a major prob-
lem is the correct treatment of the boundary conditions. For instance, when
the end points do not correspond to physical boundaries, non-reflecting condi-
tions should be prescribed to the original continuous problem. With this we
mean conditions that correctly describe the motion of the different propagative
components, without introducing any spurious effect like unphysical reflections.
Moreover, after space discretization, the number of equations at the boundary
points is not enough to close the system at the algebraic level. This demands for
more numerical boundary conditions than those required by the original problem
itself.

In this regard, a key concept is that of Riemann wvariables. We illustrate
the role of Riemann variables on the single arterial tract reprTesented by the 1D
;%’ :| , R = [Tl TQ]:
2
where 1y, lo and 71, ro are the left and right eigenvectors of H. We can write
therefore H = RAL, with A = diag(A1, A2). In addition, we define the Riemann
variables W7 and W5 as

system (7). Let us introduce the following notation: L = [

oy, 222y, (31)
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These are also called characteristic variables. Notice that, depending on the
vessel law and on the assumptions on the parameters of the system, an explicit
expression of the characteristic variables as a function of the physical variables

can be derived. For example, in the case o = 1 (with a the Coriolis coefficient,
see Section 2.2.1) and for the algebraic law (11) we have [60]

Wia = Gald @) = § 4y -0

A1/4

where £ is given by (11).
After multiplication of (7) by L, we have the characteristic system
oW oW

o A%

+GW)=0 z€(0,L), t>0, (33)

with G = LB. Componentwise, these equations read

oW . oW, o
ot —FAZ@—FGZ(Wl,WQ)—O, 1=1,2.

After introducing the characteristic lines z;(t) for i = 1,2, solution of the prob-
lems

dz; ,
ditl =N, 1=1,2,

our problem reads
dW;

dt

+ Gi(Wl, WQ) =0.
z=z(t)
When G = 0 we have two independent problems, the W;’s are constant along
their respective characteristic line and they are called Riemann invariants.

As we noticed in (10), the diagonal entries of A are A\; > 0 and A2 < 0. This
means that the Riemann variable W; propagates forward along z, while W5 is
moving backward. Otherwise said, z = 0 (z = L) is an inflow end point for W}
(W3), so we need one boundary condition at each end point.

A first possibility is given by prescribing conditions on the primary vari-
ables to system (7), i.e. the flow rate QQ = Q,(t) or the area A = A,,(t) (or
equivalently the pressure).

Alternatively, one could consider the linearized system (33) and prescribe
one of the characteristic variables W; so as to obtain a non-reflecting condition.
In particular, following [85, 188] by the theory of characteristics we have

oW oW
8—;+R1(W1,W2):0 at 2 =0, a—t2+R2(W1,W2):O at z=1L,
(34)
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where R; = II' - 8, and S has been introduced in (9). For Ry = 0 at z = 0
and Ry = 0 at z = L, the absorbing conditions reduce to W1 = const at z =0
and Wy = const at z = L (with the constants given by the initial conditions)
[60, 146].

A third strategy consists in prescribing non-reflecting conditions directly to
system (7). In this case, thanks to (32), a non-linear combination of the physical
variables is prescribed.

Alternative boundary conditions at the outlets are provided by the structured
tree modeling mentioned in Sect. 2.3 [139, 42|, which assumes that the down-
stream vascular tree has a simple structure subject to suitable scaling laws. This
allows to derive suitable relations between flow rate and pressure at the outlets.

Another problem in the management of boundary conditions is that at the
numerical level, after space discretization, an additional boundary equation is
needed at each boundary to close the algebraic system. This extra-condition
needs to be extracted by the problem itself to avoid inconsistencies of the solu-
tion with the physical problem. A possible workaround is offered by the so-called
compatibility conditions, that provide a condition on the outgoing characteris-
tic variable and are basically obtained by the projection of the equation along
the eigenvectors corresponding to the outgoing characteristics in the boundary

points,
lT ((98 + HU g‘ B(U))=0 z2=0,t>0,
(U+H( U+B(U)):0 z=1L,t>0.

In terms of characteristic variables, this corresponds for each time interval [t", t"+1]
to the following system of ODE localized at the boundaries

Wit yi () + Gi(Wh,Wa) =0, i=1,2 te [t "]
ypi (Y =L, ) =0.

If G; = 0, the solution of this system of ODE could be obtained by tracing back
the characteristic lines exiting the domain and imposing that the corresponding
characteristic variable is constant, yielding

W (£771,0) = Wa (£, AR (0)|At), Wi (8771, L) = Wy (t", L — A}(L)At),

see Figure 10. These numerical-driven conditions together with the ones pre-
scribed by the mathematical problem form a non-linear system in the unknowns
An+1|2:0’ Qn+1|z:07 An+1|z:L7 Qn+1|z:L-

Finally, we mention the treatment of matching conditions at the bifurcations.
This requires supplementing the interface matching conditions (13) with further
compatibility conditions. To find them out, referring to Figure 3, let WJZ be
the j—th characteristic variable in the branch B’ at the bifurcation point. For
ease of notation, the temporal index is understood. The characteristic variables
at the bifurcation point are unknowns, so that at each bifurcation we have 12
unknowns, namely Q*,i = 1,2,3, A',i = 1,2,3, W},i = 1,2,3,j = 1,2. The
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Figure 10: Characteristic variables extrapolation in the case G = 0.

physical conditions (13) provide 3 relations, and 6 relations are provided by (32),
namely sz = C}(Ai, QY), j=1,2,i=1,2,3. To close the system we need 3 more
relations at the inlet of B! and at the outlet of B? and B> given, e.g., by the
compatibility conditions obtained by extrapolating the outgoing characteristic
variables. This leads to a closed non-linear 12x12 system for each bifurcation.

3.3 0D models and the enforcement of boundary data

As observed in Section 2.3, when deriving a 0D model from a 1D one (and, in fact,
from a 3D one) the explicit space dependence went lost in the process of model
reduction. This may require some attention when coupling two heterogeneous
models, in particular for the derivation and treatment of the interface conditions,
as discussed in Section 4.2.

As a matter of fact, we need to localize quantities at the interface that
were formerly “delocalized” because of the model reduction process. As we
have pointed out, in our derivation procedure, a lumped parameter model of
an arterial tract is not just a reduction of the Navier-Stokes equations, but of
the whole boundary value problem (including therefore the associated boundary
conditions). This was reflected by the different configurations we have found for
the same arterial tract. In particular, the £ configuration implicitly postulates
that @p and I3d are input variables or, with a little abuse of notation, “boundary”
data. Correspondingly, ]Sp and @d are state variables (henceforth unknown) that
are computed by the model to characterize the dynamics in the tract. Similarly,

we notice that (see Fig. 5)

1. ﬁp and @d are “boundary data” for the L-inverted network;
2. @d and @p are “boundary data” for the m network;

3. ]3d and ]3p are “boundary data” for the 7 network.

The different configurations therefore incorporate the variables that need to be
prescribed to solve the associated ordinary differential system. Going back to the
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very root of our derivation - a volume averaging of the Navier-Stokes equations -
we may say that the different network topologies reflect different boundary value
problems. When we assume flow rate as boundary data, this is corresponded by
velocity (Dirichlet) boundary conditions for the original 3D problem. Instead,
traction (Neumann) conditions are corresponded by pressure data in the lumped
parameter model.

This analysis on the role of the interface variables will set up the guidelines
for the interface treatment in case coupled models involving 0D models (thus
1D/0D or 3D/0D) will be solved numerically by means of iteration-by-subdomain
algorithms, as we will see in Section 5.1.

4 Coupling of 3D-1D, 3D-0D, and 1D-0D models

Once suitable stand-alone models are available to describe some portions of the
cardiovascular system with different geometric details, we are ready to build
geometric multiscale models obtained by their coupling. In practice, the use
of geometric multiscale models allows the simulation of the whole circulatory
system (or at least of all of its most relevant elements) with low dimensional
models on the background and higher dimensional high fidelity models for those
regions where a very precise numerical investigation is desired.

In particular, here we address the problems obtained by coupling 3D and 1D
(Sect. 4.1), 3D and 0D (Sect. 4.2), and 1D and 0D (Sect. 4.3) models.

We illustrate our approach in the case of a cylindrical vessel. We follow two
steps:

1. domain splitting: we partition the cylindrical vessel into two non overlap-
ping regions, called subdomains, and write the 3D/FSI problem over the
two regions coupled by appropriate interface conditions;

2. dimensional model reduction: the 3D/FSI problem in one of the two sub-
domains (the downstream one in our case) is downscaled to either a 1D
(Sect. 4.1) or a 0D (Sect. 4.2) model; the interface conditions are adapted
correspondingly for the new coupled problem. For the sake of reducing
further the computational cost, in Sect. 4.3 we reduce the upstream 3D
model to a 1D problem, to be coupled with a 0D model downstream.

Coupling occurs at interfaces corresponding to a cross section for the 3D
case, to a single point for the 1D model, and to the proximal region for the 0D
model. The prescription of appropriate interface conditions and their accurate
numerical approximation clearly represent a crucial issue.

For the sake of notation, in what follows we add the subscript nD, n =0,1,3
to the quantities relevant for the corresponding problems.
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4.1 3D-1D coupling

4.1.1 Formulation of the coupled problem: domain decomposition
and reduction

Let us consider the FSI problem (1) in the 3D cylindrical domain Q = QU
Q) depicted in Figure 11, top, together with initial conditions and boundary
conditions at the proximal and distal boundaries ¥,,o; and g, respectively
(the subscript f stands for fluid and s for structure), and at the lateral structure
Yext. In short we denote (1) as

Psp(usp,p3p,N3p; ) =0, (35)

together with the specified boundary and initial conditions.

We split © into two subdomains, €; and €2, and call I' = I'y U T’y their
common interface, I'y being the interface for the fluid subdomain and I'y the
interface for the structure one (see Figure 11, center). Then, problem (35) is
equivalently rewritten as

Pap(uip, p3p: M3p; ) = 0, (36a)
uip = uip on Ty, (36b)
Ty (uzp,p3p) n1 = Ty(u3p, p3p) na on I'y, (36¢)
Mp = M3p on I'y, (36d)
T.(nip) 1 = Ts(n3p) na on Iy, (36e)
Pap(u3p, P3p: M3p; Q2) = 0, (36f)

together with the same boundary and initial conditions (reformulated for ug D> pé D> ng Do
i =1,2) of (35). Here n;, j = 1,2, is the unit vector normal to I" and outward to
2;. We distinguish two types of interface conditions, kinematic ones (36b) and
(36d), stating the continuity of the fluid velocity and of the structure displace-
ment, and dynamic ones (36¢) and (36e), stating the continuity of the tractions.

The equivalence between (35) and (36) is intended in the following sense: if
Ysp = (u3p, p3p,M3p) is a solution of problem (35), then (uspla;, p3pla,, Nsple,), J =
1,2, are the solutions of (36). Conversely, if yi, and y3,, solve problem (36),
then the vector y;, such that ysplo, = ygD, j = 1,2, solves problem (35), see,
e.g., [164, 64].

Successively we replace the distal 3D problem in Q5 with a 1D model, while
in 1 we retain the same 3D problem of (36a). In particular, by representing
with z € [0, L] the longitudinal abscissa of the centerline of the cylinder s, the
corresponding 3D and 1D models will be coupled at the interface I' located at
the point z = 0 (see Fig. 11, bottom). Then, the 3D-1D coupled problem is
given by coupling (36a) and (7), with prescribed initial conditions at ¢ = 0 and
(i) boundary conditions at X! and 3!, for the 3D subdomain; (ii) boundary

prox ext
conditions at z = L for the 1D subdomain. These conditions may be selected
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as discussed in the previous sections. In addition, we need interface conditions
to be prescribed on I'. These conditions are critical for the well posedness and
ultimately the reliability of the geometric multiscale model. In the next sections
we elaborate this topic starting from the full conditions (36b-36e).

I'={TTs}

Figure 11: Schematic representation of the reference 3D-1D coupled model. A
cylindrical domain at the top is split into two subdomains (center). The down-
stream one is eventually replaced by a 1D model (bottom).

4.1.2 Interface coupling conditions

The dimensional reduction of the downstream region introduces a mismatch be-
tween the two subdomains that is reflected by their interface conditions. The
mismatch refers to the constitutive law for the structure problem postulated by
the 1D model that is not necessarily the same as the one of the 3D upstream
subdomain. In addition we have the geometrical mismatch due to the model re-
duction. The physical principles to obtain interface conditions aim at the preser-
vation of both the kinematic and dynamic continuity conditions. Dimensional
reduction prevents to prescribe the continuity of the full velocity field, since the
1D model computes only the average-in-space axial velocity (i.e. normal to the
interface I') or equivalently the flow rate ). Thus, kinematic condition (36b)
reduces to

pr [ wip - mdy = Qun(z = 0). (37)
Ly

Concerning the wall displacement continuity condition (36d), we introduce the
hypothesis of null displacement of the interface I' (and equivalently of the point
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located at z = 0) along the axial direction. Moreover, we assume that the
circumferential displacement is null, as it is reasonable in this context. Thus,
the structure kinematic condition after the reduction gives information only on
the 3D radial displacement, resulting in the condition

27 R0+5§D (T's,r=Ro,p)

0/ 0/ rdrdp = A1p(z = 0), (38)

where 1, (I's,7 = Ro, ) is the radial wall displacement at the interface I,
evaluated at the line ¥ = I'y UT, (that is at r = Ryp), as a function of the cir-
cumferential coordinate. Thus, condition (38) is, for the 3D problem, a defective
condition for the radial displacement localized on the line W.

After the model reduction, the dynamic continuity conditions (36¢)-(36e),
reduce to a global continuity condition (involving the traction of both fluid and
structure) that, owing to (6), reads

1 1
‘I‘H/Tf(u3D?p3D)n‘nd’Y+M/Ts(ngD)n'nd’y:PID(zzo) (39)
ry 2

— —Pens(z = 0) — (A1p(z = 0), Ao(= = 0), B(z = 0)).

In fact the pressure in the 1D model surrogates the traction of the coupled
fluid /structure mechanical system and provides therefore an interface condition
for the coupled upstream problem.

For practical purposes, one could split the previous condition as follows,
hence obtaining a condition for the fluid and another one for the structure:

|Flf|/Tf(u3D,p3D) n-ndy=—0 (P (z=0)+19(Ap(z=0),A(z = 0),8(z = 0))),
r
| (40)
‘\Ill‘/Ts(ﬂ?)D)n ndy=—(1-0)(Pext(z=0)+¢(Ai1p(z =0),Ap(2 =0),8(z =0))),
T

(41)

where 6 € [0, 1] weighs the two contributions. Notice that the previous interface
conditions are consistent with the global one (39) for all #. Conditions (40)-(41)
are in fact defective dynamic conditions in the axial direction.

Then, out of the 12 scalar pointwise continuity conditions (36b)-(36e) holding
for the dimensionally homogeneous problem at each point of the interface I', only
the 4 scalar averaged conditions (37),(38),(40),(41) can be used for the 3D-1D
coupling. For the 1D model they are enough to ensure well-posedness, whereas
they are clearly insufficient for closing the 3D problem. We can therefore identify

43



FLUID PROBLEM
Axial | Tangential | Tangential
I 11
Kinematic | (37) Either a Either a
condition kinematic or | kinematic or
Dynamic (40) a dynamic a dynamic
condition condition condition

STRUCTURE PROBLEM

Axial Axial Radial Radial Angular
(on¥) | (onTs\¥) | (on¥) | (onTs\ ¥)
Kinematic N, =0 (38) Either a Ny =0
condition kinematic or
Dynamic (41) a dynamic
condition condition

Table 2: Schematic representation of the available interface information in the
3D-1D coupling along the different coordinates and of the supplementary con-
ditions requested. 7. and 7, are the axial and angular structure displacement,
respectively.

(a) coupling directions over I" where some information is exchanged, as well as
(ii) uncoupling directions where no matching conditions are enforced, see Table
2.

In practice, we need to:

i) complete the average conditions in the coupling directions, by a proper exten-
sion so to have pointwise data for the 3D subproblems;

ii) provide additional scalar pointwise conditions for the 3D subproblems along
the uncoupling directions.

To address these tasks, we can follow one of the approaches addressed in Sect.
3.1. All these strategies rely on a weak formulation of the problem that implicitly
enforces conditions in the uncoupling directions too. We observe that these new
conditions are not coupling conditions anymore and are directly prescribed to
the 3D problem. Thus, either a kinematic or a dynamic condition should be
prescribed for each uncoupling directions. For the fluid problem, these additional
conditions can be a homogeneous condition for either the tangential velocity

usp-7=0 at I'y, (42)
or the tangential traction
T¢(usp,psp)n-T7=0 at I'y. (43)

Alternatively, we may force explicitly (and arbitrarily) additional conditions.
For instance, we can assume that:
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(i) the normal velocity is described by a given velocity profile 4, that is usp-n =
Fsp(t)u(x) for a suitable scalar function of time Fsp(t), and the kinematic
continuity condition (37) reads

piFan(®) [ ady = Qip(z =) (44)
I,

(ii) the normal traction is constant over I'y, that is from (40) we have
T¢(usp,psp)n-n = —0 (Pext(2 = 0) + ¢ (A1p(z = 0), Ag(z = 0),8(z = 0)));

(iii) one of the tangential conditions (42),(43) hold.

A similar approach can be used for the structure kinematic condition, by:
(i) postulating a (typically circular) shape for the 3D vessel interface at the
line ¥ equivalently that the radial displacement at ¥ is independent of the
circumferential coordinate; in this way, area continuity (38) reduces to

T (Ro + n5p(T's,7 = Ro, ¢))* = Aip(z = 0); (46)
ii) assuming a constant normal traction on ¥ so that we can derive from (41)
Ts(nzp)nndy = =(1-0) (Peat(z = 0) + 9 (A1p(z = 0), Ao(2 = 0), B(z = 0)))

iii) completing the previous conditions at I's \ ¥ along the radial and axial
directions, either prescribing null displacements

n-=0 and n-n=0 at T's \ U, (47)
or null tractions
Tg(nsp) =0 and Ty(nsp)n-n=0 at I's \ ¥, (48)

T being the radial component of the structure traction.
In general, we can give an abstract formulation to the coupled 3D-1D problem
as follows:

DS(773D7A1D) =0,
Pip(@Qip,Aip; [0, L]) =0,

P3p(u3p, p3p, N3p; 1) =0, (49a)
K¢(usp,@Qip) =0, (49b)
Ks(msp, Aip) =0, (49¢)
Dy(u3p,p3p,Qip, Aip) =0, (49d)
)
)

where K¢(-,-) = 0 is the kinematic fluid condition (37), Ks(-,-) = 0 stems from
the structure kinematic conditions in the radial direction (38), Dy(:,-,-,-) =0
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and Ds(+,-) = 0 relate to the continuity of the fluid and structure tractions in
the normal direction (40)-(41), and as usual Psp and P;p are abstract represen-
tations of the stand-alone 3D and 1D problems, respectively. Different interface
conditions yield different global problems. The choice of those conditions is
therefore critical to guarantee the well posedness (and ultimately the reliability)
of the coupled multiscale model. It is therefore important to analyze the prop-
erty of energy conservation of every approach and its impact on the physical
consistency as well as numerical stability.

Remark 6. In the conditions (45)-(46) the area Ai1p occurs in both the structure
displacement and fluid traction interface conditions, as a consequence of the
constitutive law in the 1D subproblem. For the 3D problem this may result in an
unphysical constraint between the fluid and the structure. In fact, the material
mismatch between the two subproblems - different vessel laws are considered in
the 1D and 3D subproblems - may lead to unreliable results in the 3D domain.
A practical cure consists of replacing the kinematic interface conditions for the
structure (such as (46)) by assuming that condition (47) (or alternatively (48))
holds true also at V. Using one of these conditions in fact decouples the 3D
structure and the 1D reduced model. In this case, (49c) reduces to Ks(nsp) = 0.

4.1.3 Energy estimates and interface conditions

For the analysis of the 3D-1D coupled problem, let us assume that the boundary
conditions over the proximal and the distal portions of the boundary of Q; U0, L]
and the external side ¥.;; of the 3D domain are homogeneous, i.e.

usp =0 at Eﬁpmx(t), t >0, (50&)
Tap = 0 at S pros(t), t>0, (50b)
astMap + Ts(Tlsp) 7o =0 at Sepr, t >0, (50¢)

for the 3D subproblem (we recall that agp is the coefficient accounting for the
presence of surrounding tissues introduced in (3)) and

Qip=0 atz=1L, (51)

for the 1D one. Moreover, we assume for simplicity Pe,; = 0.
Let us introduce the following total energy for the 3D problem [58, 65]

Esn(t)y =" / fusp|? dt / P i |2 2 / O (Tisp) A+ / asrlfisnl2dy
2 Qf Qs 2 Qs Zewt

and the following one for the 1D model [58]

oy L L
glp(t) = 2/ Aip E%D dx + / X(AID) dx,
0 0
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A
where y(A) = / Y(T)dr, 1 being the vessel law (see (6), we outlined its
Ag

dependence on A only as it is functional to the estimates we are interested
in), and ©(n) is the strain energy density function introduced in Section 2.1.
Notice that the stand-alone 3D and 1D problems satisfy bounds for this energy
functionals as proved in [58].

Let Pt = ¥(A) + %EQ be the total pressure for the 1D model, and pyo in

(29) the total pressure for the 3D model. Then, we have the following result
that extends the bounds to the multiscale case [65].

Proposition 1. For the interface coupling conditions holding at I" let us assume
that the following inequality holds

T ¢(u3p, Ptot,3D)N-U3D d7+/ Ts(nsp)nnzp dy+Qip(z = 0) Piot1p(z = 0)
s

(52)
Then, the coupled 3D-1D problem (1),(7),(50),(51) satisfies the energy decay
property

Ly

% (&P + &) <0

for allt > 0.

In particular for inequality (52) to be fulfilled it is sufficient that the interface
conditions

Pf/F uzp -ndy = Qip(z = 0), (53a)
f
(T¢(u3p, prot,3p)n) I, = —Prot,1p(2 = 0)n (53b)
hold for the fluid, together with
Ts(nsp)n=0 at I (54)

for the structure [62, 65]. Similarly, inequality (52) holds if relation (54) is
replaced by

N3p =0 at I',

(55)

(Ts(nsp)n) xn =0 at [s.
Note that (54) and (55) are in fact independent of the 1D model, resulting
in boundary conditions for the 3D structure problems only. This introduces a
discontinuity in the displacement between the 3D and the 1D model.

Instead, conditions

1

\Ff|/1“ T f(u3p, prot,3p)n - ndy = =P 1p(z = 0), (56)
f
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or

1
T Ptot,3D dY = Piot1p(2 = 0) (57)
Ly

do not guarantee the fulfillment of (52) and thus the energy decay property.
Also conditions involving the kinetic pressure (as opposed to the total pres-
sure considered in (56)-(57)) like
1
= | Ty(usp,psp)n-ndy=—y(Aip(z =0)), (58)
Tsl Jr ¥

or

= | p3pdy=1v(Aip(z =0)) (59)
ITsl Jr,

do not satisfy condition (52). More precisely, in this case we have

d _pp [ (@Qip(t, 2 =0))°
pn (&P + &) = o ((Ai(t,z —0)? /rf [usp (1) Pusp () 'nd’7> :

Even though (theoretically) the right hand side is not necessarily (always) neg-
ative [65], numerical evidence suggests that these conditions are actually stable,
see [115].

Instead of conditions (58) or (59), in analogy with the general treatment of
the dynamic conditions provided by (40)-(41), one could also consider a dynamic
condition for the structure, obtaining either

1
/ Tf(usp,p3p)n-ndy = —0¢(Aip(z =0))
Tsl Jr,
or 1
= | p3pdy=0¢(Aip(z=0)), (60)
’Ff‘ Iy

in combination with
|\111|/Ts("73D) n- nd7 = _(1 - 9)¢(A1D(Z = 0)7 AO(Z = 0)7B(Z = 0))a (61)
U

for a suitable 6 € [0, 1].

4.1.4 Further developments and comments

Coupling of a 1D model with a 3D rigid model. The arterial pressure
wave propagation involves wave lengths typically larger than the size of a do-
main to be treated by a full 3D model. This may be troublesome for coupled
problems because on the one hand the physical consistency requires to treat
fluid-structure interaction in both the subproblems, however the 3D subproblem
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is affected by a significant computational burden when FSI is included. De-
pending on the applications, it may be reasonable to still approximate the 3D
model as a rigid one, in particular when the 1D model is essentially regarded
as a physically consistent way of supplying reliable boundary conditions for the
3D one. However, this approximation generates a strong discontinuity in the
way the wall dynamics is described in the overall problem. This may originate
spurious reflections and numerical instabilities at the 3D-1D interface.

A possible remedy has been proposed in [143], by pretending the 3D model
to be compliant at the interface with the 1D submodel by introducing lumped
compliances. This approach can be interpreted as a 3D-0D-1D coupling, the 0D
being the “virtual” portion of the domain where the effects of compliance are
introduced in the model. Alternatively, this modification can be regarded as a
modification of the interface conditions between the 3D (only fluid) model and
the 1D one to introduce the effects of compliance. Here, we follow this second
interpretation. In particular, let us define

Psp p3p dry, Qsp = Pf/ usp - ndy. (62)
Ly

Tyl

Then, consider the interface conditions

d dP. d*P.
Pip="FPp—-1L Gsp ReQsp + RiC——2 — RiCL=32 — RiQsp,
dt dt dt
_ dQip dPip
Qsp = Qip — ”C— = —C— =,

to couple the rigid 3D model to the 1D problem. Here, R;, Ry are two resistances
(accounting for viscous effects), L is related to blood inertia and C' gathers the
compliance of the 3D model to the interface with the 1D to damp spurious
reflections induced by the structural discontinuity. The cost of the 3D solution
is simply that of a fluid solved in a domain with rigid boundaries. Should we
follow the 3D-0D-1D interpretation of this approach, these conditions stem from
simple hydraulic network of 7w type interfacing the two subproblems.

Results presented in [143] show that with an appropriate choice of the param-
eters Ry, Ro, L and C, flow rate and pressure at the systemic level are acceptable,
while keeping relatively low computational costs. Yet, choosing the parameters
may be troublesome in patient-specific settings and ad hoc data assimilation
procedures are recommended.

The role of the characteristics for the interface conditions. As we dis-
cussed in Sect. 3.2, the 1D problem is strictly hyperbolic and from the mathe-
matical standpoint it features two characteristic or Riemann variables propagat-
ing in two opposite directions along the 1D domain. Because of the hyperbolic
nature of the problem, at the interface with the 3D model it is appropriate the
prescription of the Riemann variable that is entering €21 p. In our example, with
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the 1D domain located distally to Q23p, this is Wj. For this reason, in practice
one between the pressure or traction interface conditions (53b), (56), (57), (58)
or (59) can be replaced by a condition expressing the continuity of Wi [58]. In
particular, at each time ¢ we may consider condition (53a) and

Wi(z =0) =G (IT], @3p) (64)

with ¢ given by (32) and Qsp by (62).

It is possible to prove that this condition together with (53a) implies the con-
tinuity of the area at the interface while the continuity of the pressure/traction
is not guaranteed.

4.2 3D-0D coupling
4.2.1 Formulation of the problem

In some cases the knowledge of the space dependence of the variables of interest
is not crucial in the downstream region {23. The dynamics here can be described
by a compartment represented by a lumped parameter model. Following up the
outline of the present section, this case can be regarded as a further simplification
of the 3D-1D model previously considered, where the 1D downstream subdomain
is replaced by a 0D description.

Interface conditions between the 3D and the 0D subdomain can be devised by
proceeding as done for the 3D-1D case, in particular by prescribing again kine-
matic and dynamic continuity conditions, in a form that is adapted to the con-
text of the lumped parameter model. For instance, if Psp(usp, psp, Nsp; 1) =
0 is the abridged notation for the 3D model (including the inlet conditions
on fluid velocity or traction and on structure displacement or traction) and
Pop(Qop, Pop) = 0 represents the downstream lumped parameter model (where
we highlighted the dependence on the proximal quantities Qop and Pyp), we can
devise a set of interface conditions reading as

Pf/ usp - ndy = Qop, (65a)
Ty

1

i T ¢(usp,p3p)n-ndy=—0Pp, (65b)
7

21 Ro+n% 5 (Cs,r=Ro,p)

0/ / rdrdy =~ (Pop), (65¢)

0

1
W / Tu(nsp)m-ndy = —(1— 6)Pop, (65d)
)
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where 1 is given by the the algebraic equation (11) relating the area and the
pressure and used in the derivation of the 0D model and where again 6 € [0, 1].
In analogy with the 3D-1D case, we can use for the dynamic fluid continuity
a condition like (59) on the mean pressure instead of the normal traction. As
for the coupling between 3D and 1D models, also in this case the conditions are
“defective” for the 3D subdomain and the problem needs to be completed as
done in the previous section.
When coupling 3D with 0D models, three issues need to be enphasized:

1. In the derivation of the 0D model one assumption is that convective terms
are in general small. For this reason, the basic derivation for an arterial
segment leads to a linear model, the nonlinear terms having been dropped.
Consequently, on the 0D side the pressure coincides with the total pressure,
so that a total pressure interface condition simply reads

1

= | Dtot,3pdy = Pop.

ITsl Jr,

2. As pointed out in Sect. 2.3, the mathematical formulation of the 0D
model does not separate the equations of the dynamics from the “boundary
conditions”; the latter are directly incorporated in the system of ordinary
differential equations, since the space dependence in the model is dropped.
This feature is crucial when devising segregated algorithms for solving the
3D-0D problem, since the mathematical representation of the 0D problem
has to be compatible with the associated interface conditions. We will
address this concept in Section 5.

3. As for the 3D-1D coupling, the mismatch of the structural constitutive laws
separately postulated in the two subdomains may lead to some spurious
numerical effects. In this case, often the continuity of the displacement and
tractions for the structure problem (65¢)-(65d) are dropped and they are
replaced by a homogeneous boundary condition for n3p or for Ts(n;p).

In many applications [202, 102] when coupling 3D and 0D models, the lumped
parameter subdomain is intended to provide just a transfer function to incor-
porate the presence of the peripheral impedance into the simulation of the 3D
subdomain. In this case, the windkessel model and its variants addressed in
Sect. 2.3.2 provide an excellent simplified description to be embedded straight-
forwardly into the solution of the 3D problem. We illustrate a semi-analytic
approach for solving this case in the next subsection.

More generally, coupling between the two models stems genuinely from the
necessity of solving the different scales (local and global) and a windkessel model
is not accurate enough for the level of detail required to the systemic submodel.
An example extensively addressed in the literature is given by the numerical
modeling of the Total CavoPulmonary Connection (TCPC), see e.g. [107, 106,
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121, 83]. In this case, the 0D model - that is in general nonlinear due to the
presence of the valves - is not directly included in the 3D solution; segregated
approaches are indeed more indicated. This topic will be covered in Section 5.

4.2.2 Monolithic Solution of 3D-0D windkessel models

When the 0D differential system can be formally solved by standard techniques
for ordinary differential equations, the resulting solutions combine pressure and
flow rate to provide a Robin-type defective boundary condition for the 3D fluid
problem.

We illustrate this outcome in the case of the 3-element windkessel peripheral
models. The extension to the 4-element windkessel models is technically more
involved but promptly derived following similar steps.

Let us consider the 3-element windkessel model represented in Fig. 6(b).
Referring to the notation reported in the figure, we use here the subscript “0D”
to denote quantities related to the lumped parameter model. This model corre-
sponds to the differential equation

d(Pop — R1Qop) 1 _ Qop
dt + RQC(POD R].QOD) - C N

By a standard application of the method of integrating factors (see e.g. [36]) we
find

t

1
Pop(t) = RiQop(t)+ (Pop(0) — RiQon(0)) e_t/(R2c)+C/eT_t/(R2C)Q0D(T)dT-
0

(66)

For the continuity of the normal velocity and of the tractions that we postu-

late at the interface, we set Qgp = pf/U3D-n dy,and Pyp = _ﬁ

r; 1Ly

n dy. Once plugged in (66), these lead to the following resistance defective con-
dition

t

1
|11’/Tf(ugD,pg,:))n -ndy+ Rlpf/U3D -ndy+ pcjj/eT_t/(R?C)/u;z,D(w,T) -ndydr =
o 0 T,
1
T /Tf(UgD(:B,O),pgD(:B,O))n -ndy+ Rlpf/ugD(:c,O) ‘ndy | e t/(F20)p,
f
Ty Ly

The previous condition can eventually be incorporated into the variational for-
mulation of the Navier-Stokes equations [202].

In practice, in a time-discrete setting for the numerical solution of the prob-
lem, (66) is applied over the timeline of the single time step between ¢” and t"+!,
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used in combination with a quadrature rule (e.g. the trapezoidal rule) to treat
the third term at the left hand side, leading to

11 | T i m s (R 1/20) [ tn dy = G o, i 18)
Ly Ly
(67)
for a suitable function G of the outlined arguments.

Remark 7. For the practical prescription of condition (67) a possible solution
s given by evaluating the flow rate term through a suitable extrapolation from
previous time steps, thus leading to a mean traction condition, which could be
prescribed, e.g., with the do-nothing approach presented in Sect 3.1.2. This solu-
tion is very attractive when one wants to use a commercial solver. In principle,
we could follow a dual approach where we extrapolate the mean pressure from
previous time steps, thus obtaining in fact a flow rate condition. Although possi-
ble, this approach requires the treatment of defective flux conditions. As we have
seen in Sect. 3, this is much more complicated, so the previous approach is by
far the most popular.

4.3 1D-0D coupling

At last, we consider the case when a lumped parameter model is coupled to a 1D
model in order to include the effects of systemic circulation, for instance when
peripheral circulation is accounted for by means of a suitable boundary condition
to close a 1D model. In this case, the role of the lumped parameter model is to
calculate the pressure wave reflections generated by peripheral districts and by
the microcirculation [63]. In a different context, 0D models have been coupled
with a 1D description of the circulatory network in [61] to include the action of
the heart.

Coherently with the previous assumptions in the present section, we consider
here the case when a single arterial cylindrical segment is described by a 1D
model, proximally in a region €21, and by a 0D model in a region 2 located
distally. As done in Sect. 4.1, we start with a split-by-subdomain representation
of the same problem in terms of 1D models. Over the segment spanned by the
axial abscissa z € [—L, L] the unsplit 1D problem

Pip(Q1p; A1p, [-L, L]) =0 (68)
is formulated as the coupling of two 1D subproblems in ; = [—L,0] and Q9 =
[0, L], respectively

Pip (Qip: Aip, [~L,0]) =0, (69a)
Qip(z =0) = Qip(z=0), (69D)
Y(A1p(z =0)) =¥ (Afp(z = 0)), (69¢)
P1p(Qip, Aip, [0, L]) = 0. (69d)
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Here we have understood convenient conditions at the proximal z = —L and
distal z = L boundaries in the abridged notation PlD(QilD, AilD, ) for i =1,2.
In addition, we introduced interface conditions based on the continuity of mass
and momentum. The latter is written in terms of pressure, regarded as function
of the area Ai1 p> @ = 1,2. Other interface conditions can be considered as well,
for instance involving the total pressure rather than the pressure. If the function
1) representing the vessel law is the same for the two subproblems, as it is often
the case, the continuity of the pressure and that of the flow rates implies the
continuity of the total pressure. From the mathematical point of view it makes
sense to consider alternative equivalent interface conditions formulated in terms
of characteristic variables W/ (AZ1 Ds Q’i p), &7 = 1,2, since they precisely consider
quantities with a well defined direction of propagation.

Next, we replace the downstream 1D problem with a suitable 0D model for
a cylindrical segment (and including the appropriate boundary conditions at
z = L), leading to the geometric multiscale model

P1p(Q1p, A1p; [~ L,0]) =0, (70a)
Q1p(z =0) = Qop, (70b)
Y(Aip(z = 0)) = Pop, (70c)
Pop(Qop, Pop) =0, (70d)

where again Qop and FPyp represent the proximal quantities in the 0D model.
Also in this case, we can replace one of the interface conditions stemming from
the continuity of mass and momentum with one for the characteristic variable
Wy

Wa(z=0)= ¢ (¥ (Pop), Qop) » (71)

with (2 given by (32). This prevents the occurrence of numerical artifacts in-
troduced by approximation errors that trigger unphysical reflections at z = L
[63, 56].

In comparison with the 3D-0D case, this coupling is much more intuitive,
since both 1D and 0D models compute average area and flow rate over different
points of the axis, and no defective conditions need to be sorted out at the
coupling interface. In particular, if the 0D model is simple (like for a cylindrical
segment as well as a windkessel model) a semi-analytical approach based on the
method of integrating factors illustrated in the previous section can be pursued.
This means that the pressure Fyp can be explicitly computed as a function of
the flow rate Qop and used straightforwardly in the prescription of Wa.

More in general, when the 0D network is more complicated for the presence
of several compartments and/or nonlinear terms, a partitioned approach has to
be preferred, as we will see in the next Section.

54



5 Numerical strategies

The numerical solution of the coupled geometric multiscale problems presented
in Sect. 4 requires special care. The intrinsic heterogeneity and the diverse
nature of the problem components drives the set up of a solution algorithm and
its analysis. Generally speaking, two basic options can be pursued, a monolithic
approach and a partitioned or segregated one. The latter strategy seems to be
more natural - apart from special cases like the 3D-windkessel coupled model
addressed in Sect. 4.2.2 - and is discussed in the next subsections.

As for the temporal stability of the solver, this generally follows from the
restrictions induced by the time advancing schemes adopted for the different
components of the multiscale model. While implicit or semi-implicit approaches
are preferred for the 3D models to avoid stability restrictions of parabolic type
in the fluid problem (e.g. the time step At bounded by a quantity scaling with
h?), 1D models are usually solved by explicit methods subject to CFL stability
conditions. General statements on the most restrictive conditions are difficult to
draw, as they depend on the specific problem (the vascular district for the 3D
model as well as the portion of the network for the 1D one). For this reason, in
partitioned schemes where the different solvers are called in an either sequential
or parallel fashion, it is worth resorting to multi-level time stepping techniques,
where the different geometric components are solved with individual convenient
time steps and matching interface conditions are fulfilled thanks to suitable
synchronization procedures [28, 116] - see also Sect. 6.4.2

In the remainder of this Section we keep considering the time discretization
of the coupled problems already introduced in Sect. 4. However, we will drop
the time index n + 1 for the sake of notation.

5.1 Partitioned algorithms: generalities

A quite natural approach for solving heterogeneous problems is to split them
into their homogeneous components and to delegate iterative schemes to enforce
their matching. This holds for many applications in multi-physics, and remark-
ably for fluid-structure interaction problems [164]. Dimensionally heterogeneous
problems like the ones generated by the geometric multiscale modeling are no
exception. As a matter of fact, the intrinsic modularity of this approach per-
fectly fits into the need of solving diverse mathematical (and numerical) coupled
problems, including 3D, 1D partial as well as ordinary differential equations [63].

In the previous section, we introduced the sequence (i) domain splitting;
(ii) model simplification, to obtain in a systematic way geometric multiscale
models. Here we bring this procedure to the final step, namely the iterative
substructuring formulation [164]. This introduces a sequence of dimensionally
homogeneous problems in the two subdomains, where the interface conditions
iteratively provide boundary data.

When resorting to these domain decomposition techniques, there are basi-
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cally two fundamental issues to consider at a very general level, namely (a) the
well posedness of each subproblem at every iteration; (b) the convergence of the
iterative procedure.

Point (a) in general may be standard when domain decomposition is used as
a framework to exploit parallel architectures for solving homogeneous problems.
This however is not the case of geometric multiscale models, where the dimen-
sional mismatch unavoidably leads to defective boundary problems for the 3D
model. The well posedness of the 3D FSI model - at both the continuous and
then at the numerical level - with defective boundary data needs to be carefully
analyzed - see Sect. 3.1.

Another non-trivial issue arises when considering lumped parameter models
for which - as previously pointed out - the concept of boundary data is an abuse,
yet physically intuitive, and requires specific adjustments in the formulation of
the 0D problem. We will address these issues in detail in the next subsections.

As for point (b), we can take advantage of standard techniques for iterative
substructuring methods, including either sequential block Gauss-Seidel like or
parallel block Jacobi like formulations of the algorithm. While it is fairly com-
plicated to apply the general theory of iterative schemes to our dimensionally
heterogeneous problems, the gallery of examples in Sect. 6 illustrates successful
schemes for different possible couplings.

It is worth noting that, originally conceived as a numerical solution proce-
dure, the partitioned formulation turned out to be an effective tool to investigate
well posedness of geometric multiscale problems, by applying appropriate fixed
point theorems, as we will specify in Sect. 5.3 [167, 56].

Our exemplifications here will be limited to the simple cylindrical domain
introduced in Sect. 4. For the sake of clarity, we summarize here the notation.
With a little abuse we will denote the time-discrete stand-alone models with the
same compact notation used in Section 4 for their time-continuous counterparts.
Hence:

- Psp(usp,p3sp,Msp; ) = 0 represents the time-discrete 3D problem in the
FSI domain €2 with suitable boundary conditions at the fluid and struc-
ture inlets and at the physical boundary. The specific time-discretization
scheme used is not important at this stage. At the interface with other
subdomains we postulate conditions like the ones specified in Sect. 4 that
in the framework of partitioned algorithms will provide boundary data.

- Pip(Q1p, A1p; [0, L]) = 0 represents a time-discrete 1D model in the do-
main [0, L]. On one side of the domain we will have standard boundary
conditions inherited from the boundary-value problem; on the other one,
interface conditions with the corresponding subdomain will provide the
necessary data to solve it as a standard stand-alone problem.

- Pop(Sop) = 0 represents one of the possible problems originating by the
time discretization of the ordinary differential system associated with the
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networks depicted in Fig. 5, where Syp is the proximal variable (pressure
or flow rate) that determine the state of the network.

5.2 The 3D-1D case

Let us consider a partitioned algorithm for the 3D-1D coupled problem. We
specifically refer to the time discretization of (49) when interface condition
Dy(-,-,-,-) = 0 is given by (59), as a special instance of (49d). In Algorithm 1
we reported the pseudo-code of this “Flow rate/Mean pressure” scheme where
at each iteration the flow rate computed by the 1D model is used to feed the
3D problem as boundary condition for the fluid, whereas the interface mean
pressure computed by the 3D problem provides the boundary condition at the
interface with the 1D model [58]. For the sake of exposition we set P.,; = 0 and
we do not report explicitly the dependence of A1p on Ag and 3.

In Algorithm 1, the kinematic structure condition (49¢) has been rewritten
in order for the 1D area at the previous iteration to feed the 3D problem.

Any of the methods illustrated in Section 3.1 can be used to solve the defec-
tive 3D problems and compute numerically the 3D fluid velocity and pressure
as well as the structure displacement.

As an alternative to Algorithm 1, one could swap the roles of the interface
conditions, prescribing the mean pressure to the 3D problem and the flow rate
to the 1D problem (“Mean pressure/Flow rate” algorithm). In this case at each
iteration we solve a mean pressure defective condition for the 3D problem, with
one of the strategies described in Section 3.1. The two schemes, “Flow rate/Mean
pressure” and “Mean pressure/Flow rate”, converge to the same solution and
the choice between them is essentially driven by efficiency arguments.

However, there are other possible conditions to be considered for the cou-
pling. For instance, interface condition (57) involving the mean total pressure
can replace (59) in Algorithm 1. In this case, the following alternative boundary
condition on the mean pressure for the 1D problem replaces (73b) accordingly

(k—1) 2
1 k 1 1 1) Q" V(2 =0)
P(k)(z _ 0) _ / p( )d’y - / ’u( ‘2 d’y _ 1D
1D |Ff’ Ff 3D 2 ‘Ff’ Ff 3D pngkD_l) (Z = 0)

This follows from a proper linearization of (57) with a fixed point argument
within the same loop used to enforce the fulfillment of the interface conditions
[65].

The same conditions can be enforced differently thanks to identity (30) in
the weak formulation of the Navier-Stokes equations and a do-nothing approach
as proposed in [62]. In fact, this allows to impose the total pressure as a natural
condition, thus avoiding subiterations. Since the interface conditions involve the
total pressure, henceforth differing from the ones considered in Algorithm 1, the
converged solution found will be in general different.
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Algorithm 1 “Flow rate/Mean pressure” scheme for the 3D-1D cou-
pled problem (49) with Dy(-,-,-,-) = 0 given by (59)
Given the quantities at previous time steps and at the previous iteration k — 1,

a tolerance ¢, and w € (0, 1], and setting Qg%(z =0)=Q7p(2=0),

WHILE o i
1 —2
QMm@ Vo] 2 =,

DO // iteration k

1. SOLVE the 3D problem

k
K (77531%) —g(Ang Z—O), (72b)
/F ugjj) ndy = Qlk 1)( =0); (72¢)
f

2. SOLVE the 1D problem
7’1D( Op, Alpi 10, L ]) =0, (73a)
AP =0)=yp? <1 / ) dv) ; (73b)
Tyl Jr,
3. Relax: Q1Y) = w@'™ + (1 — w5,

4. Update: k — k+ 1.

END DO
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Similar considerations hold for the case where the dynamic fluid condition
(49d) is provided by the mean traction or mean total traction (given by (58)
and (56), respectively), rather than the mean pressure or mean total pressure.

Another scenario is obtained in the “Mean pressure/Flow rate” algorithm
when one wants to use conditions (60)-(61) instead of (59). In this case, the 3D
problem is equipped with the following boundary conditions at the interface

T =00 (45 - 0).
|\I,|/T 773D yn-ndy=—(1-0)y (Aglj:)_l)(z:()))'

An alternative approach makes use of the characteristic variables as interface
coupling conditions. In particular, in [58] it has been proposed to consider
the coupling interface conditions (53a)-(64) and to replace in Algorithm 1 the
boundary condition for the 1D model (73b) with the following one:

k k
Wl(l)D( =0)= <|F l, pf/ o ué&-nd’y). (74)
T

In [142], interface conditions based on both the characteristic variables are con-
sidered. When a partitioned algorithm is introduced, this leads to a non-linear
condition for the 3D fluid given by a combination of mean pressure and flow
rate, which could be prescribed again by an iterative method.

An inexact implementation of Algorithm 1 (as well as of all the other parti-
tioned procedures) would consist in performing just one iteration at each time
step, yielding an explicit partitioned algorithm, see for example [62, 142].

In Algorithm 1 the area at the interface for the 1D model is retrieved by the
3D pressure. Notice however that the area computed in this way is used also as
a (defective) condition for the displacement of the 3D structure, following the
idea proposed in [58] and applied in [115].

A different class of partitioned algorithms for the 3D-1D coupling has been
described in [27], where a block Gauss-Seidel strategy has been applied to the
monolithic system obtained after Lagrange multipliers are introduced to enforce
the interface continuity conditions (see Section 4.1.3).

5.3 The 3D-0D case

The most intriguing aspect when performing segregated coupling of 3D and
lumped parameter models is that the latter do not have an explicit space de-
pendence whilst the coupling with the 3D subdomain occurs at a specific space
location. As we have pointed out in Sect. 2.3.1, the key observation here is that
the lumped parameter model represents not only the result of a simplification
of the 3D equations, but also of the associated boundary conditions.
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For a model retaining space dependence (either 3D or 1D), different data can
be prescribed at the boundary. Conversely, the specific formulation of a lumped
parameter model of a cylindrical compliant pipe depends on the data prescribed
to force its dynamics (see Fig. 5). The portion of the lumped parameter model
receiving this input reflects the nature of the data. This leads to the concept of
bridging region [167].

The bridging region is an abstract concept to identify the transition between
the region occupied by the 3D model and the “region” where the 0D model holds.
In fact, it is functionally surrogated by an ODE that makes this transition math-
ematically correct. The word “correct” refers to the compatibility between the
interface conditions that in the segregated algorithm are eventually associated
with the subdomains and the surrogate model that governs the transition in the
0D region.

For instance, pressure input data for the 0D model will require a bridging
region for the computation of the flow rates. This bridging region in fact inter-
acts with the 3D model through an inductive term, representing a differential
equation for the flow rate. Similarly, flow rate input data call for the pressure at
the interface as state variable. This means that the bridging region, mathemat-
ically represented by a differential equation for the pressure, will be represented
by a compliance term (see Fig. 5.3).

On the contrary, if we prescribe a pressure (or a flow rate) to feed a compliant
(or inertial) region, the dynamic of the pressure (flow rate) there does not need
to be computed; the mathematical model of the hydraulic network features a
differential equation for pressure (flow rate) and it is thus redundant. It may be
conveniently reduced (by eliminating the redundant component) to solve it.

More in general, we say that we have the bridging region compatibility if the
data that feed the lumped parameter model are consistent, in the sense that
they generate no redundancy in the hydraulic network.

This connection between input data and network topology has a central role
when devising partitioned algorithms. In fact, when we segregate the computa-
tion of the different subdomains, the interface conditions are iteratively associ-
ated with the subproblems as boundary data. In non-overlapping partitions, we
have different conditions (Dirichlet/Neumann, Robin/Robin, etc.) to associate
with the different subdomains. For dimensionally heterogeneous models involv-
ing a 0D subdomain, the selected boundary condition acts as forcing term for
the lumped parameter system. Under bridging region compatibility the nature
of this forcing term dictates then the topology of the network. We illustrate this
concept in Fig. 5.3. If we associate flow rate conditions to the 0D system then
the compatible bridging region will have a compliance term (capacitance) at the
inlet. Similarly, bridging region compatibility implies that pressure input finds
an inertial term (inductance) at the “entrance” of the 0D subdomain. Algorithm
2 illustrates a simple instance of this scenario. More precisely, we consider the
coupled problem 3D-0D with interface conditions (65). In this case, the flow
rate condition (65a) requires a compatible bridging region like a £ or 7 network,
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Figure 12: Scheme of the 3D-0D coupling. Depending on the partition of the
scheme (either Algorithm 2 or Algorithm 3) the 0D scheme receives data on
flow rate (Algorithm 2) or pressure (Algorithm 3). The interface bridging region
needs to be compatible to avoid redundancy in the lumped parameter model:
in the former case the compatible bridging region will contain a capacitance
described by a differential equation for the pressure; in the latter case the com-
patible bridging region will contain an inductance described by a differential
equation for the flow rate. The 3D problem will be defective and it will be
properly solved.
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that links the 3D with a compliance term. On the 3D side, the data retrieved
iteratively from the lumped parameter model are clearly defective. The mean
pressure 3D for the fluid may be completed with the “do-nothing” approach
converting pressure data to natural Neumann conditions on the tractions. In
fact, the pressure and the area are related by an algebraic law, so that once one
is computed the other is promptly recovered. In particular, area retrieved from
the lumped parameter model may be used to prescribe a defective structure
displacement for the 3D problem (see Sect. 3.1.4). In an oversimplified setting,
displacement may be simply set to zero, as we discussed in the Remark 6.

In Algorithm 2 we use a strongly or implicit coupling iterative procedure.
The different problems are iteratively solved within each time step up to the
fulfillment of the chosen convergence criterion. The mean pressure is prescribed
to the 3D model as a mean pressure condition. Again, a condition on the mean
normal traction or on the mean total pressure could be considered as well. As
for the 3D-1D coupling, an explicit variant performs just one iteration per time
step. This is based on a time extrapolation argument of interface variables. For
instance, in Algorithm 2 we may perform at each time step t"*! just one iteration
by using as initial guess the pressure retrieved at time ¢t as boundary condition
for the 3D fluid problem. The rationale is that Py}, is a first order approximation
of Pong ! with respect to At. This time extrapolation (or similar with higher order
dependence on the time step) generally introduces a stability limitation to the
time step that may adversely impact the computational advantage of not solving
the subproblems several times at each time step - see [161]. We call this second
approach weakly or loosely coupled.

In Algorithm 3 we illustrate the “dual” case where pressure data are pre-
scribed to the 0D model interfacing with an inductive bridging region, like the
one for instance of a L—inverted or T network (see Fig. 5). Correspondingly,
the 3D fluid model receives flow rate prescribed for instance by a Lagrange mul-
tiplier approach (see Sect. 3.1). Other approaches for this are possible as well.
As for the 3D structure, area condition are prescribed by properly extrapolat-
ing data from the previous iterations/time steps. Again, simplified coupling is
often performed by prescribing null displacement in the axial direction and null
traction in the tangential directions.

An example of application of Algorithm 3 (for a 3D problem with rigid
boundary) is reported in [195].

The convergence of these schemes can be proven by means of general ab-
stract arguments for iterative methods. Let F be the abstract notation for the
differential operator related to a suitable linearization of the fluid-structure 3D
problem P3p = 0 operating on the variables vsp. Correspondingly, B3 represents
the action of the variables of the lumped parameter models vyp so that at each
time step P3p = 0 can be rewritten in the generic form

Fvsp + Bvop = bsp,

where bsp collects the effect of forcing terms, time discretization terms, bound-
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Algorithm 2 “Mean pressure/Flow rate” scheme for the 3D-0D cou-
pled problem

Given the quantities at previous time steps and at the previous iteration k — 1,
a tolerance ¢, and w € (0, 1], and setting PéD) = Py,

WHILE
> €

)

k2)
LR

DO // iteration k

1. SOLVE the 3D problem

7D?)D (ugD)apgD)vnngQ :07

K (nip) =9 (P V).

1 (k) (k—1)
IF | rfp3Dd7:P0D ;

2. SOLVE the OD problem
Sk
Pop (PO(D)) =0,

k k
8= [ uly na
Ly

3. Relaxation: Pé’z)) = wlgo(g +(1- w)Pé’Zfl);
4. Update: kK — k + 1.
END DO
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Algorithm 3 “Flow rate/Mean pressure” scheme for the 3D-0D cou-
pled problem
Given the quantities at previous time steps and at the previous iteration k — 1,

a tolerance ¢, and w € (0, 1], and setting Q(()(B =Qips

WHILE (b-1) 5-2)
-1 -2
‘QOD - QOD ‘ > €,

DO // iteration k :
1. SOLVE 3D problem
k
P?)D (uéD)ap:(glgvn:(glg7Q ) = 07
k—1
Ks (néﬁ) =y (PéD )> ;
/F ugg ndy = Q(k b ;

f

2. SOLVE OD problem
7D(]D ( (()]2> = O’
Wy _ Lo
- 3
0D ’F ‘ r, P3p

w) (k=1),

3. Relaxation: QOD = @é’g +(1- oD 3

4. Update: k — k+ 1.

END DO
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ary data (with the exclusion of the interface variables) and time discretization.
Similarly, we rewrite Pyop = 0 in the form

Lvop + Dvsp = bgp,

where L is the differential system of the lumped parameter model, D represents
the action of the interface variables computed by the linearized 3D model, and
bop collects the external forcing and time discretization terms.

After appropriate discretization and linearization procedures, the multiscale
model can be therefore written in the matrix like formulation

F B V3D o b3 D

D L VoD o bOD ’
In this respect, the iterative methods illustrated in Algorithm 2 and 3 can be
regarded as block relaxed Gauss-Seidel schemes. As a matter of fact, if we define

the operator Lop = LD and L3p = F'B, then the relaxed Gauss-Seidel
method can be formulated as

v(()IBLl) =[(1 —w)Z +wLlopLsp] Vgg + fég,

for a suitable vector fé]z)). In principle, convergence can be guaranteed by prov-
ing that for an appropriate choice of the relaxation parameter w the operator
[(1 —w)Z+ wLlopLsp] is a contraction. In practice, it is fairly difficult to find
an explicit formula for w (generally dependent on the discretization parameters)
and a trial and error approach is used. The previous analysis holds also for the
3D-1D coupling. In this case, the dependence of the optimal w on the physical
parameters of the problem has been numerically investigated in [58] .

Robin/Robin interface conditions. In the examples above we have consid-
ered interface conditions involving pressure and velocity (converted in average
pressures and flow rates for the 0D) separately. As for Domain Decomposition
methods, this corresponds to selecting Dirichlet/Neumann schemes, where the
velocity conditions represent Dirichlet conditions and the pressure the Neumann
ones. Other conditions can be equivalently considered, for instance Robin/Robin
conditions stemming from a linear combination of the Dirichlet/Neumann ones.
From the standpoint of the continuous - dimensionally homogeneous - problem,
all these choices are equivalent. The only requisite is that the two selected condi-
tions are linearly independent one of the other. Conversely, from the standpoint
of the approximation, the different conditions will generally lead to different nu-
merical sequences (all sharing the same limit, though) and, most importantly,
to different numerical performances. An appropriate selection of the param-
eters of the combination is in fact expected to accelerate the convergence of
the partitioned scheme. We observe that for the hydraulic network topology,
Robin conditions correspond to introducing a lumped resistance on the interface
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branch of the bridging region. This case has been considered in [167]. Instead,
for the 3D problem, the Robin/Robin scheme would lead to a defective resistance
condition (see (27) and the related paragraph).

Remark 8. Failing to fulfill the bridging region compatibility may introduce
some troubles in the segregated algorithm. In fact, if the redundancy of the 0D
model is not properly managed, the solution of the 0D compartment may suffer
from numerical instabilities that affect the convergence of the partitioned scheme.
This is illustrated in the counterezample reported in the Appendiz of [125].

Remark 9. The original basic iterative scheme can be generalized for the sake of
numerical efficiency in several ways. For instance, in [22] the partitioning of the
geometrical multiscale model is combined with a fractional step method for solving
the fluid problem, so that the dimensional mismatch at the interface affects only
one substep of the 3D problem with a global mitigation of the numerical effects
of the mathematical heterogeneity of the two subproblems.

Segregated schemes as a well posedness fixed point analysis tool. As
for the theoretical aspects pointed out in the introduction to this section, bridg-
ing region compatibility is relevant to ensure the well posedness of each sub-
domain problem. In fact, in terms of network analysis it guarantees that the
simple State Variable solution approach described in [104] can be pursued, since
it implies the absence of capacitance loops and inductance cut sets. In mathe-
matical terms, 0D models are described by Differential Algebraic Systems (DAE)
of equations and bridging region compatibility guarantees that the system is of
type 1 [6], so it reduces to a standard system of ODE. On the other hand, the
defective 3D problem may be completed as illustrated above (and previously
in Sect. 3.1). Assuming therefore that also the 3D problem is well posed, the
iterative procedure explained in the algorithms above can be used not only for
achieving the numerical solution of the coupled problem, but also for proving its
well posedness. As a matter of fact, the coupled solution may be regarded as the
fixed point of the iterative scheme. In this perspective, existence (at least locally
in time) follows from the application of fixed point theorems. In particular, in
Proposition 5.1 of [167] the Schauder fixed point principle was used to analyze
the case of 3D problem with rigid boundaries, after showing that (i) for suitable
assumptions on the initial data and under bridging region compatibility, each
subproblem is well posed; at the numerical level, this implies that the the block
operators £ and F are invertible; (ii) the operator 7 = LopLsp is locally-in-
time compact. In particular, the proposition was proved for a problem where
all the data used as input to the 0D model where flow rates and the bound-
ary conditions for the 3D one were of (defective) pressure types completed with
the “do-nothing” approach. The arguments may be generalized to other cases
though, see [56].
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5.4 The 1D-0D case

We discuss here about partitioned algorithms related to the time discretizaton
of the 1D-0D coupled problem introduced in Section 4.3, which is formally given
by (70). These algorithms are based on the iterative exchange of the interface
conditions between the 1D and the 0D models. Again, the concept of bridging
region should be carefully addressed since the 0D model beckons one of the two
interface conditions. In particular, for the solution of (70) a “Pressure/Flow
rate” scheme like the one reported in Algorithm 2 could be considered, where
the pressure condition (70c) is prescribed to the 1D model and the flow rate
condition (70b) to the 0D model. Viceversa, a “Flow rate/Pressure” scheme
similar to the one reported in Algorithm 3 could be considered as well.

An explicit version of “Pressure/Flow rate” algorithm has been used in [56].
Instead, a condition on the incoming characteristic variable for the 1D model to
replace the one on the pressure has been proposed in [63].

It is worth mentioning that - similarly to the 3D-0D case - a partitioned
approach has also provided the framework for the well posedness analysis of this
heterogeneous problem via the application of a fixed point theorem, as illustrated
in [56].

5.5 Further developments and comments

The partitioned strategies presented in the previous subsections arise from suit-
able iterative methods (such as the block Gauss-Seidel method) applied to the
“monolithic” coupled problems. A different approach to solve the coupled prob-
lems presented in Section 4 relies on writing an equation involving only the
interface unknowns and on its iterative numerical solution (possibly after a suit-
able linearization). We can interpret this interface equation as the geometric
heterogeneous counterpart of the Schur complement equation, often considered
in the Domain Decomposition method [164].

In [110], a non-linear system of equations involving the interface unknowns
related to the pressure and the flow rate has been derived for a general network
composed by “complex” (3D or 2D) and “simple” (1D or 0D) models, with an
arbitrary connectivity. Then, the authors proposed to apply to this interface
equation either the Broyden method or the Newton one used in combination
with GMRes - see also Sect. 6.4.2.

A similar strategy has been considered in [115], where the authors detailed
the computation of the Jacobian entries (or of suitable approximations) related
to the application of the Newton method to the interface equation. The same
framework has been applied in [26] to an interface equation related to flow rates
and total pressure.

The methods derived from an interface equation are particular suited in the
case on multiple interfaces, such as those that arise in complex arterial networks
because of their simplicity. As a matter of fact, they deal with arrays that
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corresponds to a lower dimensional space (single points) yielding therefore a
substantial topological simplification.

Finally, we stress again that segregated algorithms are not the only option.
Iterative methods applied directly to the monolithic coupled linearized system
have been advocated in [27, 29].

6 An annotated review of selected works

In this section, we review some of the most-representative contributions to the
geometric multiscale approach in the past fifteen years. For several possible
coupling problems (3D-1D, 3D-0D, 1D-0D or 3D-1D-0D), we chose two papers,
the former with a more theoretical focus on numerical algorithms and their
performances; the latter more oriented to practical aspects and applications. In
this choice we necessarily had to discard many contributions. We tried however
to give an exhaustive outlook to the available literature in the previous sections.

6.1 3D-1D coupling

6.1.1 “On the coupling of 3D and 1D Navier-Stokes equations for
flow problems in compliant vessels”, by L. Formaggia, J.F.
Gerbeau, F. Nobile, A. Quarteroni, 2001 [58]

The coupling 3D /FSI-1D models is addressed for the first time in [58], where cru-
cial mathematical and numerical topics are elucidated and problematic aspects -
still open and debated - are highlighted. In particular, the authors consider the
coupling between a 3D /FSI problem with the membrane structure (5) and a 1D
model with the algebraic vessel law (11). Energy estimates for the stand-alone
3D/FSI and 1D models are provided. For the 3D/FSI problem, the authors de-
rive the energy estimate for different boundary conditions on the structure at the
outlet. They consider in particular the case of absorbing boundary conditions
for the structure, an effective tool to avoid spurious reflections. Referring to the
notation of Section 2.1.3 and to Figure 11, this outlet condition reads

ony [kGHg On, ~
— =0. at Xg gist-
ot ps 0z 0- & odist

The estimates for the stand-alone models provide the starting point for proving
the global energy estimate reported here in Proposition 1.

For the numerical simulations, the authors resort to a partitioned algorithm
(see Algorithm 1). More precisely, mean traction condition (58) is prescribed to
the the 3D fluid problem, whilst 1D model is equipped with condition (74) on
the incoming characteristic variable.

Results are presented both in 2D and 3D cylindrical domains with different
radii and a proximal pressure impluse triggering the dynamics.
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Hereafter, we report the main results highlighted by the numerical experi-
ments.

- An explicit partitioned algorithm manages the 3D-1D coupling with stable
results in the simplified settings tested.

- Condition (72b) to guarantee the continuity of the area (38) at the in-
terface leads to numerical instabilities. Most likely this follows form the
mismatch of the structure laws of the 3D/FSI and 1D models. This con-
dition was then replaced by homogeneous Dirichlet condition in the axial
direction and homogeneous Neumann conditions in the tangential one for
the structure.

- Both in the 2D and in the 3D experiments, the stand-alone 3D /FSI model
with standard outlet boundary conditions exhibits remarkable spurious re-

flections. Conversely, these reflections are highly damped in the multiscale
3D/FSI-1D model.

- In order to assess the consistency of the geometric multiscale model with
the full high-fidelity one, the authors compare the results of a 2D /FSI sim-
ulation and the companion 2D /FSI-1D multiscale model where the distal
half of the domain is replaced by a 1D system. Results pinpoint that the
two models are in good agreement until the pressure wave reaches the in-
terface between 2D and 1D subdomains (velocity and pressure mismatch
in the L? norm being less than 2.5% and 1.5% respectively). The assess-
ment of this consistency is clearly crucial for the reliability of the results.
For this reason, this topic has been successively addressed for the case of
a thick structure, in [62] for the case of a cylindrical domain, and in [65]
for the case of real geometries. In the latter work, the authors stress the
importance of accounting for the variations of Ag along z in the 1D model
(that is % # 0 in (8b), as we have for instance for stenoses or for tapering
- in this latter case % < 0) in order to guarantee the consistency.

6.1.2 ‘On the potentialities of 3d-1d coupled models in hemodynam-
ics simulations” by P.J. Blanco, M.R. Pivello, S.A. Urquiza,
R.A. Feijoo, 2009 [29]

The authors investigate here the consistency of the 3D/FSI-1D coupled system
in real geometries with a circulatory network represented by a system of 1D
problems. In particular they consider the 55 arteries-network proposed in [7].
Each segment is assumed to obey the algebraic vessel law (11). A 3D/FSI
problem with the membrane structure law (5) replaces different portions of the
network in the different experiments An implicit partitioned scheme with 3 to 6
iterations per time step is exploited.
We report the main results highlighted by the numerical experiments.
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- The first numerical experiment is intended to analyze numerically the im-
pact of the location of the 1D segment replaced by the 3D/FSI model in
the multiscale setting. For this reason, three cases are considered: (i) the
3D region Ay, replaces a significant portion of the femoral artery; (ii) the
3D region A, replaces only the first proximal part of the same artery;
(iii) the 3D region Ay replaces only the distal tract of the same artery. In
particular, the two latter domains are selected in such a way that Ay is
an almost rectilinear morphology as opposed to Ao, that is significantly
curved. The three multiscale problems are eventually tested against the
full 1D stand-alone model. Results are in good agreement as for the aver-
age flow and pressure. In addition, pointwise velocity in the high fidelity
models is much more similar in the multiscale problems Ay, and Apon
than for the fully 1D and the multiscale with Ag;s. This because the basic
1D model postulates a rectilinear segment - as seen in Sect. 2 - so the
curvature of the femoral artery is not included in the last two cases as it
is in the former two, and this significant affects the numerical results.

- In the second test, the authors compare the 1D network with a 3D /FSI-1D,
where the high-fidelity model is used to represent the left carotid artery.
The aim is to assess te sensitivity of the 3D solution to the inflow conditions
prescribed at the heart. Four typical low waveform characterizing the flow
entering the ascending aorta are employed. The results show that while
these conditions have a major impact on the systemic 1D solution, the
local solution in the 3D model (including the wall shear stress) is quite
insensitive to the different waveforms.

6.2 3D-0D coupling

6.2.1 “Coupling between lumped and distributed models for blood
flow problems” by A. Quarteroni, S. Ragni and A. Veneziani,
2001 [161]

As we mentioned in Sect. 1, the interplay between local and systemic dynamics
in determining the boundary conditions for a numerical simulation was well ev-
ident before mathematical multiscale models were developed. In fact, in [147] a
3D rigid simulation of the cavopulmonary anastomosis was assisted by a lumped
parameter model. The latter was a lumped parameter network covering the en-
tire circulation with the role of finding boundary data to be properly prescribed
to the stand-alone restricted 3D model of the region of interest. Two separate
solvers were used in this way to improve the reliability of the accurate 3D simula-
tion as opposed to the seminal paper [161]. The latter provides the first example
of a mathematically sound coupled model, where a rigid Navier-Stokes code and
a lumped parameter solver defined on non-overlapping regions work in a truly
multiscale fashion. At this proof-of-concept stage the full solver is actually in
2D, since a customized research software developed by the authors was used.
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The conceptual scheme for multiscale modeling is not however affected by this
fact and the paper illustrates results when the systemic network has a certain
level of complexity, including modeling of the heart and the valves. In partic-
ular, the strategy is to segregate the computation in the two subdomains (2D
and 0D) with an explicit time advancing. More precisely, given all the velocity
and pressure quantities at a given time step,

1. the solution of the lumped parameter model is computed by using the full
velocity available from the previous time step, averaged along the interface
and acting as a forcing term; this obtains the average pressure at the
interface;

2. the latter is used as boundary condition for the 2D problem. More pre-
cisely, the related 2D Navier-Stokes pressure drop problem is solved with
the “do-nothing” approach; the nonlinear convective term is approximated
with a semi-implicit approach.

This completes the multiscale coupling step at a given instant and the time loop
moves forward (see Algorithm 5.2 for the version of this algorithm corresponding
to the FSI problem).

Notice that the topology of the lumped parameter solver is selected to be
”bridging region compatible”, having capacitance at the interfaces, with pressure
representing a state variable for the ODE solver.

The paper presents an algebraic formulation of both the explicit and implicit
formulation - based on subiterations between the two solvers at each time step.
The time step is selected to guarantee stability to the semi-implicit Navier-Stokes
solver. In the simplified test cases considered, the explicit solver is overall stable.

The effectiveness of the multiscale segregated solver is assessed in different
tests. A first test compares the results in a 2D pipe region with the pressure drop
prescribed by the network with the available relative Womersley solution, prov-
ing the consistency of the multiscale solution with the analytical one. Similarly,
the consistency between the solution of the lumped parameter multiscale solver
and a stand-alone lumped parameter systemic model is tested, showing that the
multiscale model succeeds in providing accurate results in a region of interest,
yet preserving an excellent quantitative assessment of the systemic circulation.

As preliminary nontrivial results, the solver is then tested on a simplified
coronary by-pass anastomosis test case. The test points out the importance of
a genuine multiscale modeling to capture the local and global different hemody-
namics triggered by different morphological (even if simplified) features.

In spite of its simplicity, this paper provides the basis for many multiscale
models relying on segregated schemes in more realistic contexts. In this respect,
we mention [107, 106, 121] applied to the Total Cavopulmonary Connection ob-
tained as a therapy for Left Ventricle Hypoplasia Syndrome and [12] for the
analysis of carotid stenosis. In the latter paper, an extensive comparison of dif-
ferent boundary conditions in both stand-alone and multiscale settings is carried
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out, pointing out the importance of the combination of local /systemic perspec-
tives granted by multiscale coupling for the reliability of numerical simulations.

More recently, an implicit segregated solver is used in [125] for a detailed
analysis of the Cavopulmonary Connection. The paper points out the nega-
tive impact that may have the violation of bridging region compatibility on the
stability of the numerical solver.

6.2.2 “On Coupling a Lumped Parameter Heart Model and a Three-
Dimensional Finite Element Aorta Model” by H. Kim, IL.E.
Vignon-Clementel, C. Figueroa, J. Ladisa, K. Jansen, J. Fein-
stein, and C. Taylor, 2009 [102]

Paper [102] presents a sophisticated implementation of the 3D-0D coupling for
the reliable simulation of the aortic flow including a simplified model of the heart.
The approach followed by the authors in this case is an instance of the “coupled
multidomain method” introduced in [202]. As pointed out in Sect. 4.2.2, this is
monolithic coupling of the 3D and the 0D model. The 0D model at the outflow
is actually a 3-element windkessel. As we have seen, a semi-analytical solution
of the network is available thanks to the method of integrating factor. This is
included in the variational formulation of the Navier-Stokes equation. In the
spirit of the “do-nothing” approach indicated in [87], the selected variational
formulation automatically includes the 0D available solution and enforces the
interface conditions filling the gap between the 3D and 0D models.

A distinctive feature of the paper is the inclusion of the heart dynamics
represented by a 0D model as well. A similar procedure was carried out in [61]
with a 1D-0D coupling to cover the 55 largest arteries represented by 1D models
dynamically interfaced with the left ventricle (0D). In particular, the nature of
the boundary conditions for the 3D model at the interface with the heart are
selected differently over the heart beat,

1. pressure conditions with the coupled multidomain method are prescribed
when the valve is open;

2. homogeneous Dirichlet conditions are prescribed when the valve is closed.

With “pressure conditions” we mean here again the inclusion in the Navier-
Stokes variational formulation of data on the average pressure provided by an
elastance-varying model for the ventricle. The switch of the valve between the
two possible conditions is governed by

- the difference between the ventricular and the aortic pressures to change
from close to open: when the ventricular pressure is greater than the aortic
one, the type of boundary condition changes;

- the flow rate to change from open to close: when the flow at the interface
becomes retrograde, the type of the prescribed conditions changes.
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The model is applied to patient-specific aortic geometries. The detailed
3D model includes a linearly elastic deformable wall. Several simulations were
carried out testing the multiscale solver under different conditions

1. rest vs exercise conditions, by reducing the downstream resistances (corre-
sponding to vessel dilation) and shortening the heart beat duration under
exercise;

2. aortic coarctation, pre vs post surgery, by reconstructing the case of an
aortic coarctation and then removing it virtually.

As a complex proof of concept yet based on real cases, the paper illustrates the
excellent reliability of coupled multiscale solvers to provide important quanti-
tative tools in the investigation of cardiovascular diseases. Another important
contribution of the paper is the accurate quantification of the lumped param-
eters of the 0D solver, based on a trial and error approach to match available
measures. In fact the quantification of parameters for the network is a crucial
aspects raising significant practical issues in patient-specific settings, still to be
solved.

6.3 1D-0D coupling

6.3.1 ”Multiscale modelling of the circulatory system: a prelimi-
nary analysis”, by L. Formaggia, F. Nobile, A. Quarteroni, A.
Veneziani, 1999 [63]

The need of sound mathematical models and numerical methods for coupling
the different space scales driving the hemodynamics in living organisms was
firstly stressed in [194] and [166] and eventually advocated in [63] with prelimi-
nary exploring arguments. A general perspective on the different mathematical
challenges represented by coupling dimensionally heterogeneous problems is en-
visioned (see Fig. 1 of that paper) and some specific aspects of the low-fidelity
models (1D and 0D) are addressed.

Specifically for the multiscale modeling the coupling between a 0D network
and a single tract of the systemic tree representing a portion of the descending
aorta described by a 1D model is explored for the first time. The 0D model
accounts for the heart modeling with its four valves, the systemic and the pul-
monary tree with 30 compartments. The 1D model is based on the algebraic
vessel law (11) and Coriolis coefficient is set to be aw = 1 for simplicity.

The 1D-0D coupling occurs both proximally and distally to the 1D model,
that is thus “embedded” in the 0D model. A segregated scheme is adopted, with
two different approaches at the two interfaces. At each time step the 1D model
feeds the lumped parameter system with the flow rate proximally and the mean
pressure distally. In turn the 0D model computes pressure and flow rate at the
two respective interfaces. These quantities are properly combined so to prescribe
in fact the incoming characteristic variables to the 1D model - see (74).
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A summary of the results follows.

- An explicit treatment of the partitioned algorithm based on performing
just one iteration per time step may be enough to obtain stable results.

- The adoption of the characteristic variables as boundary conditions for the
1D ending points is able to eliminate spurious boundary reflections from
the 1D solution.

- A consistency check with a stand-alone 0D problem, where the 1D model is
substituted by an elementary 0D compartment with appropriate parame-
ters, highlights that the pressure waveforms perfectly matched at the distal
interface, whereas small artifacts as reflections (not visible in the pure 0D
model) occur at the proximal interface with the 1D model.

More than for the complexity of the models presented - that is indeed quite
limited - this paper has the value of providing a first mathematical formulation
of geometrical multiscale concepts, anticipating different problems and possible
variants.

6.3.2 ” A global multiscale mathematical model for the human circu-
lation with emphasis on the venous system”, by L.O. Muller
and E.F. Toro, 2014 [129]

In this work, the authors study the entire cardiovascular system, with a particu-
lar attention to the vein system of the head and neck. The final aim is the study
of neurovascular diseases linked to the venous vasculature of the head and neck.

They consider a detailed 1D model of the arterial and venous systems, with
almost 100 branches for each system. A detailed description of the venous sys-
tem of the head and neck is obtained by reconstructing 3D geometries with the
software VMTK [4] and successively extracting the centerlines to build the re-
lated 1D network. The wall law is given by (12), with different values of n; and
ng depending on the district considered. Vein valves are modeled with diodes.
To date, this is one of the most complex 1D anatomy-based networks together
with the ADAN network featuring about 2000 segments presented in [31].

For including the heart and the pulmonary circulation, a 0D model suit-
ably coupled with the 1D model is introduced. This comprises the four heart
chambers and corresponding cardiac valves, as well as a simplified description of
the arteries and veins in the pulmonary circulation, arterioles, capillaries, and
venules. These are in fact artery-vein connections coupling the arterial and the
venous systems and are modeled by means of 0D compartments with different
characteristics, so as to consider different type of connections (e.g. distribution
of flow from a single artery to multiple veins, or more arteries feeding a single
vein).

For the numerical solution of the coupled 1D-0D problem, the authors use
a partitioned algorithm where the 1D model provides mean pressure terms to

74



the 0D system, and it receives the incoming characteristics based on the lumped
parameter results. An explicit procedure is proven to be enough to provide
stable and accurate results, as in [63].

In what follows we report the main results obtained by the authors.

- Agreement with physiological values in the heart and artery system is
excellent. Specifically: (a) pressure variation and volume curves well rep-
resent physiological conditions in atria and ventricles. (b) also the results
obtained in the major arteries (aorta, legs arteries, internal carotid, basilar
and vertebral arteres) are in good agreement with data reported in the liter-
ature; (c) the values of computed pressures in the arterioles, capillaries, and
venules varied around physiological values (40-60, 20-30, and 13-17 mmHg,
respectively); (d) results obtained in the venous system were found to be
accurate when compared with PC-MRI flow data retrieved in the neck;
In particular, numerical results obtained in the systemic venous system
capture the biphasic behavior characterizing the hemodynamic in these
vessels, where two marked peaks in both pressure and flow are present.

- The model does not include respiration, gravity and tone regulations. How-
ever, in view of the very good agreement with experimental data, the au-
thors argue that these features have probably a minor role, at least when
simulating rest supine position. Possible techniques to account for these
aspects and preliminary numerical results are nevertheless discussed.

6.4 3D-1D-0D coupling

6.4.1 “Large scale simulation of the human arterial tree” by Grin-
berg et al., 2009 [79]

Even though the complete coupling of all the three levels all together, 3D,1D,0D,
was early prospected in [63], in practice it has been implemented in relatively few
contributions. In spite of its solid mathematical foundation, the coupling of the
three - so mathematically diverse - models raises some practical issues and the
additional effort is not always justified by the applications. For instance, when
the 3D component is assumed to be rigid, in many cases a direct interface with
0D models for the systemic circulation is preferred, since propagative dynamics
are not the main focus. On the other hand, when the simulation of the pres-
sure wave propagation is the main concern, 3D/FSI-1D models are preferred,
possibly with simplified terminal boundary conditions yet subject to a trivial
0D interpretation, as we have illustrated in Sect. 4.2.2. Alternatively, when the
systemic dynamics is of major interest, 1D-0D models may be enough.

In some cases (see Sect. 4.1), 0D models have been used in 3D-1D coupling for
representing a specific feature missed in the 3D models - like, e.g., the compliance
- rather than for representing a particular peripheral compartment, see [143].

Nevertheless, we mention the paper [79] for providing a detailed analysis of
the computational costs of a complete coupling.
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In particular, two aspects are peculiar of the approach presented by the
authors.

1. The spectral element method is used for simulating the fluid dynamics in
3D. This is advocated as alternative to the finite element method and
provides a trade off between the accuracy (given by spectral methods) and
the geometrical versatility (yielded by finite element decomposition).

2. Multilevel partitioning of the arterial tree is necessary for an efficient nu-
merical solution of the problem. This means that two layers of subdomains
are envisioned, (i) an “external” layer of subdomains coupled by an explicit
enforcement of the interface conditions , (i) an “inner” level where each
domain of the external partition is split into a number of strongly coupled
subdomains. Computational facilities employed to solve this include thou-
sands of parallel processors. The efficient exploitation of such facilities
demands 4-5 layers of processors groups on a single computer or 5-6 when
on grids.

The combination of highly performing parallel facilities and high order meth-
ods allows the 3D simulation of large portions of the vasculature, even if typically
only the fluid part. Yet, this is not enough even in principle for solving the en-
tire 3D system, with an estimated number of grid points (for the fluid) of 85.5
billions, out of scale for petaflop computers. Not to mention the substantial im-
possibility of retrieving geometrical data below a certain space scale. The need of
properly coupling methods for including the other regions of the circulatory sys-
tem is clearly pointed out on the basis of the imaging discriminant: what can be
reconstructed from patient-specific images being “super-pixel” sized is treated as
a 3D model, what is sup-pixel dimensioned can be solved only with low-fidelity
models. Under this perspective, the following nomenclature is introduced.

- MaN, standing for Macroscopic Network, is used to identify the vessels with
a diameter larger than 0.5mm, where a complete Navier-Stokes model can
be solved after a proper patient-specific image processing. In particular,
the authors present a 3D parallel simulation of the cerebral vasculature
including 65 rigid vessels with 4 inlets, 31 outlets, by using 3265 CPUs
with simulations of polynomial order 5.

- MeN, standing for Mesoscopic Network, for vessels with diameter ranging
down to 10pm radius. In these regions 1D models are considered as appro-
priate, spanning small arteries and arterioles in a number of 10 millions.

- MiN, standing for Microvascular Network, for the capillary bed comprising
billions of arteries. Here the compartment representation is necessary.
Lumped parameter models can be used as a closure approach for terminal
conditions to 1D models. When the MeN covers a large number of arteries,
an homogenization of the bed based on the Darcy Law can be used as well
(see also [45]).
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Although not providing any specific example of coupling of the three levels,
the authors give a reliable estimate of computational costs required with the
aim of simulating the three levels with the suggested cut-offs (5mm radius for
MaN, 10um for MeN) as a part of the Virtual Physiological Human (VPH -
http://www.physiome.org) project. For instance, if MaN includes 100 arteries of
the cerebral vasculature, this will require 27.7 wall-clock hours per cardiac cycle
on 40,000 processors. Within the same time 10 millions of arterioles modeled
by 1D models branching according to the Murray’s law can be solved with a
discontinuous Galerkin method. Likewise, 30,000 processors are required for
covering the capillary beds in the same time with a Darcy empirical model.
The memory requirements for this simulation range from 100 to 500 Terabytes,
depending on the accuracy of the solver. These numbers apply to the cerebral
districts and need to be multiplied by a factor of 10 for the entire circulation.
In summary, 110,000 processors are estimated to be required for a 1-day-per-
cardiac-cycle simulation, using however a memory considered out of scale at the
date of the paper.

Up to date, the significance of these numbers for 2015 is not only to stress
the intrinsic extreme complexity of the problem, as stated in the final sentence
”there is much more modeling complexity to be added in the VPH, including
blood rheology, biochemistry, blood-endothelium interactions etc., which will
make such full-scale simulations intractable even on the next generation of hex-
ascale computers”. This statement also stresses how important is the judicious
modeling of the vessel network for clinical purposes. If the dimensionally hetero-
geneous coupling is to date the only possible way to deal with these problems,
fortunately in many applications we do not need this level of complexity, since
the interest for a specific pathology calls for a focal quantitative analysis. The
appropriate selection of the different regions to be described by the different
models is crucial anyway to have both reliable and timely simulations.

6.4.2 “A black-box decomposition approach for coupling heteroge-
neous components in hemodynamics simulations” by P.J. Blanco,
J. Leiva and G. Buscaglia, 2013 [28]

After a first proof of concept in [30] where the three different components are
assembled by a block Gauss-Seidel approach, P.J. Blanco and coauthors propose
an effective strongly modular approach in [28]. The three levels of modeling are
here denoted by HP (High-Pressure), LP (Low-Pressure) and SV (Single Ves-
sel). The first one is basically described by 1D models completed by windkessel
elements as terminal conditions; the second one is described by 0D networks;
and the last one is represented by 3D models, including the Navier-Stokes equa-
tions and the independent rings as a simple structural membrane model (see
[101, 163]).

The motivation given is that the three components have not only a different
space scale, but different numerical features that it is worth treating in a modular
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or “black-box” fashion. The advantages of this approach pointed out here are
that

- the codes of the different moduli do not need to be accessed to run the
solver (henceforth improving code readability and maintainability);

- legacy well tested codes for each subproblem can be exploited;

- the effects of nonlinearities numerically reflected by iterations of proper
linearization methods are confined and managed within a single modulus;

- the different time scales that guarantee numerical stability to the different
moduli can be handled separately, with an overall efficiency gain.

The dimensionally heterogeneous solver is obtained by coupling the different
moduli prescribing continuity of the interface variables and the corresponding
fluxes. The defective problems are managed by a variational “do-nothing” ap-
proach and the interfaces with 0D models obey the bridging region compatibility
that we addressed in Sect. 5.3 (even if this denomination is not used in [28]). For
the sake of a strong modular approach, each modulus is regarded as an input-
output relation between the interface variables. Then, a Broyden-like method
for solving nonlinear problems is used for the numerical coupling. This approach
relies on the correction of the current solution of a generic equation by comput-
ing its residual. For heterogeneous models, this results in solving the different
moduli individually - with a specific time step - while the synchronization re-
quired by the Broyden algorithm is performed according to a global time step
(larger than the modular ones). Inner iterations of the solvers of each component
take care of the nonlinearities of the single modulus, while the Broyden outer
iterations manage the coupling.

The approach is tested on three cases, (i) a 1D-0D model of the entire circu-
lation; (2) a 3D-1D-0D model related to the cerebral circulation with a patient-
specific model of an aneurysm; (3) a 3D-1D-0D model of the arm. The results
confirm the efficiency of the modularity approach. In particular, substepping for
the lumped parameter (closed loops) components allows a flexible management
of nonlinearities as opposed to a monolithic approach. An appropriate tuning of
the parameters of the numerical discretization/linearization can in fact reduce
significantly the computational time of a monolithic solver depending on the
nature of the 0D model. In addition, the number of Broyden iterations is pretty
insensitive to the number of interface variables; this property guarantees highly
scalability properties of the heterogeneous solver.

The combination of the modular approach with the Broyden framework for
outer iterations seems therefore to be one of the most effective methods for using
dimensionally heterogeneous solvers in clinical applications.
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7 Conclusions

When translating mathematical models into real practical applications the gap
between theory and practice comes into play and our sins - so to say with the
proverb - find us out. This is particularly sensible for life sciences, when the
constraints determining the gap have a diverse nature - from practical to ethical.
It is reasonable to think that some of those constraints will be dropped or at
least reduced but some other will always stand. For the successful impact of
numerical methods it is crucial not to give up with mathematical rigor when
filling the gap.

Impact of numerical methods in cardiovascular sciences ultimately means
providing tools for quantitative analysis to be used in the clinical routine and
for the decision-making process. This scenario implies an additional constraint:
the computational time needs to be fitted - or more realistically compressed -
into the clinical and sometimes emergency timelines. Computer Aided Clin-
ical Trials (CACT) are now a reality [192], as large clinical studies are pro-
gressively supported by numerical models to complement data retrieved from
patients in traditional manners. Reliability and efficiency are both fundamen-
tal and competing issues. As we have pointed out in the previous sections,
geometric multiscale models provided the solution for filling the gap between
available/measurable data and all the information required to make mathemati-
cal models theoretically sound. Enhanced computational power, albeit expected,
will not guarantee to obtain patient-specific full model (3D) analysis for years.
Dimensionally heterogeneous models have provided the appropriate versatile so-
lution to be calibrated to diverse clinical problems. This has been testified by
the formidable methodological developments over the years summarized in this
paper as well as by several demonstrations in the literature that are a robust
proof-of-concept and sometimes go beyond. As Fig. 1 in [63] was prepared to
illustrate our prospected vision in a file called “dream.fig”, we can certainly state
that the dream came true. In addition, these studies have provided indications
for problems in other fields, yet requiring dimensional heterogeneous modeling
[122, 123, 45, 201, 119, 141] - just to mention some.

However, CACT and the clinical environments are raising several challenges
still demanding for the development of mathematical tools as well the proper
exploitation of infrastructures. In particular, we highlight two aspects that we
think may be decisive for the overall impact of computational hemodynamics
and geometric multiscale models on healthcare and society.

- Patient-specific parameter estimation. As also highlighted by the present
work, reduced models features parameters that surrogate different aspects
of the dynamics of interest. A precise patient-specific quantification of
those parameters is not trivial, since it is not obtained by direct measure-
ments of physical quantities. The accurate quantification can be obtained
by a combination of measures and numerical techniques that goes under
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the more general name of data assimilation [197]. There are different ap-
proaches to attack this problem, from stochastic-based methods like the
Kalman filter to variational techniques possibly paired with model reduc-
tion, see e.g. [23, 21, 20, 207, 96]. These methods are to date quite
computationally intensive and often do not fit into timelines of medical
interest, basically for the intrinsic nonlinearity of the problems at hand
and the large number of parameters that need to be estimated. Trial and
error approaches based on empirical adjustments of parameters available
from the literature are usually preferred. The definition of rigorous and
effective methods to achieve multiparameter estimation is in this context
a major challenge for the years to come.

- Heterogeneous platforms management. Local clusters may not be ade-
quate to deliver the computational needs of the quantitative analysis of
large numbers of patients. Alternative solutions like grids and on-demand
cloud resources may be the answer. In fact, it is not realistic to prospect
that hospitals and healthcare facilities will equip with High Performance
Computing resources, they will rather outsource the needed services. The
efficient workload splitting over heterogeneous architectures for CFD in
hemodynamics raises nontrivial problems in terms of efficiency and cost
evaluation [179, 180, 144, 82]. The interplay between heterogeneous ar-
chitectures and heterogeneous geometrical multiscale models partially ad-
dressed in [79], need to be investigated in more detail for the effective
deployment of infrastructures to assist the clinical activity.

From the perspective of scientific research, geometric multiscale modeling of
the circulation has triggered in the years truly interdisciplinary efforts with a
combination of biology, medicine, radiology and imaging sciences, mathemat-
ics (both theoretical and applied) and computer science. The role of rigorous
mathematical tools is central. The appropriate formulation of problems with
different geometric scales is in fact fundamental for overcoming the “insuper-
able difficulties” of the circulation (using Euler words) that still challenge the
most modern computing architectures. Also, it clearly demonstrates that the
gap between theory and practice can be actually filled by converting empirical
engineering ideas into rigorous numerical methods. It is worth remembering how
this research strongly relies on the contribution of “giant” mathematicians like
L. Euler. Without the incredibly pioneering Euler’s intuitions for representing
the blood circulation none of the present geometric multiscale numerical models
would have been possible.

The challenge of computational hemodynamics to cardiovascular diseases is
on, the progressive refinement of methodologies and technologies gives more than
a reason to get hope - and numerical mathematics of multiscale models had, has
and will have to play a fundamental part in this.
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