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Abstract

These notes are concerned with the numerical treatment of the coupling
between second order elliptic problems that feature large contrast between
their characteristic coefficients. In particular, we study the application of
Nitsche’s method to set up a robust approximation of interface conditions
in the framework of the finite element method. The notes are subdivided in
three parts. Firstly, we review the weak enforcement of Dirichlet boundary
conditions with particular attention to Nitsche’s method and we discuss the
extension of such technique to the coupling of Poisson equations. Secondly,
we review the application of Nitsche’s method to large contrast problems,
discretised on computational meshes that capture the interface of disconti-
nuity between coefficients. Finally, we extend the previous schemes to the
case of unfitted meshes, which occurs when the computational mesh does
not conform with the interface between subproblems.

1 A Review of Nitsche’s Method

1.1 Weak Enforcement of Boundary Conditions for Poisson’s

Problem

The aim of this section is to review some well known techniques to enforce
boundary conditions of Dirichlet type for second order problems. In particular,
we will focus on the techniques that allow to enforce such boundary conditions
within the definition of the bilinear form associated to the variational formulation
of the problem at hand, rather than enforcing the constraints at the boundary
in the search space for the solution. We refer to such schemes as those using
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weak enforcement of Dirichlet boundary conditions, in contrast to the case where
Dirichlet boundary conditions appear in the definition of the trial space, often
addressed as strong enforcement of boundary constraints. Concerning Neumann
or mixed type boundary conditions we observe that they are naturally embedded
in the set up of the problem bilinear form. Some alternatives for the treatment
of natural boundary conditions have been recently addressed in [34].

We start from the simplest model problem, that is Poisson’s problem with
Dirichlet boundary conditions, which can be straightforwardly formulated as
follows. Let Ω be a convex polygonal domain in R

d. Given f ∈ L2(Ω) and

g ∈ H
1

2 (∂Ω), find û ∈ H1(Ω) a weak solution of

{

−∆u = f, in Ω,

u = g, on ∂Ω.
(1)

The most straightforward way to enforce Dirichlet type constraints at the
boundary is to embed the variational formulation into an Hilbert space whose
functions satisfy the boundary constraints. Given Rg ∈ H1(Ω), a lifting of g on
the entire Ω, we aim to find u ∈ H1

0 (Ω) such that

a(u, v) = F (v)− a(Rg, v) ∀v ∈ H1
0 (Ω), (2)

a(u, v) := (∇u,∇v)Ω ,

F (v) := (f, v)Ω ,

where (·, ·)Ω denotes the L2 inner product on Ω. In the framework of the
finite element method, the enforcement of Dirichlet boundary conditions in the
trial space is also easily translated to the discrete level. Thus, for the approxi-
mation of classical second order problems there is no need to consider alterna-
tives. However, the continuous expansion of computational analysis in several
engineering disciplines often requires to consider non standard problem formula-
tions. Among many other examples we mention problems that feature multiple
domains, accounting for the contact between different materials or fluids, prob-
lems with moving boundaries, such as the ones arising from fluid-structure in-
teraction analysis, problems set on domains with very complex dendritic shapes,
which are often encountered in the application of computational analysis to life
sciences. In these cases, the strong enforcement of Dirichlet boundary or inter-
face conditions may turn out to be cumbersome when applied at the discrete
level, while the weak treatment of Dirichlet constraints, which allows to relax
their satisfaction, may lead to numerical schemes that are more efficient or easily
implemented.

An effective technique for weak enforcement of Dirichlet boundary constraints
is the application of Lagrange multipliers. The original idea, due to Babuška
[3], is based on the fact that the weak formulation of the Poisson’s problem is
equivalent to the minimisation among all functions v ∈ H1

0 (Ω) of the energy
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functional

J(u) = min
v∈H1

0
(Ω)

J(v) (3)

J(v) := a(v, v)− 2F (v) ∀v ∈ H1(Ω). (4)

The problem of finding the minimum u ∈ H1
0 (Ω) can be seen as a constrained

minimisation problem, because the solution is sought in a subspace H1
0 (Ω) of

the natural space H1(Ω) where the functional is well defined. This convex con-
strained minimisation problem can be translated into an unconstrained problem
by resorting to the Lagrangian functional accounting for the constraint u = 0 on
∂Ω. Let H− 1

2 (∂Ω) be the dual space of H
1

2 (∂Ω) with the duality pairing 〈·, ·〉∂Ω,
then

L(v, µ) := J(v) + 〈µ, v〉, ∀v ∈ H1(Ω), µ ∈ H− 1

2 (∂Ω)

is the Lagrangian functional and we look for a couple (u, λ), where the ad-
ditional unknown λ is called Lagrange multiplier such that,

L(u, λ) = inf
v∈H1(Ω)

sup
µ∈H−1/2(∂Ω)

L(v, µ).

This is an instance of a saddle point problem, involving minimisation with
respect to one unknown and maximisation with respect to the other. Owing to
fundamental results of convex analysis, this constrained minimisation problem
admits the following equivalent formulation: setting b(λ, v) := 〈λ, v〉∂Ω and given

f ∈ L2(Ω), find u ∈ H1(Ω), λ ∈ H− 1

2 (∂Ω) such that

{

a(u, v) + b(λ, v) = F (v) ∀v ∈ H1(Ω),

b(µ, u) = b(µ, g) ∀µ ∈ H− 1

2 (∂Ω).
(5)

We notice that the new formulation with Lagrange multipliers involves an
additional unknown that at the discrete level increases the computational cost
of the problem. However, this is not only a drawback, because the unknown λ
has a relevant physical meaning,

λ+ ∂nu = 0 in H− 1

2 (∂Ω).

Anyway, the most relevant remark concerning the weak enforcement of Dirich-
let boundary condition with Lagrange multipliers is the fact that the correspond-
ing variational problem does not conform with the assumptions of Lax-Milgram’s
Lemma, which ensures well posedness of the usual weak formulation of Poisson’s
problem. The crucial point is that the introduction of Lagrange multipliers
breaks the coercivity of the entire weak problem, whose well posedness holds
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true under the following set of conditions,

a(·, ·) and b(·, ·) are bilinear and continuous,

coercivity: ∃ α > 0 s.t. a(v, v) ≥ α‖v‖21,Ω

∀v ∈ Z := {v ∈ H1(Ω) : b(λ, v) = 0, ∀λ ∈ H− 1

2 (∂Ω)},

“inf-sup”: ∃ β > 0 s.t. ∀λ ∈ H− 1

2 (∂Ω), sup
v∈H1(Ω)\{0}

b(λ, v)

‖v‖1,Ω
≥ β.

It is immediately evident that the verification of such conditions is a more
challenging task than the check of Lax-Milgram’s assumptions. In the case of
the variational formulation of problem (1) with weak enforcement of boundary
conditions they are satisfied, see for instance [35].

However, a fundamental problem appears when we look at the discretisation
by means of finite elements. With a conforming finite element discretisation, the
classical Lax-Milgram’s coercivity is automatically inherited at the discrete level,
but this is not the case for the aforementioned “inf-sup”condition. According to
the particular choices for the approximation spaces of H1(Ω) and H− 1

2 (∂Ω) such
condition may not be verified at the discrete level. The correct formalisation of
this difficulty and the constructive development of suitable couples of discrete
spaces for the approximation of saddle point problems have been an important
milestone of finite element analysis in the last decades, see [9, 39, 40] among
many others.

More precisely, given the finite element spaces Vh ⊂ H1(Ω), Λh ⊂ H− 1

2 (∂Ω),
the application of Galerkin method to (5) consists in finding uh ∈ Vh and λh ∈ Λh

such that
{

a(uh, vh) + b(λh, vh) = F (vh) ∀vh ∈ Vh,

b(µh, uh) = b(µh, g) ∀µh ∈ Λh

(6)

and proceeding similarly to the infinite-dimensional case, it has been proved
that, see [3], the discrete problem is well posed provided that

∃ αh > 0 s.t. a(vh, vh) ≥ αh‖vh‖
2
1,Ω (7)

∀vh ∈ Zh := {vh ∈ Vh s.t. b(vh, µh) = 0, ∀µh ∈ Λh},

∃ βh > 0 uniformly independent of h s.t. (8)

∀ λh ∈ Λh, sup
vh∈Vh\{0}

b(λh, vh)

‖vh‖1,Ω
≥ βh.

Note that, since the search space for the solution uh has been extended, by
removing the strong enforcement of the constraints at the boundary, coercivity
of a(·, ·) is lost in Vh ⊂ H1(Ω). For this reason, the Lax-Milgram’s theory does
not apply any more. Furthermore, the satisfaction of the discrete “inf-sup”
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condition is not straightforward, for instance intuitive choices of discrete spaces
such as linear finite elements in Ω for uh and linear finite elements on ∂Ω for
λh lead to an unstable discrete problem. For standard H1-conforming affine
finite elements for the approximation of u, a piecewise constant approximation
for λ is stable provided that the multiplier space is defined on a boundary mesh
with size 3h, with h being the characteristic element size. For Crouzeix-Raviart
approximation of u, piecewise constant multipliers on the unrestricted boundary
mesh are stable. Recalling the equation λ + ∂nu = 0 one can expect that the
regularity for the Lagrange multiplier space should be lower than the one for the
primal unknown uh. Such rule of thumb is also confirmed by observing that a
generalisation of the previous stable couple of elements is given by k-order H1-
conforming finite elements on Ω combined with fully discontinuous (k−1)-order
finite elements on ∂Ω. We refer the interested reader to [39, 40, 41] for a detailed
analysis.

The relaxation of the strong enforcement of Dirichlet boundary conditions
by means of Lagrange multipliers leads to an accurate but expensive problem
at the discrete level. For this reason, some alternatives have been developed,
with the aim to perform the weak approximation of boundary conditions using
a numerical method that can still be cast in the framework of Lax-Milgram’s
lemma.

Starting from the minimisation problem (3), the most straightforward strat-
egy consists in the application of a penalty method. The idea is to enrich the
energy functional J(v) with an additional quadratic term that takes its minimum
when the Dirichlet boundary conditions are exactly satisfied. The magnitude of
the additional functional should be modulated by means of a constant factor
that ensures that the minimum of the augmented functional accurately, but not
exactly, satisfies the prescribed boundary conditions. Given ǫ > 0 the penalty
method consists in finding uǫ ∈ H1(Ω) such that

Jǫ(uǫ) = min
v∈H1(Ω)

Jǫ(v), (9)

Jǫ(v) := J(v) + 1
2ǫ

−1‖v − g‖20,∂Ω, ∀v ∈ H1(Ω), (10)

whose Euler equations require to find uǫ ∈ H1(Ω) such that

a(u, v) + ǫ−1 (u− g, v)∂Ω = F (v), ∀v ∈ H1(Ω), (11)

which seem to share all the good properties of (2) with the additional advantage
that the natural search and test spaces are the entire H1(Ω). The application
of Galerkin method to (11) consists in finding uh,ǫ ∈ Vh ⊂ H1(Ω) such that

a(uh,ǫ, vh) + ǫ−1 (uh,ǫ − g, vh)∂Ω = F (vh), ∀vh ∈ Vh, (12)

where Vh could be any H1-conformal finite element space on Ω. However, to
analyze the efficiency of the penalty method, we remind that (12) has been
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developed to approximate (2). In this respect, the first property to be considered
is the consistency of such an approximation scheme. Starting from (12) and
performing integration by parts on Ω we obtain a residual,

R(uh,ǫ) := (−∆uh,ǫ − f, vh)Ω + (∂nuh,ǫ, vh)∂Ω + ǫ−1 (uh,ǫ − g, vh)∂Ω ∀vh ∈ Vh.

Replacing uh,ǫ with u ∈ H1
0 (Ω) such that −∆u − f = 0 weakly in Ω and u = g

on ∂Ω we observe that the residual does not vanish, i.e.

R(u) = (∂nu, vh)∂Ω 6= 0.

This proves that the penalty method is not strongly consistent with the orig-
inal weak Poisson’s problem. Then, the fundamental question is how to choose
the penalty parameter ǫ with respect to the characteristic mesh size h and the fi-
nite element polynomial order k so that uh,ǫ converges to u with possibly optimal
rate as h becomes infinitesimal. We refer to [4, 7] for a thorough discussion and
error analysis of the penalty method, which will be briefly summarized later on.
Anyway, the penalty method has received a considerable attention in literature,
in particular for the approximation of problems where the computational mesh is
not fitted to the boundary, because the penalty term can be easily implemented
also in this setting.

Among several interpretations, Nitsche’s method can be seen as a variant
to override the major drawback of the penalty method, restoring the strong
consistency of the discrete scheme with respect to (2). More precisely, we aim
to find uh,ǫ ∈ Vh ⊂ H1(Ω) such that

aǫ(uh,ǫ, vh) = Fǫ(vh) ∀vh ∈ Vh, (13)

with

aǫ(uh,ǫ, vh) := a(uh,ǫ, vh)− (∂nuh,ǫ, vh)∂Ω − s (∂nvh, uh,ǫ)∂Ω + ǫ−1 (uh,ǫ, vh)∂Ω ,

Fǫ(vh) := F (vh) + ǫ−1 (g, vh)∂Ω − s (∂nvh, g)∂Ω ,

where ǫ plays the role of penalty parameter and s (∂nvh, uh,ǫ − g)∂Ω with s ∈
{−1, 0, 1} is an additional term that if s = 1 restores the symmetry of aǫ(uh,ǫ, vh),
according to the fact that a(u, v) is supposed to be a symmetric bilinear form.
However, all choices s = ±1 and s = 0 are admissible and will be discussed
later on. Another fundamental part of the scheme is the selection of the penalty
parameter that will clearly emerge from the error analysis of the scheme.

Quoting R. Stenberg 1995, [45], “In view of our analysis it seems that the

Nitsche method is the most straightforward method to use. Unfortunately, this

method seems to be quite unknown. We think, however, that it would be worth-

while to explore it in applications such as contact problems, for fictitious domain

methods and for domain decomposition”. Indeed, Nitsche’s method has been
recently applied to all of these cases with success and the scope of the present
work is to review those studies, developing and discussing further extensions.
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1.2 Analysis of Nitsche’s method

Let Th be a family of shape regular and quasi uniform triangulations of Ω. Let K
be a generic element of Th and let hK be its diameter (the radius of the smallest
ball containing this set) and the characteristic mesh size is h := maxK∈Th hK .
Without loss of generality, we refer with our notation and choice of symbols to
the case of two space dimensions. In particular, we apply the subscript E to
denote element edges (or faces in three dimensions). Let Bh be the collection of
mesh edges lying on the boundary ∂Ω. On each mesh Th we set up a Lagrangian
finite element space of order k denoted as

Vh := {vh ∈ C0(Ω) : vh|K ∈ P
k(K) ∀K ∈ Th}.

We endow the finite element space with the following norms that are adapted
to the analysis of the scheme

‖v‖2±ǫ,∂Ω :=
∑

E∈Bh

ǫ∓1‖v‖20,E , ∀v ∈ L2(∂Ω),

‖v‖21,ǫ,Ω := |v|21,Ω + ‖v‖2ǫ,∂Ω, ∀v ∈ H1(Ω).

For the forthcoming analysis we remind of the following basic inequalities,
for which we refer to [10]. For simplicity of notation, we write a . b if there
exists a positive constant C independent of h such that a ≤ Cb. The standard
L2 Cauchy-Schwarz inequality can be straightforwardly extended to,

(v, w)∂Ω ≤ ‖v‖±ǫ,∂Ω‖w‖∓ǫ,∂Ω, ∀v, w ∈ L2(∂Ω).

We will also make use of a generalised Poincaré inequality, also known as
Poincaré-Friedrichs inequality, which holds in H1(Ω) provided that an additional
term is introduced to enrich the H1-seminorm in order to account for constant
functions,

‖v‖1,Ω . |v|21,Ω + ‖v‖2ǫ,∂Ω, ∀v ∈ H1(Ω).

Finally, the following discrete inequalities will be fundamental for the analysis
of Nitsche’s method,

h
1

2

E‖vh‖0,E . ‖vh‖0,K , hK‖∇vh‖0,K . ‖vh‖0,K , ∀vh ∈ Vh. (14)

The first inequality implies that there exists a positive constant CI such that

∑

E∈Bh

hE‖vh‖
2
0,E ≤ CI

∑

K∈Th
‖vh‖

2
0,K . (15)

We notice that problem (13) consists of a standard Galerkin method using
an H1-conformal approximation space. Then, owing to Lax-Milgram’s lemma
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its well posedness is ensured by consistency, stability and boundedness of aǫ(·, ·)
together with linearity and boundedness of the right hand side.

Recalling that Nitsche’s method can be seen as a correction of a simple
penalty method in order to recover consistency, it is easy to verify that, given
u ∈ H2(Ω)∩H1

0 (Ω) the weak solution of −∆u = f in Ω with u = g on ∂Ω, then
problem (13) satisfies aǫ(u − uh,ǫ, vh) = 0 for any vh ∈ Vh, which states that
Nitsche’s method is strongly consistent for any admissible value of ǫ and s.

In the framework of Lax-Milgram’s lemma, stability is equivalent to coerciv-
ity of aǫ(·, ·) that holds true if there exists α > 0, uniformly independent of h,
such that

aǫ(vh, vh) ≥ α‖vh‖
2
1,ǫ,Ω, ∀vh ∈ Vh.

To investigate the validity of such property in the particular case s = 1, we
proceed as follows

aǫ(vh, vh) = |vh|
2
1,Ω + ‖vh‖

2
ǫ,∂Ω − 2 (vh, ∂nvh)

≥ |vh|
2
1,Ω + ‖vh‖

2
ǫ,∂Ω − 2‖vh‖ǫ,∂Ω‖∂nvh‖−ǫ,∂Ω

≥ |vh|
2
1,Ω + ‖vh‖

2
ǫ,∂Ω − δ−1‖vh‖

2
ǫ,∂Ω − δ‖∂nvh‖

2
−ǫ,∂Ω

≤ |vh|
2
1,Ω + ‖vh‖

2
ǫ,∂Ω − δ−1‖vh‖

2
ǫ,∂Ω − δ

∑

E∈Bh

ǫ|vh|
2
1,E . (16)

In order to combine the first with the fourth term of previous inequality, it
is convenient to select ǫ such that it is ǫ is directly proportional to hE on Bh.
As a result of that, the norm ‖v‖∓ǫ,∂Ω is equivalent to

‖vh‖
2
± 1

2
,h,∂Ω

:=
∑

E∈Bh

h∓1
E ‖v‖20,E , ∀v ∈ L2(∂Ω)

and we denote ‖v‖21,h,Ω := |v|21,Ω + ‖v‖21
2
,h,∂Ω

accordingly. Owing to inverse

inequality (14), we notice that it holds

‖vh‖
2
− 1

2
,h,∂Ω

=
∑

E∈Bh

hE‖vh‖
2
E .

∑

K∈Th
‖vh‖

2
K . ‖vh‖

2
0,Ω, ∀ vh ∈ Vh.

Given a positive constant γ we select ǫ = hE/γ for notational convenience.
Then, the bilinear form aǫ(·, ·) and the right hand side Fǫ(·) should be modified
as follows,

ah(uh, vh) := a(uh, vh)− (∂nuh, vh)∂Ω − s (∂nvh, uh)∂Ω + γ
∑

E∈Bh

h−1
E (uh, vh)E ,

Fh(vh) := F (vh) + γ
∑

E∈Bh

h−1
E (g, vh)E − s (∂nvh, g)∂Ω ,

and we aim to find uh ∈ Vh such that ah(uh, vh) = Fh(vh) for any vh ∈ Vh, which
precisely define the Nitsche’s method, except from the constant γ. To conclude
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the analysis of coercivity of ah(·, ·), we mimic the reasoning of (16) for the case
s = 1 and exploiting (15) we obtain

ah(vh, vh) & (1− δCI)|vh|
2
1,Ω + (γ − δ−1)‖vh‖

2
1

2
,h,∂Ω

such that the coercivity of ah(·, ·) holds true for any C−1
I > δ > 0 provided that

the penalty parameter γ is such that γ > δ−1 > CI . An estimate of constant CI

for piecewise affine approximation is provided in [31].
Boundedness of Nitsche’s method is equivalent to continuity of ah(·, ·). In

view of the forthcoming error analysis, we introduce the augmented norm

|||v|||21,h,Ω := |v|21,Ω + ‖v‖2
+ 1

2
,h,∂Ω

+ ‖∂nv‖
2
− 1

2
,h,∂Ω

, ∀v ∈
(

H2(Ω) + Vh

)

.

Then, there exists M > 0 uniformly independent of h such that

ah(u, v) ≤ M |||u|||1,h,Ω‖v‖1,h,Ω, ∀u ∈
(

H2(Ω) + Vh

)

, ∀v ∈ Vh.

The proof of such property follows from a combination of Cauchy-Schwarz in-
equalities,

ah(u, v)

≤|u|1,Ω|v|1,Ω + γ‖u‖ 1

2
,h,∂Ω‖v‖ 1

2
,h,∂Ω+‖v‖ 1

2
,h,∂Ω‖∂nu‖− 1

2
,h,∂Ω

+ ‖u‖ 1

2
,h,∂Ω‖∂nv‖− 1

2
,h,∂Ω

.|u|1,Ω|v|1,Ω + γ‖u‖ 1

2
,h,∂Ω‖v‖ 1

2
,h,∂Ω + ‖v‖ 1

2
,h,∂Ω‖∂nu‖− 1

2
,h,∂Ω + ‖u‖ 1

2
,h,∂Ω|v|1,Ω

.|||u|||1,h,Ω‖v‖1,h,Ω, ∀u ∈
(

H2(Ω) + Vh

)

, ∀v ∈ Vh.

Combining consistency, stability and boundedness, we are able to perform
the error analysis of Nitsche’s method. We remind that the finite element space
Vh satisfies a well known approximation property in the H1 norm, which can
be easily extended to the mesh dependent norm ||| · |||1,h,Ω owning to inverse
inequalities, in particular for any v ∈ Hk+1(Ω),

inf
vh∈Vh

|||v − vh|||1,h,Ω . hk‖v‖k+1,Ω.

Then, Strang’s lemma allows us to conclude that given u ∈ Hk+1(Ω) with
k ≥ 1 the weak solution of −∆u = f in Ω with u = g on ∂Ω and given uh the
solution of Nitsche’s method with γ large enough, the following a-priori error
estimate holds true,

‖u− uh‖1,h,Ω . inf
vh∈Vh

|||u− vh|||1,h,Ω . hk‖u‖k+1,Ω, (17)

and in case of self-adjoint problems and s = 1, exploiting Aubin-Nitsche’s Lemma
one obtains,

‖u− uh‖0,Ω . hk+1‖u‖k+1,Ω. (18)
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The optimality of approximation properties in the L2-norm show the ad-
vantage of Nitsche’s method with respect to the penalty technique, because the
latter scheme turns out to be slightly suboptimal in this norm. Indeed, the
analysis of [7] shows that, provided u ∈ H4(Ω), for piece-wise linear elements on
polygonal domains with perfectly fitted boundaries the optimal penalty choice
is ǫ ∼ h

5

3 and it leads to

‖u− uh‖1,Ω . h‖u‖4,Ω, ‖u− uh‖0,Ω . h
5

3 ‖u‖4,Ω.

For quadratic Lagrangian elements with the choice ǫ ∼ h2, it is possible to prove
that the penalty method satisfies the following error estimates,

‖u− uh‖1,Ω . h2‖u‖5,Ω, ‖u− uh‖0,Ω . h2‖u‖5,Ω,

which, under the strengthened regularity assumption u ∈ H5(Ω), are optimal
for the H1-norm case, but suboptimal when the convergence is measured in the
L2-norm.

Conversely, the Lagrange multipliers method provides optimal convergence
rates with respect to h. More precisely, we assume that the spaces Vh, Λh satisfy
the following approximation properties respectively,

inf
vh∈Vh

‖v − vh‖1,Ω . hk‖v‖k+1,Ω, inf
µh∈Λh

‖µ− µh‖0,∂Ω . hl+1‖µ‖l+1,∂Ω,

for regular functions v ∈ Hk+1(Ω), µ ∈ H l+1(∂Ω). Then, provided that condi-
tions (7)- (8) hold true for Vh, Λh, the following error estimates are satisfied,
see [39, 40, 41],

‖u− uh‖1,Ω + ‖λ− λh‖− 1

2
,h,∂Ω . hk‖u‖k+1,Ω + hl+

3

2 ‖µ‖l+1,∂Ω.

Thanks to the property λ + ∂nu = 0, the Lagrange multipliers method has the
advantage to simultaneously provide an approximation of the solution u and of
its flux at the boundary. For Nitsche’s method, the calculation of fluxes can be
achieved after the solution of the problem determining uh. It is interesting to
observe that an accurate flux reconstruction involves both the normal gradient
of the numerical solution and the penalty term. Indeed, multiplying equation
(1) with homogeneous Dirichlet boundary data g = 0 by a test function vh ∈ Vh,
integrating over Ω and applying Green’s formula, we straightforwardly obtain

(∇u,∇vh)Ω − (∂nu, vh)∂Ω = (f, vh) , ∀vh ∈ Vh.

Subtracting Nitsche’s scheme from previous equation we obtain,

(∂nu, vh)∂Ω = (∂nuh, vh)∂Ω + s (∂nvh, uh)∂Ω

− γ
∑

E∈Bh

h−1
E (uh, vh)E + (∇(u− uh),∇vh)Ω

and by selecting vh = 1 we obtain the following flux reconstruction formula,
∫

∂Ω
∂nu =

∫

∂Ω
∂nuh − γ

∑

E∈Bh

h−1
E

∫

E
uh.
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1.3 Nitsche’s Method for Interface Problems

The aim of this section is to briefly illustrate the application of Nitsche’s method
to a prototype of the interface problem. This subject has been and still is an
active field of research, and the topics addressed here represent a summary of
the seminal works by Hansbo et al, [8, 31].

Our simplified multi-domain problem consists of two non overlapping polyg-
onal subdomains, Ωi, i = 1, 2, with interface Γ := Ω1 ∩ Ω2. We aim to find
ui ∈ H1(Ωi) that weakly satisfy,























−∆ui = f, in Ωi,

ui = 0, on ∂Ω ∩ ∂Ωi,

u1 − u2 = 0, on Γ,

∂nu1 − ∂nu2 = 0, on Γ,

(19)

where n denotes a unit normal vector associated to Γ and ∂nu := ∇u · n,
where n on Γ can be either chosen as n := n1 or equivalently n := n2. Such
ambiguity does not affect the application of Nitsche’s method. To proceed, we
define jumps and averages of quantities across the interface Γ. In particular,
given a function v : Ω1 ∪ Ω2 → R, its jump across the interface is defined as
[[v]] := v1 − v2, according to the sign of the vector n, which is here selected as
n = n1, while the average is {v} := 1

2(v1 + v2). Problem (19) can be rewritten
more conveniently as follows,























−∆ui = f, in Ωi,

ui = 0, on ∂Ω ∩ ∂Ωi,

[[u]] = 0, on Γ,

[[∂nu]] = 0, on Γ.

(20)

As an instance of the rich family of mortar methods for interface prob-
lems, the peculiarity of Nitsche’s scheme is to provide an approximation uh :=
[uh,1, uh,2] of (20) that is non conforming with H1(Ω), as alternative to most
popular domain decomposition techniques, such as Dirichlet-Neumann splitting.

For the discretisation of (20) let Th,i be a family of shape-regular, quasi-
uniform triangulations of Ωi. Note that Th,i with i = 1, 2 may be non con-
forming at the interface. Let Bh,i and Gh,i the collections of the faces/edges at
the boundary and at the interface respectively. We look for discrete functions
[uh,1, uh,2] ∈ Vh := Vh,1 × Vh,2, where Vh,i are Lagrangian finite element spaces
on Th,i.

A weak formulation of the multi-domain problem that is prone to discretisa-
tion by Nitsche’s method is obtained by multiplying (20)a with a test function

11



vi ∈ H1Ωi and applying integration by parts, such that

∑

i=1,2

(

∫

Ωi

∇u · ∇v −

∫

∂Ωi

∇u · niv
)

=
∑

i=1,2

(

∫

Ωi

∇u · ∇v −

∫

∂Ωi\Γ
∇u · niv

)

−

∫

Γ
[[∇u · nv]].

Interface conditions prescribing continuity of fluxes, i.e. [[∂nu]] = 0, can be
enforced in the bilinear form with the help of the following algebraic identity
[[ab]] = [[a]]{b}+ [[b]]{a}, such that

[[∇u · nv]] = [[∇u · n]]{v}+ {∇u · n}[[v]] = {∇u · n}[[v]] + {∇v · n}[[u]]

where we exploit [[u]] = 0 owing to the strong consistency. For interface condi-
tions prescribing continuity of the solution at the interface, we exploit penalty,

∑

i=1,2

(

∑

E∈Gh,i

γ

hE

∫

E
[[u]][[v]] +

∑

E∈Bh,i

γ

hE

∫

E
uv

)

where γ is the penalty parameter already introduced for the approximation
of Poisson’s problem. Then, the extension of Nitsche’s method to interface
conditions consists in finding uh := [uh,1, uh,2] ∈ Vh := Vh,1 × Vh,2 such that

ah(uh, vh) = Fh(vh), ∀vh ∈ Vh (21)

with ai(u, v) := (∇ui,∇vi)Ωi
for any ui, vi ∈ H1(Ωi) and

ah(uh, vh) :=
∑

i=1,2

(

ai(uh,i, vh,i) +
∑

E∈Gh,i

γh−1
E ([[uh]], [[vh]])E

)

− ({∇uh · n}, [[vh]])Γ − ({∇vh · n}, [[uh]])Γ

+
∑

i=1,2

(

∑

E∈Bh,i

γh−1
E (uh, vh)E − (∇uh · ni, vh)∂Ωi\Γ − (∇vh · ni, uh)∂Ωi\Γ

)

,

Fh(vh) := F (vh) =

∫

Ω
fvh, since u = 0 on ∂Ω,

where for simplicity we restrict the setting to the case s = 1. This turns out to be
a Galerkin method with an approximation space that is not H1-conformal on Ω.
Indeed, uh belongs to the broken Sobolev spaceH1(Ω1∪Ω2) := H1(Ω1)×H1(Ω2)
and the natural norms for the analysis of the problem read as follows,

‖v‖2± 1

2
,h,Gh,i

:=
∑

E∈Gh,i

h∓1
E ‖v‖20,E , ∀v ∈ L2(Γ),

‖v‖21,h,Ω1∪Ω2
:=

∑

i=1,2

(

|vi|
2
1,Ωi

+ ‖vi‖
2
1

2
,h,Bh,i

+ ‖[[v]]‖21
2
,h,Gh,i

)

, ∀vi ∈ H1(Ωi).
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Then, proceeding analogously to the case of a single domain, it is possible
to verify that, if (20) admits a regular solution u ∈ H2(Ω1 ∪ Ω2) ∩H1

0 (Ω), then
ah(u, vh) = Fh(vh) for any vh ∈ Vh and ah(u − uh, vh) = 0 for any vh ∈ Vh.
Furthermore, ah(·, ·) is bounded in the norm ‖ · ‖1,h,Ω1∪Ω2

and also stable with a
constant uniformly independent on the mesh characteristic size h. As a result of
that, following the lines of Cea’s lemma, we obtain an a priori estimate equivalent
to (17).

We finally notice that Nitsche’s multi-domain scheme can be easily decom-
posed into local problems, relative to each subdomain, and coupling terms that
transfer information from one subdomain to others. In particular we write,

ah(uh, vh) =
∑

i=1,2

∑

j 6=i

[

ah,i(uh,i, vh,i)− ch,ij(uh,j , vh,i)
]

,

where each single term is defined as follows,

ah,i(uh,i, vh,i) := ai(uh,i, vh,i) + ch,ii(uh,i, vh,i) + bh,i(uh,i, vh,i),

ch,ii(uh,i, vh,i) :=
∑

E∈Gh,i

γh−1
E (uh,i, vh,i)E −

(

1
2∇uh,i · ni, vh,i

)

Γ
−
(

1
2∇vh,i · ni, uh,i

)

Γ
,

ch,ij(uh,j , vh,i) :=
∑

E∈Gh,i

γh−1
E (uh,j , vh,i)E +

(

1
2∇uh,j · ni, vh,i

)

Γ
−

(

1
2∇vh,i · ni, uh,j

)

Γ
,

bh,i(uh,i, vh,i) :=
∑

i=1,2

[

∑

E∈Bh,i

γh−1
E (uh, vh)E − (∇uh · ni, vh)∂Ωi\Γ − (∇vh · ni, uh)∂Ωi\Γ

]

.

Such decomposition suggests that, starting from problem (21), it is possible
to devise an iterative splitting strategy that aims to decompose the solution of
a multi-domain problem on Ω into a sequence of local problems on Ωi. Indeed,
owing to the introduction of the following relaxation operators, where the relax-
ation effect from one iteration to another is again obtained through a penalty
term similar to the one of (11),

sσh,i(uh,i, vh,i;u
(old)
h,i ) :=

∑

E∈Gh,i

σh−1
E

(

uh,i − u
(old)
h,i , vh,i

)

E
,

sσh(uh, vh;u
(old)
h ) :=

∑

i=1,2

sσh,i(uh,i, vh,i;u
(old)
h,i ).

The iterative method obtained by giving u0h,i ∈ Vh,i for i = 1, 2 and looking

for a sequence of approximations ukh,i for any k > 0 such that,

ah,i(u
k
h,i, vh,i) + sσh,i(u

k
h,i, vh,i;u

k−1
h,i )− ch,ij(u

k−1
h,j , vh,i) = Fh,i(vh,i), ∀vh,i ∈ Vh,i,

(22)
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turns out to be convergent to [uh,1, uh,2] provided that the relaxation parameter
σ is large enough. Such technique has already been profitably applied to the
approximation of advection dominated elliptic problems in [17] as well as to
mixed problems in [19]. The convergence analysis of the iterative scheme is
more easily performed if we rewrite it as follows

ah(u
k
h, vh) + sσh(u

k
h, vh;u

k−1
h ) = Fh(vh)− rh(u

k
h − uk−1

h , vh), (23)

rh(u
k
h − uk−1

h , vh) :=
∑

i=1,2

∑

j 6=i

ch,ij(u
k
h,j − uk−1

h,j , vh,i),

which is obtained from (22) by summing up the equations for i = 1, 2 and
introducing the new terms ±ch,ij(u

k
h,j , vh,i). Notice that rh(u

k
h − uk−1

h , vh) plays
the role of iteration residual and the interplay of sσh with rh is the key point to
prove convergence of iterations. To this purpose, we look at the iteration error,
that is wk

h := uh − ukh. By subtracting (23) from (21), we obtain an equation for
wk
h, precisely

ah(w
k
h, vh) + sσh(w

k
h, vh;w

k−1
h ) = −rh(w

k
h − wk−1

h , vh).

Then, convergence of ukh relies on the following inequality

α‖wk
h‖

2
1,h,Ω1∪Ω2

+ sσh(w
k
h, w

k
h;w

k−1
h ) ≤ |rh(w

k
h − wk−1

h , wk
h)|,

combined with the following estimates for sσh and rh,

rh(w
k
h − wk−1

h , wk
h) =

∑

i=1,2;j 6=i

[ (

∇(wk
h,j − wk−1

h,j ) · ni, w
k
h,i

)

Γ

−
(

∇wk
h,i · ni, w

k
h,j − wk−1

h,j

)

Γ
+

∑

E∈Gh,i

γh−1
E

(

wk
h,j − wk−1

h,j , wk
h,i

)

Γ

]

,

∑

i=1,2

[ (

∇(wk
h,j − wk−1

h,j ) · ni, w
k
h,i

)

Γ
−
(

∇wk
h,i · ni, w

k
h,j − wk−1

h,j

)

Γ

]

.
∑

i=1,2;j 6=i

[

δ(‖wk
h,i‖

2
1,h,Ωi

+ ‖wk−1
h,i ‖21,h,Ωi

) + δ−1‖wk
h,i − wk−1

h,i ‖21
2
,h,Γ

]

,

∑

i=1,2;j 6=i

∑

E∈Gh,i

γh−1
E

(

wk
h,j − wk−1

h,j , wk
h,i

)

Γ

.
∑

i=1,2

γ
[

‖wk
h,i − wk−1

h,i ‖21
2
,h,Γ

+ ‖[[wk
h]]‖

2
1

2
,h,Γ

]

+ sγh(w
k
h, w

k
h;w

k−1
h ),

sσh(w
k
h, w

k
h;w

k−1
h ) =

σ

2

∑

i=1,2

[

‖wk
h,i‖

2
1

2
,h,Γ

− ‖wk−1
h,i ‖21

2
,h,Γ

+ ‖wk
h,i − wk−1

h,i ‖21
2
,h,Γ

]

.
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Together with suitable choices of δ and γ, the previous estimates can be suitably
applied to obtain the following inequality

β‖wk
h‖

2
1,h,Ω1∪Ω2

+ ξ
∑

i=1,2

‖wk
h,i − wk−1

h,i ‖21
2
,h,Γ

. ζ
∑

i=1,2

[

‖wk−1
h,i ‖21

2
,h,Γ

− ‖wk
h,i‖

2
1

2
,h,Γ

+ ‖wk−1
h,i ‖21,h,Ωi

− ‖wk
h,i‖

2
1,h,Ωi

]

.

Summing up over the index k we conclude that there exists a constant C > 0
independent on k, but possibly depending on the initial state, such that

∞
∑

k=1

‖wk
h‖1,h,Ω1∪Ω2

≤ C,

which implies convergence of the sequence ukh to uh in the natural norm.

1.4 The Unfitted Version of Nitsche’s Method

The increasing complexity of geometrical configurations in applications addressed
by means of computational analysis has motivated the research of finite element
schemes capable to handle the case where the computational mesh is not fitted
to boundaries or interfaces. Instead, a physical domain with a possibly complex
shape is embedded into a computational domain with simple shape that is easily
partitioned into elements. Thanks to their flexibility in the treatment of Dirichlet
boundary conditions, the method of Lagrange multipliers and Nitsche’s scheme
have been profitably applied to such purpose. We report here simple examples
for such schemes, together with a brief discussion of their intrinsic drawbacks.
We refer to Section 3 for a detailed development of suitable stabilisation tech-
niques to obtain efficient and robust schemes for the approximation of problems
on boundaries or interfaces that do not fit with the computational mesh.

For the set up of a finite element method with unfitted boundary, we de-
note by Ω the physical domain, embedded into a computational domain ΩT
corresponding to a computational mesh Th. The basic restrictive assumption
for the correct definition of unfitted boundary methods is the requirement that
each element K ∈ Th must have a non vanishing intersection with Ω and that
the boundary ∂Ω is regular and intersects each element boundary ∂K at most
twice and each open edge E at most once. We refer to Figure 5 for an example
of physical and computational domains. The approximation space consists on
linear Lagrangian finite elements on ΩT ,

Vh := {vh ∈ C0(ΩT ) : vh|K ∈ P
1(K) ∀K ∈ Th}.

Because of its simplicity, the penalty method turns out to be very attractive
to build up finite element approximations on meshes not fitting the boundary
of the physical domain. Under the assumption dist(Ω,ΩT ) . h2, it is shown
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in [7] that the application of the simple penalty term h−2 (uh − g, vh)∂ΩT
to a

linear finite element approximation without boundary constraints is sufficient to
recover a discrete solution that satisfies the error estimates

‖u− uh‖1,Ω . h‖u‖4,Ω, ‖u− uh‖0,Ω . h
3

2 ‖u‖4,Ω,

for Poisson’s problem (or any other second-order self-adjoint variant) with reg-
ular solution u ∈ H4(Ω).

To extend the method of Lagrange multipliers to unfitted meshes, a major
difficulty is the construction of a suitable multiplier space for a boundary that
does not coincide with the edges of the mesh. An effective and simple solution is
studied in [26] where piecewise constant multipliers are applied on Ω. If the mul-
tiplier mesh is suitably coarser than the one relative to the primal unknown, the
application of piecewise linear approximations with piecewise constant multipli-
ers gives rise to a stable scheme. Unless the finite element spaces are chosen so
that the discrete inf-sup condition is satisfied, some stabilisation must be intro-
duced. One of the most popular stabilised methods was introduced by Hughes
and Barbosa [5, 6]. In this case the difference between the discrete Lagrange
multiplier and the discrete normal derivative is penalised. Such a method was
proposed in the fictitious domain framework by Renard et al. [33]. Another
recent stabilised method is based on the idea of interior penalty, where the sta-
bilisation acts on the Lagrange multiplier alone and acts as a coarsening operator
effectively penalising the distance of the discrete Lagrange multiplier to a stable
subspace. We give an example of this later formulation taken from [15] below.

For the construction of such a space we assume that ∂Ω is a curved boundary
without corners (for the extension to the polygonal case we refer to [15]) and we
define the collection of all elements cut by the unfitted boundary as Ch := {K ∈
Th : K ∩ ∂Ω 6= ∅}, then the space of multipliers is

Λh := {vh ∈ L2(Ch) : vh|K ∈ P
0(K) ∀K ∈ Ch}.

For the approximation of problem (1) on an unfitted mesh we aim to find a
couple (uh, λh) ∈ Vh × Λh such that

{

a(uh, vh) + b(λh, vh) = F (vh) ∀vh ∈ Vh,

b(µh, uh)− J(λh, µh) = b(µh, g) ∀µh ∈ Λh,
(24)

where the definitions of a(·, ·) and b(·, ·) do not change with respect to (6), while
J(λh, vh) is a stabilisation term proposed in [15] and defined as follows,

J(λh, µh) =
∑

E∈EB
(γh[[λh]], [[µh]])E ,

where EB is the set of edges or faces in Ch intersected by the boundary ∂Ω,
the jump of the piecewise constant function λh across such edges is denoted by
[[λh]] and γ is a stabilisation parameter that should be selected large enough
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according to the analysis performed in [15]. Problem (24) features a remarkable
advantage for unfitted boundaries, because the primal and the dual variables uh
and λh respectively, are defined on the same computational mesh Th, in contrast
to a more classical choice for Lagrange multipliers that needs an independent
partition of the boundary ∂Ω.

The application of Nitsche’s method to the case of unfitted boundary only
requires a minor modification with respect to the standard case. We notice that
the concept of edges or faces on the unfitted boundary is not properly defined
yet. Then, instead of defining the penalty term on each edges, we simply consider
γh−1 (uh, vh)Γ. As a result of that, Nitsche’s method for an unfitted boundary
requires to find uh ∈ Vh such that ah(uh, vh) = Fh(vh) for any vh ∈ Vh with

ah(uh, vh) := a(uh, vh)− (∂nuh, vh)∂Ω − s (∂nvh, uh)∂Ω + γh−1 (uh, vh)∂Ω ,

Fh(vh) := F (vh) + h−1 (g, vh)∂Ω − s (∂nvh, g)∂Ω .

The main drawback of such a scheme is its lack of robustness with respect
to the position of the boundary. Indeed, an unfitted boundary Γ may cut the
computational mesh such that some intersections of elements with the physical
domain are very small and/or feature very large aspect ratios. In such cases, as
illustrated in [12], the linear system arising from Nitsche’s discrete problem may
be ill posed. Let xk be the vertexes of the computational mesh Th and let Pk be
the patch of elements relative to the vertex xk. Given a generic function vh ∈ Vh,
let v the vector of its degrees of freedom endowed with the Euclidean norm ‖v‖,
namely these are the values of vh in the vertexes xk for linear Lagrangian finite
elements. We denote with ν a non-dimensional parameter that quantifies the size
of the minimal intersection of finite element patches with the physical domain.
Precisely, we define

ν = min
k

|Pk ∩ Ω|

|Pk|
,

where from now on |Ω| will denote the d-dimensional volume of Ω ⊂ R
d. Ac-

cording to the analysis developed in [12, 43], there exists a function v∗h ∈ Vh such
that

‖v∗h‖
2
1,ǫ,Ω . hd−2ν‖v∗‖2.

Denoting with Ah the stiffness matrix related to Nitsche’s method, such an
estimate directly implies that its spectral condition number admits the lower
bound K2(Ah) & ν−1h−2. For any boundary configuration such that ν → 0,
matrix Ah becomes ill posed and almost singular. In conclusion, the development
of stabilisation techniques to complement the unfitted Nitsche’s scheme and
make it fully robust with respect to any boundary configuration is a vivid field
of research on which we will concentrate in Section 3.
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2 A Modified Nitsche’s Method for Large Contrast

Problems

In the previous section we have studied how to apply Nitsche’s method to en-
force interface conditions to couple second order problems of the same type on
adjacent domains. The purpose of this section is to extend this method to prob-
lems that vary in character form one part of the domain to another. To be more
precise, we restrict to interface problems where the governing equations are sim-
ilar on adjacent subdomains, but they may be characterized by heterogeneous
coefficients. We refer to this large family of problems with the general name of
large contrast problems and we remark that they are encountered in relevant ap-
plications such as computational mechanics, for the study of the deformation of
heterogeneous bodies, or geosciences, for the analysis of flow and mass transport
in soils or aquifers.

Several authors have already successfully applied Nitsche’s method to the
discretization of large contrast problems. For the case of computational me-
chanics we refer for instance to [31], while for the analysis of a generic singularly
perturbed advection diffusion problem we refer to [17]. In this section we focus
on the latter case, in particular we study the coupling of a second order scalar
problem where one of the subproblems features a singularly perturbed behaviour.
Typical model problems are advection / diffusion equations with heterogeneous
diffusion coefficients between subregions, i.e.

−∇ · (ǫ∇u) + β · ∇u = f in Ω,

where ǫ denotes the diffusivity of a given medium and β is a given advective field,
which for simplicity we assume to be solenoidal. Provided that ǫ is a positive
and bounded function, the advection / diffusion problem turns out to be well
posed owing to a straightforward application of Lax-Milgram’s lemma. In the
case of variable, possibly discontinuous diffusivity ǫ the interest in rewriting the
problem as a multi-domain problem, subdividing regions with uniform proper-
ties, arises from the observation that internal layers of the solution may appear
in the neighbourhood of the interfaces where coefficients are discontinuous. In
several applications, such as heat or mass transfer problems, the configuration
of such layers determine the fluxes exchanged between different bodies, and thus
a correct approximation of them is necessary.

2.1 Approximation of Large Contrast Problems with Locally

Vanishing Diffusion

We consider for simplicity two non overlapping polygonal subdomains, Ωi, i =
1, 2, with interface Γ := Ω1 ∪Ω2 as an instance of a more general multi-material
problem depicted in Figure 1. Furthermore, without significant loss of generality,
we restrict to the case of uniform coefficients on each subregion. In particular,
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Ω2Ω1

ǫ1 ǫ2

Γ

Figure 1: A general multi-material problem (left) restricted to a two-domain
case (right).

given two constant parameters ǫi > 0, i = 1, 2 and β ∈ [C1(Ω)]d with ∇ · β = 0,
|β| ≃ 1, we aim to find ui such that























∇ ·
(

− ǫi∇ui + βui
)

= fi, in Ωi,

ui = 0, on ∂Ω ∩ ∂Ωi,

[[u]] = 0, on Γ,

[[−ǫ∇u · n+ β · nu]] = 0, on Γ.

(25)

First of all, we notice that an internal layer may appear in the neighborhood
of Γ when ǫ1 6= ǫ2. This happens for instance if ǫ1 ≪ ǫ2 and the interface Γ (or
part of it) is an outflow region for the advective field β. In this case the internal
layer is located upwind to the interface, in other words it is confined into the
domain Ω1. Moreover, in the singularly perturbed limit case, i.e. ǫ1 → 0, ǫ2 > 0
the internal layer becomes thinner and stiffer, while the global solution u of
(25) approaches a discontinuous function. In conclusion, under these particular
conditions, the solution of the limit problem (25) with ǫ1 → 0 fails to be H1-
conformal. Thus, we focus on Nitsche’s technique as a discretization method for
interface problems pursuing the idea that only aH1 non-conformal discretization
technique can robustly approximate the problem under all possible conditions
including the singularly perturbed limit.

For the discretization of problem (25) we could proceed in analogy with Pois-
son problem, already addressed in Section 1.3. Since problem (25) is written in
divergence form, it is easy to extend the treatment of natural interface conditions
of type [[∂nu]] = 0 to the case of the conormal derivative [[−ǫ∇u ·n+β ·nu]]. We
will see later on that such an approach will only partially fulfill the objective to
set up a robust discretization scheme for local singularly perturbed problems. To
further improve the resulting scheme, we look at interface conditions with a bias
to domain decomposition methods. Observing that in the limit case ǫ1 → 0 the
sub-problem in Ω1 tends to an hyperbolic problem coupled to an elliptic prob-
lem on Ω2, we consider the set up of a new Nitsche method arising from a set
of generalized interface conditions, introduced in [24] to couple both elliptic and
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hyperbolic problems, which give rise to the so called heterogeneous domain de-
composition methods, see [42]. Our purpose is to obtain a weak coupling scheme
that inherits the robustness of heterogeneous domain decomposition methods for
the approximation of problems that vary in character form one part of the do-
main to another. As a result of that, such a method will turn out to be effective
for problems whose solution features sharp internal layers.

The starting point of such a procedure is the definition and analysis of the
coupling conditions between an advection / diffusion (elliptic) equation with a
purely advective model (hyperbolic problem). Setting ǫ1 = 0, ǫ2 > 0 in (25),
we identify Ω1 as the hyperbolic and Ω2 as the elliptic subregion. Let nhy be
the outward unit normal with respect to Ωhy and let ∂Ωin := {x ∈ ∂Ωhy :
β · nhy < 0}. According to this definition, the interface can be split in two
parts Γin := Γ ∩ ∂Ωin and the complementary Γout := Γ \ Γin. We look for
uhy = u1, uel = u2 such that











































∇·(−ǫ∇uel + βuel) = f in Ωel,

∇·(βuhy) = f in Ωhy,

−ǫ∇uel · n+ β · nuel = β · nuhy on Γ,

uel = uhy on Γin,

uel = 0 on ∂Ω ∩ ∂Ωel,

uhy = 0 on ∂Ω ∩ ∂Ωin.

(26)

Comparing problem (25) with (26), we notice that interface conditions in-
volving mass fluxes are naturally extended to the limit case ǫ1 = 0, because the
diffusive flux has disappeared from the right hand side of (26)c. Conversely,
interface conditions for the solution itself feature a singular behaviour in the
vanishing viscosity case. Indeed, continuity of the solution is only enforced on
the inflow part of the interface, referred to as the hyperbolic boundary, i.e.
Γ ∩ ∂Ωin, while on the complementary outflow interface the solutions uel and
uhy do not conform; that is the global solution of the heterogeneous problem, u,
can be discontinuous across this part of the interface. Nitsche’s method turns
out to be particularly effective to handle such conditions in a general setting.
On the one hand, as for the aforementioned Poisson problem, the continuity of
mass fluxes can be naturally handled by integrating by parts the local governing
equations and exploiting the algebraic inequality [[ab]] = [[a]]{b}+[[b]]{a}. On the
other hand, the singular behaviour of the continuity of the solution u can be ad-
dressed by a suitable manipulation of the interface penalty term. Exploiting the
flexibility of Nitsche’s technique, we aim to set up a discrete interface problem
that is strongly consistent with both problems (25), (26), resorting to a robust
finite element scheme for the local singularly perturbed limit case. To perform
this task we start from a unified formulation of continuity interface conditions
for problems (25) and (26) in a sufficiently general setting that allows the ex-
tension of similar concepts to the case of fluid dynamics, like the case addressed
in [19].
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If ǫi were positive and quasi-uniform on Ω, the standard condition to enforce
the continuity of the solution would be,

[

1
2 |β · nΓ|+ {ǫ}

]

[[u]] = 0 on Γ \ ∂Ω.

where we the factor
[

1
2 |β · nΓ| + {ǫ}

]

appears to modulate the intensity of the
penalty term that weakly enforces the continuity requirement. In order to correct
this condition in the case where ǫi significantly varies from region to region, we
introduce an heterogeneity factor, which quantifies the variation of ǫ on the
interface, λ(x)|Γ : Γ → [−1, 1] such that

λ(x)|Γ :=







1
2
[[ǫ(x)]]
{ǫ(x)} , if {ǫ(x)} > 0,

0, if {ǫ(x)} = 0.

Then, starting from the case of uniform diffusivity considered above, we propose
the following generalized interface conditions for the continuity of the solution,

[

1
2 |β · nΓ|

(

1− sign(β · nΓ)ϕΓ(λ)
)

+ {ǫ}
(

1− χΓ(λ)
)]

[[u]] = 0 on Γ, (27)

where ϕΓ(λ) and χΓ(λ) are scaling functions that must satisfy the following
requirements in order to make sure that in the limit case the continuity of the
solution is enforced on Γ ∩ ∂Ωin solely. Precisely, we assume that they satisfy
|χΓ(λ)| ≤ 1, |ϕΓ(λ)| ≤ 1 and,

χΓ(λ) = 0 if λ|Γ = 0,
χΓ(λ) = 1 if λ|Γ = ±1,
ϕΓ(λ) = 0 if λ|Γ = 0,
ϕΓ(λ) = ∓1 if λ|Γ = ±1.

According to these properties, we further assume that χΓ(λ) is a symmetric
function while ϕΓ(λ) is skew-symmetric.

It is straightforward to verify that when ǫ1 = ǫ2 and thus λ(ǫ) = 0, condition
(27) coincides with

[

1
2 |β · nΓ| + {ǫ}

]

[[u]] = 0. In the vanishing viscosity case let
us fix n = nhy as reference orientation of the interface. Then, we obtain

λ =
ǫhy − ǫel
ǫhy + ǫel

= −1

and by consequence ϕΓ(λ = −1) = 1. As a result of that, it turns out that, for
the elliptic / hyperbolic coupling, condition (27) is equivalent to

(

1 − sign(β ·
n)ϕΓ(λ)

)

= 2 on Γin and
(

1 − sign(β · n)ϕΓ(λ)
)

= 0 on Γout, which coincides
with the continuity condition of (26).
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In conclusion, to set up Nitsche’s method that suits problem (25) and (26)
we start from the following general formulation that combines both,























∇ ·
(

− ǫi∇ui + βui
)

= fi in Ωi,
(

1
2 |β · ni| −

1
2β · ni + ǫ

)

ui = 0 on ∂Ω ∩ ∂Ωi,

[[−ǫ∇u · n+ β · nu]] = 0 on Γ,
[

1
2 |β · n|

(

1− sign(β · n)ϕΓ(λ)
)

+ {ǫ}
(

1− χΓ(λ)
)]

[[u]] = 0 on Γ.

(28)

2.1.1 Variational formulation and analysis

To proceed with the variational formulation of problem (28), propaedeutic to the
application of Nitsche’s coupling technique, we integrate the governing equations
on each sub-region and applying Green’s formula (including the advective terms)
we obtain,

∑

i=1,2

[

∫

Ωi

(

ǫi∇ui · ∇vi − βui · ∇vi
)

+

∫

∂Ωi

(

− ǫi∇ui · nivi + β · niuivi
)

]

=
∑

i=1,2

[

∫

Ωi

(

ǫi∇ui · ∇vi − βui · ∇vi
)

+

∫

∂Ωi\Γ

(

− ǫi∇ui · nivi + β · niuivi
)

]

+

∫

Γ
[[−ǫ∇u · nv + β · nuv]]. (29)

The term [[−ǫ∇u ·nv+β ·nuv]] allows us to weakly enforce continuity of the
conormal derivatives. However, to maintain strong consistency with problem
(28), it is necessary to generalize the technique already described for Poisson’s
equation, to the case of weighted averages,

{v(x)}w := wi(x)vi(x) + wj(x)vj(x),

{v(x)}w := wj(x)vi(x) + wi(x)vj(x),

with i = 1, 2, j 6= i, where v is a regular function, x ∈ Γ and the weights
necessarily satisfy w1(x)+w2(x) = 1. We say that these averages are conjugate,
because they fulfill the following identity,

[[ab]] = {a}w[[b]] + {b}w[[a]],

that can be exploited to obtain,

[[(−ǫ∇u · n+ β · nu)v]] = [[−ǫ∇u · n+ β · nu]]{v}w + {−ǫ∇u · n+ β · nu}w[[v]]

= [[−ǫ∇u · n+ β · nu]]{v}w − {ǫ∇u · n}w[[v]] + {β · nu}w[[v]].

22



First, the previous identity allows to weakly enforce the continuity of fluxes at
the interface, by setting [[−ǫ∇u·n+β ·nu]] = 0. Secondly, it shows that the choice
of the averaging weights wi is not completely arbitrary. Indeed, to reproduce the
interface condition −ǫ∇uel · n+ β · nuel = β · nuhy at the level of the variational
formulation, that is to maintain strong consistency with problem (26), we have
to make sure that the term {ǫ∇u · n}w[[v]] vanishes when ǫ1 = ǫhy = 0 while
{β · nu}w[[v]] = β · nuhy[[v]]. Such requirements correspond to the following
constraint:

w1 = 1, w2 = 0 when ǫ1 → 0

We conclude that, for a strongly consistent treatment of the interface con-
ditions with Nitsche’s method, not only the intensity of the penalty terms, but
also the averaging weights must suitably depend on the coefficients of the prob-
lem, and in particular on their heterogeneity. We will discuss later on suitable
expressions for these problem dependent parameters.

Defining the following problem dependent penalty factors that modulate the
enforcement of interface and boundary conditions, respectively,

ξΓ(ǫ, β) :=
1
2

(

|β · n| − β · nϕΓ(λ|Γ)
)

+ {ǫ}
(

1− χΓ(λ|Γ)γh
−1
E

)

,

ξi,∂Ω(ǫ, β) :=
1

2

(

|β · ni| − β · ni

)

+ ǫγh−1
E ,

where γ > 0 is a penalty parameter to be selected large enough in order to ensure
stability of the resulting scheme, the bilinear form corresponding to Nitsche’s
method for the discretization of problem (28) is assembled adding the following
penalty terms

∑

i=1,2

(

∑

E∈Gh,i

ξΓ(ǫ, β)

∫

E
[[uh]][[vh]] +

∑

E∈Bh,i

ξi,∂Ω(ǫ, β)

∫

E
uhvh

)

,

to the equation arising from (29) after weak enforcement of flux continuity.
Exploiting the same finite element approximation defined for Poisson’s problem,
see Section (1.3), we aim to find discrete functions [uh,1, uh,2] ∈ Vh := Vh,1×Vh,2,
where Vh,i are Lagrangian finite element spaces on Th,i relative to each subregion
Ωi, such that

ah(uh, vh) = Fh(vh), ∀vh ∈ Vh,
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with

ah(uh, vh) :=
∑

i=1,2

(ǫi∇uh,i − βuh,i,∇vh,i)Ωi

+
∑

i=1,2

[

∑

E∈Gh,i

ξΓ(ǫ, β) ([[uh]], [[vh]])E +
∑

E∈Bh,i

ξi,∂Ω(ǫ, β) (uh,i, vh,i)E

]

− ({ǫ∇uh · n}w, [[vh]])Γ − ({ǫ∇vh · n}w, [[uh]])Γ + ({β · nuh}w, [[vh]])Γ

− (ǫi∇uh,i · ni, vh,i)∂Ωi\Γ − (ǫi∇vh,i · ni, uh,i)∂Ωi\Γ + (β · niuh,i, vh,i)∂Ωi\Γ ,

Fh(vh) := F (vh) =

∫

Ω
fvh, if u = 0 on ∂Ω.

Three remarks are in order. First, we restrict ourselves to homogeneous
Dirichlet boundary conditions, but the corresponding schemes for non-homogeneous
Dirichlet or Neumann conditions can be obtained similarly. Secondly, we have
applied the symmetrization technique already addressed for Poisson problem.
For non symmetric problems such as advection / diffusion equations, also skew
symmetrization turns out to be an interesting option. We will not dwell here on
a detailed comparison of the two possibilities, but for a detailed discussion on the
benefits of the non symmetric option we refer the interested reader to [38, 44].
Finally, we remind that the bilinear form ah(·, ·) is not yet completely deter-
mined, because the scaling functions ϕΓ(λ), χΓ(λ) and the averaging weights wi

still require a precise definition. Since there are infinitely many expressions that
satisfy the aforementioned consistency requirements, we propose some criteria
that allow to identify an admissible and effective choice for such parameters.

According to the usual practice for advection / diffusion equations, we split
the bilinear form into its diffusive and advective components, denoted with
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aǫh(·, ·) and aβh(·, ·) respectively,

aǫh(uh, vh) :=
∑

i=1,2

(ǫi∇uh,i,∇vh,i)Ωi

+
∑

i=1,2

∑

E∈Gh,i

[

1
2 |β · n|+ {ǫ}

(

1− χΓ(λ|Γ)γh
−1
E

)]

([[uh]], [[vh]])E

+
∑

i=1,2

∑

E∈Bh,i

(

1
2 |β · ni|+ ǫγh−1

E

)

(uh,i, vh,i)E

− ({ǫ∇uh · n}w, [[vh]])Γ − ({ǫ∇vh · n}w, [[uh]])Γ
− (ǫi∇uh,i · ni, vh,i)∂Ωi\Γ − (ǫi∇vh,i · ni, uh,i)∂Ωi\Γ ,

aβh(uh, vh) :=
∑

i=1,2

[

− (βuh,i,∇vh,i)Ωi
+ 1

2 (β · niuh,i, vh,i)∂Ωi\Γ

]

+
(

{β · nuh}w − 1
2β · nϕΓ(λ|Γ), [[vh]]

)

Γ
.

The aforementioned assumption that χΓ(λ) is a symmetric function together
with the choice of exploiting the symmetric Nitsche formulation, makes sure that
the diffusion bilinear form aǫh(·, ·) respects the symmetry of the underlying op-

erator. Correspondingly, we want to make sure that aβh(·, ·) is skew-symmetric,

i.e. aβh(uh, vh) = −aβh(vh, uh). Since the satisfaction of such property depends on
ϕΓ(λ), this is our criterion to determine the expression of this function. Exploit-

ing integration by parts, we observe that aβh(uh, vh) becomes skew-symmetric
provided that the following equality holds true for any test function vh,

{vh}
w + 1

2ϕΓ(λ)[[vh]] = {vh}w − 1
2ϕΓ(λ)[[vh]],

which is equivalent to define

ϕΓ(λ) :=
(

wi − wj

)

in the particular case when the reference normal vector on the interface Γ, namely
n, points from Ωi to Ωj . Moreover, the following identity holds true,

β · n{vh}w − 1
2β · n

(

wi − wj

)

[[vh]] = β · n{vh},

and we notice that the advective bilinear form becomes,

aβh(uh, vh) =
∑

i=1,2

[

−(βuh,i,∇vh,i)Ωi
+1

2 (β · niuh,i, vh,i)∂Ωi\Γ

]

+({β · nuh}, [[vh]])Γ ,

which, together with the penalty term proportional to 1
2 |β · ni|, corresponds to

the treatment of advective fluxes through the interface by means of a standard
upwind method.

For the identification of a suitable function χΓ(λ) and of the weights wi in
terms of ǫ and β, we formulate some technical requirements that will facilitate
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the proof of coercivity of aǫh(·, ·) in the forthcoming analysis of the scheme. First,
we select χΓ(λ) such that,

{ǫ}
(

1− χΓ(λ)
)

= {ǫ}w.

Noticing that for any regular function v it holds {v}w = {v} − (wj − wi)[[v]]
and reminding of the definition of the heterogeneity factor λ = [[ǫ]]/(2{ǫ}), we
conclude that the aforementioned requirement for χΓ(λ) corresponds to set,

χΓ(λ|Γ) = 1−
{ǫ}w
{ǫ}

= (wj − wi)λ.

Finally, the weights wi are conveniently selected in order to satisfy the following
equality for any test function v,

{ǫv}w = {ǫ}w{v},

that implies that 2{ǫ}w = ǫiwi = ǫjwj being equivalent to set

wi =
ǫj

ǫi + ǫj
, wj =

ǫi
ǫi + ǫj

and {ǫ}w =
2ǫiǫj
ǫi + ǫj

.

We observe that the aforementioned requirement w1 = 1, w2 = 0 when ǫ1 → 0 is
satisfied and that the term {ǫ∇u · n}w[[v]] = {ǫ}w{ǫ∇u · n}[[v]] vanishes together
with the diffusivity parameter.

With these particular choices of scaling functions and weights, the stability
of the discrete scheme, i.e. the consistency of its bilinear form, is readily proved.
Indeed, it is sufficient to consider the diffusive (symmetric) part aǫh(·, ·), because

we have shown that aβh(·, ·) is skew symmetric and it does not contribute to the
energy of the system. First of all, we straightforwardly verify that,

aǫh(vh, vh) =
∑

i=1,2

‖ǫ
1

2∇vh‖
2
0,Ωi

+
∑

i=1,2

∑

E∈Gh,i

‖
(

1
2 |β · n|+ γ{ǫ}wh

−1
E

) 1

2 [[vh]]‖
2
0,E

+
∑

i=1,2

∑

E∈Bh,i

‖
(

1
2 |β · n|+ ǫγh−1

E

) 1

2 vh‖
2
0,E

−2 ({ǫ∇vh}w · n, [[vh]])Γ − 2 (ǫ∇vh · n, vh)∂Ω ,

where the first three terms on the right hand side represent the energy norm
that is applied for the stability and convergence analysis of the scheme. For the
remaining terms of aǫh(·, ·), we exploit that {ǫ}w = 2wiǫi ≤ 2ǫi to obtain the
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following upper bound,

2 ({ǫ∇vh}w · n, [[vh]])Γ + 2 (ǫ∇vh · n, vh)∂Ω

=
∑

i=1,2

2 (ǫiwi∇vh,i · n, [[vh]])Γ + 2 (ǫ∇vh · n, vh)∂Ω

≤
∑

i=1,2

∑

E∈Gh,i

[

δhE‖(ǫi)
1

2∇vh,i · n‖
2
0,E +

1

δhE
‖{ǫ}

1

2
w[[vh]]‖

2
0,E

]

+
∑

i=1,2

∑

E∈Bh,i

[

δhE‖ǫ
1

2

i ∇vh,i · n‖
2
0,E +

1

δhE
‖ǫ

1

2 vh‖
2
0,E

]

.
∑

i=1,2

δ‖ǫ
1

2∇vh‖
2
0,Ωi

+
1

δ
‖{ǫ}

1

2
w[[vh]]‖

2
1

2
,h,Γ

+
1

δ
‖ǫ

1

2 vh‖
2
1

2
,h,∂Ω

.

Then, aǫh(·, ·) turns out to be coercive for a sufficiently small δ and large γ.
In [23] the scheme has been extended to Problem (25) with an anisotropic

symmetric positive definite diffusion tensor K : Ω → R
d×d replacing the scalar

diffusivity ǫ, under the practical assumption that K is a constant on each sub-
region denoted with Ki. With the aforementioned choice of the scaling function
χΓ(λ|Γ) = (wj − wi)λ, the diffusive part of the bilinear form becomes

aKh (uh, vh) :=
∑

i=1,2

(Ki∇uh,i,∇vh,i)Ωi

+
∑

i=1,2

∑

E∈Gh,i

[

1
2 |β · n|+ γ{κ}wh

−1
E

)]

([[uh]], [[vh]])E

+
∑

i=1,2

∑

E∈Bh,i

(

1
2 |β · ni|+ γκih

−1
E

)

(uh,i, vh,i)E

−
(

{nTK∇uh · n}w, [[vh]]
)

Γ
−
(

{nTK∇vh · n}w, [[uh]]
)

Γ

−
(

nT
i Ki∇uh,i · ni, vh,i

)

∂Ωi\Γ −
(

nT
i Ki∇vh,i · ni, uh,i

)

∂Ωi\Γ ,

where the averaging weights are selected as follows

κi := nTKin, wi =
κj

κi + κj
, wj =

κi
κi + κj

, and {κ}w =
2κiκj
κi + κj

.

2.1.2 Stabilized Galerkin Methods for Singularly Perturbed Equa-

tions

The aforementioned Nitsche technique allows to robustly enforce interface con-
ditions among second order elliptic problems with discontinuous diffusion coeffi-
cients, but such technique does not cure the intrinsic instability of any standard
Galerkin approximation applied to singularly perturbed equations. For this rea-
son, the previously developed scheme should be complemented with a stabili-
sation technique acting on each subregion Ωi where the local Péclét number is
large.
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It is not our aim to review here the wide area of numerical schemes devoted
to stabilisation of Galerkin method for transport dominated problems. We will
simply present two options that suitably fit the present discretisation framework
and are also related to Nitsche’s idea.

Following [17], the first stabilisation strategy that we consider is suited for
locally H1-conforming approximations. More precisely, we use standard La-
grangian finite elements on each subdomain and obtain stability for high Péclét
numbers by adding a penalty term on the gradient jumps over element faces.
Combined with the previously presented Nitsche interface conditions, it will
result in a robust continuous / discontinuous approximation of large contrast
problems, where the discontinuous approximation functions are localized only
along the discontinuities of problem coefficients. Denoting by Eh,i the collection
of interior edges belonging to elements of Th,i, the stabilisation effect is then ob-
tained by complementing the bilinear form ah(·, ·) with the following additional
terms on each Ωi,

Ji(uh, vh) :=
∑

E∈Eh,i

(

γciph
2
E‖β · n‖L∞(E)[[∇uh · nE ]], [[∇vh · nE ]]

)

E
,

proposed and thoroughly analysed in [11, 13, 14], which consist of interior penalty
forms controlling the jumps in the gradient over interior faces of each sub-domain
Ωi. Since the finite element approximation to which this stabilisation is applied
involves continuous functions, the resulting scheme has been called continuous

interior penalty (CIP). The main idea behind the stabilisation based on the jump
in the gradient between adjacent elements is to introduce a least squares control
over the part of the convective derivative that is not in the finite element space.
A key result is the following property of the Oswald quasi-interpolant

π∗
h : {v ∈ L2(Ω) : v|K ∈ P

k(K), ∀K ∈ Th} → {v ∈ C0(Ω) : v|K ∈ P
1(K), ∀K ∈ Th}

π∗
hv(xj) :=

1

nj

∑

{K :xj∈K}
v|K(xj), ∀v ∈ {v ∈ L2(Ω) : v|K ∈ P

k(K)},

where xj are the nodes of the local finite element meshes Th,i, and nj is the
number of elements containing xj as a node. Let βh be the piecewise affine
Lagrange interpolant of β and let uh ∈ Vh,i. Then there exists a constant
γcip ≥ c0 > 0, depending only on the local mesh geometry, such that

‖h
1

2 (βh · ∇uh − π∗
h(βh · ∇uh))‖

2
0,Ωi

≤ Ji(uh, uh).

Assuming that β ∈ [W 1,∞(Ω)]d with ∇·β = 0, ǫ ∈ L∞(Ω) and that the exact
solution of the multi-domain problem satisfies u ∈ Hs(Ω1 ∪ Ω2) ∩ H1

0 (Ω) with
s ≥ k + 1 ≥ 2 it has been shown in [17] that the following error estimate holds
true,

|||u− uh|||1,h,Ω1∪Ω2
.

(

‖ǫ‖
1

2

L∞(Ω)H(0, u) + ‖β‖
1

2

L∞(Ω)H(1, u)
)
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where for any v ∈ Hs(Ω1 ∪ Ω2) ∩H1
0 (Ω)

|||v|||21,h,Ω1∪Ω2
:=

∑

i=1,2

(

|ǫ
1

2

i vi|
2
1,Ωi

+ ‖ǫ
1

2

i vi‖
2
1

2
,h,Bh,i

+ ‖{ǫ}
1

2
w[[v]]‖

2
1

2
,h,Gh,i

+ Ji(v, v)
)

,

and

H(α, u) =





N
∑

i=1

∑

K∈Th,i
h2k+α
K ‖u‖2k+1,K





1

2

.

The CIP stabilisation is a suitable method when heterogeneities of the dif-
fusion coefficient appear at a scale that is much larger than the element size.
Conversely, if the bulk is so fractured that the diffusivity varies at the scale
of single elements, the following approach, based on a fully discontinuous ap-
proximation space, seems to be more appropriate. The main idea consists in
exploiting the robustness of the proposed Nitsche’s method for the enforcement
of transmission conditions, combined with the observation that fully discontin-
uous finite elements provide stable approximation of transport problems. This
turns out to transform the previous continuous / discontinuous approximation
of multi-domain (25) into a fully discontinuous approximation where each el-
ement plays the role of a domain, giving rise to an instance of the so called
interior penalty discontinuous Galerkin methods, [1]. Different variants of such
a method have been applied to the discretization of elliptic, possibly singularly
perturbed problems, [2]. Because of the application of weighted averages, we will
denote the scheme proposed here as weighted interior penalty method (WIPG)
and we will compare it with similar formulations such as the symmetric interior
penalty (SIPG) and the non symmetric interior penalty (NIPG). We refer the
interested reader to [2] for a broad review of literature and to [22, 23, 47] for
further details about the present approach. Consistently with the fact that this
new approximation scheme is stable also for transport dominated problems, we
notice that the continuous interior penalty term on the gradient jumps vanishes
since there are no interior faces in the element-based subdomains. To set up
such discontinuous Galerkin scheme we reformulate problem (28) at the level of
single elements K ∈ Th,































−ǫ∆u+ β · ∇u = f in K,

[[−ǫ∇u+ βu]]∂K · n∂K = 0 on ∂K \ ∂Ω,

γh,E(ǫ, β)[[u]]∂K = 0 on ∂K \ ∂Ω,

γh,∂Ω(ǫ, β)u = 0 on ∂K ∩ ∂Ω,

and proceeding as for Nitsche’s method we look for uh ∈ Vh := {vh ∈ L2(Ω) :
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nE

{ǫ}
ǫ+

ǫ−

K

[[ǫ]]

Figure 2: A sketch of the element setting for the extension of Nitsche’s method
to a discontinuous Galerkin scheme.

vh|K ∈ P
k, ∀K ∈ Th} such that

a
(DG)
h (uh, vh) :=

∑

K∈Th

((

ǫ∇uh − βuh
)

,∇vh
)

K

+
∑

E∈Eh

[

({βuh}w · nE , [[vh]])E

− ({ǫ∇uh}w · nE , [[vh]])E − ({ǫ∇vh}w · nE , [[uh]])E

+
(

1
2 |β · nE | −

1
2β · nE(w

−
E − w+

E) + γ{ǫ}wh
−1
E

)

([[uh]], [[vh]])E

]

+
∑

E∈Bh

[

(

1
2β · nEuh, vh

)

E
− (ǫ∇uh · nE , vh)E − (ǫ∇vh · nE , uh)E

+
(

1
2 |β · n|+ ǫγh−1

E

)

(uh, vh)E

]

= F (vh),

where Eh is the collection of interior edges, nE denotes the reference unit normal
vector to each inter-element interface and w−

E , w
+
E represent the weights relative

to the inner element (−) and outer element (+) neighbouring the edge E, with
respect to the reference direction nE , as depicted in Figure 2.

For the numerical validation of the robustness of weighted Nitsche’s trans-
mission conditions in presence of locally singularly perturbed problems, we will
apply the element-wise version.

2.1.3 Numerical Results and Discussion

To conclude this section, we will compare the efficiency of the proposed Nitsche
technique for singularly perturbed problems (WIPG) with the symmetric interior
penalty method (SIPG) and the non symmetric version (NIPG). Such methods
are obtained from WIPG by setting w±

E = 1
2 , not depending on the diffusivity

parameter. The latter NIPG variant has the advantage that it only requires the
condition γ > 0 to ensure stability. Consequently, we will set γ = 2 10−2 for
NIPG while ξ = 2 for SIPG and WIPG, to study how this parameter influences
the accuracy when ǫ is vanishing.
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To set up a test problem, featuring discontinuous coefficients, that allows
us to analytically compute the exact solution we consider a domain Ω ⊂ R

2

corresponding to the rectangle Ω̂ = (0, π/2) × (1 − π/4, 1) in polar coordinates
(θ, r). We split Ω̂ into two subregions, Ω̂1 = (0, π/4) × (1 − π/4, 1), Ω2 =
(π/4, π/2)×(1−π/4, 1). Then the domain Ω is split into Ω1 and Ω2, see Figure 3,
owing to the mapping from polar to Cartesian coordinates. The viscosity ǫ(x, y)
is a discontinuous function across the interface between Ω1 and Ω2, namely the
segment x−y = 0 with x ∈ ((1−π/4) cosπ/4, cosπ/4). Precisely, we will consider
a constant ǫ(x, y) in each subregion with several values of ǫ1 in Ω1 and a fixed
ǫ2 = 1.0 in Ω2. Moreover, we set β = [βx = −y(x2 + y2)−1, βy = x(x2 + y2)−1],
f = 0 and the boundary conditions u(x, y = 0) = 1, u(x = 0, y) = 0 and
∇u ·n = 0 otherwise. Then, the exact solution of the problem on each subregion
Ω̂1, Ω̂2 can be expressed in polar coordinates as an exponential function with
respect to θ independently from r. The global solution u(θ, r) is provided by
choosing the value at the interface θ = π/4 in order to ensure the following
matching conditions,

lim
θ→π

4

−
u(θ, r) = lim

θ→π
4

+
u(θ, r),

lim
θ→π

4

−
−ǫ(θ, r)∂θu(θ, r) = lim

θ→π
4

+
−ǫ(θ, r)∂θu(θ, r).

In the Cartesian coordinate system (x, y), this is a genuinely 2-dimensional test
case, because the gradient of the solution is not constant along the interface
where ǫ is discontinuous, and it decreases from the inner to the outer side of the
domain Ω. Furthermore, it is easy to see that when 0 ≃ ǫ1 ≪ ǫ2 = 1 the global
solution, u, features a sharp internal layer upwind to the discontinuity of ǫ.

The results, depicted in Figure 4 and also quantified in Table 1, give evidence
that the WIPG scheme performs better than standard interior penalty methods,
particularly in those cases where the solution is non smooth and at the same
time the computational mesh with h = 0.0654 is not completely adequate to
capture the singularities. From the analysis of Figure 4, it is possible to identify
three regimens where the numerical methods behave differently. The first one
consists of the diffusive region, where all methods provide similar results. For
the intermediate value of ǫ a transition takes place, because the computational
mesh is not adequate anymore to capture the sharp internal layer that originates
upwind to the discontinuity of ǫ. Initially, the error relative to each method
increases when ǫ is reduced, but this trend is inverted for the WIPG method
solely, after the threshold ǫ = 10−6, while the error monotonically increases for
SIPG and NIPG. Finally, the smallest value of ǫ1 corresponds to the hyperbolic
regimen. In the limit case ǫ1 → 0, the discontinuities of the global solution
u are aligned with those of ǫ. However, we observe that the standard interior
penalty schemes (SIPG or NIPG equivalently) provide solutions that are almost
continuous, as reported in Figure 4. This behaviour promotes the instability of
the approximate solution in the neighborhood of the boundary layer, because the
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Figure 3: The domain Ω and the subregions Ω1, Ω2 together with the compu-
tational mesh Th and the advective field β.

computational mesh is not adequate to smoothly approximate the high gradients
across the interface. Conversely, the WIPG method is more effective, thanks
to the consistency with the elliptic/hyperbolic limit case, because it replaces
the part of the boundary layer with a jump that cannot be captured by the
computational mesh.

3 Stabilized Nitsche’s Method for Unfitted Bound-

aries and Interfaces

Fictitious domain methods turn out to be particularly effective for the approx-
imation of boundary value problems on domains of complex shape and for free
interface problems. The parametric description of the boundary with the sub-
sequent mesh generation and the application of interface tracking techniques
represent difficulties for the application of finite element methods. The idea
of fictitious domain schemes consists in embedding the physical domain into a
larger domain with reasonably simple shape. However, as discussed in [36], to
preserve the accuracy of the selected finite element method, it is necessary to
restrict the integration of the discrete variational formulation to the physical
domain.

To illustrate the limitations of standard finite element approximations of
unfitted interface problems, let us split the interval Ω := (0, 1) in two parts
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Figure 4: A comparison of Nitsche’s method with (WIPG) and without (SIPG)
the application weighing technique.
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‖u− uh‖L2 i ǫ1 = 2−i SIPG NIPG WIPG

diffusive region 0 1 0.00101853 0.00123078 0.00101853
-1 0.5 0.00123921 0.00134626 0.00121052
-2 0.25 0.00200825 0.00167944 0.00182993
-3 0.125 0.00393471 0.00333855 0.00315595

transition region -4 0.0625 0.0079422 0.00703319 0.00532886
-5 0.03125 0.0144257 0.0130603 0.00780319
-6 0.015625 0.0224454 0.0207315 0.00908097
-7 0.0078125 0.0307374 0.0289709 0.00831401
-8 0.00390625 0.0380299 0.0363924 0.00655286

hyperbolic region -9 0.00195312 0.0429129 0.0414616 0.0049148
-10 0.000976562 0.0452834 0.0440218 0.00329726
-11 0.000488281 0.0463316 0.0452286 0.00204598
-12 0.000244141 0.0468732 0.0458791 0.00143603
-13 0.00012207 0.0471628 0.0462332 0.00122399

Table 1: The L2 norm error for WIPG, SIPG, NIPG for different values of
ǫ1 = 2−i and a fixed value of ǫ2 = 1 in the test problem depicted in Figure 3.

Ω1 := (0,Γ), Ω2 := (Γ, 1) and look for u(x) such that,






















−ǫiu
′′
i = 1 in Ωi,

u1 = u2 on Γ,

ǫ1u
′
1 = ǫ2u

′
2 on Γ,

u1 = u2 = 0 on ∂Ω.

Let us approximate u with piecewise linear finite elements on a uniform partition
of width h. For any positive ǫ1 6= ǫ2 we have u 6∈ H2(Ω). Then optimal
convergence cannot be expected. In particular, as confirmed by numerical results
reported in Table 2, sub-optimal convergence is verified if we select Γ such that
it never coincides with a vertex of the partitions underlying the finite element
space.

Since the boundary and the interface do not necessarily conform with the
mesh, an optimally convergent finite element method must be defined on sub-
elements. In the case of interface problems, this additional difficulty can be
taken into account by enriching the approximation space with additional basis
functions that lie on a portion of the mesh elements. Such a technique is often
called the extended finite element method (XFEM) and has been successfully
applied to different applications such as crack propagation problems [21] and
free interface problems in fluid dynamics [43, 27].

The approximation of elliptic problems with unfitted boundary or interface
has already been investigated in recent works, we mention for instance [25, 37, 20,
32, 18]. The discretisation schemes that we consider are closely related to [28, 30],
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h ǫ1 = ǫ2 = 1 ǫ1 = 1, ǫ2 = 10−2

5.00× 10−2 2.28× 10−4 4.60× 10−2

2.50× 10−2 5.70× 10−5 3.49× 10−2

1.25× 10−2 1.42× 10−5 3.23× 10−2

6.25× 10−3 3.56× 10−6 3.15× 10−2

3.12× 10−3 8.91× 10−7 2.92× 10−2

p 1.99 0.15

Table 2: Convergence rate of the error ‖u − uh‖0,Ω of linear finite elements for
an unfitted interface problem. The physical domain Ω = [0, 1] is divided in
two subdomains Ω1 = [0, 1√

5
] and Ω2 = [ 1√

5
, 1]. The exact solution is of the

form ui(x) = − x2

2ǫi
+ bix+ ci. The coefficient bi and ci are chosen such that the

functions ui satisfy the boundary conditions and the continuity conditions at
interface.

where an extended finite element method has been combined with a Nitsche
technique to enforce the matching conditions between contiguous sub-regions.
However, the application of Nitsche’s method for the treatment of boundary
or interface conditions may give rise to numerical instabilities in presence of
small element cuts. More precisely, it has been observed in [12, 15, 16, 43] that
the stability and the condition number of the finite element scheme depend on
how the interface cuts the computational mesh. To cure them, the application
of interior penalty stabilisation techniques has been successfully considered in
a sequel of papers [12, 15, 16]. The idea of such stabilisation methods is to
introduce in the discrete formulation a minimum of artificial diffusion to ensure
the positivity of the discrete bilinear form for any configuration of the boundary
or interface.

For interface problems, the need to introduce additional finite element ba-
sis functions lying on sub-elements to restore optimal convergence represents a
second source of instability. Following the approach proposed in [43], we study
the H1 stability of the extended finite element space in the case of piecewise
linear approximation. We analyse the condition number of the corresponding
mass and stiffness matrices in presence of small sub-elements and we conclude
that their spectrum is affected by how elements are cut.

Finally, we will apply Nitsche’s method to enforce transmission conditions in
the extended finite element space for interface problems governed by symmetric
elliptic equations with large contrast between diffusion coefficients. We aim to
develop a scheme that is robust with respect to the configuration of sub-elements
as well as the heterogeneity of the diffusion coefficients.
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3.1 The Unfitted Nitsche Method for Boundary Conditions

We recall and analyse the Nitsche’s method for the approximation of boundary
conditions on a computational mesh that does not fit the physical domain. Let
T 0
h be a given admissible computational mesh whose elements entirely cover the

physical domain Ω. We also assume that all elements of T 0
h have non-empty

intersection with Ω. Let ΩT be the domain covered by T 0
h . To improve this

possibly coarse approximation, we will also consider a family of shape regular,
quasi-uniform triangulations, Th, built by recursive refinement of T 0

h , omitting
any elements whose intersection with Ω is empty. As previously mentioned in
section 1.4, to keep the analysis of the schemes as simple as possible, we consider
linear Lagrangian finite elements

Vh := {vh ∈ C0(ΩT ) : vh|K ∈ P
1(K) ∀K ∈ Th}.

Referring to Poisson problem (1) with homogeneous boundary conditions i.e.
g = 0, Nitsche’s method requires to find uh ∈ Vh such that ah(uh, vh) = Fh(vh)
for any vh ∈ Vh with

ah(uh, vh) := a(uh, vh)− (∂nuh, vh)∂Ω − s (∂nvh, uh)∂Ω + γh−1 (uh, vh)∂Ω , (30)

Fh(vh) := F (vh).

where s = ±1 gives rise to the symmetric or non symmetric formulations.
Although formally equivalent to the case of fitted boundary, the treatment of

the unfitted case hides some additional difficulties for the set up of the discrete
problem.

Firstly, for the assembly of mass and stiffness matrices, integrals over cut
elements must be computed, such as

∫

K∩Ω
uh · vh,

∫

K∩Ω
∇uh · ∇vh,

where K ∩ Ω is a portion of a triangle or a tetrahedron. In two or three space
dimensions, K ∩ Ω may not be a simplex. For these reasons, the computation
of these integrals requires particular attention, and the fact that |K ∩ Ω| may
vanish affects the condition number of mass and stiffness matrices, as it will be
discussed in the forthcoming sections.

Secondly, the assembly of boundary terms involves integrals over manifolds
that do not coincide with edges or faces. To automatically perform such cal-
culations, some approximation of the boundary configuration is necessary. For
instance, the boundary can be represented by means of the level set of a dis-
crete distance function. This means that there exists a discrete implicit surface
(or hyper-surface when d = 3) ϕh ∈ Vh that defines ∂Ω as its zero level set.
Coherently with the notation adopted in the previous sections, we apply here a
two-dimensional notation and we denote quantities related to element edges of
faces with E.
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Ω

ΩT

E∂Ω ∈ B∂Ω
hK ∈ Ch

Figure 5: A sketch of the physical domain, Ω, and the computational domain
ΩT , with the notation used to set up the fictitious domain method.

We denote with Ch := {K ∈ Th : |K ∩ ∂Ω|Rd−1 > 0} a crust of elements
with non vanishing intersection with the boundary, measured in R

d−1 topology.
Assuming that each element K is an open set, with the piecewise linear descrip-
tion of the boundary we observe that for all K ∈ Ch the set ∂Ω∩∂K consists on
two points (in the two-dimensional case) and the portion of ∂Ω that connects
them is a straight line (or a planar surface in three dimensions). An example
is illustrated in Figure 5. If ∂Ω lies on an entire edge of an element K, then
such element does not belong to Ch. We denote with E∂Ω := K ∩ ∂Ω the cut
edges and with B∂Ω

h their collection, see Figure 5. For a fixed regular mesh Th,
the size of any E∂Ω ∈ B∂Ω

h is upper bounded by the mesh characteristic size, h,
but it can become arbitrarily small. For this reason, the penalty term cannot
be scaled with respect of the size of edges or faces lying on ∂Ω, but it has been
taken inversely proportional to the characteristic mesh size.

In order to analyse how the configuration of the boundary with respect to
the mesh affects the stability of the scheme, we introduce the following indicator,

ν ′ := min
K∈Ch

|K ∩ Ω|

|K|
,

that corresponds to the minimum relative intersection of an element with the
physical domain Ω. Since the unfitted Nitsche’s method requires to evaluate
integrals over cut elements or cut edges, we expect that the parameter ν ′ may
affect the stability properties of the scheme.

Before addressing the analysis of the present unfitted Nitsche method, it is
useful to recall some norms and related discrete inequalities as the basis for the
forthcoming investigation. Concerning the norms, we notice that the definition
of ‖ · ‖± 1

2
,h,∂Ω should be adapted to the present scheme as follows,

‖v‖± 1

2
,h,∂Ω := h∓

1

2 ‖v‖0,∂Ω,
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while the definition of the energy and augmented norms is unchanged,

‖v‖21,h,Ω := |v|21,Ω + ‖v‖21
2
,h,∂Ω

,

|||v|||21,h,Ω := ‖v‖21,h,Ω + ‖∂nvh‖
2
− 1

2
,h,∂Ω

.

Exploiting inverse inequalities we easily prove that,

‖vh‖− 1

2
,h,∂Ω =

∑

E∂Ω∈B∂Ω
h

h‖vh‖
2
E∂Ω .

∑

K∈Ch
‖vh‖

2
K . ‖vh‖

2
0,ΩT

,

which is not satisfactory for our purpose, because the right hand side involves the
entire computational domain and not the physical domain Ω solely. Proceeding
similarly, the desired right hand side can be obtained,

‖vh‖− 1

2
,h,∂Ω . max

K∈Ch

|K|

|K ∩ Ω|

∑

K∈Ch
‖vh‖

2
0,K∩Ω . (ν ′)−1‖vh‖

2
0,Ω. (31)

Since, given Ω, it is possible to construct a triangulation Th with an arbitrarily
small ν, (31) shows that unfitted Nitsche’s method is not robust with respect
to the configuration of the boundary. Precisely, we say that a scheme is robust
with respect to the parameter ν if the spectrum of the discrete problem admits
lower and upper bounds that are independent on the parameter itself.

Our main purpose is to study how small cut elements affect the fundamental
properties of the numerical scheme. We perform such analysis simultaneously
for symmetric (s = 1) and non symmetric (s = −1) schemes. To quantify the
stability of the scheme, we look at the coercivity of the bilinear form and we
exploit (31) to observe that

ah(vh, vh) =|vh|
2
1,Ω + γ‖vh‖

2
1

2
,h,∂Ω

− (s+ 1) (∂nvh, vh)∂Ω

&
(

1− (δ1 + δ2(s+ 1))(ν ′)−1
)

|vh|
2
1,Ω + δ1‖∂nvh‖

2
− 1

2
,h,∂Ω

+
(

γ − (s+ 1)δ−1
2

)

‖vh‖
2
1

2
,h,∂Ω

,

where δ1, δ2 are positive constants to be suitably chosen.
Three conclusions come out immediately. For the non symmetric case, i.e.

s = −1, coercivity of ah(·, ·) holds in the energy norm ‖ · ‖1,h,Ω with δ1 = 0 and
for any positive δ2 and γ. As a result of that, the stability estimate of the non
symmetric variant is robust with respect to the configuration of the interface.
This is never true for the symmetric case because s + 1 = 2. If we analyse
coercivity in the norm ‖ · ‖1,h,Ω, we can set δ1 = 0, but to make sure that the
first term on the right hand side is positive it is necessary to satisfy δ2 . ν ′. Such
a restriction entails that γ & (ν ′)−1, which is unsatisfactory because the penalty
term depends on the interface configuration and it becomes arbitrarily large for
small element cuts. Finally, neither the non symmetric nor the symmetric cases
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feature robust stability properties in the augmented norm |||·|||1,h,Ω. Indeed,
coercivity of ah(·, ·) in this norm can be only proved under the condition δ1 . ν ′,
but in this case the control on the additional term δ1‖∂nvh‖

2
− 1

2
,h,∂Ω

is lost for

small element cuts.
Concerning the boundedness of the bilinear form for discrete test functions,

the consistency term (∂nuh, vh)∂Ω must be controlled by means of the energy
or the augmented norms. To this purpose, the choice of the norm makes a
significant difference. Since |||vh|||1,h,Ω directly controls ‖∂nvh‖− 1

2
,h,∂Ω, owing to

a Cauchy-Schwarz inequality it is straightforward to conclude that

(∂nuh, vh)∂Ω ≤ ‖∂nuh‖− 1

2
,h,∂Ω ‖vh‖+ 1

2
,h,∂Ω ≤ |||uh|||1,h,Ω |||vh|||1,h,Ω.

Conversely, if we perform our analysis in the energy norm ‖ · ‖1,h,Ω, resorting to
inverse inequality (31) is necessary to obtain an upper bound of the consistency
term,

(∂nuh, vh)∂Ω ≤ ‖∂nuh‖− 1

2
,h,∂Ω ‖vh‖+ 1

2
,h,∂Ω

. (ν ′)−1‖∇uh‖0,Ω ‖vh‖+ 1

2
,h,∂Ω . (ν ′)−1‖uh‖1,h,Ω ‖vh‖1,h,Ω.

In the latter case, however, the fact that the continuity constant is proportional
to (ν ′)−1 spoils the robustness of the scheme.

In conclusion, such analysis shows that both the symmetric and non sym-
metric variants of the unfitted Nitsche’s method are unsatisfactory if we aim
to set up a scheme that is fully robust with respect to the configuration of the
computational mesh with respect to the boundary and the possibility to produce
small element cuts. For this reason, in the forthcoming section we will propose
a stabilisation technique to override this limitation of Nitsche’s method.

3.2 The Ghost Penalty Stabilisation Method

In order to design a fully robust fictitious domain method, stability must be
obtained in a norm at least as strong as the norm |||uh|||1,h,Ω. This can be
achieved by modifying the bilinear form in the interface zone. The idea is to add a
penalty term that improves the stability in the elements cut by the interface and
distributes the coercivity to the parts of the triangulation outside the physical
domain. This added term must guarantee stability but at the same time be
weakly consistent to the right order. Since the nodes outside the physical domain
are often referred to as ghost nodes, this term is called the ghost penalty term.

Below we will follow the approach proposed in [16] with the higher order
generalisation of [12]. For the proofs of the results we refer to these references.
Recalling the definitions of (30) we propose the formulation: find uh ∈ Vh such
that

ah(uh, vh) + gh(uh, vh) = Fh(vh), ∀vh ∈ Vh. (32)
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where gh(·, ·) is the ghost penalty stabilisation term. Define the set of element
edges in the boundary zone by

EB := {F = K ∩K ′, where either K ∈ Ch or K ′ ∈ Ch}.

A possible ghost penalty term for piecewise affine approximations is then given
by a penalty on the jumps of the gradients over the element edges of EB,

gh(uh, vh) :=
∑

E∈EB
(γghE [[∇uh · nE ]], [[∇vh · nE ]])E .

We also introduce the discrete H1(ΩTh)-norm

‖vh‖
2
1,h,ΩT

:= ‖∇vh‖
2
0,ΩT

+ ‖vh‖
2
1

2
,h,∂Ω

with ‖vh‖
2
0,ΩT

:=
∑

K∈Th
‖vh‖

2
0,K .

The enhanced stability obtained by adding gh(·, ·), is reflected in the coercivity
estimate

|||vh|||
2
1,h,Ω . ‖vh‖

2
1,h,ΩTh

. ah(vh, vh) + gh(vh, vh), ∀vh ∈ Vh. (33)

The first inequality is a consequence of the discrete trace inequality

‖∇vh · n‖− 1

2
,h,∂Ω . ‖∇vh‖0,Ch

and the second holds thanks to the following fundamental property of the ghost
penalty term

‖∇vh‖
2
0,ΩT

. ‖∇vh‖
2
0,Ω + gh(vh, vh). (34)

For piecewise affine Lagrangian finite element approximations, the idea in [16]
to prove such an inequality is to observe that the gradient over any cut element
K ∈ Ch is a piecewise constant function that is bounded from above by the
gradient on another element K ′ 6∈ Ch plus the jumps of gradients across all
elements that should be crossed to connect K withK ′. Indeed, the ghost penalty
stabilisation provides control on the additional terms involving jumps.

Under regularity assumptions on Ω, for all v ∈ H2(Ω), we may introduce an
extension operator E : H2(Ω) 7→ H2(ΩT ) such that Ev|Ω = v and ‖Ev‖H2(ΩT ) .

‖v‖H2(Ω). It is then convenient to introduce an interpolation operator ih :
H2(Ω) 7→ Vh by ihv := IhEv where Ih is the standard nodal Lagrange inter-
polator. It is then straightforward to show that

|||v − ihv|||g := |||v − ihv|||1,h,Ω +
√

gh(Ev − ihv,Ev − ihv) . h‖v‖H2(Ω). (35)

For the convergence analysis we need the following continuity result, that is a
straightforward application of Cauchy-Schwarz inequalities and local trace in-
equalities. For all v ∈ H2(Ω) and wh ∈ Vh there holds

|ah(v − ihv, wh) + gh(v − ihv, wh)|

. |||v − ihv|||g
(

∑

K∈Th
‖∇wh‖

2
K + ‖wh‖

2
1

2
,h,∂Ω

)1/2
. (36)

40



The optimal convergence estimate

|||u− uh|||1,h,Ω . h‖u‖H2(Ω)

is an immediate consequence of (33), (35) and (36). Using a duality argument
one may also prove that

‖u− uh‖0,Ω . h2‖u‖H2(Ω).

In a similar fashion exploiting the uniform upper and lower bounds of the
bilinear form one may show that the condition number of the system matrix is
robust with respect to the interface position. We will give some detail on this
analysis in Section 3.3 in the case of multi-domain problems with large contrast.

In the case of high order approximations a penalty on the normal gradient is
insufficient. Either one has to resort to a multi-penalty method or a stabilisation
of local projection type, [12]. For example if we instead consider a Lagrangian
finite element space where the polynomials are of degree k, the following multi-
penalty operator will allow for a similar analysis in the high order case:

gh(uh, vh) :=
∑

E∈EB

k
∑

i=1

(γgh
2i−1
E [[∂i

nuh]], [[∂
i
nvh]])E ,

where ∂i
nu denotes the i-th order normal derivative of u across the edge E. Since

such a quantity is combined with the jump across E, the orientation of the unit
normal vector is irrelevant for the definition of [[∂i

nuh]].
The role of this multi-penalty operator for the stabilisation of the unfitted

method is better understood if we look at its connection with local projection
operators. For any given element K ∈ Ch, let PK be the patch containing the
shortest piecewise linear path connecting all the centres of mass to move from
the centre of mass of K to the centre of K ′ 6∈ Ch. Let EK be the set of edges cut
by such path. It is straightforward to verify that for any element K ∈ Ch and
any corresponding patch PK the ratio

|PK |

|PK ∩ Ω|

is uniformly bounded with respect to the position of the interface. Furthermore,
for shape-regular and quasi-uniform meshes we expect that the number of indi-
vidual elements contained in PK is uniformly bounded from above. As a result
of that, we have

∑

K∈Ch
‖vh‖

2
0,PK

≃
∑

K∈Ch
‖vh‖

2
0,K ,

where a ≃ b means that there exist two constants c, C, uniformly independent
of the mesh characteristic size h, such that ca ≤ b ≤ Ca.
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Let us define by πh : L2(PK) → P
k(PK) the local L2 projection onto P

k(PK).
The following equivalence can be proven, see [12] and references therein,

(vh − πhvh, vh)PK
≃

k
∑

i=1

∑

E∈EK

∫

E
[[∂i

nvh]]
2.

We will then use the local projection operator to prove that the following local
counterpart of (34) holds true for any polynomial order k ≥ 1,

‖vh‖
2
0,PK

. ‖vh‖
2
0,PK∩Ω + h−2

∫

PK

(

vh − πhvh
)2
. (37)

To prove (37) we look at the restriction on PK of any vh ∈ Vh and we split it
as vh = πhvh + rk where rk = vh − πhvh. We notice that either πhvh = 0 on
the entire patch, or πhvh 6= 0 on any subset of Pk with non zero measure. As a
result of that we obtain,

‖∇πhvh‖
2
0,PK

.
|PK |

|PK ∩ Ω|
‖∇πhvh‖

2
0,PK∩Ω. (38)

When the residual rk 6= 0, exploiting (38), we notice that

‖∇vh‖
2
0,PK

. ‖∇πhvh‖
2
0,PK

+ ‖∇rk‖
2
0,PK

. ‖∇πhvh‖
2
0,PK∩Ω + ‖∇rk‖

2
0,PK

.

Owing to the inverse inequality we observe that,

‖∇rk‖
2
0,PK∩Ω . ‖∇rk‖

2
0,PK

. h−2‖rk‖
2
0,PK

and combining the previous estimates we conclude that,

|∇vh‖
2
0,PK

. ‖∇πhvh‖
2
0,PK∩Ω − ‖∇rk‖

2
0,PK∩Ω + 2h−2‖rk‖

2
0,PK

. ‖∇πhvh +∇rk‖
2
0,PK∩Ω + 2h−2‖rk‖

2
0,PK

. ‖∇vh‖
2
0,PK∩Ω + 2h−2

∫

PK

(

vh − πhvh
)2
.

In conclusion, summing up over all elements K ∈ ΩT , applying the previous esti-
mate for any element cut by the interface K ∈ Ch and exploiting the equivalence
between multi-penalty and the local projection we conclude that,

‖∇vh‖
2
ΩT

. ‖∇vh‖
2
Ω +

k
∑

i=1

∑

E∈EB

∫

E
[[∂i

nvh]]
2,

which generalizes (34) to high order Lagrangian finite elements.
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3.3 The Unfitted Nitsche Method for Large Contrast Problems

We now place ourselves in the setting of Section 2, considering two non-overlapping
subdomains, Ωi, i = 1, 2, with interface Γ := Ω1 ∩ Ω2. This time, however, the
mesh will not be fitted to the interface. For simplicity we assume that Γ is a
plane separating the two domains. The problem that we will study is (25), but
this time we let β = 0. We recall the equations here for convenience























∇ ·
(

− ǫi∇ui
)

= fi, in Ωi,

ui = 0, on ∂Ω ∩ ∂Ωi,

[[u]] = 0, on Γ,

[[−ǫ∇u · n]] = 0, on Γ.

(39)

We let Thi denote a triangulation fitted to ∂Ωi \ Γ, but not to Γ. Let Th1 and
Th2 match across the interface so that Th1 ∪Th2 is a conforming triangulation of
Ω. Let

Vh,i := {vh ∈ C0(ΩThi
) : vh|K ∈ P1(K), for all K ∈ Thi; vh|∂Ω = 0},

with P1(K) denoting the set of polynomials of degree less than or equal to 1 on
K. We denote by Th := Th1 ∪ Th2 the triangulation of the physical domain and
by V Ω

h the corresponding piecewise affine finite element space. Here we have for
simplicity included the boundary conditions in the approximation space.

We may then write the following formulation, similar to that of Section 2.
Find [uh,1, uh,2] ∈ Vh := Vh,1 × Vh,2, such that

ah(uh, vh) = Fh(vh), ∀vh ∈ Vh (40)

where now

ah(uh, vh) :=
∑

i=1,2

(ǫi∇uh,i,∇vh,i)Ωi
+ γξ(ǫ)h−1 ([[uh]], [[vh]])Γ

− ({ǫ∇uh · n}w, [[vh]])Γ − ({ǫ∇vh · n}w, [[uh]])Γ , (41)

Fh(vh) := F (vh) = (f, vh)Ω .

The main advantage of method (40) consists in the fact that it restores the
optimal convergence rate that is lost for the approximation of problem (39)
with standard Lagrangian finite elements when the mesh does not fit with the
interface. Indeed, for the test case already addressed for Table 2, we observe the

convergence rates reported in Table 3, where ‖v‖21,h,Ω :=
∑

i=1,2 ‖ǫ
1/2
i ∇v‖20,Ω +

‖{ǫ}
1/2
w [[v]]‖21

2
,h,Γ

being ‖v‖± 1

2
,h,Γ := h∓1/2‖v‖0,Γ as for Nitsche’s fictitious domain

method.
However, this method has two major drawbacks that will be discussed thor-

oughly. Firstly, the corresponding matrix may become ill conditioned in case
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‖u− uh‖0,Ω ‖u− uh‖1,h,Ω
h ǫ1 = ǫ2 = 1 ǫ1 = 1, ǫ2 = 10−2 ǫ1 = ǫ2 = 1 ǫ1 = 1, ǫ2 = 10−2

5.00× 10−2 2.24× 10−4 1.69× 10−2 1.48× 10−2 1.08× 10−1

2.50× 10−2 5.65× 10−5 4.20× 10−3 7.30× 10−3 5.41× 10−2

1.25× 10−2 1.41× 10−5 1.00× 10−3 3.60× 10−3 2.70× 10−2

6.25× 10−3 3.55× 10−6 2.64× 10−4 1.80× 10−3 1.35× 10−2

3.12× 10−3 8.90× 10−7 6.62× 10−5 9.02× 10−4 6.70× 10−3

p 1.99 1.99 1.00 1.00

Table 3: Convergence rate of (40) with linear finite elements for the test case
already considered for Table 2.

|K∩Ωi| is small for all the triangles in the support of a basis function. Secondly,
the scheme cannot be simultaneously robust with respect to small cut elements
and large contrast problems. A partial remedy exploiting the arbitrary choice of
the averaging weights wi will be proposed below, but a robust stability estimate
can be only achieved with the help of a stabilisation term.

3.3.1 Stability Analysis of the Discrete Space with Cut Elements

The objective of this section is to reformulate the definition of Vh = Vh,1 × Vh,2

as an approximation space of functions with support on the physical domain Ω.
As discussed in [43, 48], this allows us to exhibit and analyse the instabilities
arising from the presence of small cut elements.

We consider the alternative representation of Vh proposed in [43], which
exploits a hierarchical representation in terms of a standard Lagrangian finite
element space, enriched with additional basis functions over cut elements. We
start by defining the following restriction operator :

Ri : L2(Ω) → L2(Ω), Riv :=

{

v|Ωi in Ωi,
0 in Ω \ Ωi.

Mimicking the Nitsche’s fictitious domain method, we denote by Ch := {K ∈
Th : |K ∩Γ|Rd−1 > 0} the crust of elements with non vanishing intersection with
the interface. Let I be the set of indexes numbering the nodes associated to V Ω

h

and let {xk}k∈I be the corresponding set of points on Ω. We define collections
of nodes neighbouring the interface and we apply them to construct enrichment
spaces,

IΓ
i := {k ∈ I : xk ∈ Ωj , supp(φk) ∩ Ch 6= ∅}, ∀i, j = 1, 2, j 6= i

V Γ
h,i := span{Riφk : k ∈ IΓ

i },

where φk denotes the hat basis function associated to the node xk. Owing to
Theorem 2 in [43], the following direct decomposition holds:

Vh = V Ω
h ⊕ V Γ

h,1 ⊕ V Γ
h,2,
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i.e. any function v ∈ Vh can be uniquely decomposed as v = vΩ + vΓ1 + vΓ2 with
vΩ ∈ V Ω

h , vΓi ∈ V Γ
h,i. We notice that the spaces V Γ

h,1, V
Γ
h,2 are L2-orthogonal on

Ω, because their basis functions have disjoint supports.
Owing to this decomposition, finite element matrices in Vh feature the fol-

lowing block structure that can be exploited in their analysis. Let us denote
with M ∈ R

Nh×Nh and L ∈ R
Nh×Nh the standard mass and stiffness matrices in

the finite element space Vh,

v′Mw = (v, w)0,Ω, v′Lw = (∇v,∇w)0,∪Ωi , ∀v, w ∈ Vh

which can be rearranged as follows

M =





MΩ MΩΓ
1 MΩΓ

2

(MΩΓ
1 )′ MΓ

1 0
(MΩΓ

2 )′ 0 MΓ
2



 L =





LΩ LΩΓ
1 LΩΓ

2

(LΩΓ
1 )′ LΓ

1 0
(LΩΓ

2 )′ 0 LΓ
2



 .

To quantify how the presence of small cut elements affects the spectrum
of finite element mass and stiffness matrices, we introduce the following mesh
dependent indicators. Let xk ∈ IΓ

i be any vertex associated to the enrichment
spaces V Γ

h,i, let φk be the corresponding basis function and Pk be its patch. The
indicators that affect the conditioning of a finite element method with respect
to small sub-elements can be defined as

νi := min
k∈IΓ

i

|Pk ∩ Ωi|

|Pk|
, νi := max

k∈IΓ
i

|Pk ∩ Ωi|

|Pk|
,

ν := min
i

min
k∈IΓ

i

|Pk ∩ Ωi|

|Pk|
.

Furthermore, we assume that for any index k, the corresponding patch satisfies
Pk ∩

(

Ω \ΩΓ

)

6= ∅, i.e. there exists at least one element in the patch that is not
cut by the interface.

Under the previous assumption on the mesh and owing to Lemma 2 of [43]
the following strengthened Cauchy-Schwarz inequality hold true for any vΩ ∈
V Ω
h , vΓ ∈ V Γ

h,1 ⊕ V Γ
h,2. There exist constants 0 < c0cs, c

1
cs < 1 such that

(vΩ, vΓ)Ω ≤ c0cs‖v
Ω‖0,Ω‖v

Γ‖0,Ω,

(∇vΩ,∇vΓ)∪Ωi ≤ c1cs‖∇vΩ‖0,∪Ωi‖∇vΓ‖0,∪Ωi .

Then, exploiting the decomposition v = vΩ+ vΓ1 + vΓ2 together with Pythagoras’
theorem, straightforward computations show that

(1− c0cs)(‖v
Ω‖20,Ω + ‖vΓ1 ‖

2
0,Ω1

+ ‖vΓ2 ‖
2
0,Ω2

)

≤ ‖v‖20,Ω ≤ 2(‖vΩ‖20,Ω + ‖vΓ1 ‖
2
0,Ω1

+ ‖vΓ2 ‖
2
0,Ω2

),
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(1− c1cs)(‖∇vΩ‖20,Ω + ‖∇vΓ1 ‖
2
0,Ω1

+ ‖∇vΓ2 ‖
2
0,Ω2

)

≤ ‖∇v‖20,∪Ωi
≤ 2(‖∇vΩ‖20,Ω + ‖∇vΓ1 ‖

2
0,Ω1

+ ‖∇vΓ2 ‖
2
0,Ω2

).

The previous inequalities directly imply that the mass and stiffness matrices are
spectrally equivalent to their block diagonals,

v′Mv ≃ (vΩ)′MΩvΩ + (vΓ
1 )

′MΓ
1 v

Γ
1 + (vΓ

2 )
′MΓ

2 v
Γ
2 , (42)

v′Lv ≃ (vΩ)′LΩvΩ + (vΓ
1 )

′LΓ
1v

Γ
1 + (vΓ

2 )
′LΓ

2v
Γ
2 . (43)

Since the spectral properties of MΩ and LΩ are well known, we focus on the
analysis of MΓ

i , L
Γ
i . As shown in [43], Lemma 3, for any vΓi ∈ V Γ

h,i there exist

positive constants cΩ0 , c
Ω
0 , independent on how the interface Γ cuts the mesh Th,

such that

cΩ0
∑

k∈IΓ
i

(

βi
k

)2
‖Riφk‖

2
0,Ωi

≤ ‖vΓi ‖
2
0,Ωi

≤ cΩ0
∑

k∈IΓ
i

(

βi
k

)2
‖Riφk‖

2
0,Ωi

. (44)

The extension of this analysis to the H1-norm holds true due to the fact that
gradients of the local basis functions on V Γ

h,i are linearly independent functions.

Indeed, for any vΓi ∈ V Γ
h,i there exist positive constants cΩ1 , c

Ω
1 , independent on

how the interface Γ cuts the mesh Th, such that

cΩ1
∑

k∈IΓ
i

(

βi
k

)2
‖Ri∇φk‖

2
0,Ωi

≤ ‖∇vΓi ‖
2
0,Ωi

≤ cΩ1
∑

k∈IΓ
i

(

βi
k

)2
‖Ri∇φk‖

2
0,Ωi

. (45)

Let v denote the vector of degrees of freedom that identify a generic function
v ∈ Vh and let ‖v‖ be its Euclidean norm. Let vΓ

i and vΩ be the vectors relative
to vΓi ∈ V Γ

h,i and vΩ ∈ V Ω
h , respectively. For any vΓi ∈ V Γ

h,i there exist positive

constants cΓ0 , c
Γ
0 , independent on ν, h, such that

cΓ0h
dν

2/d+1
i ‖vΓ

i ‖
2 ≤ ‖vΓi ‖

2
0,Ωi

≤ cΓ0h
dν

2/d+1
i ‖vΓ

i ‖
2, (46)

and there exists vΓi ∈ V Γ
h,i such that

‖vΓi ‖
2
0,Ωi

≤ cΓ0h
dν

2/d+1
i ‖vΓ

i ‖
2. (47)

To prove (46) we have to estimate the smallest ‖Riφk‖
2
0,Ωi

. We split the inte-
grals over the elements that belong to the patch of Riφk and we apply a suitable
quadrature formula. We notice that the measure of the support where the in-
tegrals are evaluated is proportional to hdνi while the pointwise evaluations of

the function to be integrated can be at most equivalent to (ν
1/d
i )2. The up-

per bound is obtained replacing the smallest ‖Riφk‖
2
0,Ωi

with the largest. By

the same argument, (47) holds true if we select vΓi := Riφk corresponding to
mink∈IΓ

i
‖Riφk‖

2
0,Ω.
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By means of the same reasoning applied to (45), a similar result can be shown
for gradients of discrete functions, with a different scaling with respect to ν, be-
cause Ri∇φk are constant functions proportional to h

−1 and thus ‖Ri∇φk‖
2
0,Ki

≃

hd−2νKi . As a result of that, there exist cΓ1 , c
Γ
1 > 0, independent on ν, h such

that
cΓ1h

d−2νi‖v
Γ
i ‖

2 ≤ ‖∇vΓi ‖
2
0,Ω ≤ cΓ1h

d−2νi‖v
Γ
i ‖

2. (48)

Furthermore, for the same vΓi ∈ V Γ
h,i of (47) we have

‖∇vΓ‖20,Ω ≤ cΓ1h
d−2νi‖v

Γ‖2. (49)

Inequalities (47) and (49) show that minimal eigenvalues of MΓ
i LΓ

i become
arbitrarily small in presence of small element cuts. This clearly influences the
conditioning of the finite element scheme, which will be affected by a factor
ν−1. However, the present analysis immediately points out a cure for this draw-
back. Indeed, combining (42) and (43) with (47) and (49) we conclude that the
mass and stiffness matrices of the enriched finite element space Vh are spectrally
equivalent to

M ≃





MΩ 0 0
0 diag(MΓ

1 ) 0
0 0 diag(MΓ

2 )



 L ≃





LΩ 0 0
0 diag(LΓ

1 ) 0
0 0 diag(LΓ

2 )



 .

where, given a real square matrix B, we denote with diag(B) its diagonal. This
shows that solving a finite element scheme in the enriched space Vh is compu-
tationally equivalent to solving it in the standard space V Ω

h , because the only
genuinely stiff block is LΩ. Another way to formulate this conclusion is based
on the optimal condition number of the problem, see [46]. More precisely, given
A ∈ R

N×N the optimal condition number is

Kopt(A) := min
D∈RN×N

K2(DAD)

and the previous analysis shows that Kopt(αMM+αLL) = Kopt(αMMΩ+αLL
Ω)

for any positive constants αM , αL.

3.3.2 Stability Issues for the Unfitted Nitsche Method

An important question concerning the stability of the scheme is how to choose
the averages in the interface terms. In [29], Hansbo and Hansbo proposed a
method for which they could prove stability and optimal convergence. In their
analysis they chose mesh dependent weights,

wi|K =
|K ∩ Ωi|

|K|
, and ξ(ǫ) = max{ǫ1, ǫ2}.

As a result of that, integrals of the normal derivative on the interface on elements
with a very small fraction intersecting one of the physical domains will get a
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small weight, which will balance the factor of order |K| appearing after taking
the trace inequality. In Section 2 we showed that

w1 =
ǫ2

ǫ1 + ǫ2
, w2 =

ǫ1
ǫ1 + ǫ2

and ξ(ǫ) = {ǫ}w =
2ǫ1ǫ2
ǫ1 + ǫ2

. (50)

leads to robustness with respect to the jump in the diffusivities.
This poses a situation in which the unfitted character of the method requires

a certain set of weights, and the large contrast character requires another set.
For instance, these contradictory requirements clearly appear in the following
estimate,

∫

∂K∩Γ
{ǫ}w(∇vh,i)

2 . h−1wi

(

1 +
(ǫjwj)|K
(ǫiwi)|K

) |K|

|K ∩ Ωi|
‖ǫ

1

2

i ∇vh,i‖
2
0,K∩Ωi

,

which is needed to quantify an upper bound for the spectrum of the discrete
problem. Indeed, the constant

(

1 +
(ǫjwj)|K
(ǫiwi)|K

) |K|

|K ∩ Ωi|
,

may become arbitrarily large for some configuration of the interface or highly
heterogeneous weights. A partial remedy consists selecting the weights wi to
minimise the dominating effect. If the worse case comes from the way the inter-
face is cut, then we define

wi =
|K ∩ Ωi|

|K|
satisfying w1 + w2 = 1,

otherwise, when the heterogeneity of coefficients is dominating, we choose

wi =
ǫj

ǫi + ǫj
such that

(

1 +
(ǫjwj)|K
(ǫiwi)|K

)

= 2.

Nevertheless, this technique does not work in situations where both diffi-
culties arise simultaneously. To handle both effects at the same time, we may
draw from the fictitious domain formulation proposed in the previous section.
The introduction of a ghost penalty term on the interface elements both in Th1
and Th2 gives the same extended coercivity as in the fictitious domain case and
we are then allowed to choose the weights so as to control the large contrast in
diffusivity.

3.3.3 The Stabilized Unfitted Nitsche Method

The stabilised method that we propose takes the form: find [uh,1, uh,2] ∈ Vh :=
Vh,1 × Vh,2, such that

ah(uh, vh) + gh(uh, vh) = Fh(vh), ∀vh ∈ Vh, (51)
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where the weights have been chosen as in (50) and

gh(uh, vh) :=

2
∑

i=1

∑

E∈EBi

(γgǫihE [[∇uh,i · nE ]], [[∇vh,i · nE ]])E ,

with

EBi := {E = K ∩K ′ : K ∈ Thi,K
′ ∈ Thi where either K ∩Γ 6= ∅ or K ′ ∩Γ 6= ∅}.

For the analysis of Nitsche’s method for unfitted interfaces, we introduce the
norms

‖vh‖
2
1,h,ΩT

:=
2

∑

i=1

∑

K∈Thi

‖ǫ
1

2

i ∇vh,i‖
2
0,K + ‖{ǫ}

1

2
w[[vh,i]]‖

2
1

2
,h,Γ

and

|||vh|||
2
1,h,Ω :=

2
∑

i=1

‖ǫ
1

2

i ∇vh,i‖
2
0,Ω + ‖{ǫ}

1

2
w{∇vh · n}‖

2
− 1

2
,h,Γ

+ ‖{ǫ}
1

2
w[[vh]]‖+ 1

2
,h,Γ.

To obtain a robust stability estimate, we use the extended coercivity ob-
tained thanks to the ghost penalty term combined with the inverse inequality to
conclude that,

|||vh|||
2
1,h,Ω . ‖vh‖

2
1,h,ΩT

. ah(vh, vh) + gh(vh, vh), ∀vh ∈ Vh. (52)

This is obtained in the same fashion as the analogous result for the fictitious do-
main method. The boundedness of the stabilised bilinear form is also guaranteed
by means of standard arguments, see [12],

ah(uh, vh) + gh(uh, vh) . |||uh|||1,h,Ω |||vh|||1,h,Ω

. ‖uh‖1,h,ΩT
‖vh‖1,h,ΩT

∀uh, vh ∈ Vh.

To proceed with the convergence analysis, we introduce extension operators
Ei : H

2(Ωi) 7→ H2(ΩT i) such that Eiv|Ωi = v|Ωi and ‖Eiv‖H2(ΩT i)
. ‖v‖H2(Ωi).

In a similar fashion as above, we define an interpolation operator ih : H2(Ω1)×
H2(Ω2) 7→ Vh by ihv := [IhE1v, IhE2v] where Ih is the standard nodal Lagrange
interpolator. It is straightforward to show that

|||v − ihv|||g := |||v − ihv|||1,h,Ω +
√

gh (Ev − ihv,Ev − ihv) . h‖v‖H2(Ω1∪Ω2).

For the convergence analysis we need the following continuity result, that is a
straightforward application of Cauchy-Schwarz inequalities and local trace in-
equalities. For all v ∈ H2(Ω) and wh ∈ Vh there holds

|ah(v − ihv, wh) + gh(v − ihv, wh)|

. |||v − ihv|||g
(

∑

i=1,2

∑

K∈Th,i
‖∇wh,i‖

2
K + ‖wh‖

2
1

2
,h,∂Ω

)1/2
.

Then, the optimal convergence estimate |||u − uh|||1,h,Ω . h‖u‖H2(Ω), is an im-
mediate consequence of (52).
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3.3.4 Bounded Condition Number

In this section we will show that the choice of weights (50) together with the use
of ghost penalty term leads to a method with a system matrix whose condition
number, after diagonal scaling with the diffusivity, has the same asymptotic
scaling as the standard Galerkin method for the Poisson problem with fitted
mesh and constant coefficients. This means that the conditioning is independent
both of the interface configuration and the jump of the diffusivities. To fix the
ideas let ε1 = 1 and 0 < ε2 < ε1. Other configurations can be obtained by
scaling.

Let {φk,i} denote the nodal basis of Vh,i with i = 1, 2. Consequently we may

write uh,i ∈ Vh,i in the form uh,i :=
∑Ni

k=1 Uk,iφk,i. The formulation (41) may
then be written as the linear system





ε1A11 + {ε}wA
Γ
11 {ε}wA

Γ
12

{ε}wA
Γ
21 ε2A22 + {ε}wA

Γ
22









U1

U2



 =





F1

F2



 , (53)

where for symmetry it holds that AΓ
12 =

(

AΓ
21

)T
and the vectors are defined by

Ui := {Uk,i}
Ni
k=1, and Fi := {Fh(φk,i)}

Ni
k=1

and the weight function {ε}w is given in (50). Examining formulation (40) we
see that the matrices are given by

Aii := {(εi∇φk,i,∇φl,i)Ωi
+ εigi(φk,i, φl,i)}

Ni
k,l=1, i = 1, 2

where gi(φk,i, φl,i) denotes a ghost penalty term on the subdomain Ωi,

AΓ
ii := {−

(

∇φk,i · n+ h−1γφk,i, φl,i

)

Γ
}Ni
k,l=1 i = 1, 2

which is independent of εi, and

AΓ
ij :=

{

1

2

(

∇φk,i · n+ h−1γφk,i, φl,j

)

Γ
+

1

2

(

∇φl,j · n+ h−1γφl,j , φk,i

)

Γ

}

,

with k = 1, . . . , Ni, l = 1, . . . , Nj and i, j = 1, 2, i 6= j. After diagonal symmetric
scaling, the system matrix takes the form

Ascal :=







A11 +
{ε}w
ε1

AΓ
11

{ε}w√
ε1ε2

AΓ
12

{ε}w√
ε1ε2

AΓ
21 A22 +

{ε}w
ε2

AΓ
22.






.

To study the behaviour of the unfitted Nitsche method in the case of highly
heterogeneous coefficients, we notice that the matrix Ascal converges to

lim
ε2→0

Ascal =





A11 0

0 A22 +AΓ
22.
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in the limit ε2 → 0.
Under the assumption that Γ is a planar interface we know that for each sub-

domain Ωi it holds ∂Ωi∩∂Ω 6= ∅. Furthermore, since the homogeneous Dirichlet
boundary conditions are strongly enforced in the finite element space, we con-
clude that the stiffness matrices Aii are symmetric positive definite. Owing to
an inverse inequality and with the stabilisation parameter γ large enough, this
conclusion holds true even though we extend it to Aii + AΓ

ii. This illustrates
that the stabilised Nitsche’s method with symmetric diagonal scaling becomes
robust with respect to the heterogeneity of coefficients provided that the aver-
aging weights are selected as in (50).

To quantify the robustness of the scheme with respect to the configuration
of the interface, we exploit the strengthened coercivity ensured by the ghost
penalty term. Under the aforementioned assumption on the stiffness matrices,
inverse and Poincaré inequalities imply that

2
∑

i=1

∑

K∈Thi

‖εivh,i‖
2
0,K . ‖vh‖

2
1,h,ΩTh

. ah(vh, vh) + gh(vh, vh)

. ‖vh‖
2
1,h,ΩTh

. h−2
2

∑

i=1

∑

K∈Thi

‖εivh,i‖
2
0,K , ∀vh ∈ Vh.

The matrix of system (53) is thus spectrally equivalent to a block diagonal matrix
that is uniformly independent of the configuration of the interface. Furthermore,
when diagonal scaling is applied to such matrix, the equivalent system becomes
independent of the heterogeneity for diffusion coefficients.

3.3.5 Asymptotic Convergence to the Fictitious Domain Method

The aim of this section is to show that unfitted Nitsche method for interface
problems coincides with the corresponding unfitted boundary method in the case
that the diffusion coefficient on one of the subdomains becomes arbitrarily large.

This property has two interesting consequences. On the one hand, it shows
that the choice of the balancing weights proposed for large contrast problems
is consistent with the unfitted boundary case. On the other hand, it allows to
exploit the unfitted interface formulation as a fictitious domain method, where
the choice of the computational domain ΩT is completely arbitrary with respect
to the physical domain Ω, provided that in the complementary domain ΩT \ Ω
a sufficiently large diffusivity is applied.

To fix the ideas, we assume that ε1 = 1 and study the case ε2 → ∞. Ac-
cordingly, we denote the fictitious domain bilinear forms (30) defined on Ω1 by
afd(·, ·), gfd(·, ·) and denote the domain decomposition bilinear forms (41) by
add(·, ·), gdd(·, ·). Let uh,fd denote the solution of (32) and uh,dd the solution of
(40) with ghost penalty stabilisation. We assume that the penalty parameters for
both formulations are set to the same values. We are interested in the behaviour
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of the discrete error between the two formulations in the limit as ε2 → ∞. We
therefore define eh := (uh,fd − uh,dd)|Ω1

. Using the coercivity of the formulation
(32) we have

‖eh‖
2
1,h,ΩTh1

≤ afd(eh, eh) + gdd(eh, eh).

Note that since eh|Th2
= 0, gfd(eh, eh) = gdd(eh, eh). By the definition of the

discrete problems we have

‖eh‖
2
1,h,ΩTh1

≤ Fh(eh)− afd(uh,dd, eh)− gdd(uh,dd, eh)

= add(uh,dd, eh)− afd(uh,dd, eh).

It is straightforward to show that

add(uh,dd, eh)− afd(uh,dd, eh) =

(

(1−
ε2

ε2 + 1
)∂nuh,dd|∂Ω1

, eh|∂Ω1

)

∂Ω1

+

(

(1−
ε2

ε2 + 1
)∂neh|∂Ω1

, uh,dd|∂Ω1

)

∂Ω1

−

(

(
ε2

ε2 + 1
)∂nuh,dd|∂Ω2

, eh|∂Ω1

)

∂Ω1

−

(

(
ε2

ε2 + 1
)∂neh|∂Ω1

, uh,dd|∂Ω2

)

∂Ω1

+

(

(1−
ε2

ε2 + 1
)γbch

−1uh,dd|∂Ω1
, eh|∂Ω1

)

∂Ω1

−

(

ε2
ε2 + 1

γh−1uh,dd|∂Ω2
, eh|∂Ω1

)

∂Ω1

.

By repeated application of the mesh weighted Cauchy-Schwarz inequality and
trace inequalities in the right hand side we arrive at the bound

|add(uh,dd, eh)− afd(uh,dd, eh)|

.

(

1−
ε2

ε2 + 1

)

(
∑

K∈Th1

(1 + h−1
K )‖∇uh,dd‖

2
K)

1

2 ‖eh‖1,h,ΩTh1

+
ε2

(ε2 + 1)
(
∑

K∈Th2

(1 + h−1
K )‖∇uh,dd‖

2
K)

1

2 ‖eh‖1,h,ΩTh1
.

Using the formulation (40), (41) with ghost penalty stabilisation, observing
that there exists a positive constant CF such that Fh(vh) ≤ CF ‖vh‖1,h,ΩT

and
exploiting the stability (52), we obtain the following estimates for uh,dd|Ω1

and
uh,dd|Ω2

,

√

∑

K∈Th1

‖∇uh,dd‖2K ≤ CF ,

√

∑

K∈Th2

‖ǫ
1

2

2∇uh,dd‖2K ≤ CF .
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We conclude that we have the bound

‖eh‖1,h,ΩTh1
≤

1

(ε2 + 1)
(1 + h−1)CF

and that lim
ε2→∞

‖eh‖1,h,ΩTh1
= 0. Hence, the unfitted Nitsche interface method

reduces to the fictitious domain method in the limit of infinite diffusivity.
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