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Abstract

The stochastic collocation method [40, 1, 29, 28] has recently been applied to stochastic problems
that can be transformed into parametric systems. Meanwhile, the reduced basis method [26, 35, 31],
primarily developed for solving parametric systems, has been recently used to deal with stochastic
problems [8, 7]. In this work, we aim at comparing the performance of the two methods when
applied to the solution of linear stochastic elliptic problems. Two important comparison criteria
are considered: 1), convergence rate of each method referred to both a priori and a posteriori error
estimate; 2), computational costs for offline construction and online evaluation of the two methods.
Numerical experiments are performed in univariate problems as well as multivariate problems from
low dimensions O(1) to moderate dimensions O(10) and to high dimensions O(100). The main result
stemming from our comparison is that the reduced basis method converges no worse in theory and
faster in practice than the stochastic collocation method, and is more suitable for large scale and high
dimensional stochastic problems when considering computational costs.

1 Introduction

In the modelling of the complex physical systems, uncertainties are inevitably encountered from various
sources, which can be generally categorized into epistemic and aleatory uncertainties. The former can
be reduced by more precise measurements or more advanced noise filtering techniques, while the latter



are very difficult if not impossible to be accurately captured due to possible multiscale properties and
intrinsic randomness of the physical systems. When the latter uncertainties are taken into account
in the mathematical models, we come to face stochastic problems. To solve them, various stochastic
computational methods have been developed, such as perturbation, Neumann expansion, Monte Carlo,
stochastic Galerkin, stochastic collocation, reduced basis method [17, 41, 29, 30, 39, 8].

In the early years, stochastic collocation method was developed from the non-intrusive determin-
istic spectral collocation method [10, 11] to address applications in a variety of fields, for instance
chemical and environmental engineering [27], multibody dynamic system [23]. Nevertheless, only
in the recent years [40, 1] a complete analysis has been carried out, and new extensions outlined
[28, 29, 2, 24, 16, 20]. In principle, stochastic collocation method employs multivariate polynomial
interpolations for the approximation of stochastic solution at any given realization of the random
inputs based on collocated deterministic solutions [1]. Due to the heavy computation of a determin-
istic system at each collocation point in high dimensional space, isotropic or anisotropic sparse grids
with suitable cubature rules [28, 29] were successfully analysed and applied for stochastic collocation
method to reduce the computational burden. This method is preferred for more practical applications
because it features the possibility of reusing available deterministic solvers owning to its non-intrusive
structure as Monte Carlo method, and also because it achieves fast convergence rate as stochastic
Galerkin method, see numerical comparison of them in [3].

Reduced basis method, on the other hand, is a model reduction technique originally developed to
solve parametric problems [35, 31]. For its application to stochastic problems, we first parametrize
the random variables into parameter space, next we select the most representative points in this
parameter space by greedy sampling based on a posteriori error estimation [8, 7]. A landmark feature
of reduced basis method is the separation of the whole procedure into an offline computational stage
and an online computational stage [31]. During the former, the more computationally demanding
ingredients are computed and stored once and for all, including sampling parameters, assembling
matrices and vectors, after solving and collecting snapshots of solutions. During the online stage,
only the parameter related elements are left to be computed and a small Galerkin approximation
problem has to be solved. Reduced basis method is similar to stochastic collocation method but with
a posteriori error estimation for sampling, and thus may be more efficient provided that a posteriori
error bound is cheap to obtain [7]. How to compute rigorous, sharp and inexpensive a posteriori error
bound for more general stochastic problems is an open challenging task for the reduced basis method.

When it comes to solve practically a realistic stochastic problem, we need to choose between
different stochastic computational methods. It is crucial to know the properties of each method
and especially the way they compare in terms of complexity for formulation and implementation,
convergence properties and computational costs to solve a specific problem. In this paper, our target
is the comparison of the stochastic collocation method and the reduced basis method based on a
rather simple benchmark, a stochastic elliptic problem, in order to shed light on the advantages and
disadvantages of each method. We hope to provide some insightful indications on how to choose
the proper method for different problems. Generally speaking, for small scale and low dimensional
problems, stochastic collocation method is preferred while reduced basis method performs better for
large scale and high dimensional problems, as supported by our computational comparison.

In section 2, a stochastic elliptic problem is set up with affine assumptions on the random coefficient
field. Weak formulation and regularity property of this problem is provided. The general formulation
for the reduced basis method and the stochastic collocation method are introduced in section 3 and
4, respectively. A theoretical comparison of convergence rate in both univariate case and multivariate
case is carried out in section 5 and a detailed comparison of the computational costs for the two
methods is provided while detailing the algorithms in section 6. In section 7, we perform a family
of numerical experiments aimed at the assessment of the convergence rates and the unveiling of the
numerical properties of the two methods. Finally, concluding remarks about the extension to high
dimensional and low regularity problems are given in section 8.

2 Problem setting

Let (Ω,F , P ) be a complete probability space, where Ω is a set of outcomes ω ∈ Ω, F is σ-algebra of
events and P : F → [0, 1] with P (Ω) = 1 assigns probability to the events. Let D be a convex, open
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and bounded physical domain in R
d (d = 2, 3) with Lipschitz continuous boundary ∂D. We consider

the following stochastic elliptic problem: find u : Ω× D̄ → R such that it holds almost surely

−∇ · (a(·, ω)∇u(·, ω)) = f in D

u(·, ω) = 0 on ∂D
(2.1)

where f is a deterministic forcing term defined in the physical domain D and the homogeneous
Dirichlet boundary condition is prescribed on the whole boundary ∂D for simplicity. For the random
coefficient a(·, ω), we consider the following assumptions:

Assumption 1 The random coefficient a(·, ω) is assumed to be uniformly bounded from below and

from above, i.e. there exist constants 0 < amin < amax < ∞ such that

P (ω ∈ Ω : amin < a(x, ω) < amax ∀x ∈ D̄) = 1. (2.2)

Assumption 2 We assume that the random coefficient a(·, ω) depends only on finite dimensional

noise in the following linear form for simplicity

a(x, y) = a0(x) +
K∑

n=1

ak(x)yk(ω), (2.3)

where the leading term is assumed to be dominating and uniformly bounded away from 0, i.e.

∃δ > 0, amin the same as in (2.2) s.t. a0(x) ≥ δ, ∀x ∈ D and ||ak||L∞(D) < 2amin, 1 ≤ k ≤ K, (2.4)

and {yk}Kk=1 are real valued and bounded random variables with joint probability density function ρ(y),

being y = (y1, . . . , yK). By denoting Γk = yk(Ω), k = 1, . . . ,K and Γ = ΠK
k=1Γk, we can also view y

as a parameter in the parametric space Γ that is endowed with the measure ρ(y)dy.

The expression (2.3) may come from, e.g., piecewise thermal conductivity of a heat conduction field,
where the functions ak, k = 1, . . . ,K are characteristic functions. Otherwise, it may arise from the
truncation of Karhunen-Loève expansion [36] of the correlation kernel of porosity field when modeling
fluid flow in porous media, where in this case for k = 1, . . . ,K, ak =

√
λkφk with λk and φk denoting

the kth eigenvalue and eigenfunction of the expansion, etc.
Under the above assumptions, the weak formulation of the stochastic elliptic problem reads: find

u(y) ∈ H1
0 (D) such that the following equation holds for ∀y ∈ Γ

A(u, v; y) = F (v) ∀v ∈ H1
0 (D), (2.5)

where H1
0 (D) := {v ∈ L2(D),∇v ∈ L2(D), v|∂D = 0} is a Hilbert space equipped with norm

||v||H1
0 (D) = ||v||L2(D)+||∇v||L2(D), F (·) is a linear functional defined as F (v) := (f, v) with f ∈ L2(D)

and A(·, ·; y) is a bilinear form affinely expanded following (2.3)

A(u, v; y) = A0(u, v) +

K∑

k=1

Ak(u, v)yk(ω), (2.6)

where the deterministic bilinear forms Ak(u, v) are given by Ak(u, v) := (ak∇u,∇v), k = 0, 1, . . . ,K.
From assumption (2.2) we have that the bilinear form is coercive and continuous and thus the existence
of a unique solution u(y) ∈ H1

0 (D) for ∀y ∈ Γ to problem (2.5) is guaranteed by Lax-Milgram
theorem [34]. In fact, we are interested in a related quantity s(u; y), e.g., the linear functional F (u),
as well as its statistics, e.g. the expectation E[s] , defined as

E[s] =

∫

Γ

s(u; y)ρ(y)dy. (2.7)
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Since any approach for the approximation of the solution in the stochastic/parameter space depends
on the regularity of the solution with respect to the random vector or parameter y ∈ Γ, we summarize
briefly the regularity results in Lemma 2.1 following [12] for infinite dimensional problems (K = ∞).

Lemma 2.1 The following estimate for the solution of the problem (2.5) holds

||∂ν
yu||L∞(Γ;X) ≤ B|ν|!bν , (2.8)

where ν = (ν1, . . . , νK) ∈ N
K , |ν| = ν1 + · · ·+ νK , H1

0 (D) ⊂ X ⊂ H1(D), B = ||u||L∞(Γ;X) and

bν =

K∏

k=1

bνk

k =

K∏

k=1

( ||ak||L∞(D)

amin

)νk

. (2.9)

Furthermore, Lemma 2.1 implies by Taylor expansion the following analytic regularity which represents
a generalization of [2] from R

K to C
K .

Corollary 2.2 The solution u : Γ → X is analytic and can be analytically extended to the set

Σ =

{

z ∈ C
K :

K∑

k=1

|zk − yk|bk < 1, ∀ y ∈ Γ

}

, (2.10)

We may also write for τk ≤ 1/(Kbk), 1 ≤ k ≤ K

Στ =
{
z ∈ C

K : dist(zk,Γk) ≤ τk, ∀1 ≤ k ≤ K
}
. (2.11)

Remark 2.1 Problem (2.1) is an affinely stochastic or parametrized linear elliptic coercive problem

with linear functional outputs. Without loss of generality, it represents our reference benchmark prob-

lem aimed at the comparison between the reduced basis method [35] and the stochastic collocation

method [1].

3 Reduced basis method

The general paradigm of reduced basis method is formulated as follows [31, 35, 32]:
Given any space XN of dimension N for the approximation of the solution of problem (2.5)

(for instance, by finite element method), we build the N dimensional reduced basis space XN
N for

N = 1, . . . , Nmax hierarchically until satisfying tolerance requirement at Nmax ≪ N as

XN
N = span{uN (yn), 1 ≤ n ≤ N} (3.1)

based on suitably chosen samples SN = {y1, . . . , yN} from a training set Ξtrain ⊂ Γ. The functions
{uN (yn), n = 1, . . . , N} are called “snapshots” corresponding to the samples {yn, n = 1, . . . , N}. Note
that XN

1 ⊂ XN
2 ⊂ · · · ⊂ XN

Nmax
. For any given y ∈ Γ, we first seek the solution uN

N ∈ XN
N ⊂ XN in

the reduced basis space XN
N by solving

A(uN
N , v; y) = F (v) ∀v ∈ XN

N (3.2)

and then evaluate the output sNN (y) = F (uN
N ). Moreover, we can also compute the statistics of the

output, e.g. expectation E[sNN ] , by using e.g. Monte-Carlo method [15] as in the following formulae

E[sNN ] =
1

M

M∑

m=1

sNN (ym), (3.3)
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where for some positive integer M , {ym,m = 1, . . . ,M} are randomly chosen according to the joint
probability density function (not necessarily in Ξtrain) and sNN (ym) is evaluated by reduced basis
method. Figure 3.1 (left) depicts the Galerkin projection in reduced basis space spanned by snapshots
on a set of selected samples SN ⊂ Γ. Three specific ingredients of the reduced basis method play a
key role in selecting the most representative samples, hierarchically building the reduced basis space,
and efficiently evaluating the outputs. They are the greedy algorithm, the a posteriori error estimate
and the Offline-Online computational decomposition, respectively. We address them in the following
sections.

Galerkin projection in reduced basis space Lagrangian interpolation on collocation points

Figure 3.1: Heuristic sketch of reduced basis method (left) and stochastic collocation method (right)

3.1 Greedy algorithm

Given a training set Ξtrain ⊂ Γ made of Nmax elements and a first sample set S1 = {y1} and its associ-
ated reduced basis space XN

1 = span{uN (y1)}, we seek the sub-optimal solution to the L∞(Ξtrain;X)
optimization problem in a greedy way as: for N = 2, . . . , Nmax, find yN = argmaxy∈Ξtrain

△N−1(y),
where △N−1 is a sharp and inexpensive a posteriori error estimator (specified later) constructed in the
current N − 1 dimensional reduced basis space. Subsequently, the sample set and the reduced basis
space are enriched by SN = SN−1 ∪ {yN} and XN

N = XN
N−1 ⊕ span{uN (yN )}, respectively. For the

sake of efficient computation of Galerkin projection and Offline-Online decomposition, we normalize
the snapshots by Gram-Schmidt process to get the orthonormal basis of XN

N = span{ζN1 , . . . , ζNN }
such that (ζNm , ζNn )X = δmn, 1 ≤ m,n ≤ N . Another algorithm that might be used for the sampling
procedure is proper orthogonal decomposition, POD for short [35], which is rather expensive in dealing
with L2(Ξtrain;X) optimization and thus more suitable for low dimensional problems. We remark
that for both the greedy algorithm and the POD algorithm, a training set Ξtrain is needed. Two
criteria should be followed for its choice: 1) it should be cheap without too many ineffectual samples
in order to avoid too much computation with little gain; 2), it should be sufficient to capture the
most representative snapshots so as to build an accurate reduced basis space. Adaptive approaches
for building the training set have been well explored starting from a small number of samples to more
samples in the space Γ, see [19, 42].

3.2 A posteriori error estimate

The efficiency and reliability of the reduced basis approximation by greedy algorithm relies critically
on the availability of an inexpensive and sharp a posteriori error estimator. For every y ∈ Γ, let
R(v; y) ∈ (XN )′ be the residual in the dual space of XN , which is defined as

R(v; y) := F (v)−A(uN
N (y), v; y) ∀v ∈ XN . (3.4)
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By Riesz representation theorem [14], we have a unique function ê(y) ∈ XN such that (ê(y), v)X =
R(v; y) ∀v ∈ XN and ||ê(y)||X = ||R(·; y)||(XN )′ , where the X-norm is defined as ||v||X = A(v, v; ȳ) at
some reference value ȳ ∈ Γ (we choose ȳ as the center of Γ by convention). Define the error between
the “true” solution and the reduced basis solution as e(y) := uN (y)− uN

N (y), we have by (2.5), (3.2)
and (3.4) the equation

A(e(y), v; y) = R(v; y) ∀v ∈ XN . (3.5)

By choosing v = e(y) in (3.5), recalling the coercivity constant α(y) with the definition of its lower
bound αLB(y) ≤ α(y) of the bilinear form A(·, ·; y), and using Cauchy-Schwarz inequality, we have

αLB(y)||e(y)||2X ≤ A(e(y), e(y); y) = R(e(y); y) ≤ ||R(·, y)||(XN )′ ||e(y)||X = ||ê(y)||X ||e(y)||X , (3.6)

so that we can define the a posteriori error estimator△u
N for the solution u as△u

N := ||ê(y)||X/αLB(y),
and obtain ||uN (y)− uN

N (y)||X ≤ △u
N from (3.6). Since

|sN (y)− sNN (y)| = |F (uN (y))− F (uN
N (y))| ≤ ||F ||(XN )′ ||uN (y)− uN

N (y)||X , (3.7)

where ||F ||(XN )′ is a constant independent of y, the same error estimator can also be used in the

Greedy algorithm when considering the output sNN . The efficient computation of a sharp and accurate
a posteriori error estimator thus relies on the computation of a lower bound of the coercivity constant
αLB(y) as well as the value ||ê(y)||X for any given y ∈ Γ. For the former, we apply the successive
constraint linear optimization method (SCM) [21] to compute a lower bound αLB(y) close to the
“true” value α(y). For the latter, we turn to an Offline-Online computational decomposition.

3.3 Offline-Online computational decomposition

The evaluation of the expectation E[sNN ] and the a posteriori error estimator △N requires to compute
the output sNN and the solution uN

N many times. Similar situations can be encountered for other
applications in the context of many query (optimal design, control) and real time computational
problems. One of the key ingredients that make reduced basis method stand out in this ground is
the Offline-Online computational decomposition, which becomes possible due to the affine assumption
such as that made in (2.3). To start, we express the reduced basis solution in the form

uN
N (y) =

N∑

n=1

uN
Nm(y)ζNm . (3.8)

Upon replacing it in (3.2) and choosing v = ζNn , 1 ≤ n ≤ N , we obtain

N∑

m=1

(

A0(ζ
N
m , ζNn ) +

K∑

k=1

ykAk(ζ
N
m , ζNn )

)

uN
Nm(y) = F (ζNn ) 1 ≤ n ≤ N. (3.9)

From (3.9) we can see that the values Ak(ζ
N
m , ζNn ), k = 0, 1, . . . ,K, 1 ≤ m,n ≤ Nmax and F (ζNn ), 1 ≤

n ≤ Nmax are independent of y, we may thus pre-compute and store them in the Offline procedure. In
the Online procedure, we only need to assemble the stiffness matrix in (3.9) and solve the resulting N×
N stiffness system with much less computational effort compared to solve a full N×N stiffness system.
As for the computation of the error estimator △u

N (y), we need to compute ||ê(y)||X corresponding to
y chosen in the course of sampling procedure. We expand the residual (3.4) as

R(v; y) = F (v)−A(uN
N , v; y) = F (v)−

N∑

n=1

uN
Nn

(
K∑

k=0

ykAk(ζ
N
n , v)

)

, where y0 = 1. (3.10)

Set (C, v)X = F (v) and (Lk
n, v)X = −Ak(ζ

N
n , v) ∀v ∈ XN

N , 1 ≤ n ≤ N, 0 ≤ k ≤ K, where C and Lk
n are

the representatives in X whose existence is secured by the Riesz representation theorem. By recalling
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(ê(y), v)X = R(v; y), we obtain

||ê(y)||2X = (C, C)X +

K∑

k=0

N∑

n=1

yku
N
Nn(y)

(

2(C,Lk
n)X +

K∑

k′=0

N∑

n′=1

yk′uN
Nn′(y)(Lk

n,Lk′

n′)X

)

. (3.11)

Therefore, we can compute and store (C, C)X , (C,Lk
n)X , (Lk

n,Lk′

n′)X , 1 ≤ n, n′ ≤ Nmax, 0 ≤ k, k′ ≤ K
in the Offline-procedure, and evaluate ||ê(y)||X in the Online-procedure by assembling (3.11).

Remark 3.1 Since the evaluation of statistics by Monte Carlo algorithm converges very slowly, we

propose the approach of evaluating the solution by reduced basis method at the collocation nodes first

and then applying quadrature formula (2.7) to assess the statistics. To improve the accuracy of this

approach, we build the training set Ξtrain including the collocation/quadrature nodes Ξsc ⊂ Ξtrain. In

fact, we have the error estimate between the expectation E[s] and the value E[srb] approximated by

reduced basis method (E[ssc] is the value approximated by stochastic collocation method)

|E[s]− E[srb]| ≤ |E[s]− E[ssc]|+ |E[ssc]− E[srb]|, (3.12)

where the first term is the quadrature error and the second term is bounded by (3.7) as

|E[ssc]− E[srb]| ≤
∑

yi∈Ξsc

wi|s(yi)− srb(y
i)|

≤ max
y∈Ξtrain

|s(y)− srb(y)|

≤ max
y∈Ξtrain

||F ||(XN )′ ||u(y)− uN (y)||X ,

(3.13)

where wi > 0 are quadrature weights. As long as reduced basis approximation error is smaller than

the quadrature error, (3.12) is dominated by the first term - the quadrature error.

4 Stochastic collocation method

Different from the approach of Galerkin projection in the reduced basis space used by the reduced
basis method, we perform a Lagrangian interpolation over the collocation points for the stochastic
collocation method [1] to evaluate the solution uN (y) for given parameter y ∈ Γ, as shown in Figure
3.1 (right). Therefore, it all remains to choose the efficient collocation points according to the joint
probability distribution ρ(y) in order to achieve accurate collocation approximation of the solution at
any given y ∈ Γ. Let us introduce the univariate stochastic collocation at first.

4.1 Univariate interpolation

Without loss of generality, we take Γ = [−1, 1]. Given the collocation points in Γ, e.g., −1 ≤ y0 <
y1 < y2 < · · · < yN ≤ 1 as well as the corresponding solutions u(yn), 0 ≤ n ≤ N , we define the
univariate Nth order Lagrangian interpolation operator as

UNu(y) =

N∑

n=0

u(yn)ln(y), (4.1)

where ln(y), 0 ≤ n ≤ N are the Lagrangian characteristic polynomials of order N given in the form

ln(y) =
∏

m 6=n

y − ym

yn − ym
0 ≤ n ≤ N. (4.2)
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One evaluation of UNu(y) at a new realization y ∈ Γ requires O(N2) operations by formula (4.1).
For efficient and stable polynomial interpolation, we use barycentric formula [5, 33] and rewrite the
characteristic polynomials as

ln(y) =
1

∏

m 6=n(y
n − ym)

︸ ︷︷ ︸

w̄n

· 1

y − yn

N∏

m=0

(y − ym)

︸ ︷︷ ︸

l(y)

= l(y)
w̄n

y − yn
0 ≤ n ≤ N, (4.3)

where w̄n, 0 ≤ n ≤ N are barycentric weights, so that the interpolation operator (4.1) becomes

UNu(y) =

N∑

n=0

w̄n

y − yn
u(yn)

/ N∑

n=0

w̄n

y − yn
, where l(y) =

N∑

n=0

w̄n

y − yn
, (4.4)

which instead needs only O(N) operations for one evaluation provided that the barycentric weights
are precomputed and stored. The statistics of the solution or output can be therefore evaluated, e.g.

E[u] ≈ E[UNu] =

N∑

n=0

(
∫

Γ

(

w̄n

y − yn

/ N∑

n=0

w̄n

y − yn

)

ρ(y)dy

)

u(yn) =

N∑

n=0

wnu(yn), (4.5)

where wn, 0 ≤ n ≤ N are quadrature weights. In order to improve the accuracy of the numerical
integral in (4.5) and the numerical interpolation in (4.4), it is favourable to select the collocation
points as the quadrature abscissas. Available quadrature rules include Clenshaw-Curtis quadrature,
Gaussian quadrature based on various orthogonal polynomials and so on [33].

4.2 Multivariate tensor product interpolation

Rewrite the univariate interpolation formula (4.1) with the index k for the kth dimension as

UNk
u(yk) =

∑

y
nk
k

∈Θk

u(ynk

k )lnk

k (yk), where Θk = {ynk

k ∈ Γk, nk = 0, . . . , Nk} for some Nk ≥ 1 (4.6)

then the multivariate interpolation is given as the tensor product of the univariate interpolation

(UN1
⊗ · · · ⊗ UNK

)u(y) =
∑

y
n1
1 ∈Θ1

· · ·
∑

y
nK
K

∈ΘK

u(yn1
1 , . . . , ynK

K )
(
ln1
1 (y1)⊗ · · · ⊗ lnK

K (yK)
)
. (4.7)

The corresponding barycentric formula for the multivariate interpolation is given as

(UN1
⊗ · · · ⊗ UNK

)u(y) =
∑

y
n1
1 ∈Θ1

b1n1
(y1)

∑

y
n1
1 ∈Θ1

b1n1
(y1)

· · ·
∑

y
nK
K

∈ΘK

bKnK
(yK)

∑

y
nK
K

∈ΘK

bKnK
(yK)

u(yn1
1 , . . . , ynK

K ), (4.8)

where bknk
(yk) = w̄k

nk
/(yk − ynk

k ) with barycentric weights w̄k
nk
, 1 ≤ k ≤ K precomputed and stored.

It is obvious that the multivariate barycentric formula reduces the tensor product interpolation from
O(N2

1 × · · · × N2
K) operations by (4.6) to O(N1 × · · · × NK) operations by (4.8). Corresponding to

the univariate interpolation, the expectation of the solution by multivariate interpolation is given as

E[u] ≈ E[(UN1 ⊗ · · · ⊗ UNK
)u] =

∑

y
n1
1 ∈Θ1

· · ·
∑

y
nK
K

∈ΘK

u(yn1
1 , . . . , ynK

K )
(
wn1

1 × · · · × wnK

K

)
, (4.9)

where the quadrature weights wnk

k , 1 ≤ k ≤ K can be pre-computed and stored by
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wnk

k =

∫

Γk



bknk
(yk)

/ ∑

y
nk
k

∈Θk

bknk
(yk)



 ρ(yk)dyk. (4.10)

We remark that the number of the collocation points or quadrature abscissas grows exponentially fast
as (N1 + 1)× · · · × (NK + 1), or (N1 + 1)K if N1 = · · · = NK , which prohibits the application of the
multivariate tensor product interpolation for high dimensional stochastic problems (when K is large).

4.3 Sparse grid interpolation

In order to alleviate the “curse of dimensionality” in the interpolation on the full tensor product grid,
various sparse grid techniques [9] have been developed, among which the Smolyak type [37] is one
of the most popular constructions. For isotropic interpolation with the same degree q ≥ K for one
dimensional polynomial space in each direction, we have the Smolyak interpolation operator

Squ(y) =
∑

q−K+1≤|i|≤q

(−1)q−|i|

(
K − 1
q − |i|

)
(
U i1 ⊗ · · · ⊗ U iK

)
u(y), (4.11)

where |i| = i1 + · · ·+ iK with the multivariate index i = (i1, . . . , iK) defined via the index set

X(q,K) :=

{

i ∈ NK
+ , ∀ ik ≥ 1 :

K∑

k=1

ik ≤ q

}

, (4.12)

and the set of collocation nodes for the sparse grid (see the middle of Figure 4.1) is thus collected as

H(q,K) =
⋃

q−K+1≤|i|≤q

(
Θi1 × · · · ×ΘiK

)
, (4.13)

where #Θik = 1 if ik = 1, and #Θik = 2ik−1 + 1 when ik > 1 in a nested structure. Note that we
denote U ik ≡ UNk

defined in (4.6) for Nk = 2ik−1. Define the differential operator ∆ik = U ik −
U ik−1, k = 1, . . . ,K with U0 = 0, we have an equivalent expression of Smolyak interpolation [1]

Squ(y) =
∑

i∈X(q,K)

(
∆i1 ⊗ · · · ⊗∆iK

)
u(y)

= Sq−1u(y) +
∑

|i|=q

(
∆i1 ⊗ · · · ⊗∆iK

)
u(y).

(4.14)

The above formula allows us to discretize the stochastic space in hierarchical structure based on nested
collocation nodes, such as the extrema of Chebyshev polynomials or Gauss-Patterson nodes, leading
to Clenshaw-Curtis cubature rule or Gauss-Patterson cubature rule, respectively [29, 22].

Smolyak sparse grid [40] is originally developed as isotropic in every one-dimensional polynomial
space. The convergence rate of the solution in each polynomial space may vary due to different impor-
tance of each random variable, which helps to reduce further the computational effort by anisotropic
sparse grid [28], written as

Sα
q u(y) =

∑

i∈Xα(q,K)

(
∆i1 ⊗ · · · ⊗∆iK

)
u(y), (4.15)

with the weighted index

Xα(q,K) :=

{

i ∈ NK
+ , i ≥ 1 :

K∑

k=1

ikαk ≤ min(α)q

}

, (4.16)
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Figure 4.1: Two dimensional collocation nodes by Clenshaw-Curtis cubature rule in tensor product
grid q = 8 (Left), sparse grid q = 8 (Middle), anisotropic sparse grid q = 8 and α = (1, 1.5)(Right)

where α = (α1, . . . , αK) represents the weights in different directions, estimated either from a priori
or a posteriori error estimates, see [28]. Figure 4.1 displays the full tensor product grid, the sparse
grid and the anisotropic sparse grid based on Clenshaw-Curtis cubature rule. We can observe that
the isotropic and anisotropic sparse grids are far coarser than the full tensor product grid, leading to
considerable reduction of the stochastic computation without much loss of accuracy, as we shall see
in the convergence analysis and the numerical experiments in the following sections.

Remark 4.1 For certain specific problems, some other advanced techniques turn out to be more ef-

ficient than both the isotropic and the anisotropic Smolyak sparse grid techniques. For example, the

quasi-optimal sparse grid [2] is assembled in a greedy manner to deal with the “accuracy-work” trade-off

problem; the adaptive hierarchical sparse grid [24, 16] succeeded in constructing the sparse grid adap-

tively in hierarchical levels with local refinement or domain decomposition in stochastic space, which

is more suitable for low regularity problems; the combination of analysis of variance (ANOVA) and

sparse grid techniques [18, 20] for dealing with the high dimensional problems, etc. The development

for sparse grid techniques in reducing the computational costs remains a topic of great interest.

5 Comparison of convergence analysis

In the comparison of the reduced basis method and the stochastic collocation method, we select two
of the key criteria: one is the convergence rate and the other is computational costs in terms of
operations count and storage. In this section, we provide a comparison of the theoretical convergence
rate between the two methods in both univariate and multivariate problems. In section 6, a detailed
analysis of the computational costs is assessed step by step in the algorithms of reduced basis method
and stochastic collocation method, which leads to a global comparison of them in the aspects of the
computational costs for offline construction, online evaluation and storage.

5.1 Convergence analysis I - univariate problem

Let us first consider a priori error estimate for one dimensional Lagrangian interpolation for y ∈ Γ =
[−1, 1] without loss of generality. In fact, we can map any bounded interval Γ into [−1, 1] by shifting
and rescaling. The convergence result for univariate stochastic collocation approximation is given as:

Proposition 5.1 Thanks to the analytic regularity in Corollary 2.2, we have the exponential conver-

gence rate

||u− UNu||L∞(Γ;X) ≤ CNr−N = CNe−(ln r)N , (5.1)
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with r = a+ b =
√
1 + τ2+ τ ≥ (

√
5+1)/2 ≈ 1.6 owing to (2.11) and assumption (2.4). The constant

CN is bounded in a logarithmic rescaling CN ≤ C ln(N +1), where C is a constant independent of N .

Remark 5.1 The same result has been obtained in L2(Γ;X) norm in [1] except that the constant CN

in (5.1) is independent of N . For the sake of comparison with the convergence rate of reduced basis

method, we obtain the above result (5.1) in the norm of L∞(Γ;X) with the constant CN depending

on N . The proof for Proposition 5.1 follows [1] closely except for the need to prove that the operator

UN : C0(Γ;X) → L∞(Γ;X) is also continuous. In fact,

||UNu||L∞(Γ;X) = sup
y∈Γ

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

N∑

n=0

u(yn)ln(y)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
X

≤ sup
y∈Γ

(
N∑

n=0

|ln(y)|
)

max
n=0,1,...,N

||u(yn)||X ≤ Λ(N)||u||C0(Γ;X),

(5.2)

where Λ(N) := supy∈Γ

(
∑N

n=0 |ln(y)|
)

≤ 3/4 + (2/π) ln(N + 1) is defined as the optimal Lebesgue

constant, and the constant CN is derived from Λ(N) as CN ≤ CΛ(N). As for the operator UN :

C0(Γ;X) → L2(Γ;X), it is continuous with a constant independent of N , see Lemma 4.2 in [1] for

details.

For the same one dimensional parametric problem, a priori error estimate has been well es-
tablished for the reduced basis approximation [26, 35]. Note that in the context of the reduced
basis approximation, the result is based on the assumption that the parameter y is positive with
0 < ymin ≤ y ≤ ymax < ∞. For the sake of consistent comparison with stochastic collocation method,
we still take the same parameter range Γ = [−1, 1] and introduce a new parameter by µ = y+ (1+ δ)
with δ > 0 so that µ ∈ [δ, 2 + δ] with µmin = δ > 0 and µmax = 2 + δ. Correspondingly, the problem
coefficient becomes a(x, y) = a0(x) + a1(x)y = (a0(x) − (1 + δ)a1(x)) + a1(x)µ and will be denoted
as â0(x) + a1(x)µ for convenience. We state the convergence result for one dimensional reduced basis
approximation given in [31, 35] in the following proposition:

Proposition 5.2 Suppose that lnµr = ln(µmax/µmin) > 1/2e and N ≥ Ncrit ≡ 1 + [2e lnµr]+ ([s]+

is the maximum integer smaller than s), then

||u− uN ||L∞(Γ;X) ≤ Ce−(N−1)/(Ncrit−1), (5.3)

where uN is the reduced basis approximation of the solution in the reduced basis space spanned by N

“snapshots”, and C is independent of N . Note that the samples µ1, . . . , µN are taken as equidistant

within [ln(µmin), ln(µmax)] in the way that ln(µn)− ln(µn−1) = ln(µr)/(N − 1), 2 ≤ n ≤ N .

At our knowledge, the a priori error estimates in Proposition 5.1 for the stochastic collocation
approximation and in Proposition 5.2 for the reduced basis approximation are the best available
results in the literature. Both of them show exponential convergence rate for the approximation of
the analytic solution with respect to the parameter y ∈ Γ.

Remark 5.2 In order to guarantee the positiveness of â0(x) in Proposition 5.2, we require δ ≤ 1/2

by assumption (2.4). Therefore, the minimal value of Ncrit is 1+ [2e ln(ur)]+ = 9, so that the conver-

gence rate in (5.3) becomes e−(N−1)/8 ≈ 1.13−(N−1) for N dimensional reduced basis approximation,

which is larger than r−(N−1) (r > 1.6) in the stochastic collocation approximation (5.1) using N col-

location nodes corresponding to UN−1. From this closer look, it seems that the stochastic collocation

approximation is better than the reduced basis approximation as to a priori error estimation.

Remark 5.3 The above comparison depends on the specific stochastic problem (2.1) and its assump-

tions as well as the way we have chosen collocation points (Chebyshev nodes) for stochastic colloca-

tion approximation and sampling points (logarithmic equidistant points) for reduced basis approxima-

tion. We can build the reduced basis space based on the training set including the collocation points
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Ξsc ⊂ Ξtrain, yielding thus at least the same a priori error bound for reduced basis approximation as

that for stochastic collocation approximation. More explicitly, we have for proper positive constants C

and C̄

||u− uN ||L∞(Γ;X) ≤ C sup
y∈Γ

inf
w∈XN

||u− w||X

≤ C sup
y∈Ξsc/SN

inf
w∈XN

||u(y)− w||X + C sup
y∈Γ/Ξsc

||u(y)− UNu(y)||X

≤ C̄||u− UNu||L∞(Γ;X),

(5.4)

where the first inequality is due to the property of Galerkin projection on the space XN , the second one

comes from that Γ = SN ∪ (Ξsc/SN )∪ (Γ/Ξsc) and for any y ∈ SN the reduced basis approximation is

exact, and the third inequality is because the reduced basis space is constructed in such a way that the

reduced basis approximation error in the collocation set (the first term) is smaller than the stochastic

collocation approximation error over Γ (the second term). An extreme case is the one in which all the

collocation points are included in the sample set, i.e. Ξsc ⊂ SN , so that the first term vanishes.

5.2 Convergence analysis II - multivariate problem

In the multivariate case, the property of convergence rate inherits that of the univariate case thanks
to the full tensor product structure of the multivariate Lagrangian interpolation (4.6) in the stochastic
collocation approximation. A priori error estimate is obtained in the following proposition.

Proposition 5.3 Under the assumptions of (2.4) and the analytic regularity of the solution in Corol-

lary 2.2, with Γ = [−1, 1]K for simplicity, the following convergence result is a consequence of Propo-

sition 5.1

||u− UNu||L∞(Γ;X) ≤
K∑

k=1

CNk
e− ln(rk)Nk , (5.5)

where rk = a + b =
√

1 + τ2k + τk > 1, 1 ≤ k ≤ K from (2.11) and N = (N1, . . . , NK) is the

interpolation order corresponding to the interpolation operator (UN1
⊗ · · · ⊗ UNK

).

Proof The proof is rather simple to obtain. We split the interpolation error in (5.5) into K pairs by
adding and subtracting the same term

||u− UNu||L∞(Γ;X) = ||u− (UN1
⊗ · · · ⊗ UNK

)u||L∞(Γ;X)

≤ ||u− (UN1
⊗ I ⊗ · · · ⊗ I)u||L∞(Γ;X)

+ ||(UN1
⊗ I ⊗ · · · ⊗ I)u− (UN1

⊗ UN2
⊗ I ⊗ · · · ⊗ I)u||L∞(Γ;X)

+ · · ·
+ ||(UN1

⊗ · · · ⊗ UNK−1
⊗ I)u− (UN1

⊗ · · · ⊗ UNK
||L∞(Γ;X)

≤
K∑

k=1

CNk
e− ln(rk)Nk ,

(5.6)

where I is the identity operator and CNk
≤ C ln(Nk + 1). The first inequality is due to a recursive

application of triangular inequality, while the second is a direct consequence of Proposition 5.1 for
univariate interpolation. We remark that more general results have been obtained for unbounded Γ
and arbitrarily distributed random variables other than the uniform type in [1], with norm L2(Γ;X)
instead of L∞(Γ;X). �
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Corollary 5.4 If CNk
= CN1

, rk = r > 1, 1 ≤ k ≤ K and Nk = N1, 2 ≤ k ≤ K. Then the total

number of collocation nodes is N = KN1 and the error estimate in Proposition 5.3 becomes

||u− UNu||L∞(Γ;X) ≤ CN1
KN− ln(r)

ln(K) , (5.7)

which decays very slowly when K is large and the region of analyticity r is small. For instance, when

K = 100 and r = 1.6 as in Remark 5.2, we need N = 1020 in order to have KN− ln(r)
ln(K) ≤ 1.

The convergence analysis of the isotropic and anisotropic Smolyak sparse grids stochastic colloca-
tion methods have been studied in [29] and [28] in the norm L2(Γ;X). By following the argument
used in Remark 5.1, we can prove the following proposition

Proposition 5.5 Suppose that the function u can be analytically extended to a complex domain

Σ(Γ; τ). By using isotropic Smolyak sparse grid and Clenshaw-Curtis collocation nodes, we have

||u− Squ||L∞(Γ;X) ≤ Cq−K+1N
−r
q , (5.8)

where: Cq−K+1 is a constant depending on q − K + 1 and r s.t. Cq−K+1 ≤ C(r) ln(2q−K+1 + 2);

Nq = #H(q,K) is the number of collocation nodes; r is defined as r = min(ln(
√
r1), . . . , ln(

√
rK))/(1+

ln(2K)) with r1, . . . , rK defined in (5.5). Using the anisotropic Smolyak sparse grid with Clenshw-

Curtis collocation nodes, we have

||u− Sα
q u||L∞(Γ;X) ≤ Cq−K+1N

−r(α)
q , (5.9)

where r(α) = min(α)(ln(2)e− 1/2)/
(

ln(2) +
∑K

k=1 min(α)/αk

)

and αk = ln(
√
rk), k = 1, . . . ,K.

As for the reduced basis approximation in multivariate problems, there is unfortunately no a priori
error estimate in the literature to our knowledge. However, there is indeed a comparison between the
Kolmogorov width,

dN (Ξtrain) := inf
dim(SN )=N

sup
y∈Ξtrain

inf
wN∈XN

||u(y)− wN ||X , (5.10)

which defines the error of the optimal approximation, and the convergence rate of N dimensional
reduced basis approximation by the greedy algorithm [6]. In (5.10), the notations are the same as
in section 3: Ξtrain is the training set of the reduced basis method; SN is a subset of samples with
cardinality N in the training set Ξtrain; XN = span{u(y), y ∈ SN} is a function space spanned by
the “snapshots”. Essentially, the Kolmogorov width measures the error of the best or optimal N
dimensional approximation over all possible N dimensional approximation with all the samples in
the training set. Define in parallel the error of N dimensional approximation in the subspace Xg

N

constructed from a greedy algorithm as:

σN (Ξtrain) = sup
y∈Ξtrain

inf
wN∈Xg

N

||u(y)− wN ||X . (5.11)

In practice we use a posteriori error estimator △N as introduced in section 3 instead of the true error
infwN∈Xg

N
||u(y)− wN ||X for the greedy selection of quasi-optimal sample, which satisfies

c△N ≤ inf
wN∈Xg

N

||u(y)− wN ||X ≤ C△N , where 0 < γ ≡ c

C
≤ 1. (5.12)

A recent result [6] established a relation between the Kolmogorov width dN and the greedy error σN ,
which is summarized in the following proposition.
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Proposition 5.6 Suppose that ∃M > 0 s.t. d0(Ξtrain) ≤ M . Moreover, assume that ∃α > 0

if dN (Ξtrain) ≤ MN−α then σN (Ξtrain) ≤ CMN−α ∀N > 0, (5.13)

where the constant C depends only on α and γ. Moreover, assume that ∃ a > 0,

if dN (Ξtrain) ≤ Me−aNα

then σN (Ξtrain) ≤ CMe−cNβ ∀N ≥ 0, (5.14)

where the constants β = α/(α+1) and c, C depends only on a, α and γ. Improved estimates for these

constants were provided later in [13].

Remark 5.4 This proposition basically states that whenever the Kolmogorov width decays in either

an algebraic or exponential rate, the greedy algorithm will also generate a quasi-optimal approximation

space with the error decaying in a similar way. However, it is very difficult if not impossible to evaluate

the Kolmogorov width. A constructive way is to select certain orthogonal basis of the space X, for

instance, Fourier basis, Chebyshev polynomials or even use interpolation to compute the approximation

error, which can be taken as an upper bound (probably too crude) for the Kolmogorov width.

Remark 5.5 Both the Kolmogorov width dN (Ξtrain) and the greedy error σN (Ξtrain) are defined over

the training set Ξtrain ⊂ Γ instead than on the whole region Γ. This introduces another concern on how

sufficient the training set is, or how large the error is between the training set and the whole region, in

view of evaluation the true error introduced by the reduced basis approximation. This concern becomes

more crucial in low regularity problems and/or high dimensional problems. In fact, we can not go

through all the samples where the solution suffers from low regularity. Moreover, we can only afford

to choose a rather sparse set Ξtrain when K is very large for computational reasons.

Comparatively, even if we have no obvious clue to evaluate the a priori error estimator of the
reduced basis approximation in multivariate problems, we can still arguably conclude from Proposition
5.6 that the error bound of the reduced basis approximation is no worse than that of the stochastic
collocation approximation because we can select the training set for reduced basis approximation as
the set of the multidimensional collocation nodes used for stochastic collocation approximation or
even more nodes, following the same idea as in the comparison for the univariate case.

6 Comparison of computational costs

In this section, we aim at comparing in detail the computational costs with respect to operations count
and storage of the reduced basis method and the stochastic collocation method. Let us begin with the
computational costs (C(·) stands for operations count and S(·) for storage) for stochastic collocation
method, which is listed along side the Algorithm 1 presented in section 4. The major computational
costs for reduced basis method is listed along side the Algorithm 2 presented in section 3.

A few notations are: Nsc = #Θ = (N1 + 1) × · · · × (NK + 1), Nt = #Ξtrain; Nrb = Nmax, M
the number of Monte-Carlo evaluations in (3.3); Wα is the average work to evaluate the lower bound
αLB over the training set; Ws is the work to solve once the linear system arising from (2.5) with
C(N 2) ≤ Ws ≤ C(N 3) and Wm is the work to evaluate (L,L)X in (3.11) once with C(N ) ≤ Wm ≤
C(N 2). The total computational costs (apart from that of the common initialization) for the reduced
basis method and stochastic collocation method is calculated from Algorithm 1 and 2 and presented
in Table 6.1.

More in detail, the offline cost for stochastic collocation method is dominated by solving the
problem (2.5) Nsc times with total work C(Nsc(Ws + K)). Its online cost scales as C(Nsc) by the
multivariate barycentric formula or quadrature formula. The total storage is dominated by that for all
the solutions S(Nsc(N )). As for reduced basis method, the offline cost is the sum of pre-computing the
lower bound C(NtWα), solving the system Nrb times with total work C(NrbWs+KN2

rbN ), computing
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computational costs SC RB

offline operations count C(Nsc(Ws +K)) C(NtWα +NrbWs +KN
2

rbN +K
2
N

2

rbWm +NtK
2
N

3

rb)

online operations count C(Nsc) C(N3

rb +KN
2

rb +K
2
N

2

rb)

total storage S(Nsc(N +K)) S(NrbN +K
2
N

2

rb +KNt)

Table 6.1: Computational costs of stochastic collocation method (SC) and reduced basis method (RB)

error bound with work C(K2N2
rbWm) and searching in the training set with work C(NtK

2N3
rb). The

online cost is the sum of assembling (3.9) with work C(KN2
rb) and solving it with work C(N3

rb) as well
as evaluating the error bound with work K2N2

rb, as for statistics by Monte-Carlo algorithm (3.3), we
need work C(M(N3

rb+KN2
rb)). The total storage for reduced basis method takes S(NrbN +K2N2

rb+
KNt) for storing the solution, stiffness matrix as well as the training set.

Algorithm 1 Stochastic collocation method

1: procedure OFFLINE construction

2: Initialization: mesh, parameters, finite element functions ϕi, 1 ≤ i ≤ N , etc;
3: Pre-compute and store stiffness matrix Ak = Ak(ϕ·, ϕ·), 0 ≤ k ≤ K and vector F (ϕ·);

4: Pre-compute and store the collocation nodes Θ = Θ1 × · · · ×ΘK ; ⊲ C(Nsc)/S(KNsc)
5: for k = 1, . . . ,K do

6: for nk = 0, . . . , Nk do

7: Pre-compute and store the barycentric weights w̄nk

k (ynk

k ), ynk

k ∈ Θk; ⊲ C(Nk)/S(1)
8: Pre-compute and store quadrature weights wk

nk
by formula (4.10); ⊲ C(Nk)/S(1)

9: end for

10: end for

11: for n = 1, . . . , Nsc do

12: Compute and store the solution u(yn), yn ∈ Θ; ⊲ C(Ws)/S(N )
13: end for

14: end procedure

15: procedure ONLINE evaluation

16: Given y ∈ Γ, compute the solution u(y) by interpolation (4.8), (4.11) or (4.15); ⊲ C(Nsc)
17: Evaluate the expectation E[u] by (4.9); ⊲ C(Nsc)
18: end procedure

From Table 6.1 we can observe that an explicit comparison of computational costs for reduced
basis method and stochastic collocation method depends crucially on the number of collocation points
Nsc and the size of the training set Nt, the dimension of the reduced basis Nrb and parameters K,
as well as on the work of computing the lower bound Wα. In general, provided that the problem is
computational consuming in the sense that N is very large and provided that Nsc ≈ Nt, we have
Nrb ≪ Nsc so that the reduced basis method looks much more efficient in the offline procedure under
the condition that Wα ≪ Ws by the SCM optimization algorithm. As for the online evaluation of
the solution at a new y ∈ Γ, this advantage becomes even more evident especially in high dimensions
since the online operations count for reduced basis method is much smaller than that for the stochastic
collocation method, i.e. C(N3

rb + KN2
rb + K2N2

rb) ≪ C(Nsc) = C(NK) where N is the number of
collocation nodes in each dimension. However, as for the evaluation of the statistics, e.g. expectation
E[u], this advantage is severely deteriorated since M is usually very large, which also leads to a much
larger online operations count C(M(N3

rb + KN2
rb)) for the reduced basis method while the online

operations count (C(Nsc)) for the stochastic collocation method. On the other hand, if we choose the
size of the training set larger than the number of collocation points Nt ≫ Nsc, which is usually the
case in practice for small dimensional problems (K = 1, 2, 3), or else the work Wα for the computation
of the lower bound αLB is not significantly smaller than Ws, the stochastic collocation method could
perform as well as or even better than the reduced basis method when Nt ≫ Nsc.
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Algorithm 2 Reduced basis method

1: procedure OFFLINE construction

2: Initialization: mesh, parameters, finite element functions ϕi, 1 ≤ i ≤ N , etc;
3: Pre-compute and store stiffness matrix Ak = Ak(ϕ·, ϕ·), 0 ≤ k ≤ K and vector F (ϕ·);

4: Pre-compute and store Ξtrain and αLB(y), y ∈ Ξtrain by SCM; ⊲ C(NtWα)/S(Nt)
5: Initialize y1 ∈ Ξtrain, S1 = {y1}, X1 = {ζ1}, ζ1 = u(y1)/||u(y1)||X ; ⊲ C(Ws)/S(N )
6: Compute and store Ak(ζ1, ζ1) and F (ζ1), 0 ≤ k ≤ K; ⊲ C(KN )/S(1)
7: Compute and store (C, C)X , (C,Lk

1)X , (Lk
1 ,Lk′

1 )X , 0 ≤ k, k′ ≤ K; ⊲ C(K2Wm)/S(K2)
8: for N = 2, . . . , N̄max do

9: Compute △u
N−1(y) = ||ê(y)||X/αLB(y) by (3.11); ⊲ C(K2N2Nt)/S(Nt)

10: Choose yN = argmaxy∈Ξtrain
△u

N−1(y); ⊲ C(Nt)/S(1)
11: if △u

N−1(y
N ) ≤ tolerance then

12: Nmax = N − 1; Break;
13: end if

14: Set SN = SN−1 ∪ yN and compute u(yN ); ⊲ C(K +Ws)/S(N )
15: Orthogonalize XN = span{ζ1, . . . , ζN−1, u(y

N )}; ⊲ C(N )/S(N )
16: Compute and store Ak(ζm, ζn) and F (ζN ) for (3.9); ⊲ C(KNN )/S(N2)
17: Compute and store (C,Lk

N )X , (Lk
n,Lk′

n′)X for (3.11); ⊲ C(K2NWm)/S(K2N)
18: end for

19: end procedure

20: procedure ONLINE evaluation

21: Given y ∈ Γ, assemble and solve (3.9) and compute △N (y); ⊲ C(N3
rb +KN2

rb +K2N2
rb)

22: Evaluate statistics of the solution and its related quantity by (3.3); ⊲ C(M(N3
rb +KN2

rb))
23: end procedure

7 Numerical experiments

In this section, we find numerical substantiation to our previous analysis on the convergence rate
and on computational costs, by numerically comparing the reduced basis method and the stochastic
collocation method. More precisely, we consider a stochastic elliptic problem in a two dimensional
unit square x = (x1, x2) ∈ D = (0, 1)2. The deterministic forcing term f = 1 is fixed. The coefficient
a(x, ω) is a random field with finite second moment, whose expectation and correlation are given as

E[a](x) =
c

100
, for a suitable c > 0; Cov[a](x, x′) =

1

1002
exp

(

− (x1 − x′
1)

2

L2

)

, x, x′ ∈ D (7.1)

where L is the correlation length. The Karhunen-Loève expansion of the random field a is

a(x, ω) =
1

100

(

c+

(√
πL

2

)1/2

y1(ω) +

∞∑

n=1

√

λn (sin(nπx1)y2n(ω) + cos(nπx1)y2n+1(ω))

)

, (7.2)

where the uncorrelated random variables yn, n ≥ 1, have zero mean and unit variance, and the
eigenvalues λn, n ≥ 1, have the following expression

√

λn =
(√

πL
)1/2

exp

(

− (nπL)2

8

)

, ∀n ≥ 1. (7.3)

The random field a(x, ω) will be chosen as in (7.4) and (7.7) below. All the numerical computation
is performed in MATLAB on an Intel Core i7-2620M Processor of 2.70 GHz.
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7.1 Numerical experiments for a univariate problem

For the test of univariate stochastic problem, we take

a(x, ω) =
1

100

(

1 +

(√
πL

2

)1/2

sin(2πx1)y1(ω)

)

, (7.4)

where y1(ω) obeys uniform distribution with zero mean and unit variance y1(ω) ∼ U(−
√
3,
√
3). We

implement Algorithm 1 for the stochastic collocation approximation with Clenshaw-Curtis nodes (the
same as Chebyshev-Gauss-Lobatto nodes [10, 38]), defined for y1 ∈ Γ1 = [−

√
3,
√
3] as

yn1 = −
√
3 cos

(nπ

N

)

, n = 0, . . . , N. (7.5)

We also implement Algorithm 2 for the reduced basis approximation with equidistant training set
Ξtrain with cardinality Nt = 1000. We take randomly the testing set Ξtest with Ntest = 1000 samples
and define the L∞(Γ) error between the true solution u (finite element solution) and approximate
solution uapprox as

||u− uapprox||L∞(Γ;X) ≈ max
y∈Ξtest

||u(y)− uapprox(y)||X . (7.6)

We also compute the statistical error |E[||u||X ]−E[||uapprox||X ]| with the expectation defined in (4.5).
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Figure 7.1: Comparison for convergence rate of the error ||u− uapprox||L∞(Γ;X) (left) and the expec-
tation |E[||u||X ]− E[||uapprox||X ]| (right) between the true and the approximate solutions in 1D

Figure 7.1 illustrates the convergence of the error against collocation nodes as well as the num-
ber of reduced bases for the stochastic collocation approximation and reduced basis approximation,
respectively. From the left of Figure 7.1, we observe that both approximations achieve exponential
convergence in accordance with Proposition 5.1 and Proposition 5.2. The reduced basis approxima-
tion (convergence rate ≈ exp(−1.8N)) turns out to be slightly better than the stochastic colloca-
tion approximation (convergence rate ≈ exp(−1.3N)). As for the computation of the expectation
E[||u − uapprox||X ], we apply Clenshaw-Curtis quadrature rule [38] for stochastic approximation and
Monte-Carlo algorithm for reduced basis approximation. The right of Figure 7.1 shows that the
quadrature rule with exponential convergence rate ≈ exp(−1.6N) is apparently superior to Monte-
Carlo algorithm with algebraic convergence rate ≈ N−1/2 in the univariate problem.

As for the computational costs, though the reduced basis approximation needs slightly less “snap-
shots” than the stochastic collocation approximation, it costs more for the computation of a posteriori
error estimator by greedy sampling over a large training set in the offline construction. In Table 7.1
for univariate (1D) problem, we observe that for small scale problems, i.e. the mesh size h is large, the
offline construction of reduced basis approximation is apparently more expensive than the stochastic
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time t(s) — size h 1/8 1/16 1/32 1/64 1/128

tRB(1D,Nt = 103) 4(0.0003) 7(0.0003) 12(0.002) 14(0.005) 33(0.02)
tSC(1D,NSC = 28) 0.04(0.0002) 0.1(0.0002) 1(0.0002) 6(0.0002) 31(0.0002)

tRB(5D,Nt = 103) 50(0.0008) 55(0.001) 57(0.002) 76(0.01) 159(0.05)
tRB(5D,Nt = 75) 839(0.0005) 843(0.001) 846(0.002) 864(0.009) 949(0.05)
tSC(5D,NSC = 75) 17(0.02) 58(0.02) 755(0.02) 3619(0.02) 17252(0.02)

tRB(9D,Nt = 103) 85(0.0007) 91(0.001) 93(0.002) 121(0.01) 235(0.04)
tSC(9D,NSC = 105) 154(0.13) 305(0.13) 4804(0.13) 23401(0.13) 101795(0.13)

Table 7.1: Offline (Online in bracket) computational costs measured in CPU time by reduced basis
approximation (RB) and stochastic collocation approximation (SC) achieving the same accuracy

Nt CC CG LG LGL
1000 0.074(0.023) 0.108(0.033) 0.131(0.047) 0.082(0.024)
10000 0.076(0.022) 0.110(0.034) 0.134(0.049) 0.085(0.024)

Table 7.2: Comparison of the maximum distance (average distance in ()) between greedy samples in
reduced basis approximation and different collocation nodes for stochastic collocation approximation

collocation approximation. When the problem grows to large scale, i.e. the mesh size h is small, the
computational time is dominated by the time required for the solution of the finite element problem,
then the reduced basis approximation is as efficient as the stochastic collocation approximation or
even better. Moreover, it takes C(NSC) = C(28) operations count for the online evaluation of the
solution u(y) for any given y ∈ Γ by stochastic collocation method while reduced basis method needs
more computation C(N3

RB) = C(8000) > C(NSC) = C(28). From Table 7.1 we can see that the online
computational costs of reduced basis approximation increases with the scale of the problem and takes
more time than that of the stochastic collocation approximation, which depends only on the number
of collocation points NSC . In the computation of statistics, the reduced basis - Monte-Carlo approx-
imation is much more expensive than the stochastic collocation approximation with corresponding
quadrature rule for the univariate problem. In order to alleviate the computational cost, we can
first evaluate the solution at the collocation nodes by reduced basis approximation and then use the
quadrature formula to compute the statistics. However, this is not so useful if the number of colloca-
tion nodes is comparable to the number of reduced bases, as in the univariate case. We will compare
the proposed approach with the stochastic collocation approach for multivariate case later. From the
univariate experiment, we conclude that the stochastic collocation approximation is more efficient
than the reduced basis approximation for small scale problem in terms of computational costs and
this advantage becomes less evident as the problem becomes expensive to solve.

Figure 7.2 depicts the procedure of reduced basis construction by greedy sampling algorithm and
hierarchical stochastic collocation construction based on Clenshaw-Curtis nodes. At the top of Figure
7.2, we use larger size of dots to show earlier samples selected in the greedy algorithm, which is very
similar to the hierarchical collocation construction shown at the bottom of Figure 7.2 in terms of
the position and selected order of the nodes. This effect can be observed more closely in the middle
figure, where the greedy samples is in full consistency with the Clenshaw-Curtis nodes. In fact, the
maximum distance of the corresponding points between greedy samples and Clenshaw-Curtis nodes
(CC) is 0.074, and the mean distance is 0.023. For comparison, we also test Chebyshev-Gauss nodes
(CG), Legendre-Gauss nodes (LG) and Legendre-Gauss-Lobatto nodes (LGL) (see[10]) and the result
is listed in Table 7.2, from which we can see that Clenshaw-Curtis nodes are the best choice, followed
by Legendre-Gauss-Lobatto nodes. Note that the average distances of the samples in the training set
are 2

√
3/1000 = 0.0035 and 2

√
3/10000 = 0.00035, which are much smaller than the quantities in

Table 7.2, so that we are confident with the intrinsic difference between the samples selected by the
greedy algorithm and the collocation nodes.

This numerical coincidence has also been observed for empirical interpolation method (EIM) [4, 25],
which is efficiently used in affinely approximating the nonlinear function for nonlinear problems in
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Figure 7.2: Comparison of greedy sampling (top) and hierarchical Clenshaw-Curtis rule (bottom).
The size of the nodes stands for the order that they are selected in the hierarchical approximation.
Correspondence of samples for reduced basis (◦) and Clenshaw-Curtis nodes (·) is highlighted (middle).

the framework of reduced basis approximation. The fact sheds light on the similarity of projection
and interpolation in the common framework of nonlinear approximation, in the way that the greedy
algorithm for reduced basis projection tends to select the points on which the Lebesgue constant
arising in the stochastic collocation/interpolation is minimized.

7.2 Numerical experiments for multivariate problems

For the test of multivariate problem, we truncate the random field a(x, ω) from Karhunen-Loève
expansion (7.2) with five uniformly distributed random variables y = (y1, · · · , y5), whose value belongs
to Γ = [−

√
3,
√
3]5, and correlation length L = 1/8 so that the two eigenvalues λ1 ≈ 0.2132, λ2 ≈

0.1899, written as

a(x, ω) =
1

100

(

4 +

(√
πL

2

)1/2

y1(ω) +
2∑

n=1

√

λn (sin(nπx1)y2n(ω) + cos(nπx1)y2n+1(ω))

)

. (7.7)

The tensor product of one dimensional Clenshaw-Curtis nodes (7.5) for N = 1, 2, 3, 4, 5, 6, 7 as
well as a single node [0, 0, 0, 0, 0] are used for the stochastic collocation approximation, while Smolyak
sparse grid with level q − 5 = 1, 2, 3, 4, 5, 6, 7 are used for stochastic sparse grid collocation approxi-
mation. For the reduced basis approximation, we generate the same 75 samples as used in the tensor
product stochastic collocation nodes. The convergence results for L∞(Γ) error and the expectation
are displayed in Figure 7.3. From the left of Figure 7.3, we observe obvious better convergence rate for
the reduced basis approximation (still achieving exponential convergence rate ≈ exp(−0.2N)) than
stochastic collocation approximation (only gaining convergence rate ≈ exp(0.0002N) or rather alge-
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Figure 7.3: Comparison for convergence rate of the error ||u− uapprox||L∞(Γ;X) (left) and the expec-
tation |E[||u||X ]− E[||uapprox||X ]| (right) between the true and the approximate solution in 5D

braic convergence rate ≈ N−1.5). The sparse grid collocation achieves better approximation than the
tensor production collocation at the beginning, and loses this advantage to the latter due to slower
convergence for our specific experiment in five dimensions.

As for the convergence of the expectation E[||u||X ] as seen from the right of Figure 7.3, the
highest convergence rate (gaining exponential convergence rate) is still achieved by the reduced basis
- collocation approximation, essentially by constructing the reduced basis at first and then evaluating
the solution at the collocation/quadrature points by reduced basis approximation. Similar convergence
behaviour can be observed for the tensor product and sparse grid collocation approximation, which
are still better than the reduced basis - Monte-Carlo approximation, though this advantage becomes
less evident than the univariate case.

For the comparison of computational cost, besides the same 75 samples used in the tensor product
stochastic collocation nodes, we also take the same number Nt = 1000 of samples as in the univariate
case. From Table 7.1, we may see that the offline computational costs for stochastic collocation
approximation grows exponentially fast as the complexity of the problem solve, while for reduced
basis approximation, it increases slightly and is dominated linearly by the cardinality of the training
set Ξtrain from the contrast of 75 ≈ 1.7 × 104 to 103, which is almost the same ratio of the CPU
time 839/50 ≈ 17. In comparison, the reduced basis approximation becomes much more efficient
than the stochastic collocation approximation in offline construction for large scale problems while it
loses moderately to the latter for the online computational cost. In the computation of statistics, the
reduced basis - collocation approximation is much faster than the stochastic collocation approximation:
949(offline)+0.05×75(online) ≈ 1789 ≪ 17252 for large scale problems (h = 1/128) while this becomes
opposite for small scale problems (h = 1/8) since 839 + 0.0005× 75 ≈ 847 ≫ 17.

When numerically solving the five dimensional stochastic problems, we can see that both col-
location and reduced basis approximation achieve better convergence property than Monte-Carlo
algorithm. However, when the number of random variables or parameters becomes very large, the
tensor product stochastic collocation approximation would need too many collocation points so that
the quadrature formula losses its advantage over the Monte-Carlo algorithm. Meanwhile, the size of
the training set for reduced basis construction also grows exponentially with the dimensions of the
problem. Therefore, it is necessary to alleviate the computational cost. When the random variables
yk, 1 ≤ k ≤ K have different importance for the stochastic problem, it would be worthless to put the
same weight on the ones with little importance as on those with much larger influence. For instance,
the first few eigenvalues λ1 ≈ 0.4782, λ2 ≈ 0.0752, λ3 ≈ 0.0034, λ4 ≈ 0.000045 decay so fast for large
correlation (L = 1/2) length in the Karhunen-Loève expansion (7.2) that the random variables have
distinct weights in determining the value of the coefficient a(x, y1, . . . , yK).

The key idea behind anisotropic sparse grid is that we take advantage of the anisotropic weights,
placing more collocation points in the dimensions that suffer from a slower convergence in order to
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Figure 7.4: Empirical convergence (left) and fitted convergence rate (right) in dimension 1 ≤ k ≤ 9

balance and minimize the global error [28]. How to obtain a sharp estimate of the importance or the
weight of different dimensions is crucial to use the anisotropic spars grid. One way is to derive a priori
error estimate with the convergence rate, e.g. the convergence rate exp(− ln(rk)N), 1 ≤ k ≤ K in
(5.5), as accurate as possible. However, deriving an analytical estimation of the convergence rate for
general problems is rather difficult. In alternative, we may perform empirical estimation by fitting the
convergence rate from numerical evaluation for each dimension, see Figure 7.4, and use the estimated
convergence rates as α in (4.15) for anisotropic sparse grid construction [28]. For the test of efficiency
of anisotropic grid, we take the correlation length L = 1/2, c = 5 for the coefficient a(x, ω) in (7.2)
and truncate it with nine random variables y = (y1, . . . , y9) ∈ Γ = [−

√
3,
√
3]9. Instead of the norm

||u− uapprox||L∞(Γ,X), we use ||||u||X − ||uapprox||X ||L∞(Γ) to reduce the evaluation cost.
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Figure 7.5: Comparison for convergence rate of the error ||||u||X − ||uapprox||X ||L∞(Γ) (left) and the
expectation |E[||u||X ]−E[||uapprox||X ]| (right) between the true and the approximate solutions in 9D

From Figure 7.5, we can see that the reduced basis approximation still converges much faster than
the sparse grid stochastic collocation approximation in both L∞(Γ) norm and the statistical norm.
It is worth mentioning that we used only Nt = 103 randomly generated samples for constructing the
reduced basis space, which is much smaller than the collocation nodes (approximately 105) of the
deepest level we used q− 9 = 6 in (4.11), and we still obtain the high accuracy in the computation of
statistics by reduced basis - collocation approximation as seen in the right of Figure 7.5. Therefore,
the offline computational costs for reduced basis construction is significantly cheaper than that for
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stochastic collocation construction, especially for large scale problems.
Figure 7.5 also carries the fact that anisotropic sparse grid is more efficient than the isotropic sparse

grid for anisotropic problems. Meanwhile, we can see that the stochastic collocation approximation
based on tensor product grid starts to converge slower than N−1/2, which is the typical convergence
rate of Monte-Carlo method. We can see from Table 7.1 that the computational costs of reduced
basis approximation in nine dimensions is far less than that of the sparse grid stochastic collocation
approximation for both offline construction and online evaluation. In fact, the online construction of
the reduced basis approximation stays the same as dominated by the number of reduced basis Nrb in
the way O(N3

rb+KN2
rb+K2N2

rb), while the online cost for stochastic collocation approximation grows
with the number of collocation points in an approximately linear way O(Nsc)(10

5/75 ≈ 0.13/0.02).
Note that even if we use the same number of training samples 105 for reduced basis approximation, the
computational cost 85× 105/103 + (235− 85) = 8650 is still much less than the stochastic collocation
cost 101795 for large scale problems.

7.3 Numerical experiments for higher dimensional problems

In this numerical experiment, we deal with high dimensional stochastic problems, pushing the dimen-
sions from 9D to 21D, 51D to up 101D and comparing the performance of the reduced basis approx-
imation and the stochastic collocation approximation. Note that in high dimensions K = 101, it is
prohibitive to use stochastic collocation with tensor product grid (since we would need 3101 ≈ 1.5×1048

collocation points in total with 3 collocation points in each dimension), we use instead sparse grid
of the anisotropic type to reduce the computational cost. The correlation length is L = 1/128,
which enables us to consider an anisotropic problem but with the eigenvalues decaying very slowly
(λ1 = 0.0138, λ50 = 0.0095). The constant in (7.2) is chosen as c = 20 to guarantee that the stochastic
problem is well posed with coercive elliptic operator. For the reduced basis approximation, we use
1000 samples randomly selected in Γ = [−

√
3,
√
3]K ,K = 9, 21, 51, 101, and for the stochastic colloca-

tion approximation, we construct adaptively an anisotropic sparse grid with 101, 102, 103, 104, 105, 106

collocation nodes in a hierarchical way governed by the hierarchical surpluses [22]. To evaluate the
||||u||X − ||uapprox||X ||L∞(Γ) error, we randomly select 100 samples in Γ. For the computation of
expectation as well as the error |E[||u||X ] − E[||uapprox||X ]|, we apply the reduced basis - colloca-
tion approximation with 105 collocation nodes constructed from the anisotropic grid. The error
|E[||u||X ]− E[||uapprox||X ]| is evaluated as a posteriori error by taking the best stochastic collocation
approximation as the true value.

The results for the high dimensional stochastic problems are displayed in Figure 7.6, from which
we can observe an exponential decay rate for both the L∞(Γ) error and the statistical error by
reduced basis approximation, which is much faster than the stochastic collocation approximation.
As the dimension increases from 9 to 101, the convergence rate decreases very fast for both reduced
basis approximation and stochastic collocation approximation. As for the computational costs of
reduced basis method, it takes 86(K = 9), 424(K = 21), 2479(K = 51), 8986(K = 101) CPU seconds
respectively for the offline construction with the mesh size h = 1/8, growing as tRB ∝ O(K2),
which verify the formula in Table 6.1 by Algorithm 2. In contrary, it would take tSC ∝ O(Kw) where
w = q−K = 0, 1, 2, . . . is the interpolation level in the isotropic Smolyak formula (4.11), which prevents
large w for high dimensional problems. We remark that although our numerical results are very
promising for reduced basis approximation, the size of the samples in the training set #Ξtrain = 1000
and the testing set #Ξtest = 100 is rather small for the high dimensional problems, which may bring
insufficiency as for the approximation. In order to increase the accuracy of approximation, we may
construct the training set adaptively by replacing it with new set once the reduced basis approximation
is good enough in the current one, see [42]. We also remark that the work of offline construction is
linear with respect to the cardinality of the training set tRB ∝ Nt, as seen in Table 6.1.

8 Concluding remarks

In this work, we carried out a detailed comparison between the reduced basis method and the stochastic
collocation method for stochastic elliptic problems, in terms of convergence analysis and computational
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Figure 7.6: Comparison for convergence rate of ||||u||X −||uapprox||X ||L∞(Γ) (left) and the expectation
|E[||u||X ] − E[||uapprox||X ]| (right) between the anisotropic sparse grid stochastic collocation (SC)
approximation and the reduced basis (RB) approximation in high dimensions 9D, 21D, 51D and 101D

costs. The reduced basis method adopts Galerkin projection on the reduced basis space constructed
from a greedy algorithm governed by a posteriori error estimate. It takes advantage of the affine
structure of the stochastic problem to decompose the computation into offline procedure and online
procedure. The stochastic collocation method, on the other hand, follows essentially the Lagrangian
interpolation on the collocation nodes, which are taken as quadrature abscissa in order to achieve
high order interpolation as well as integration for statistical computation. In order to alleviate the
“curse-of-dimensionality”, sparse grid of isotropic and anisotropic type is used instead of the tensor
product grid for the stochastic collocation method.

As for the convergence analysis, the reduced basis method achieves exponential convergence rate
for analytic problems regardless of dimensions. The stochastic collocation method also obtains expo-
nential convergence in univariate case, though with a slightly slower rate than that featured by the
reduced basis method. In contrast, in the multivariate case, especially for high dimensional problems,
it only achieves algebraic convergence rate. The computation of the stochastic collocation method
costs less effort than the reduced basis method in small scale and low dimensional problems, while
it grows much faster than the reduced basis method in large scale and high dimensional problems,
resulting in much more computational effort than the latter one.

We succeeded in applying the reduced basis method and the anisotropic sparse grid stochastic
collocation method in high dimensional problems up to the order of (100). Nevertheless, the appli-
cation is admittedly insufficient since the number of samples and collocation nodes is rather small.
More advanced techniques such as sensitivity analysis, adaptive construction and so on [19, 18, 20]
for both methods are being developed actively from the research community, more specifically to
deal with high dimensional stochastic systems. Note that our comparison is carried out for linear
problems, which enjoys the affine structure that the nonlinear problems are lacking of. The stochas-
tic collocation method does not necessarily need the an affine structure. As for the reduced basis
method, which depends crucially on the affine structure, linearisation techniques such as empirical
interpolation method (EIM) [4, 25] can be applied to address this problem. As shown in this paper,
the reduced basis method should be preferred to stochastic collocation method when dealing with
large scale and high dimensional problems. However, this conclusion holds true limitedly to simple
linear diffusion problems like (2.1). More research focusing on both theoretical and computational
aspects is still needed when considering reduced basis method for low regularity and high dimensional
problems, stochastic problems with random variables features more general distributions other than
uniform type, etc.
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