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Abstract

We focus on a variational approach to image segmentation based on the
Ambrosio-Tortorelli functional. To make the procedure more effective with
respect to standard algorithms, we combine the functional minimization
with the the employment of an optimal discretization. More precisely, we
perform a finite element approximation of the Ambrosio-Tortorelli func-
tional on a triangular adapted mesh able to follow exactly the contours
present in the images, in the spirit of a mesh adaptation-aided image seg-
mentation. This challenging goal is reached via a rigorous a posteriori
error analysis enriched with anisotropic information. The benefits due to
the proposed algorithm are evident both in terms of increased resolution
in the edge detection and in a considerable reduction of the computational
costs, as confirmed by an extensive numerical investigation.

1 Introduction

Image segmentation is central to image processing. Many practical applications
require the identification of objects and boundaries (i.e., lines and curves, collec-
tively referred to as segments), for instance X-ray based inspection techniques,
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satellite imagery, medical diagnostics, texture and facial recognition, trajectory
planning [28, 17, 7, 38, 8]. Due to the importance of devising fast and reliable
algorithms to accomplish segmentation, a lot of research has been done in such
a direction, leading to solutions that tackle the problem from different perspec-
tives.

A first category comprises thresholding, clustering, edge-detection, and region-
growing methods, among the others [27, 33, 35, 39].

A second class is represented by partial differential equation (PDE)-based
approaches, such as the methods based on curve propagation (see, e.g., [11]).
Among these, we cite the widely employed level set method [37]. The central
idea here is to evolve a surface, φ, instead of a front, using a suitable signed
function. The front is then defined implicitly as the zero level set, φ = 0.

A third category is based on variational methods. The segmentation is here
performed by minimizing a suitable energy functional, consisting of a data fitting
contribution plus extra-regularization terms. One of the most known approaches
is the one proposed in [29], based on the functional

I(u,E) =

∫
Ω

(u− f)2 dΩ + β

∫
Ω\E
|∇u|2 dΩ + γH(E), (1)

where Ω ⊂ R2 represents the computational domain associated with the original
image f ∈ L∞(Ω) (the true gray-level image), E is a closed one-dimensional
(1D) subset of Ω of Hausdorff measure H(E), defining the separating edge,
u ∈ H1(Ω \ E) is the variational approximation to f , and β, γ are positive pa-
rameters to be tuned. The first term enforces that the approximation u be close
to the original image f in the L2-norm, while the second and third terms add
regularization by penalizing the gradient of u and the length of E, respectively.
In practice, this should ensure that the approximation u be quite flat in Ω \ E,
and that the edge set be as short as possible.
This mimimization problem, however, is very hard to be numerically tackled,
mainly because of the presence of the low dimensional feature E, involving an
unknown 1D entity embedded in a 2D framework.
In order to overcome this drawback, one can resort to the approximation intro-
duced in [2, 3] by L. Ambrosio and V.M. Tortorelli, relying on the families of
functionals {Iε}ε, depending on the positive parameter ε, defined by

Iε(u, v) =

∫
Ω

(u−f)2 dΩ+β

∫
Ω

(v2+η)|∇u|2 dΩ+γ

∫
Ω

(
ε|∇v|2 +

1

4ε
(v − 1)2

)
dΩ,

(2)
with η = O(ε2) a positive parameter. The new function v, taking values in
[0, 1], plays the role of an approximate indicator of the set E, whose “thickness”
has order ε. Moreover, both u and v are defined on the whole domain Ω, and
no topological optimization of the geometric entity E is involved. The term
v2 |∇u|2 forces v to get close to zero in the neighborhood of an edge, where a
sharp variation of the image occurs. On the other hand, the last integral forces v
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to be close to 1 almost everywhere. Overall, we expect that v be approximately
constant with value 1, except across the edge, where it undergoes a steep drop
to zero on a region on the order of ε. From a theoretical viewpoint, it can be
proved that the sequence of functionals {Iε}ε is Γ-convergent to the functional
in (1), for ε→ 0 [2, 3].

In this paper, we refer to a variational approach based on the functional in
(2). In particular, we take advantage of the expertise gained in the modeling
of crack propagation in brittle materials in [4, 5, 6]. Here, the crack evolution
is detected by minimizing functional Iε after neglecting the mismatch contribu-
tion, the two other terms representing the elastic and the fictitious crack energy,
respectively. The phase field v is employed in both the contexts to track a con-
tour (the crack rather than the image boundary), with the crucial difference
that crack propagation is framed in a (quasi-static) evolving setting while image
segmentation is a thoroughly stationary phenomenon. The original contribu-
tion in [4, 5, 6] has been to improve the efficiency of the minimization of the
energy functional via a finite element discretization properly enriched with an
anisotropic mesh adaptation procedure.

In the current work, this coupled minimization-mesh adaptation procedure
is properly modified for image segmentation. Despite finite differences represent
the most straightforward method to settle segmentation in a discrete context
due to the intrinsic pixel structure of images, few contributions dealing with a
finite element approximation can be found in the literature [9, 15, 20, 22, 41].
In particular, in [9] the author considers an algorithm that has some points in
common with the one here presented, especially as far as the minimization part is
concerned. Nevertheless, despite mentioning the possibility to implement some
adaptation techniques, no suggestion is provided as to do this in practice, and a
mesh coinciding with the pixel grid is used. This choice makes the computational
cost of the algorithm very expensive for even slightly complex images. For this
reason, we focus on mesh adaptation, as it both increases the resolution of
the edges and greatly reduces the computational cost, in the spirit of a mesh
adaptation-aided image segmentation. In the context of finite differences, in
[16], the authors consider generalized relaxation methods coupled with multigrid
linear solvers applied to the Euler-Lagrange equations of the Ambrosio-Tortorelli
model.

To the best of our knowledge, no other paper in the literature has addressed
anisotropic mesh adaptation in the context of image segmentation based on the
Ambrosio-Tortorelli variational framework.

The paper is organized as follows. In Section 2, we focus on the minimiza-
tion phase, tackled both in a continuous and in a discrete setting. Section 3
introduces the reference anisotropic framework, and provides the mathemati-
cal tool to drive the mesh adaptation procedure, i.e., an anisotropic a posteriori
bound to control the functional error. We set the combined optimize-then-adapt
algorithm in Section 4, after providing the practical rule to derive an optimal
anisotropic metric from the a posteriori estimator. In Section 5, we assess the
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proposed algorithm on synthetic as well as real images, by also verifying the
best performances of the anisotropic approach with respect to standard tech-
niques based on isotropic adapted and structured fixed meshes. Conclusions
and perspectives are drawn in the last section. Finally, the explicit proof of the
a posteriori analysis is provided in Appendix A for the sake of completeness.

2 The minimization process

The functional Iε is clearly not jointly convex because of the term v2 |∇u|2 so
that the existence of a unique minimum cannot be trivially guaranteed. On the
other hand, Iε is convex with respect to both u and v, separately, which suggests
proceeding with an alternating minimization, i.e., we fix alternately one of the
two unknown functions and solve the minimization problem with respect to the
other one. As a consequence, thanks to the Gâteaux differentiability of functional
Iε in H1(Ω)× (H1(Ω)∩L∞(Ω)), we compute the two partial derivatives at (u, v)
in the direction φ and ψ, respectively,

Iε,u(u, v;φ) = 2

∫
Ω

(u− f)φdΩ + 2β

∫
Ω

(v2 + η)∇u · ∇φdΩ := 2 a(v;u, φ),

Iε,v(u, v;ψ) = 2β

∫
Ω
|∇u|2 vψ dΩ +

γ

2ε

∫
Ω

(v − 1)ψ dΩ + 2γε

∫
Ω
∇v · ∇ψ dΩ

:= 2 b(u; v, ψ).
(3)

Thus, minimization is obtained by setting

I ′ε(u, v;φ, ψ) := 2 (a(v;u, φ)+b(u; v, ψ)) = 0 ∀(φ, ψ) ∈ H1(Ω)×(H1(Ω)∩L∞(Ω)).
(4)

Before setting the discrete couterpart, we highlight an important property of
v which supports the intepretation of such a function as a smoothed indicator
of the edges of f . Indeed, it holds:

Proposition 2.1 If (u, v) ∈ H1(Ω) × (H1(Ω) ∩ L∞(Ω)) is a critical point of
Iε(·, ·), then 0 ≤ v ≤ 1 a.e. in Ω.

For a proof of this result, we can adopt the same arguments as in [4, Proposition
2.3] and in [10, Proposition 1.3].

Remark 2.1 An alternative proof of Proposition 2.1 can be obtained. Assume
by contradiction the existence of a set, Ω1 ⊂ Ω, with positive measure, where
v > 1, so that v = 1 + k in Ω1, with k a positive function. It is readily checked
that

v̂ =

{
v in Ω \ Ω1

1− k in Ω1

still belongs to H1(Ω) ∩ L∞(Ω). On comparing Iε(u, v̂) with Iε(u, v), it holds
that Iε(u, v̂) < Iε(u, v), since v̂2 < v2, all the other terms being unchanged,
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which contradicts that (u, v) is a critical point of Iε(·, ·). A similar argument can
be employed to show that v ≥ 0.

We now move to the discrete setting, by introducing a family {Th}h>0 of
triangular conformal meshes of the domain Ω [13]. We associate with Th the
space

Vh = {v ∈ C0(Ω) : v|K ∈ P1, ∀K ∈ Th}, (5)

of continuous piecewise linear finite elements.
We denote by Iε,h(·, ·) the discrete counterpart of Iε(·, ·), given by

Iε,h(uh, vh) =

∫
Ω

(uh − f)2 dΩ + β

∫
Ω

(Ph(v2
h) + η)|∇uh|2 dΩ

+ γ

∫
Ω

(
ε|∇vh|2 +

1

4ε
Ph((vh − 1)2)

)
dΩ,

(6)

for any (uh, vh) ∈ V 2
h , where Ph : C0(Ω) → Vh is the Lagrangian interpolant

onto the space Vh [13]. Operator Ph is here introduced to guarantee the discrete
analogue of the maximum principle in Proposition 2.1.

With a view to the minimization of Iε,h(uh, vh), we are led to define the
derivatives

Iε,h,u(uh, vh) = 2

∫
Ω

(uh − f)φh dΩ + 2β

∫
Ω

(Ph(v2
h) + η)∇uh · ∇φh dΩ

=: 2 ah(vh;uh, φh)

Iε,h,v(uh, vh) = 2β

∫
Ω
|∇uh|2Ph(vhψh) dΩ +

γ

2ε

∫
Ω
Ph((vh − 1)ψh) dΩ

+ 2γε

∫
Ω
∇vh · ∇ψh dΩ =: 2 bh(uh; vh, ψh),

(7)

for any (φh, ψh) ∈ V 2
h . Analogously to [4, Proposition 2.5], the following state-

ment can be proved.

Proposition 2.2 If (uh, vh) ∈ V 2
h is a critical point of Iε,h(·, ·), i.e., for any

(φh, ψh) ∈ V 2
h , ah(vh;uh, φh) + bh(uh; vh, ψh) = 0, then 0 ≤ vh ≤ 1 in Ω.

3 Anisotropic error estimator

This section is devoted to introducing the mathematical tool adopted to drive
a sharp segmentation procedure of the true image. For this purpose, we first
lay the anisotropic background according to [18, 31]. In particular, we exploit
the spectral properties of the affine map, TK : K̂ → K, from the equilateral
reference triangle, K̂, inscribed in the unit circle, to the generic element, K, of
Th, defined by

TK(x̂) = MK x̂ + tK , (8)

with MK ∈ R2×2, tK ∈ R2, x = (x1, x2)T ∈ K, x̂ ∈ K̂.
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With this aim, we first decompose MK as MK = BKZK with BK , ZK ∈
R2×2, a symmetric positive-definite and an orthogonal matrix, respectively. The
two matrices, providing the so-called polar decomposition, deform and rotate
K̂ into K and the circle into an ellipse, EK , circumscribed to K. Matrix BK
is further decomposed as BK = RTKΛKRK , with RTK = [r1,K , r2,K ] and ΛK =
diag(λ1,K , λ2,K), where RK ∈ R2×2 is the eigenvector matrix, and ΛK ∈ R2×2

collects the eigenvalues of BK , with λ1,K ≥ λ2,K . The geometric interpretation
of these quantities identifies the eigenvectors ri,K with the direction of the two
semi-axes of EK , while the eigenvalues λi,K meausure the corresponding length.
The deformation of K is quantified by the aspect ratio, sK = λ1,K/λ2,K ≥ 1.

Next ingredient of the anisotropic setting is represented by suitable anisotropic
estimates for the interpolation error associated with the quasi-interpolant Clément
operator, Qh : L2(Ω)→ Vh [14], referring to [23, 24, 30] for all the details.

Lemma 3.1 Let w ∈ H1(Ω). If the cardinality #∆K < N , for some N ∈ N+,
and if diam(T−1

K (∆K)) < C∆ ' O(1), where ∆K = {T ∈ Th : T ∩ K 6= ∅},
then there exist constants Cs = Cs(N , C∆), with s = 0, 1, 2, such that, for any
K ∈ Th, we have

||w −Qh(w)||Hr(K) < Cr

(
1

λ2,K

)r [ 2∑
i=1

λ2
i,K(rTi,KG∆K

(w)ri,K)

]1/2

, (9)

with r = 0, 1, and

||w−Qh(w)||L2(∂K) < C2

(
hK

λ1,Kλ2,K

)1/2
[

2∑
i=1

λ2
i,K(rTi,KG∆K

(w)ri,K)

]1/2

, (10)

where hK = diam(K) and

G∆K
(w) =

∑
T∈∆K


∫
T

(
∂w

∂x1

)2

dT

∫
T

∂w

∂x1

∂w

∂x2
dT∫

T

∂w

∂x1

∂w

∂x2
dT

∫
T

(
∂w

∂x2

)2

dT

 (11)

is a positive semidefinite matrix.

Finally, we recall an equivalence result between the H1(∆K)-seminorm and
its anisotropic analogue.

Lemma 3.2 Let w ∈ H1(Ω) and β1, β2 > 0. Then it holds that, for any K ∈ Th,

min{β1, β2} ≤
β1(rT1,KG∆K

(w)r1,K) + β2(rT2,KG∆K
(w)r2,K)

|w|2
H1(∆K)

≤ max{β1, β2}.

(12)
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We are now ready to furnish the main theoretical statement of this work,
supporting the a posteriori error estimator which will drive mesh adaptation.

Proposition 3.1 Let (uh, vh) ∈ V 2
h be a critical point of Iε,h(·, ·). Then, it holds

|I ′ε(uh, vh;φ, ψ)| ≤ C
∑
K∈Th

{
ρAK(uh, vh)ωK(φ)+ρBK(uh, vh)ωK(ψ)

}
∀φ, ψ ∈ H1(Ω),

(13)
where I ′ε(·, ·; ·, ·) is defined as in (4), C = C(N , C∆), while

ρAK(uh, vh) = ‖uh − f‖L2(K) + 2β ‖vh(∇vh · ∇uh)‖L2(K) +
β

2
‖[[∇uh]]‖L∞(∂K)×

‖v2
h + η‖L2(∂K)

(
hK

λ1,Kλ2,K

) 1
2

+
1

λ2,K
‖v2
h − Ph(v2

h)‖L∞(K) ‖∇uh‖L2(K),

(14)

ρBK(uh, vh) =

∥∥∥∥(β|∇uh|2 +
γ

4ε
)vh −

γ

4ε

∥∥∥∥
L2(K)

+
γε

2
‖[[∇vh]]‖L2(∂K)

(
hK

λ1,Kλ2,K

)1/2

+
h2
K

λ2,K

∥∥∥∥β|∇uh|2 +
γ

4ε

∥∥∥∥
L2(K)

|vh|W 1,∞(K),

(15)

ωK(z) =
[ 2∑
i=1

λ2
i,K(rTi,KG∆K

(z)ri,K)
]1/2

∀z ∈ H1(Ω), (16)

where

[[wh]] =

{ ∣∣[∇wh · n]
∣∣ on Eh∣∣∇wh · n∣∣ on Eh ∩ ∂Ω

(17)

denotes the absolute value of the jump of the normal derivative, with n the unit
normal vector to the generic edge in the skeleton Eh of Th.

The proof of this proposition is a straightforward variant of [4, Proposition 3.3].
For the sake of completeness, it is provided in Appendix A.

Estimate (13) holds for any choice of test functions (φ, ψ) ∈ H1(Ω)×(H1(Ω)∩
L∞(Ω)). Following [4, Corollary 3.4], picking φ = u−uh and ψ = v−vh provides
the term I ′ε(uh, vh;φ, ψ) with a physical meaning, i.e., proportional to the energy
error, Iε(u, v)− Iε(uh, vh), up to a third-order remainder term.

Finally, to commute estimate (13) into an effective error estimator, we still
need to replace the weights ωK(u− uh) and ωK(v − vh) with computable quan-
tities, i.e.,

ωRK(z) =
[ 2∑
i=1

λ2
i,K(rTi,KG

R
∆K

(z)ri,K)
]1/2

with z = u− uh, v − vh, (18)
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where the recovered matrix GR∆K
(z) is defined by

[
GR∆K

(z)
]
ij

=
∑
T∈∆K

∫
T

(
Ri(zh)−∂zh

∂xi

)(
Rj(zh)−∂zh

∂xj

)
dT, with i, j = 1, 2,

with [R1(zh),R2(zh)]T the Zienkiewicz–Zhu recovered gradient of zh [42, 43]. In
particular, we employ the area-weighted recipe in [36], following [4, 5, 6, 21, 32].

Thus, the actual anisotropic error estimator is provided by ζ =
∑

K∈Th ζK ,
where

ζK = ρAK(uh, vh)ωRK(u− uh) + ρBK(uh, vh)ωRK(v − vh) (19)

defines the local contribution.

4 An adaptive algorithm for segmentation

Goal of this section is to build an efficient technique for image segmentation
by exploiting the strength of mesh adaptation in an anisotropic setting. Such
an approach is expected to be computationally advantageous compared to one
using a fixed or an isotropically adapted mesh. For this purpose, we exploit the
metric-based procedure proposed in [4], according to which the optimal metric
induced by the estimator η is provided by the following

Proposition 4.1 Let TOL be a tolerance demanded by the user on ζ. Then,
the optimal elementwise metric λ̃−2

1,K r̃1,K r̃T1,K + λ̃−2
2,K r̃2,K r̃T2,K equidistributing the

error and guaranteeing a minimum number of elements, is provided by

λ̃1,K =

(
1

|K̂|
√

2

(
g1,K

g2
2,K

)1/2
TOL

#Th

)1/3

, λ̃2,K =

(
1

|K̂|
√

2

(
g2,K

g2
1,K

)1/2
TOL

#Th

)1/3

,

r̃1,K = γ2,K , r̃2,K = γ1,K ,
(20)

where {γi,K , gi,K}, for i = 1, 2, are the eigenvector-eigenvalue pairs of matrix

ΓK =
[
ρAK(uh, vh)

]2
GR

∆K
(uh) +

[
ρBK(vh, uh)

]2
GR

∆K
(vh)

with g1,K ≥ g2,K > 0,

ρmK(uh, vh) =
ρmK(uh, vh)(

|K̂|λ1,Kλ2,K

)1/2
denotes the scaled residuals, with m = A,B, and where

GR
∆K

(zh) = GR
∆K

(zh)/(|K̂|λ1,Kλ2,K)

is the scaled recovered matrix, for zh = uh, vh.
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Quantities in (20) are computed iteratively, starting from a uniform initial
mesh. At each iteration, a new mesh is built in order to match the optimal
metric in a predictive way. This means that all the quantities on the right-hand
side in (20) are computed on the current mesh, while on the left-hand side we
have the predicted values. For all the details, we refer to [4].

The mesh adaptation is now combined with the alternate minimization of
functional Iε,h(uh, vh) by Algorithm 1. In particular, we pursue the optimize-
then-adapt algorithm in [4], where the minimimazion and the adaptation are
loosely coupled to contain the overall computational cost.

Algorithm 1 MAIStER: Mesh Adaptation for Image Segmentation and Edge
Recovery

1: Input: f , ε, η, β, γ, TOL, TOLs, TOLfp, Ns, Nfp, TOLth;
2: Output: uh, vh, v

th
h , T ∗h ;

3: Set ERRs = 1+TOLs, i=0;
4: while ERRs > TOLs & i < Ns do
5: Set ERRfp = 1+TOLfp, j=0, if i=0 set v

(0)
h = 1;

6: while ERRfp > TOLfp & j < Nfp do

7: u
(j)
h = arg min

zh∈Vh
Iε, h(zh, v

(j)
h );

8: v
(j+1)
h = arg min

zh∈Vh
Iε, h(u

(j)
h , zh);

9: ERRfp = ‖v(j+1)
h − v(j)

h ‖L∞(Ω) ;
10: j ← j + 1;
11: end while
12: Build the adapted mesh T (i+1)

h matching the metric based on u
(j−1)
h and

v
(j)
h ;

13: ERRs = |#T (i+1)
h −#T (i)

h |/#T
(i)
h ;

14: Set v
(0)
h = Πi→i+1(v

(j)
h );

15: i ← i + 1;
16: end while
17: Set uh = Πi→i+1(u

(j−1)
h ), vh = v

(0)
h , vth

h = (vh < TOLth), T ∗h = T (i+1)
h ;

Among the inputs, we provide original image, f , the parameters characteriz-
ing functional Iε(·, ·), together with the numerical ones driving the accuracy and
the termination of both the while loops. In more detail, tolerances TOLs and
TOLfp fix the accuracy on the mesh adaptation and on the alternate fixed-point
procedure, while Ns and Nfp determine the corresponding maximum number of
iterations. The value TOLth sets the threshold for extracting the edge set from
the indicator function. The convergence of the mesh adaptivity is checked by
monitoring the variation of the number of elements. An understood input quan-

tity is the initial mesh, T (0)
h , coinciding with the structured mesh attached to the

pixels of the true image f . The output quantities are the approximate image,
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uh, the approximate indicator, vh, the thresholded approximate indicator, vth
h ,

and the final adapted mesh, T ∗h .
Operator Πn→n+1 is employed to interpolate a finite element function asso-

ciated with mesh T (n)
h onto the new mesh T (n+1)

h .
The minimizations in lines 7.-8. involve two convex quadratic functionals

and are tackled by standard direct or iterative algebraic solvers.
Algorithm 1 has been implemented in FreeFem++ [26], while mesh adaptation

is realized through the built-in function adaptmesh fed by the optimal metric in
(20).

5 Results

In this section, we apply Algorithm 1 to two types of images, starting from
synthetic tests, where the edges are clearly detectable, and then moving on to
real images, representing more challenging configurations.

5.1 Synthetic images

The focus of this section is to investigate the sensitivity of the Ambrosio-Tortorelli
functional to the most relevant model parameters. For this purpose, we resort to
three synthetic images to check the effect of changing one parameter at a time.

ε maxK sK # vertices # elements

1 38.71 2654 5236

5 · 10−1 34.43 4455 8834

10−1 140.91 11426 22752

5 · 10−2 381.39 16472 32855

Table 1: The Tintin test case: sensitivity to ε.

5.1.1 Sensitivity to ε

The first test case deals with a famous French cartoon (see Figure 1 (a)). Algo-
rithm 1 is run with the data, ε = 5 · 10−2, η = 10−4, β = 10−2, γ = 4, TOL =
50, TOLs = 10−2, TOLfp = 5 · 10−3, Ns = 10, Nfp = 30, TOLth = 10−1. After
7 iterations, the adaptive procedure stops. Figure 1 (b)-(d) collects some asso-
ciated information. A cross comparison between the true image, consisting of
128 × 128 pixels, and the approximate image shows a very good match. Small
detais, such as the sideburns and the dimple on the chin, are correctly detected.
The final adapted mesh consists of 16472 nodes and 32855 elements and is char-
acterized by a maximum aspect ratio of 381.39. Notice that, with fewer vertices,
the approximate image is as sharp as the original one. The double edge contour
of vh is due to the capability of the error estimator to detect the gradient of
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(a) true image (b) approximate image uh

(c) anisotropic adapted mesh (d) approximate indicator vh

Figure 1: The Tintin test case.

the grayscale (for instance, the gray-black and black-white transition across the
ear).

We now investigate the role played by ε, the other parameters being held
fixed. In particular, we consider for ε the additional values 1, 5 · 10−1, and 10−1.
Table 1 collects the associated maximum aspect ratio, number of vertices and
elements, provided after 6 iterations of Algorithm 1 required to converge.

As expected, the number of vertices and elements increases as ε decreases,
while the anisotropic shape of the triangles becomes more and more stretched.
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(a) ε = 1: indicator vh (b) ε = 1: adapted mesh

(c) ε = 5 · 10−1: indicator vh (d) ε = 5 · 10−1: adapted
mesh

(e) ε = 10−1: indicator vh (f) ε = 10−1: adapted mesh

(g) ε = 5 ·10−2: indicator vh (h) ε = 5 · 10−2: adapted
mesh

Figure 2: The Tintin test case: sensitivity to ε.
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β maxK sK # vertices # elements

1.5 97.78 19560 39077

1 66.01 16572 33097

5 · 10−1 107.31 12294 24553

Table 2: The pirate flag test case: sensitivity to β.

5.1.2 Sensitivity to β

The role of the parameter β in (1) is investigated on the synthetic image in
Fig. 3 (top), showing a pirate flag. This parameter weights the regularization
term based on the gradient of the approximate image u, outside of the edges.
Consequently, we expect that for larger values of β, sharper contours are de-
tected. For this purpose, we run Algorithm 1 with ε = 10−1, η = 10−4, γ = 4,
TOL = 80, TOLs = 10−2, TOLfp = 5 · 10−3, Ns = 10, Nfp = 50, TOLth = 10−1,
and picking three values of β, i.e., 1.5, 1, and 5 · 10−1. In Fig. 3 and in Tab. 2,
we provide the qualitative and quantitative results of this analysis, respectively.
In particular, Fig. 3 shows the indicator vh and the corresponding anisotropic
adapted mesh, while Tab. 2 collects the value of the maximum aspect ratio, and
the number of vertices and triangles of the final adapted mesh. It is evident that,
the thickness of the edge set decreases as β gets larger, and that the number of
elements and vertices increases as well.

5.1.3 Sensitivity to γ

The numerical investigation is carried out on the image in Fig. 4, showing the
Kármán vortex sheet on the cover of [40]. The images shows the streaklines
exhibited by water flowing at 1.4 cm/s past a cylinder of diameter 1 cm at a
Reynolds number equal to 140. The parameters to Algorithm 1 are ε = 10−1,
η = 10−4, β = 5 · 10−2, TOL = 80, TOLs = 10−2, TOLfp = 5 · 10−3, Ns = 10, Nfp
= 50, TOLth = 10−1, and selecting three values of γ, i.e., 4, 1, and 2.5 · 10−1.
The parameter γ controls the regularization term of the length of the edges in
(1). As a consequence, we expect that, for values of γ smaller and smaller, the
outcome of the segmentation becomes blurred and the adapted meshes around
the streaklines are thicker. These trends are confirmed by Fig. 4, collecting the

γ maxK sK # vertices # elements

4 145.09 23455 46727

1 149.50 16246 32299

0.25 218.44 11109 22033

Table 3: The Kármán vortex sheet test case: sensitivity to γ.
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(a) true image

(b) β = 1.5: indicator vh (c) β = 1.5: adapted mesh

(d) β = 1: indicator vh (e) β = 1: adapted mesh

(f) β = 5 · 10−1: indicator vh (g) β = 5 · 10−1: adapted mesh

Figure 3: The pirate flag test case: sensitivity to β.

indicator vh of the edge set (left), its thresholded version vth
h (center), and the

adapted mesh (right), and Tab. 3 gathering the same quantities as in Tables 1
and 2.
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(a) true image

(b) γ = 4: indicator vh (c) γ = 4: thresholded indica-
tor vthh

(d) γ = 4: adapted mesh

(e) γ = 1: indicator vh (f) γ = 1: thresholded indica-
tor vthh

(g) γ = 1: adapted mesh

(h) γ = 0.25: indicator vh (i) γ = 0.25: thresholded in-
dicator vthh

(j) γ = 0.25: adapted mesh

Figure 4: The Kármán vortex sheet test case: sensitivity to γ.

5.2 Real images

We now consider the segmentation of real images. We focus on medical images
due to their strong impact on the health and social care. Moreover, the presence
of both soft tissues and bones makes this analysis extremely challenging.

In particular, we pick the following images:

1. The MRI of a brain
https://it.m.wikipedia.org/wiki/File:Pkan-basal-ganglia-MRI.JPG

2. The MRA of the circle of Willis
https://www.spandidos-publications.com/br/3/1/55
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3. The X-ray of a knee
https://www.howardluksmd.com/orthopedic-social-media/medial-joint-space-narrowing/

4. The X-ray of a hand
https://it.wikipedia.org/wiki/File:Artrite_psoriasica_Rx_Mano_Sn.PNG

Figures 5-8 (top-left) show the original images along with the corresponding res-
olution in pixels (px). Table 4 collects the input parameters to Algorithm 1. For
this choice of parameters, a fast convergence is always attained and, in all cases,
the fixed point method takes a few iterations. In Table 5, we gather the main
output values of Algorithm 1, namely, the maximun aspect ratio, the number
of vertices and triangles of the last adapted mesh, the number of global itera-
tions and the corresponding number of fixed point iterations. The quality of the
segmented images, provided in Fig. 5-8 (top-right), is high, despite the relative
small number of elements and vertices, as compared with the number of pixels
in the original images. In more detail, in Fig. 5, the segmentation procedure
identifies the plural gyri and sulci of the grey matter, together with the white
matter, the ventricles and the corpus callosum. Figure 6 clearly displays the cir-
cle of Willis and the slender posterior cerebral artery. Figure 7 reveals the three
main bones, femur, tibia and fibula, and some parts of muscles and soft tissues.
In the last Fig. 8, the joint deformation associated with a psoriatic arthritis is
detected, together with the carpals, metacarpals, and the three phalanges.

The indicator function vh, for a threshold set to TOLth = 0.1, highlights
essentially the high-contrast areas, as shown in Figures 5-8 (bottom-left).

Finally, concerning the adapted meshes, shown in Figures 5-8 (bottom-right),
they all ensure a high quality segmentation, although being quite coarse, in
particular for the knee and hand images, and mildly anisotropic.

In Table 6, we show the computational times, in seconds1, demanded by
Algorithm 1 for all the real images in Figures 5-8. We collect the execution
time in the first column, while we distiguish between the time required by the
adaptation (estimator and metric computation plus mesh generation) and by the
minimization phase, in the second and third column, respectively. In particular,
we provide explicitly the time for each fixed point iteration. We observe that
the dominant contribution is the one due to the adaptation procedure, with the
highest value at the first iteration when the computational mesh coincides with
the stuctured triangual mesh associated with the original image.

1The computations have been run on a GenuineIntel Pentium(R) Dual-Core CPU E6300
2.80 GHz 4GB RAM desktop computer.
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(a) real image (385× 479 px) (b) approximate image uh

(c) indicator vh (d) adapted mesh

Figure 5: The brain test case.
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(a) real image (663× 804 px) (b) approximate image uh

(c) indicator vh (d) adapted mesh

Figure 6: The circle of Willis test case.
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(a) real image (261× 448 px) (b) approximate image uh

(c) indicator vh (d) adapted mesh

Figure 7: The knee test case.
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(a) real image (312× 454 px) (b) approximate image uh

(c) indicator vh (d) adapted mesh

Figure 8: The hand test case.
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image ε β γ η TOL TOLs TOLfp Ns Nfp

brain 10−3 10−1 5 · 10−1 10−6 70 10−2 5 · 10−3 10 40

Willis 10−3 10−1 5 10−6 100 10−2 5 · 10−3 10 40

knee 10−3 2 · 10−1 10 10−6 60 10−2 5 · 10−3 10 40

hand 10−3 10−1 10 10−6 60 10−2 5 · 10−3 10 40

Table 4: Real images: input parameters to Algorithm 1.

image maxK sK # vertices # elements # ITs # ITfp

brain 71.94 19726 39334 4 4− 8− 9− 25

Willis 56.51 24845 49544 3 2− 4− 4

knee 82.01 5683 11175 4 3− 5− 7− 6

hand 38.01 8592 17056 5 2− 3− 2− 2− 2

Table 5: Real images: output of Algorithm 1.

image E-time AD-time FP-time

brain 170.74 43.77− 24.95− 19.45− 17.58 11.26− 12.57− 10.62− 25.51

Willis 102.78 29.76− 24.12− 22.93 3.63− 5.78− 5.3

knee 56.29 23.56− 7.66− 5.56− 4.64 4.87− 2.31− 2.24− 1.54

hand 79.90 29.83− 11.32− 8.53− 7.48− 7.3 4.14− 2.01− 0.97− 0.87− 0.81

Table 6: Real images: execution (E-time), adaptive (AD-time) and fixed point
(FP-time) iteration times.

5.3 Comparison with a pixel mesh

We refer to the test case of Fig. 8 in [9], dealing with the well-known Lena image
benchmark (see Fig. 9 (top-left)). We adopt the following parameters, ε = 10−1,
η = 10−2, β = 2, γ = 10−2, to match those in [9], in addition to TOL = 50, TOLs =
10−2, TOLfp = 5 ·10−3, Ns = 10, Nfp = 50, TOLth = 8 ·10−5. Figure 9 collects the
outcomes of Algorithm 1 at convergence (after 7 iterations), represented by the
approximation to the original image, the edge set, and the final adapted mesh,
consisting of 67679 anisotropic triangles with a maximum aspect ratio equal to
75.58. The quality of the edge set is thoroughly comparable with the one in the
reference paper, although the number of elements is considerably lower for the
adaptive strategy.
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(a) real image (512× 512 px) (b) approximate image uh

(c) thresholded indicator vthh (d) adapted mesh

Figure 9: The Lena test case.

5.4 Comparison with the isotropic mesh adaptation

The advantages due to anisotropic mesh adaptation with respect to fixed or
isotropically adapted meshes are well established [25, 1, 19]. For the sake of
completeness, we run again some of the previous test cases in an isotropic setting
to confirm these improvements.

In general, for the same accuracy TOL, the isotropic metric is obtained by
enforcing sK = 1, for any K ∈ Th, i.e., replacing the recipes in Proposition 4.1
by

λ̃1,K = λ̃2,K =

(
1

|K̂|
√

2

(
2

g1,K + g2,K

)1/2
TOL

#Th

)1/3

, r̃1,K = [1, 0]T , r̃2,K = [0, 1]T .

(21)
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We have performed two series of checks. The results of the first check, provided
in Fig. 10, refer to the test case in Section 5.1.1. The isotropic mesh in the
left panel consists of 62023 triangles. Despite the large number of elements,
the quality of the approximate thresholded indicator, with TOLth = 0.1 (center
panel), is low compared with the corresponding function (right panel) computed
on the anisotropic mesh in Fig. 1 (c). Actually, the main features of the image
are captured but some of the details are lost and detected discontinuously.

(a) isotropic adapted mesh (b) isotropic thresholded in-
dicator

(c) anisotropic thresholded
indicator

Figure 10: The Tintin test case: isotropic vs anisotropic mesh adaptation.

In the second check, we compare the isotropic and anisotropic procedures for
the same accuracy TOL. We rerun the test cases in Fig. 5 and in Fig. 7, replacing
formulas in (20) by the ones in (21). In both cases, the number of elements
required by the isotropic approach is larger, being 48829 and 19760 in the brain
and knee test case, respectively (see Fig. 11).
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(a) brain test case (b) knee test case

Figure 11: Real images: isotropic adaptive mesh for the brain (left) and knee
(right) test case.

6 Conclusions and perspectives

The extensive numerical investigation shows that the proposed adaptive method
is reliable on both synthetic and real images. We succeed in effectively segment-
ing even complex images as those characterizing medical applications. This is
obtained on quite coarse meshes in contrast to the original pixel representation,
or to isotropically adapted grids. The additional value of Algorithm 1 is to pro-
vide a high quality compression tool, supporting both the approximate image as
well as the edge set.

In perspective, we are extending the proposed procedure to 3D images, with
particular emphasis on medical MRI/MRA data. This represents a crucial step
with a view to computational fluid-dynamics simulations in the reconstructed
geometries.

A Proof of Proposition 3.1

Since (uh, vh) is a critical point of Iε,h(·, ·), we have

ah(vh;uh, φh) = 0 ∀φh ∈ Vh, bh(uh; vh, ψh) = 0 ∀ψh ∈ Vh. (22)

Moreover, moving from (3) and using the triangular inequality, it holds that

|I ′ε(uh, vh;φ, ψ)| ≤ 2(|a(vh;uh, φ)|+ |b(uh; vh, ψ)|), (23)
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for any pair (φ, ψ) ∈ H1(Ω)×(H1(Ω)∩L∞(Ω)). We now estimate the two terms
above, separately.

Estimate of |a(vh;uh, φ)|.

Thanks to (22) and to the linearity of a(·; ·, φ) with respect to φ, for any φ ∈
H1(Ω), φh ∈ Vh, we have

|a(vh;uh, φ)| ≤ |a(vh;uh, φ− φh)|+ |a(vh;uh, φh)− ah(vh;uh, φh)|. (24)

Let us deal with the first term on the right-hand side of (24). Concerning the
first one and using (3)1, we have∣∣a(vh;uh, φ− φh)

∣∣
=

∣∣∣∣ ∑
K∈Th

{∫
K

(uh − f)(φ− φh) dK + β

∫
K

(v2
h + η)∇uh · ∇(φ− φh) dK

}∣∣∣∣
=

∣∣∣∣ ∑
K∈Th

{∫
K

(uh − f)(φ− φh) dK − β
∫
K

2vh(∇vh · ∇uh)(φ− φh) dK

+ β

∫
∂K

(v2
h + η)∇uh · n(φ− φh) ds

}∣∣∣∣
≤
∑
K∈Th

{(
‖uh − f‖L2(K) + 2β ‖vh(∇vh · ∇uh)‖L2(K)

)
‖φ− φh‖L2(K)

+
β

2
‖[[∇uh]]‖L∞(∂K)‖v2

h + η‖L2(∂K)‖φ− φh‖L2(∂K)

}
after splitting the integrals on the mesh elements, exploiting integration by parts,
Hölder and Cauchy-Schwarz inequalities, and definition (17). Choosing φh =
Qh(φ) and using results (9) with s = 0, and (10), we obtain

∣∣a(vh;uh, φ− φh)
∣∣ ≤ C ∑

K∈Th

{
‖uh − f‖L2(K) + 2β ‖vh(∇vh · ∇uh)‖L2(K)

+
β

2
‖[[∇uh]]‖L∞(∂K)‖v2

h + η‖L2(∂K)

(
hK

λ1,Kλ2,K

) 1
2

}[
2∑
i=1

λ2
i,K(rTi,KG∆K

(φ)ri,K)

] 1
2

,

(25)
with C = max(C0, C2). Let us now deal with the second term on the right-hand
side of (24). Using Hölder and Cauchy-Schwarz inequalities yields

|a(vh;uh, φh)− ah(vh;uh, φh)| =
∣∣∣β ∫

Ω

[
v2
h − Ph(v2

h)
]
∇uh · ∇φh dΩ

∣∣∣
≤ β

∑
K∈Th

{
‖v2
h − Ph(v2

h)‖L∞(K) ‖∇uh‖L2(K) ‖∇φh‖L2(K)

}
.

(26)

25



Then, thanks to (9) with s = 1, together with Lemma 3.2 with β1 = λ2
1,K ,

β2 = λ2
2,K , this becomes

|a(vh;uh, φh)− ah(vh;uh, φh)|

≤ β
∑
K∈Th

{(
‖v2
h − Ph(v2

h)‖L∞(K) ‖∇uh‖L2(K)

)
(
‖∇φh −∇φ‖L2(K) + ‖∇φ‖L2(K)

)}
≤ C

∑
K∈Th

{(
‖v2
h − Ph(v2

h)‖L∞(K) ‖∇uh‖L2(K)

)
1

λ2,K

[ 2∑
i=1

λ2
i,K(rTi,KG∆K

(φ)ri,K)
]1/2}

,

(27)

with C = β(C1 + 1). The results obtained in (25) and (27), and definitions (14),
(16) allow us to bound the first term on the right-hand side of (23), as

|a(vh;uh, φ)| ≤ CA
∑
K∈Th

ρAK(uh, vh)ωK(φ), (28)

where CA = max
(

max(C0, C2), β(C1 + 1)
)
.

Estimate of |b(uh; vh, ψ)|.

Thanks to (22) and to the linearity of b(·; ·, ψ), for any ψ ∈ H1(Ω), ψh ∈ Vh, it
holds

|b(uh; vh, ψ)| ≤ |b(uh; vh, ψ − ψh)|+ |b(uh; vh, ψh)− bh(uh; vh, ψh)|. (29)

We tackle the first term. Splitting the integrals over the mesh elements, inte-
grating by parts, and thanks to the Cauchy-Schwarz inequality and definition
(17), we obtain∣∣b(uh; vh, ψ − ψh)

∣∣
=

∣∣∣∣∣ ∑
K∈Th

{∫
K

[(
(β|∇uh|2 +

γ

4ε
)vh −

γ

4ε

)
(ψ − ψh) + γε∇vh · ∇(ψ − ψh)

]
dK

}∣∣∣∣∣
≤
∑
K∈Th

{∥∥∥∥(β|∇uh|2 +
γ

4ε
)vh −

γ

4ε

∥∥∥∥
L2(K)

‖ψ − ψh‖L2(K)

+
∣∣∣γε∫

∂K
(ψ − ψh)∇vh · n ds

∣∣∣}
≤
∑
K∈Th

{∥∥∥∥(β|∇uh|2+
γ

4ε
)vh−

γ

4ε

∥∥∥∥
L2(K)

‖ψ−ψh‖L2(K)

+
γε

2
‖[[∇vh]]‖L2(∂K)‖ψ−ψh‖L2(∂K)

}
.

(30)
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We now choose ψh = Qh(ψ). Thanks to (9) for s = 0 and (10), it follows∣∣b(uh; vh, ψ − ψh)
∣∣

≤ C
∑
K∈Th

{∥∥∥∥(β|∇uh|2 +
γ

4ε
)vh −

γ

4ε

∥∥∥∥
L2(K)

+
γε

2
‖[[∇vh]]‖L2(∂K)

(
hK

λ1,Kλ2,K

)1/2
}

[
2∑
i=1

λ2
i,K(rTi,KG∆K

(ψ)ri,K)

]1/2

,

(31)
the constant being C = max(C0, C2). The estimation of the second term
on the right-hand side of (29) can be performed by combining the Cauchy-
Schwarz inequality with the standard isotropic estimate for the L2-norm of the
interpolation error associated with Ph and the auxiliary result |whϕh|H2(K) ≤
2 |wh|W 1,∞(K) ‖∇ϕh‖L2(K) for any wh, ϕh ∈ Vh and for any K ∈ Th, so that∣∣b(uh; vh, ψh)− bh(uh; vh, ψh)

∣∣
=
∣∣∣ ∫

Ω
(vhψh − Ph(vhψh))

(
β|∇uh|2 +

γ

4ε

)
dΩ
∣∣∣

≤
∑
K∈Th

{
‖vhψh − Ph(vhψh)‖L2(K)

∥∥∥∥β|∇uh|2 +
γ

4ε

∥∥∥∥
L2(K)

}
≤ CI

∑
K∈Th

{∥∥∥∥β|∇uh|2 +
γ

4ε

∥∥∥∥
L2(K)

h2
K |vhψh|H2(K)

}
≤ 2CI

∑
K∈Th

{∥∥∥∥β|∇uh|2 +
γ

4ε

∥∥∥∥
L2(K)

h2
K |vh|W 1,∞(K)‖∇ψh‖L2(K)

}
≤ C

∑
K∈Th

{∥∥∥∥β|∇uh|2 +
γ

4ε

∥∥∥∥
L2(K)

h2
K |vh|W 1,∞(K)i×

1

λ2,K

[ 2∑
i=1

λ2
i,K(rTi,KG∆K

(ψ)ri,K)
]1/2}

,

(32)

with C = 2CI(1 +C1), CI being the constant in the interpolation estimate, and
where the last inequality follows, proceeding as in (26), on using (9) with s = 1
and Lemma 3.2 with β1 = λ2

1,K and β2 = λ2
2,K .

Inequalities (31) and (32), together with definitions (15), (16), allow us to control
the second term on the right-hand side of (23) as

|b(uh; vh, ψ)| ≤ CB
∑
K∈Th

ρBK(uh, vh)ωBK(ψ), (33)

with CB = max(max(C0, C2), 2CI(1 + C1)). Estimate (13) now follows in a
straightforward way by combining estimates (28) and (33), where C = max(CA, CB).
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