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Abstract

We implement a space-time grid adaptation procedure to efficiently im-
prove the accuracy of numerical simulations of solute transport in porous
media in the context of model parameter estimation. We focus on the Ad-
vection Dispersion Equation (ADE) for the interpretation of non-reactive
transport experiments in laboratory-scale heterogeneous porous media. When
compared to a numerical approximation based on a fixed space-time dis-
cretization, our approach is grounded on a joint automatic selection of the
spatial grid and the time step to capture the main (space-time) system dy-
namics. Spatial mesh adaptation is driven by an anisotropic recovery-based
error estimator which enables us to properly select the size, shape and ori-
entation of the mesh elements. Adaptation of the time step is performed
through an ad-hoc local reconstruction of the temporal derivative of the
solution via a recovery-based approach. The impact of the proposed adap-
tation strategy on the capability to provide reliable estimates of the key
parameters of an ADE model is assessed on the basis of experimental so-
lute breakthrough data measured following tracer injection in a non-uniform
porous system. Model calibration is performed in a Maximum Likelihood
(ML) framework upon relying on the representation of the ADE solution
through a generalized Polynomial Chaos Expansion (gPCE). Our results
show that the proposed anisotropic space-time grid adaptation leads to
ML parameter estimates and to model results of markedly improved qual-
ity when compared to classical inversion approaches based on a uniform
space-time discretization.

1 Introduction

Transport of solute mass in the subsurface is due to advection and diffusion
processes, taking place at the pore level. Due to practical difficulties to include
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pore-scale modeling in the analysis of typical laboratory and field scale settings,
solute transport in porous media is mostly described by means of effective mod-
els. Several alternative modeling options are available in this context. A stan-
dard choice is to adopt a continuum-based representation of the main governing
processes grounded on the standard advection-dispersion equation (ADE). A
key assumption underlying the ADE is that the total dispersion coefficient can
be described by the sum of effective diffusion and hydrodynamic dispersion, ac-
cording to the so-called Fickian analogy [1]. Limitations of this modeling option
have been identified and discussed on the basis of theoretical arguments, nu-
merical simulations and experimental evidences, which led to the development
of alternative formulations encapsulating effective descriptions of non-Fickian
(or anomalous) transport (see, e.g., [23, 29, 4, 57, 45] and references therein).
These approaches encompass very different modeling perspectives, based on both
Lagrangian and Eulerian mathematical formulations and can give rise to local
and/or non-local (integro-differential) equations. All these macroscale models
entail the definition of effective transport parameters, which are typically as-
sumed to be linked to geometrical settings which are somehow representative of
the pore space geometry. These parameters are generally unknown in laboratory
and field scale applications, and need to be estimated by means of inverse mod-
eling procedures. To this aim, multiple evaluations of the model of choice are
typically required. While a considerable amount of analytical solutions is avail-
able [52], practical applications often require the use of methodologies based on
numerical approximations of the governing equations to obtain the evolution of
the concentration in the space-time domain of interest [1]. Independently of the
approach employed, the results of numerical simulations are always subject to
an approximation error, which is related to the selected discretization method.
For instance, the computational error associated with Eulerian discretizations
(e.g., finite elements, finite volumes, finite differences) is a function of the spa-
tial grid spacing and of the time step size. This work is aimed at assessing the
impact of the numerical discretization strategy on parameter estimation proce-
dures, as applied to laboratory scale solute transport processes in porous media.
To keep model complexity at a minimum level, we assume that transport can
be modeled at a continuum scale by means of an ADE, which is solved in a
finite element framework. We ground the numerical approximation of the ADE
on a space-time adaptive discretization, following the methodology outlined in
[14]. Here, we focus on the effect of this adaptive methodology on the quality
of the estimates of dispersivity parameters associated with experimental solute
breakthrough curves detected in a real heterogeneous porous system.

Previous studies show that the impact of discretization techniques on typical
output variables of interest at reservoir/aquifer scales may be relevant [5, 22].
[39] show that the choice of the numerical methodology employed for the forward
solution of transport problems can bear considerable effects on inverse modeling
results. Automatic mesh and time step adaptation techniques provide a flexible
tool to dynamically tie the resolution of the space-time mesh to the features of
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the numerical solution of the target differential problem [31]. In the context of
groundwater flow simulation, adaptive mesh methodologies have been applied
to the simulation of free surface flows [27, 6], and to simulate flow in the pres-
ence of heterogeneous permeability fields [9, 33]. Adaptive mesh strategies have
also been implemented for the simulation of transport processes in porous me-
dia, e.g., in [41, 42, 25, 21]. The majority of existing literature works rely on
an isotropic local refinement of the spatial grid. A dynamic anisotropic mesh
adaptation scheme is proposed in [51] for the simulation of reactive transport.
The key advantage of anisotropic meshes is that they enable one to optimize
the computational mesh in the presence of directional features of the solution of
the mathematical model or of model outputs (e.g., concentration fronts induced
by transport and/or reactive phenomena) when dealing with a goal-oriented
approach [2].

Time-dependent behaviors characterize many relevant processes taking place
in the subsurface. Recent studies show that an adaptive choice of the time
step typically allows increasing the accuracy and efficiency of numerical solvers.
For example, time step adaptation methodologies have been proposed for the
simulation of density-driven flows [56], passive and reactive chemical transport
[55, 47], and flow in variably saturated porous media [26].

Recent works demonstrate the effectiveness of combining anisotropic mesh
and time step adaptations in the framework of, e.g., computational fluid dynam-
ics [13, 35] and overland flow simulations [43, 44]. The methodology proposed
in [43] has been recently applied by [14] to the simulation of solute transport in
porous media. These authors compare the results obtained through the space-
time adaptive methodology against experimental breakthrough curves measured
at the outlet of a homogeneous sand box. The results of [14] indicate that (i)
anisotropic mesh adaptation allows capturing early solute breakthrough, which
is not reproduced as accurately by means of a fixed uniform space-time dis-
cretization, and (ii) time step adaptation allows reducing the computational
cost, while preserving the accuracy of the results associated with the anisotropic
mesh adaptation strategy.

The main objective of this work is to quantify the impact of the implemen-
tation of the space-time adaptive procedure proposed in [14] on parameter esti-
mation and uncertainty quantification in the context of laboratory scale solute
transport modeling. We ground our study on solute breakthrough curves mea-
sured at the outlet of a block-wise heterogeneous porous domain. To this end, we
couple a space-time adaptive discretization with the model reduction technique
proposed in [20]. The latter methodology provides a way to compute an approx-
imation of the modeled breakthrough curve through a generalized polynomial
chaos expansion (gPCE). The gPCE enables one to construct a surrogate model
approximating a target system response through a finite series of polynomials.
These are selected on the basis of the functional format of the probability density
of the model uncertain parameters. The procedure allows performing multiple
evaluations of the system model, which are employed to (a) obtain Maximum
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Likelihood estimates of model parameters and (b) quantify propagation of pa-
rameter uncertainty to target model outputs at a reduced computational cost
[15, 16, 11, 12]. The gPCE strategy can also lead to the analytical evaluation of
the variance-based Sobol sensitivity indices [49, 50], which quantify the relative
contribution of each uncertain model parameter to the total variability of the
model output. The parameter estimation methodology we consider entails three
main steps: (i) numerical solution of the ADE for a number of parameter com-
binations identified through a sparse grid of collocation points; (ii) derivation
of a reduced complexity model of the solute breakthrough curve through the
above mentioned gPCE; (iii) model calibration through Maximum Likelihood
parameter estimation. Preliminary results which explore the impact of mesh
adaptation on uncertainty quantification and parameter estimation are reported
in [3, 40]. To the best of our knowledge this is the first time that space-time
mesh adaptation is employed in the context of interpretation of solute transport
phenomena in porous media.

The work is organized as follows. Section 2 introduces the problem setting,
while Section 3 summarizes the key elements of the adaptive numerical method-
ology proposed in [44, 14]. Section 4 provides a description of the numerical
implementation of the space-time mesh adaptation technique for model param-
eter estimation and uncertainty quantification. Results related to modeling and
interpretation of solute transport within an heterogeneous sand box are provided
in Section 5. Concluding remarks end the paper.

2 Problem setting

We cast the transport problem in a two-dimensional (planar) framework. The
ADE reads

∂C

∂t
+ ∇ · (vC) −∇ · (D∇C) = 0 in Ω × (0, T ], (1)

where Ω is a bounded polygonal domain of R
2, C = C (x, t) [mol/m3] is the

unknown solute concentration at location x and at time t, v = (v1, v2)
T [m/s] is

fluid velocity and D = {Dij} is the dispersion tensor [1] given by

Dij = (αT ‖v‖2 + Dm) δij + (αL − αT )
vivj

‖v‖2

with i, j = 1, 2 . (2)

Here, αT , αL[m] are transverse and longitudinal dispersivity, respectively, δij is
Kronecker’s delta, Dm[m2/s] is molecular diffusion and ‖w‖2 denotes the stan-
dard Euclidean norm of a generic vector w ∈ R

2. Equation (1) is completed
with suitable initial and boundary conditions which, in general, can be cast as





C (x, 0) = C0 (x) for x ∈ Ω,
C (x, t) = f1 (x, t) for x ∈ Γ1, t ∈ (0, T ],
− (D∇C) · n = f2 (x, t) for x ∈ Γ2, t ∈ (0, T ],
(vC − D∇C) · n = f3 (x, t) for x ∈ Γ3, t ∈ (0, T ],

(3)
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where Γ1, Γ2 and Γ3, with ∪3
i=1Γi = ∂Ω, Γi ∩ Γj = ∅, for i, j = 1, 2, 3 and i 6= j,

represent partitions of the boundary ∂Ω of Ω associated with Dirichlet, Neumann
and Robin boundary conditions, respectively; C0 is the initial value of the solute
concentration; fi, with i = 1, 2, 3, are boundary values; and n is the unit outward
normal vector to ∂Ω. A typical quantity of interest for the interpretation of
experiments and field scale transport settings is the solute breakthrough curve,
i.e., the time evolution of solute concentration at a fixed location. In typical
experimental settings, the solute breakthrough curve is measured at the outlet
section Γout of the domain and can be defined as

Cout(t) =
1

|Γout|

∫

Γout

C (x, t) dΓ ∀t ∈ [0, T ], (4)

where |Γout| denotes the length of the outflow section. Following [14], we dis-
cretize (1)-(3) by means of a stabilized finite element method, which is based
on a streamline diffusion technique [8]. Spatial discretization is performed upon
relying on a spatial mesh Th = {K}, i.e., a conformal discretization of Ω into
triangular elements K. Discretization of the time window [0,T ] is performed
upon introducing the time levels

{
t0, . . . , tn

}
, which define the set {Ik} of the

time intervals Ik of amplitude ∆tk = tk+1 − tk, for k = 0, . . . , n − 1. Time
discretization is performed through the standard θ-method [46]. To guarantee
the unconditionally absolute stability of the θ-method, we resort to an implicit
scheme and set θ = 2/3.

Here we assume the velocity field v in (1)-(3) to be stationary and to obey
Darcy’s law and the fluid mass conservation equation so that





v = −
k

µφ
(∇p + ρgk) for x ∈ Ω,

∇ · v = 0 for x ∈ Ω,
v · n = ψ for x ∈ ∂Ω,

(5)

where p [Pa] is pressure, g [m/s2] is gravity, µ > 0 [Pa·s] and ρ > 0 [Kg/m3] are
the fluid viscosity and density, respectively, k > 0 [m2] is the porous medium
permeability (which we treat here as a generally spatially variable scalar, for
simplicity), 0 < φ < 1 is porosity, ψ is a flux imposed on the domain boundary
and k denotes the unit vector aligned with the vertical direction. Following
[14], the numerical solution of the flow problem (5) is obtained through a mixed
two-field formulation (see, e.g., [32]), based on zero-order Raviart-Thomas finite
elements [7] to discretize the velocity and standard finite elements of degree zero
for the pressure.

3 The adaptive discretization technique

We solve numerically the ADE (1) upon relying on an adaptive and automatic
selection of the space-time discretization. The adaptive methodology we imple-
ment has been developed for shallow-water modeling in [43, 44]. A preliminary
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application to transport in porous media is provided in [14]. We recount here
the main concepts underlying the adaptive methodology and refer to [14] for
additional details. The adaptive technique is grounded on the definition of an a

posteriori error estimator for the global (space-time) discretization error

ηA
ht = ηA

h + ηt, (6)

which includes an estimator (ηA
h ) for the the approximation error associated with

the spatial discretization and one (ηt) for the error due to time discretization. We
assume here that the two error estimates can be computed separately, following,
e.g., [34, 48]. We employ an anisotropic spatial error estimate ηA

h , i.e., an error
estimate which allows optimizing not only the size but also the shape and the
orientation of the mesh elements.

To compute (6), we rely on recovery-based error estimates, following the
idea proposed by [58] in the context of linear elasticity. Recovery-based error
estimation entails two steps: (i) local reconstruction of the solution gradient
upon averaging or re-interpolating the discrete solution gradient (gradient re-
covery procedure), and (ii) estimation of the discretization error in the H1(Ω)-
seminorm, obtained by computing the L2(Ω)-norm of the difference between the
recovered gradient and the discrete gradient [59, 60]. A standard notation is
here adopted for the Sobolev spaces, as well as for the space of the functions
bounded almost everywhere in Ω [30]. Recovery-based estimators are typically
robust and reliable and have been successfully applied to a wide spectrum of
differential problems, e.g., in [17, 37, 43, 38, 54] and references therein.

3.1 Anisotropic mesh adaptation

We provide here a suitable definition of the spatial error estimator ηA
h in (6).

Let Ch be the finite element approximation of concentration C, obtained by the
discretization of (1). Following the approach proposed in [44, 36], we introduce
the local anisotropic error estimator

[
ηA

K (t)
]2

=
1

λ1,Kλ2,K

∫

∆K

{
λ2

1,K [r1,K · (PR (Ch (t)) −∇Ch (t))]2 +

λ2
2,K [r2,K · (PR (Ch (t)) −∇Ch (t))]2 } d∆K ∀K ∈ Th,∀t > 0, (7)

where λi,K and ri,K , (i = 1, 2), identify the eigenvalues and the eigenvectors of

the tensor MK , defining the mapping between a reference triangle K̂ and the
generic element K of the mesh Th (see Figure 1a). Note that λi,K measure the
length of the semi-axes of the ellipse circumscribing K, while ri,K identify the
directions of these semi-axes [18, 19]. The quantity PR (Ch(t)) represents the
recovered spatial gradient of Ch at time t. As depicted in Figure 1b, PR (Ch) is
computed as the area-weighted average of the discrete gradient ∇Ch within the
patch ∆K of triangles sharing at least one vertex with K. Thus, the global error
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Figure 1: Spatial error estimator ηA
K (7): geometric definition of the anisotropic

setting, a), definition of the recovered gradient PR(Ch), b).

estimator associated with the spatial discretization is computed as

[
ηA

h (t)
]2

=
∑

K∈Th

[
ηA

K (t)
]2

∀t > 0. (8)

Equation (8) represents an anisotropic error estimate, as it directly involves
the anisotropic quantities λi,K and ri,K identifying the size, shape and orienta-
tion of element K. Note that definition (7)-(8) stems from the generalization of
the standard estimate for the H1(Ω)-seminorm of the discretization error to an
anisotropic setting [36, 14]. For a rigorous presentation of the error estimator
(7)-(8) we refer to [43, 36].

The goal of our mesh adaptation technique is to build an anisotropic spatial
grid that is driven by the estimator (7)-(8). This is achieved through the imple-
mentation of the mesh adaptation procedure presented in [19], and successively
applied in several works, e.g., [34, 36, 43, 44]. The main goal of this procedure
is to find the mesh with the least number of elements and associated with a
fixed accuracy τh, i.e., such that ηA

h ≃ τh while guaranteeing an equidistribution
of the error in space. A metric-based adaptation technique is applied to this
end. Let M̃ : Ω → R

2×2 be a symmetric positive definite tensor field and T b
h

be a generic grid, here defined as background grid. The tensor M̃ can be cast

as M̃ = R̃T Λ̃−2R̃, where Λ̃ = diag
(
λ̃1, λ̃2

)
and R̃T = [r̃1, r̃2] are a positive

diagonal and an orthonormal tensor, respectively defined at each x ∈ Ω. The
quantities Λ̃ and R̃ can be approximated through matrices which are piecewise
constant on T b

h , such that λ̃i

∣∣
K

= λ̃i,K , r̃i

∣∣
K

= r̃i,K , for i = 1, 2 and for any

element K of the mesh T b
h . The computation of the elemental metric M̃new

K

identifying the new adapted mesh is then performed on the background grid
T b

h by (i) applying an error equidistribution criterion, and (ii) solving a local
constrained optimization problem on each element K of T b

h . In details, first the
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ADE is solved on the background mesh T b
h . Then, the unknown metric M̃new is

computed by imposing the desired accuracy τh and by equidistributing the error
so that the local accuracy τK = τh/N b

el is guaranteed, N b
el being the number of

elements of T b
h . This procedure essentially leads to deal with local constrained

optimization problems which can be explicitly solved [19].

Once M̃new is computed, the new mesh T new
h is generated through the soft-

ware BAMG [24]. We refer to [36, 43] for a detailed description of the local
optimization problem and the explicit computation of the metric field from the
estimator ηA

h .
Three constraints are imposed to the mesh adaptation procedure, to guar-

antee the robustness of the methodology. Excessive element clustering is locally
prevented by setting a minimum threshold qmin for the product λ̃1,K λ̃2,K within
the local optimization solution. This is equivalent to assign a lower limit on
the element area, since |K| = |K̂|λ1,Kλ2,K . Two global constraints are then
imposed on the minimum and maximum number of mesh elements. We set
Nel,min ≤ Nnew

el ≤ Nel,max, to prevent global excessive coarsening/refinement of
the spatial mesh. This objective is achieved through a uniform scaling of the
computed metric field M̃new. Notice that, to contain the computational cost
of the global adaptive procedure, we do not employ any iterative algorithm to
obtain the new adapted mesh T new

h . As explained in Section 3.3, the adaptive
procedure here detailed is applied at each time tk to generate a corresponding
adapted mesh T k

h .

3.2 Time step adaptation

Time step adaptation is implemented upon relying on a recovery-based estimate
of the time discretization error. We aim at predicting the time step ∆tk that
can be used at each time level tk for the subsequent time advancement. For
this reason we will deal only with a local time error estimator. The time step
adaptation procedure entails three steps: (i) computation of a recovered time
derivative, (ii) evaluation of the local time estimator, and (iii) prediction of the
next time step size.

The recovery-based estimator for the time discretization error within time
interval Ik−1 =

[
tk−1, tk

]
is then defined as [44, 14]

[
ηT

Ik−1
(x)

]2
= ∆tk−1

∫

Ik−1

∣∣∣∣
∂CR (x)

∂t

∣∣∣
Ik−1

−
Ck

h (x) − Ck−1
h (x)

∆tk−1

∣∣∣∣
2

dt, (9)

where CR (x) is a recovered solution, coinciding with the parabola which inter-

polates the concentration values
[
Ck−2

h (x) , Ck−1
h (x) , Ck

h (x)
]

at tk−2, tk−1, tk,

respectively; and Ck
h(x) is the numerically computed concentration at time tk

and at point x. Note that the multiplicative factor ∆tk−1 in (9) renders the
time error estimator dimensionless, consistent with the spatial error estimator
ηA

h (8).
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In our finite element framework, estimator (9) is computed at specific spatial
locations identified by the vertices Vi of the current grid T k

h . This provides us
with a spatially distributed quantity, which is then lumped into a single error
indicator through an area-weighted average

[
ηT

Ik−1

]2
=

∑
K∈T k

h

[
ηT

Ik−1,K

]2
|K|

∑
K∈T k

h

|K|
(10)

where
[
ηT

Ik−1,K

]2
is the average of estimator (9) on K computed as

[
ηT

Ik−1,K

]2
=

1

3

∑

Vi∈K

[
ηT

Ik−1
(Vi)

]2
. (11)

To compute the new time step, we assign a fixed tolerance for the time error,
i.e., we impose the condition ηT

Ik−1
= τ∆t

t . Note that the error control is applied
on the time slab Ik−1, because the global error estimator can be evaluated only
at the end of the simulation when the whole time partition is known. Following
[44, 14], the adaptive time step is then calculated as

∆tk =
τ∆t
t

ηT
Ik−1

∆tk−1. (12)

A minimum (∆tmin) and a maximum (∆tmax) value for the predicted time
step are fixed a priori, i.e., the time step computed through (12) is constrained
within an interval [∆tmin, ∆tmax]. These lower and upper bounds for the time
step are defined according to the characteristic time scale of the considered
transport setting.

3.3 Solution-adaptation coupling

We outline here the numerical technique employed to couple the mesh and time
step adaptation methodologies described in Sections 3.1-3.2 with the numerical
approximation of the ADE (1). The procedure is graphically depicted in Figure
2 (right side).

Approximating the ADE requires (i) setting appropriate boundary and initial
conditions, and (ii) knowledge of the velocity field. The latter is obtained by
solving the flow problem (5) on a sufficiently fine uniform mesh T 0

h . At a generic
time tk−1, the approximate concentration field Ck−1, the mesh T k−1

h and the
time step ∆tk−1 are known. As a first step the ADE is numerically solved on
T k−1

h . This yields the approximation C̃k at time tk. This approximation is
used to adapt the spatial grid through the methodology described in Section
3.1. Once the metric M̃k = M̃new is computed, the new mesh T k

h = T new
h is
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generated by BAMG [24]. The concentration field is then projected from T k−1
h

to T k
h through an L2-conservative projection method [43, 14]. This yields the

actual approximation Ck of the concentration C at time tk . The time step ∆tk

is then predicted through the methodology described in Section 3.2. Note that,
since three successive solutions are required to compute ∆tk, we fix ∆tk = ∆tmin

for k = 1, 2.

4 Parameter estimation and uncertainty quantifica-

tion

We briefly describe here the procedure we employ for model parameter esti-
mation, which is coupled to the adaptive discretization technique described in
Section 3. The method we implement combines the model reduction technique
explored in [20] with a standard Maximum Likelihood parameter estimation
framework [10]. To simplify the discussion of the methods, we assume here the
target output quantity of interest to be the solute breakthrough curve. The ex-
tension of the methodology to other model output quantities (e.g., concentration
profiles, spatial concentration fields) is straightforward.

4.1 Maximum likelihood parameter estimation

We assume a set of measurements to be available, describing the evolution in
time of solute concentration at specific locations within a porous system. For
our purposes, we assume that N observations of solute concentration C∗

out(ti)
with i = 1 . . . N are available at the outlet of an experimental cell. The numer-
ical approximation of (1) yields a set of values Cout(ti,p), where p is a vector
collecting M unknown model parameters to be estimated. We focus here on the
assessment of the Maximum Likelihood (ML) estimate p̂ of p, which yields the
ML breakthrough curve associated with the discrete values Ĉout(ti).

We consider measurement errors to be Gaussian, and that no cross correlation
exists between errors associated with measurements C∗

out(ti) acquired at different
times. We further assume that the covariance matrix of estimation errors

CC = σ2
CV (13)

is known up to a positive constant σ2
C and that the prior estimation error of

concentration is constant in time, i.e., V = I, I being the identity matrix.
Given the above assumptions, the ML estimate p̂ is obtained upon minimiz-

ing the Negative Log Likelihood

NLL =
J

σ2
C

+ N log σ2
C + N log (2π) (14)

with

J (p) =
N∑

i=1

[Cout(ti,p) − C∗
out(ti)]

2 . (15)
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We can then compute

σ̂2
C =

J (p̂)

N
(16)

which corresponds to the a posteriori ML estimate of the measurement error
variance.

The covariance matrix associated with parameter estimates is then computed
as [10]

Q = σ̂2
C

(
JVJT

)−1
(17)

where J is a Jacobian matrix, which contains the derivatives with respect to the
input parameters of the output concentrations forming the breakthrough curve
at the N observation times ti.

4.2 Modeling procedure

A large number of model evaluations is typically required to minimize (14) and to
compute numerically the Jacobian J in (17). For this reason, we approximate the
numerical breakthrough curve Cout(ti,p) in (14)-(15) with a reduced complexity
surrogate model, CPC

out (ti,p). The surrogate model for Cout(ti,p) is expressed in
terms of a generalized polynomial chaos expansion (gPCE) ([53] and references
therein), which can be cast as

CPC
out (ti,p) =

Q∑

j=1

βjψj(p) (18)

where βj are the so-called gPCE coefficients, ψj is a set of multivariate orthogonal
polynomials and Q is the total number of polynomials included in the expansion.
The polynomial basis ψj is selected as a function of the probability density
function model assigned to the uncertain input parameters [53]. In this work
we assume that the uncertain parameters collected in p are characterized by
uniform distributions. Hence, we select ψj as Legendre orthogonal polynomials.

We provide in the following a complete overview of the modeling procedure
we employ, which combines the numerical methodologies introduced in Sections
3 with the model reduction, parameter estimation and uncertainty quantification
steps. The overall procedure entails the five steps described in the following (see
Figure 2).

a) Identification of calibration parameters and related domain of

variability. As a first step, a set of M unknown parameters needs to
be identified. These may include the local dispersivities, porosities and
permeabilities of the porous medium. A lower and an upper bound of
variability are introduced for each parameter to define a multidimensional
parameter space ΓP .
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Figure 2: Sketch of the numerical procedure.

b) Sparse grid sampling. A number NC of collocation points is selected
within the M -dimensional parameter space ΓP by means of a sparse grid
sampling technique, along the lines of [20]. Each collocation point corre-
sponds to a coordinate in ΓP , i.e., it is associated with specific values of
the selected uncertain model parameters.

c) Forward simulation. A forward simulation of the ADE (1) is performed
for parameter values corresponding to each collocation point. This simula-
tion step can be performed through the space-time adaptive methodology
described in Section 3 (see Figure 2, right) or by means of standard (fixed
and uniform) meshes.

d) Model reduction. The gPCE (18) of the model output is obtained fol-
lowing the methodology outlined in [20], where the coefficients βj are com-
puted through algebraic manipulations of the model evaluations obtained
at each of the NC collocation points. This provides us with a reduced
complexity (surrogate) model of the solute breakthrough curve.

e) Parameters estimation. The gPCE expansion is then used as a proxy
of the original system model for the minimization of the NLL criterion
(14). The minimization of (14) is here performed by means of the Nelder-
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Mead simplex search method [28], implemented in the Matlab function
fminsearch. This allows computing the ML parameter estimate p̂. The
related uncertainty is evaluated through an analytical computation of the
covariance matrix Q (17).

f) Global sensitivity analysis and uncertainty quantification. We ex-
ploit the gPCE model to obtain a large set of Monte Carlo realizations of
the breakthrough curve at a reduced computational cost. This allows prop-
agating to the output quantity of interest the uncertainty associated with
ML parameter estimates. It additionally enables us to analytically com-
pute from the gPCE the variance-based Sobol sensitivity indices [49, 50].
These indices yield a quantitative measure of the way the variability of
the model output is influenced by the variability of each of the considered
uncertain parameters. The definition of the Sobol indices and their rela-
tionship with the gPCE representation (18) is recalled in Appendix A for
completeness.

The accuracy of approximation (18) increases with the number Q of terms
included in the expansion [20]. This is in turn linked to the largest polynomial
order w selected for the gPCE surrogate model. Recent works [15, 11] show that
expression (18) with the assumptions we employ for the probability distributions
of the uncertain model parameters constitutes a viable representation of the
output of solute concentrations at laboratory scales.

5 Numerical results

This section is devoted to the assessment of the effect of the space-time adapta-
tion methodology introduced in Section 3 on the estimation of the longitudinal
dispersivity coefficients for the interpretation of a laboratory-scale solute trans-
port experiment performed in a block-wise heterogeneous sandy porous medium.
In the following we first provide a brief description of the experimental data-set.
We then present the application of the space-time adaptive methodology to the
forward simulation of the transport process. Finally, we assess the impact of
the space-time adaptive methodology on the results of the parameter estimation
procedure. We do so upon comparing the results of parameter estimation ob-
tained by means of a mesh with fixed uniform discretization (i.e., fixed uniform
spatial mesh and time step) and our space-time adaptive methodology.

5.1 Overview of the Experiment and Data set

We consider transport of a nonreactive solute within a flow cell packed with two
different sand types. Figure 3 depicts a sketch of the experimental set-up. The
dataset we examine is part of a still unpublished set of experiments which was
provided to us courtesy of Professor Brian Berkowitz, Weizmann Institute of
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Figure 3: Experimental flow cell: definition sketch.

Science. The experiment we consider is conducted in a rectangular flow cell of
size 0.25 × 0.20m2, characterized by a constant thickness of 0.01 m. Inflow and
outflow to the cell are formed by a cylindrical tube with circular cross-section
of diameter equal to 4 mm and are located in the middle of the left and right
sides of flow cell (see Figure 3). The experimental data are solute breakthrough
concentrations which are acquired at the outlet with the same methodology
presented in [29].

The packing comprises a rectangular-shaped region near the outlet, filled
with a fine well-rounded quartz sand (sand 2) with grain diameter of 0.231 mm
and hydraulic conductivity of 0.014 cm/s, within a background coarser sand
(sand 1) with grain diameter of 1.105 mm and hydraulic conductivity of 0.5
cm/s [29].

Steady state flow is established in the cell at a constant flow rate of Qin = 4.6
ml/min. The flow cell is initially saturated with water. A solution containing
a constant tracer concentration C0 is introduced as a step-input at the inlet at
time t = 0. The tracer breakthrough curve is measured by means of an electrical
conductivity meter at the outlet. We consider here the data stemming from three
replicates of the transport experiment.

5.2 The adaptive mesh procedure

We illustrate here the results obtained by applying the adaptive methodology
described in Section 3 to the forward simulation of the experimental setting
described in Section 5.1. The velocity field is obtained upon numerically solving
the flow equations (5), as discussed in Section 2. A high resolution velocity
field is computed on a fine uniform grid of about 95000 elements. A constant
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(atmospheric) pressure is imposed at the outlet boundary. We set v·n = Qin/Ain

at the inlet, Ain being the area of the inflow cross section. The remaining
parts of the boundary of the flow cell are impermeable. For the sake of our
demonstration, we set the porosities of the coarse and fine sands to φ1 = 0.41 and
φ2 = 0.38, respectively, upon preliminary visual calibration of the breakthrough
curve. We set the fluid viscosity µ and density ρ to 10−3 Pa·s and 1000 kg/m3,
respectively.

Figure 4 depicts the concentration field obtained by simulating the transport
experiment through the adaptive methodology together with the corresponding
adapted meshes. In particular, we consider the time window t ∈ [0, 6000] s. Fig-
ures 4a-c illustrate the temporal evolution of the concentration field. At early
times, the solute spreads radially into the cell around the inflow section (see Fig-
ure 4a). Then, the concentration front deforms and displaces towards the middle
of the cell (see Figure 4b) under the effect of advective and dispersive processes.
At time t ≈ 1200 s the solute starts reaching the low conductivity inclusion, lo-
cated near the outlet section. The difference between hydraulic conductivities of
the coarse and fine sand regions induces a locally complex pattern of the solute
concentration field (see Figure 4c). Two main mechanisms contribute to solute
mass transfer between the two regions (see Figure 4g): (i) the advective flow field
tends to drive the concentration front around the low permeability block, while
(ii) diffusive/dispersive mass transfer takes place along the left-hand side of the
inclusion, located at x = 0.18 m and parallel to the y-axis. As a consequence
of the interplay between these two mechanisms, we observe the appearance of
an arrow-shaped region associated with small concentration values in the fine
sand block, while two sharp concentration fronts develop parallel to the x-axis,
along the upper and lower edges of the interface (located at y = 0.06 m and
y = 0.14 m). The local concentration gradients observed in Figure 4g tend to
gradually smooth out for longer times. The last regions of the cell which are
reached by the invading solute are located at the bottom- and top-right corners
of the domain (not shown).

Figure 4d)-f) shows the adapted computational mesh corresponding to the
solutions at the time-frames depicted in Figure 4a-c. The adaptive simulation
is obtained upon setting the tolerances τS = 1.5 (for spatial mesh adaptation)
and τT

∆t = 0.17 (for time step adaptation), Nel,min = 1000 and Nel,max = 10000,
the lower and upper bounds for the time step being fixed to ∆tmin = 1 s and
∆tmax = 30 s, respectively. As discussed in [14], the value qmin set as a local
constraint plays a key role for an accurate approximation of the breakthrough
curve. We recall that parameter qmin corresponds to the minimum allowed value
of the product λ1,Kλ2,K . We observe that (i) an accurate discretization of the
concentration field at the inlet is critical to capture solute behavior at early
times; (ii) high mesh resolution is required to capture the propagation of the
solute at the interface between the two regions with contrasting conductivities;
and (iii) a proper discretization of the concentration at the outlet section is
key for a sound comparison between the numerical results and the experimental
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Figure 4: Adaptive forward simulation: snapshots of concentration field a)-c),
and corresponding adapted meshes d)-f). Results are for t = 4s a),d), t = 760s
b),e) and t = 1900s c),f). A zoom on the regions highlighted in c),f) is shown in
g),h).

measurements (i.e., the measured breakthrough curve). As a consequence, we
adaptively modify the value of qmin along the simulated time window according
to the following strategy: (i) for t < 50 s we set qmin = 10−9 m2 to properly
model the concentration field near the inflow section; (ii) we increase qmin to
10−6 m2 for intermediate times to minimize computational resources, and (iii)
we set qmin = 10−9 m2 as soon as the ratio C/C0 exceeds the threshold ǫ = 10−3

at any position in the low conductivity block. This latter value for qmin is then
preserved until the end of the simulation.

We observe that the generated computational meshes follow the temporal
evolution of the concentration front (see Figure 4d-f) and allow capturing the
local patterns of the spatial distribution of concentration in the cell (see Fig-
ure 4h). Anisotropic adaptation allows optimizing the mesh with respect to

16



Figure 5: Adaptive forward simulation: temporal evolution of the time step ∆t
a), and of the cardinality of the adapted spatial mesh b). Inserts show snapshots
of the concentration field.

the directional features of the solution, as documented by the highly stretched
triangles generated along the concentration front (see, e.g., Figure 4h).

Figure 5 depicts the evolutions of the time step and of the spatial mesh
cardinality along the simulation time, and relates these with the dynamics of
the transport phenomenon. The following three stages are observed:

• For t < 1200 s we observe a smooth spreading of the front within the
homogeneous coarse sand domain. Hence, the time step increases from the
minimum value ∆tmin = 1 s to ∆t = 25 s (Figure 5a) and the number of
mesh elements is comprised between 1000 and 3000 (Figure 5b).

• For 1200s< t < 3500 s the transport phenomenon exhibits complex dy-
namics, as illustrated in the snapshots depicted in Figure 5a and in Figure
4g. As a consequence, the time step size reduces and attains a minimum
value ∆t = 5 s at t ≈ 2000 s before increasing gradually (Figure 5a), while
the number of mesh elements sharply increases to the maximum allowed
number, i.e. Nel,max = 10000 (Figure 5b). Note that this sudden increase
of the mesh cardinality is associated with the change in the parameter
qmin from 10−6 m2 to 10−9 m2, which allows capturing fine details of the
numerical solution at the interface between the two regions (see Figure
4g-h).

• For long times (t ≥ 3500s), the concentration front is localized in a very
small portion of the domain. Hence, we observe again an increase of the
time step, which attains a maximum value ∆tmin = 30 s at t ≈ 4000 s
(Figure 5a) and then preserves this value until the end of the simulation.
At the same time, a progressive decrease of the number of elements is
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observed. The number of mesh elements is equal to 2000 at the end of the
simulation (Figure 5b).

5.3 Parameter estimation

We apply here the methodology introduced in Section 4.2 to estimate the longi-
tudinal dispersivities αL1 and αL2 associated with the coarse and the fine sand,
respectively. We assume that quantities log10 (αLi) (i = 1, 2) are uniformly
distributed within the interval [−6,−2], with αLi given in meters. For our il-
lustration purposes, we set transverse dispersivities to the commonly employed
values αT i = αLi/10. The gPCE approximation of the solute breakthrough
curve is obtained by means of a polynomial of order w = 3 so that the pa-
rameter space is sampled through 29 collocation points, i.e., the ADE is solved
for 29 different pairs of longitudinal dispersivity values (details not shown). To
assess the impact of the space-time adaptive methodology, the simulation step
is performed through two different discretization strategies: (i) a fixed uniform
space-time discretization, and (ii) the adaptive discretization introduced in Sec-
tion 3. The numerical constraints imposed to the space-time adaptive procedure
are fixed for all simulations and coincide with those illustrated in Section 5.2.
The fixed uniform space-time mesh comprises 50000 triangles and a constant
time step ∆t = 1 s is employed. Note that the number of elements of the fixed
uniform spatial mesh is five times larger than the maximum number of elements
(Nel,max) allowed for the adaptive anisotropic mesh, while the uniform time step
∆t coincides with the lower bound ∆tmin for the time step adaptive procedure.
The resolution of the fixed uniform spatial grid and time step are chosen upon
a preliminary analysis on the accuracy of the numerical solution.

Table 1 lists the results of ML parameter estimation and global sensitivity
analysis. It includes the optimized value of the NLL criterion, the estimated
measurement error variance σ̂2

C , the ML estimates log10 (α̂Li), and the associated
estimation variances σ̂2 [log10 (αLi)], corresponding to the diagonal terms of the
covariance matrix Q in (17), as well as the time-averaged total Sobol indices
associated with the two longitudinal dispersivities. All results are listed for both
a space-time fixed uniform and adaptive discretizations. The ML estimates
α̂Li obtained via the two approaches are within the same order of magnitude.
However, we observe that the use of space-time adaptation allows improving
the quality of parameter estimation results: the optimized value of the NLL is
reduced by about 10%, and the uncertainty associated with both ML parameter
estimates obtained by space-time adaptation is smaller than the one associated
with the fixed uniform discretization. In particular we observe that the variance
associated with α̂L2 is largely reduced by implementing the adaptive technique.

Figure 6 shows the comparison between experimental data and the break-
through curves resulting from ML parameter estimation. Both the gPCE approx-
imation of the breakthrough curve resulting from parameter estimation (contin-
uous lines) and the results obtained by a full model run with the estimated
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Table 1: Results of parameter estimation and global sensitivity analysis: op-
timized value of NLL criterion, ML estimates of log10 α̂Li and corresponding
estimation variance σ̂2, and time average ST of the total Sobol sensitivity in-
dices associated with the two dispersivities. Results are listed for a space-time
fixed uniform and adaptive discretization.

Discretization NLL bσ2

C
Parameter log10 bαLi bσ2 [log10 αLi] ST

Fixed uniform -571.6 9.58 × 10−4 αL1[m] -4.33 0.68 0.98
αL2[m] -3.95 2.24 0.02

Space-time adapted -632.7 6.17 × 10−4 αL1[m] -4.22 0.15 0.47
αL2[m] -3.14 0.01 0.57

parameters (dashed lines) are graphically depicted. We observe that the cal-
ibrated gPCEs constructed for both space-time discretization strategies, i.e.,
fixed uniform and adaptive meshes, virtually coincide with the corresponding
full model results (i.e., dashed and continuous lines are essentially superimposed
in Figure 6). The mean squared error between the gPCE approximation and the
full model run is equal to 7.8× 10−5 and 3.2× 10−6 for the space-time adaptive
and fixed uniform discretization, respectively. This result shows that the gPCE
model implemented renders a reliable approximation of the solute breakthrough
curve for the purpose of this parameter estimation example.

We observe that the early part of the breakthrough curve (1900 < t < 2500
s) is represented with the same degree of accuracy by both the discretization
strategies. The fixed uniform discretization leads to a marked underestimation
the observed experimental data for 2500 < t < 4500 s. The space-time adaptive
approach leads to a significant reduction of the difference between modeling
results and experimental data (see Figure 6), although a slight underestimation
is still observed for 3500 < t < 4500 s. This discrepancy between experimental
observations and numerical results may be due to the influence of (i) additional
uncertain parameters not investigated in this study (e.g., transverse dispersivity)
or (ii) model error due to the inadequacy of the ADE to fully interpret transport
phenomenona. Further studies on this issue would require the investigation of
anomalous transport formulations and this is beyond the scope of this work. All
calibrated curves shown in Figure 6 yield similar results for the longest times
examined (t > 4500 s), i.e., the difference between experimental observations
and modeling results tends to reduce with time.

Results listed in Table 1 show that the discretization strategy has a marked
impact on the way uncertainty propagates from input parameters to simula-
tion outputs. This effect can be additionally quantified upon considering the
Sobol sensitivity indices obtained by applying the fixed uniform and adaptive
discretizations. The time-averaged values of the total Sobol indices ST (αLi)(i =
1, 2) associated with the two dispersivities are listed in Table 1, their temporal
evolution being depicted in Figure 7. We observe that ST (αL1) ≈ ST (αL2) when
the space-time mesh is adapted, i.e., the influence of the two parameters on the
model output is comparable on average (see Table 1). The influence of the lon-
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Figure 6: Parameter estimation: comparison between experimentally measured
(symbols) and ML calibrated solute breakthrough curves obtained by fixed uni-
form (gray curves) and space-time adaptive (black curves) discretization. Con-
tinuous curves correspond to the breakthrough curve rendered by the gPCE
model; dashed curves represent the result of a forward run with ML parameter
estimates listed in Table 1 for each of the two discretization strategies.

gitudinal dispersivity of the low conductivity sand block (αL2) tends to increase
for long times (see Figure 7a)), consistent with the advancement of the solution
within this region. On the other hand, the numerical breakthrough curve is
basically insensitive to αL2 for the whole considered time window when a fixed
uniform discretization strategy is implemented (see Figure 7b)). In this latter
case we find ST (αL1) ≫ ST (αL2). Note that the uncertainty bounds related to
ML estimates listed in Table 1 and computed by (17) are inherently linked to
the sensitivity of the output variable to the input parameters. Therefore, the
observed significant difference between the two temporal evolution of the Sobol
indices explains the large reduction in the uncertainty bounds associated with
the estimation of α̂L2 by means of a space-time adaptive methodology.

Finally, we assess the propagation to the model output of the uncertainty
related to the parameter estimation results yielded by the two discretization
strategies. As a reduced complexity model, the gPCE allows for a fast evalu-
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Figure 7: Global sensitivity analysis: time evolution of the total Sobol indices
associated with dispersivities αL1, αL2 obtained through space-time adaptive a)
and fixed uniform b) discretizations.

ation of the solute breakthrough curve as a function of the selected uncertain
parameters. Following model calibration, we consider log10 (αLi) (i = 1, 2) to be
described by a bi-variate Gaussian distribution, centered on the ML parameters
estimates α̂Li and characterized by the covariance matrix Q. We then perform
104 evaluations of the solute breakthrough curve gPCE approximation (18) in a
Monte Carlo framework and compare the results yielded by the implementation
of the space-time adaptive approach with those obtained by a fixed uniform dis-
cretization. Figure 8 depicts the results of this analysis. Figure 8a-b depict the
Monte Carlo realizations (grey curves) together with their associated 5th and
95th percentiles (solid black curves) obtained through the space-time adaptation
and the fixed grid approach, respectively. Figure 8c-e juxtaposes the empirical
probability density functions (pdfs) of the normalized solute concentrations re-
sulting from the two grid discretization strategies at three selected times. We
observe that the uncertainty related to parameter estimates is largely reduced
by implementing a space-time adaptive procedure in the forward simulation step
with respect to a standard fixed uniform discretization in space and time. This
is particularly evident for early times (t ≈2000 s). The results in Figure 8c-e
indicate that the discretization strategy has a remarkable impact on these out-
put pdfs. In general, the pdfs obtained by approximating the ADE through
a fixed uniform discretization display a considerably larger spread than those
obtained by means of an adaptive method. This result is particularly evident
when we consider early solute arrivals (Figure 8c-d). For later times, (Figure 8e)
we observe that the pdf associated with the fixed uniform strategy is associated
with smaller concentration values than those linked to the space time adaptive
methodology. At this late time the two pdfs tend to assume a similar shape.
These results suggests that the impact of the choice of automatically adaptive
discretization methods may be relevant in practical applications, e.g., when the
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Figure 8: Uncertainty quantification: Monte Carlo realizations of solute break-
through curves (gray curves) obtained through the gPCE associated with the
space-time adaptation method a) and the fixed uniform discretization b), and
corresponding probability density functions of the normalized concentration
C/C0 at selected time levels T1 = 1500s c), T2 = 2000s d) and T3 = 3100s
e). Continuous black curves in a)-b) correspond to the time evolution of the 5th
and 95th percentile of the distributions.

estimation of the risk associated with target scenarios of groundwater pollution
is of concern.

6 Conclusions

We provide a methodology for forward simulation and parameter estimation
of solute transport in porous media. We base our study on the standard ADE
formulation. The numerical solution of the ADE is achieved by means of a space-
time adaptive discretization. We implement anisotropic spatial mesh adaptation,
which allows optimizing size, shape and orientation of the mesh elements with
respect to the features of the numerical solution considered, together with time
step adaptation. The methodology is here applied to the interpretation of a
laboratory scale solute transport experiment performed within a block-wise het-
erogeneous sand box. Our results lead to the following major conclusions:
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• The proposed adaptation procedure is robust and able to capture the evo-
lutionary features of the target problem. We couple the space-time adap-
tive methodology with a model reduction technique based on a general-
ized Polynomial Chaos Expansion (gPCE) approximation of the considered
transport model. A fixed set of constraints and tolerances allow simulat-
ing the transport process in the presence of large variations of the physical
model parameters (e.g., dispersivities). This result shows that the pro-
posed adaptive methodology is suited to be embedded in parameter esti-
mation and/or uncertainty quantification schemes, where the input/output
relationship need to be investigated through multiple numerical simula-
tions of the transport problem.

• The impact of the space time adaptive procedure is assessed by means of
maximum likelihood (ML) parameter estimation based on a set of solute
breakthrough concentration measurements acquired at the outlet of the
experimental flow cell. When compared to standard fixed uniform dis-
cretizations characterized by an apparently sufficient resolution, the qual-
ity of parameter estimation results improves when the space-time adaptive
methodology is implemented. The space-time adaptive approach allows re-
ducing (i) the estimated error between model predictions and experimental
measurements, and (ii) the bounds of uncertainty associated with ML pa-
rameter estimates.

• Implementing a space-time adaptive methodology bears a marked impact
on global sensitivity analysis and uncertainty quantification results. The
sensitivity of the model output to input uncertain parameters may be
highly affected by the space-time discretization strategy. In our example
the total Sobol sensitivity indices associated with the longitudinal disper-
sivity of the low conductivity region has only a marginal influence on the
solute breakthrough curve when a fixed uniform discretization strategy is
implemented. On the other hand, the space-time adaptive simulation al-
lows grasping the influence of this parameter on the output breakthrough
curve. Our analysis suggests that this result may be due to the accurate
space-time resolution of the adaptive discretization at the transition of the
concentration front from the coarse to the fine sand region.

• As a final result, we present (empirical) probability density distributions of
breakthrough concentrations, computed through Monte Carlo simulations
of the constructed gPCE surrogate models. We show that implementing
a space-time adaptive procedure in the considered transport setting leads
to a considerable uncertainty reduction associated with the solute break-
through at the outlet of the experimental cell. This result suggests that
adaptive discretization strategies may provide a key tool for uncertainty
control and reduction, to be employed, e.g., within risk assessment practice
of groundwater pollution.
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A Computation of Sobol indices

For the sake of the computation of the Sobol indices, we rewrite (18) upon
adopting a multi-index notation. Let i ∈ N

M be a multi-index vector, collecting
the order of each polynomial ψi with respect to each parameter pn and Λ be the
set of multi-indices identifying the polynomials included in the expansion (18).
We recast (18) as

CPC
out (ti,p) = β0ψ0 +

M∑

n=1

∑

i∈Pn

βiψi(p) +
M∑

n=1

M∑

m=n

∑

i∈Pn,m

βiψi(p) . . . (19)

where Pn,m indicates the subset of Λ for which only the m-th and n-th com-
ponents of i are non zero, and analogously for Pn. Equation (19) is equivalent
to the ANOVA decomposition of Cout(ti) [50]. As a consequence the full set of
Sobol indices can be analytically computed as

S(pn) =
∑

i∈Pn

β2
i

V
S(pn,m) =

∑

i∈Pn,m

β2
i

V
(20)

where
V =

∑

i∈Λ

β2
i − β2

0 (21)

is total output variance. Note that the Sobol index S(pn) gathers solely the
contribution of parameter pn to the total variance V , while the index S(pn,m)
considers the combined influence of parameters pn, pm. The total Sobol index
associated with pn is then defined as

ST (pn) = S(pn) +
∑

k 6=n

S(pn, pk) +
∑

k,j 6=n

S(pn, pk, pj) . . . (22)

and includes all contributions of parameter pn to the total variance.
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