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Abstract

We analyze the proteomics data introducing a block k-mean align-
ment procedure. This technique is able to jointly align and cluster the
data, accounting appropriately for the block structure of these data,
that includes measurement repetitions for each patient. An analysis
of area-under-peaks, following the alignment, separates patients who
respond and those who do not respond to treatment.

1 Block k-mean alignment

Motivated by the analysis of the proteomics dataset described in Koch et al.
(2013), we introduce here a variant of the k-mean alignment procedure that
accounts appropriately for the block structure of these data. Likewise the
k-mean alignment technique described in Sangalli et al. (2010b) and Sangalli
et al. (2013), the proposed block variant is able to jointly align and cluster
in k clusters a set of functional data; moreover, it complies with partially
exchangeable structures in the data. In the proteomics application, partial
exchangeability is due to the presence of measurement repetitions for each
subject.

Consider a set of functions composed by repetitions of the same mea-
surement on different subjects or experimental units:

{fij@®)|i=1,...om;5=1,...,n; },

where m is the number of experimental units, n; is the number of exchange-
able measurements for the i-th experimental unit, and f;;(t) is the j-th mea-
surement for the i-th experimental unit at time ¢. The total number of



functions is n = nq + ... + n,,. The set of exchangeable measurements for
the same experimental unit, {f;;(t)[j = 1,...,n;} for i = 1,...,m, is re-
ferred to as block. In the proteomics dataset the experimental units are the
patients. The block k-mean alignment consists of two concatenated steps:
the within block alignment and the between block alignment and clustering.

1) Within block alignment. Each block {fi;(t)|j = 1,...,n;}, for i =
1,...,m, is considered independently from the others. The curves
within the same block are aligned. To this end, the k-mean alignment
algorithm described in Sangalli et al. (2010b) and Sangalli et al. (2013)
is used, with £ = 1 (see also Sangalli et al., 2009). In fact, since the
curves within the same block are replicated measurements, it does not
make sense here to consider multiple clusters.

Let fij be the within block aligned curves.

2) Between block alignment and clustering. In this step, the measure-
ments on the same experimental unit are treated in block. The k-mean
alignment algorithm is applied to the m blocks of curves

{{flj(t)‘jzl,...,nl},...,{fmj(t)‘jzl,...,nm}},

so that the curves in the same block are assigned to the same cluster,
each curve in the same block being warped with the same warping
function.

The total alignment is the composition of the two warping functions found
in the two steps, the within block alignment and the between block alignment
and clustering.

Block k-mean alignment allows to explore possible clustering structures
among the experimental units. Thanks to its block structure, it avoids inco-
herent results where the measurement repetitions of the same experimental
units are assigned to different clusters.

The analysis here presented have been performed using fdakma R pack-
age downloadable from CRAN (see Patriarca et al., 2013).

2 Block k-mean alignment of the Proteomics data

In the Proteomics dataset the fifteen curves are actually five blocks of three
curves each: a block represents a patient, while the three curves in each
block are TIC profile measurement repetitions. In this case m = 5, n; =
3 fori=1,...,5, and the blocks are given by
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Figure 1: Scheme of the block k-mean alignment in the case of the Pro-
teomics data.

A simple scheme of the block k-mean alignment in the case of the Proteomics
data is represented in Figure 1.

We shall consider two TIC profiles to be perfectly aligned if they are
identical up to a multiplicative factor. This choice is due to the charac-
teristics of the data, which have the same baseline and differ only for the
peak pattern. Indeed, the signature of a TIC profile is given by the relative
heights of the peptide peaks. Therefore, we shall use the following similarity

index:
p(fir f) = JJis)fi(s)ds
VI Fi()2ds ] fi(s)%ds

Indeed this similarity index assigns maximal similarity (similarity equal to
1) to curves that differ only by a positive multiplicative factor:

p(fis f;) =1 & 3a e RT : fi(t) = afj(t).

(1)

The integrals in (1) are computed over the intersection of the domains of
the curves f; and f;.

The physical phenomenon does not suggest a unique group of warping
functions to use, hence the analysis were done with different groups of warp-
ing functions in order to choose the group that provides the best results on
the data. We choose four groups that are coherent with the similarity index



chosen.

Hagine = {h : h(t) = mt + ¢ with m € RT g € R},
Henite = {h : h(t) =t + q with ¢ € R},

Hdilation = {h : h(t) = mt with m € R+} ,

Hidentity = {h : h

the last one corresponding to the case where no alignment is indeed per-
formed.

In this analysis the k cluster templates are computed as medoids, i.e.,
the curves in the sample that maximize the total similarity; see eq. (1.1) in
Sangalli et al. (2013). See Sangalli et al. (2010a) for details. Medoids are in
fact more representative of these data that are characterized by numerous
sharp peaks.

The first panel of Figure 2 shows the results obtained in the first step,
the within block alignment. For each of the five patients, the plot shows the
means of the similarity indexes between the within block aligned functions
and the corresponding within block templates. The black dots represent the
means of the similarities between the unaligned data and their within block
means. The blue, green and orange dots indicate the similarities obtained
after the within block alignment respectively with only shift, only dilation
and affine warping. The figure shows that for all five patients the highest
similarity is obtained using the group of affine warping functions. Hence, in
the within block alignment step, we choose the group of warping functions
Haffine- The other panels of Figure 2 show the registration thus obtained by
within block alignment. The figure shows a good registration within each
block, with the three TIC profiles of each patient well aligned. The bottom
of each plot displays the retention times of the reference peptides provided
with the data. It should be noticed that the retention times of the reference
peptides have not been used for the alignment; they are displayed only to
show the good alignment results.

The alignment between patients is obtained with the second step: the
between block alignment and clustering. The results of this step are shown in
Figure 3. The left panel shows the means of the similarity indexes between
the functions, aligned and clustered between blocks, and their corresponding
templates, for different number of clusters k. The gray dot indicates here
the mean similarity of the within block aligned curves and their correspond-
ing within block templates. In black the results obtained with the k-mean
alignment with no warping allowed <Hidentity)7 i.e., the functional k-mean
clustering. In color the results obtained with different classes of warping
functions: only shifts in blue, only dilations in green and affine transforma-
tions in orange. For k = 5 the similarities coincide. Indeed, in this case each
cluster coincides with a block of (within block) aligned curves, so that there
is no need to further align.
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Figure 2: Results of the within block alignment. The first panel shows the
mean similarity indexes of the unaligned curves (black) and those obtained
after the alignment with Hgpire (blue), Haiation (green) and Hagine (orange).
The other panels show the alignment within each block with H,f,e warping
functions.

The left panel of Figure 3 shows that the alignment of the functions
increases their similarity. The results obtained with the three groups of
warping functions, Hghitt, Hdilation and Haffine, are very similar. With only
dilation the similarities obtained are slightly lower than those with only shift
or affine warping. In the latter two cases the similarities obtained are almost
identical. We therefore choose to use the group Hgnirr. The right panel of
Figure 3 shows in blue the boxplots of the similarities between the functions,
aligned and clustered between blocks with Hgpift, and their corresponding
templates, for different number of clusters k. The gray boxplot refers to the
similarities between the within block aligned functions and their correspond-
ing templates. The variability shown by the boxplot of the case k = 5 is
the residual variability amongst the within block aligned curves. The total
alignment is the composition of the within block alignment with the group
of warping functions Hamne and the between block alignment and clustering



with the group of warping functions Hgpigr. In the following we describe the
results obtained by between block alignment and clustering with k = 1 and
k = 2 clusters.
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Figure 3: Results of the between block alignment and clustering. The left
panel shows the mean similarity indexes between curves and their corre-
sponding templates, considering different number of clusters k and different
classes of warping functions. The right panel displays the boxplots of the
similarity indexes obtained using the group of warping functions Hgpif-
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Figure 4: Total alignment obtained by block k-mean alignment, considering
k =1 cluster (simple alignment without clustering).

Figure 4 shows the total alignment obtained with k& = 1 cluster (i.e.,
simple alignment without clustering). A visual inspection of the aligned
data and of the retention times of the reference peptides highlights the very
good alignment results. Only the first two reference peptides appears not
well aligned. Note that the first reference peptide is not well aligned also
by the procedures considered for instance in Cheng et al. (2013), Tucker
et al. (2013) and Lu et al. (2013). This peptide is not associated to a peak



of the TIC profile and we wonder if its reference identification may have
been inaccurate. Also the second peptide proves to be difficult to align even
when using the more flexible warping functions considered by Tucker et al.
(2013). Figure 5 shows the corresponding total warping functions, colored
according to two different criteria. In the left panel the colors refer to the
patients (blocks): the three warping functions of the TIC profiles for the
same patient have the same color. Instead, the right panel displays the
same warping functions colored according to the order of each TIC profile
within each patient (block): in red the 5 first TIC profiles for the 5 patients,
in light blue the second TIC profiles and in green the thirds. The left panel
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Figure 5: Total warping functions for the case k = 1 colored according to
the patient (left panel) and to the order of the TIC profile within the patient
(right panel).

does not show any clustering of the patients in the phase. This means
that phase variability is not related to the patient. Instead, the right panel
displays a clear clustering of the warping functions of the first, second and
third TIC profiles. The main difference amongst the three groups is the
value of the intercept of the warping functions. This phase variability is
due to the measuring instrument which introduced a time drift in the TIC
profiles, as mentioned in Koch et al. (2013). In order to make up for the
measurement drift, all the first TIC profiles must be anticipated, while all
the third TIC profiles must be delayed.

We now describe the results obtained considering & = 2 clusters in the
between block alignment and clustering step, hence exploring possible clus-
tering in the amplitude of the TIC profiles. The case k = 2 is particularly
interesting since a visual inspection of the similarities obtained by setting
Hsnife as the group of warping functions, displayed in blue in the left and
right panels of Figure 3, suggests the existence of k = 2 clusters. Figure
6 shows the TIC profiles aligned and clustered in k = 2 clusters, displayed
in the two panels. The alignment of the curves within both clusters is very
good, with only the first and second peptides being problematic, as com-



mented earlier. The first cluster, left panel, is composed of patients A, B
and X, while the second cluster, right panel, is composed of patients C and
Y.
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Figure 6: Total alignment obtained by block k-mean alignment, considering
k = 2 clusters. The two clusters are represented in two different panels.

The left panel of Figure 7 shows the total warping functions, colored
according to two clusters. No further clustering is apparent in the phase.
Instead, the right panel of the same figure displays the same warping func-
tions colored according to the order of each TIC profile within each patient
(block), likewise in the right panel of Figure 5. The same observations made
previously, according to clustering in the phase of first, second and third
TIC profiles for each patient, still hold.
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Figure 7: Total warping functions for the case k = 2 colored according to
the cluster (left panel) and to the order of the TIC profile within the patient
(right panel).

The clustering in amplitude suggested by the procedure (patients A, B,
and X in one cluster and patients C and Y in the other) is not related to
response to chemotherapy. This clustering is related to some other feature
distinguishing the patients and would be worthy of further investigation;



more needs to be know about the patients for this exploration. We note
that performing the analysis without considering the partial exchangeable
structure of the data, and applying the k-mean algorithm directly to fifteen
TIC profiles, leads to a very similar clustering result, with the inconsistency
that the third TIC profile of patient A is clustered together with the TIC
profiles of patients C and Y. With the block k-mean alignment this incon-
sistency is avoided.

It is however possible to discriminate patients who respond and patients
who do not respond to chemotherapy using for instance area-under-peaks.
Suppose that, after the alignment of the TIC profiles, it is possible to identify
the reference peptides, for example by comparison to a given template whose
reference peptides’ retention times are known. We consider the last twelve
of the fourteen reference peptides (from the 3" to the 14*) and exclude
instead the first two reference peptides, since they are not well aligned by
our procedure. We compute the area under the twelve peaks by fixing a
width for each of the twelve considered peaks and using that same width for
all the fifteen TIC profiles. The left panel of Figure 8 shows the values of
the area-under-peaks for the fifteen TIC profiles. The red dots correspond
to the patients responding to chemotherapy, the blue ones to the patients
who are not responding. Some peaks seem to discriminate well the two
groups of patients (for example peak 3 and peak 7). We then performed
PCA on area-under-peaks to reduce data dimensionality. The right panel
of Figure 8 shows the projections of the data along the first three principal
components: responders and not-responders are very well separated. We
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Figure 8: Discrimination between responders and non-responders using the
area under the peaks.

also run the same analysis on the area-under-peaks after subtracting the
baseline to the data, obtaining the same results.



3 Discussion

As highlighted by the analyses, in this application the time warping seems
truly affine, with phase variability amongst data mostly due to time drifts of
the measuring instrument. This and the finding on clustering in the phase
of first, second and third TIC profiles, are fully consistent with the data
description given in Koch et al. (2013). In fact, also when using classes of
warping functions richer than the group of affinities, improvements in the
alignment results are noticed when forcing the warping toward linear (Lu
et al. (2013)) or toward simple shifts (Cheng et al. (2013)).
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