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Abstract
The general family of Galerkin variational integrators are analyzed and

a complete classification of such methods is proposed. This classification is
based upon the type of basis function chosen to approximate the trajectories
of material points and the numerical quadrature formula used in time.
This approach leads to the definition of arbitrarily high order method in
time. The proposed methodology is applied to the simulation of brownout
phenomena occurring in helicopter take-off and landing.

1 Introduction
The definition and the analysis of high order geometric numerical integrators
appear to be one of the most interesting challenge to deal with in the context of
the simulation of mechanical systems, even in infinite dimensional cases. The
variational integrators framework developed by Marsden and West [9] is the most
general and elegant tool for the study of geometric integrators. Indeed, well known
methods, like Störmer–Verlet [9], Newmark [8] and symplectic partitioned Runge–
Kutta [6, 9], fit in this framework. This approach can be used also for the study
of fairly new methods, like the Galerkin variational integrators [7, 13, 12, 15],
that will be analyzed in this paper.

Some of the cited articles already contains partial results for some particular
Galerkin variational integrators: in all these papers the space of polynomials of
degree at most N is used to approximate the space of trajectories and different
quadrature rules are employed (Gauss–Legendre quadrature with N nodes [9] or
Gauss–Legendre–Lobatto quadrature with N + 1 nodes [13, 12]). In particular
in [12] the equivalence between some Galerkin variational integrators and a
particular class of Runge–Kutta methods has been proved. This equivalence
determines the convergence properties of these methods. In [7] a fairly general
error analysis is developed for the case of polynomial of degree at most N with
any quadrature rule of order at least 2N + 1.
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This paper introduces a new theoretical framework for the study of well-
posedness and error analysis of Galerkin variational integrators. At our knowledge
this framework is the most general and complete available in the literature and
it includes, as special cases, the results of the previously cited works.

In Section 2 the weak formulation of Euler–Lagrange equation is derived,
recalling some useful concepts of functional analysis. Section 3 and Section 4 are
devoted to the analysis of the continuous problem and its Galerkin approximation.
In particular Section 4 contains the results about well posedness and convergence
properties of the numerical method. In Section 5 we apply the obtained results to
analyze the numerical method based on polynomial spaces and Gauss quadrature
rule. Finally, in Section 6 numerical results assessing the theory are discussed.

2 Weak formulation of Euler-Lagrange equations
The most general formulation of governing equations for the motion of a mechan-
ical system is the principle of least action, or Hamilton’s principle, according
to which every system is characterized by the Lagrangian function L and the
motion between two different configurations at the times t1 and t2 is a path
t 7→ u(t) such that the action integral

S :=

∫ t2

t1

L(u(t), u̇(t), t) dt (1)

takes its stationary values. Under some regularity assumptions on the Lagrangian
function, the calculus of variations ensures the equivalence between such principle
and the Euler–Lagrange equations [1, Section 13]

d

dt

∂L

∂u̇
− ∂L

∂u
= 0.

In general, the analysis of the mechanical problem can be hard and it
depends on the properties of the Lagrangian function. In this paper we assume
a Lagrangian of the canonical form

L(u, u̇) =
1

2
µ(u̇, u̇)− V (t,u),

where µ is a given bilinear form and it can depend on time t, V is a given
potential; moreover we also assume the presence of an external non-conservative
force field f that depends on time t and position u. From now on we assume
that µ, V and f satisfy the following hypotheses:

• the form µ is uniformly bounded and elliptic in t, i.e. there exist two
positive finite constants m and M such that

m‖u‖2 ≤ µ(u,u) ≤ M‖u‖2, ∀u ∈ Rd;
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• the potential V is differentiable with respect to the space coordinate,
moreover the force field

Fu(t) := ∇V (t,u)− f(t,u)

is a uniformly Lipschitz continuous function in u, i.e. there exists a finite
positive constant K such that

‖Fu1
(t)− Fu2

(t)‖ ≤ K‖u1 − u2‖, ∀u1,u2 ∈ Rd.

Thus the weak formulation of Euler–Lagrange equations with initial condition
(u0,p0) reads:∫ h

0

µ(u̇, v̇)− Fu · v dt− (ph · v(h)− p0 · v(0)) = 0,

where v is a test function in some suitable function space, and p0, ph are the
linear momentum at times t0 and th. In our formulation the initial condition is
enforced in a weak sense hence ph can be interpreted as the Lagrange’s multiplier
associated to the constraint u(0) = u0.

In order to study the above mentioned problem and its approximation by
means of a variational integrator a suitable functional setting should be provided.
The problem is formulated in the Sobolev function space

X := H1(0, h) =
{
u : [0, h] → Rn

∣∣ u ∈ L2(0, h) and u̇ ∈ L2(0, h)
}
,

where u̇ denotes the weak derivative of u with respect to time. We equip this
space with the less familiar norm defined by

‖u‖2X :=

∫ h

0

‖u̇‖2 dt+ 1

h
‖u(h)‖2,

that is equivalent to the usual one for a Sobolev space. The equivalence is
ensured by the Friedrichs’ inequality [2, Section 6]

‖u‖20 :=

∫ h

0

‖u‖2 dt ≤ h2

z20
‖u‖2X ,

where z0 is the smaller positive solution of the equation 1 = z tan z, its approxi-
mated value is z0 ≈ 0.86. Using this norm it is easy to prove the continuity of
the trace operator u 7→ u(h),

‖u(h)‖ ≤
√
h‖u‖X .

Remark 1 All the given inequalities are optimal, in the sense that always
there exists a function u such that the equality is satisfied. For the Friedrichs’
inequality this function is equal to u = cos(z0t/h) whereas for the trace operator
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it is enough to take the constant function. Moreover, these results are still valid
using the equivalent norm

‖u‖2X :=

∫ h

0

‖u̇‖2 dt+ 1

h
‖u(0)‖2.

The equivalence is given by the invariance of the space X under the time inversion
transformation t 7→ h− t. 2

Let Q = Rd, then we can define the following bilinear forms

a : X ×X → R a(u,v) :=

∫ h

0

µ(u̇, v̇) dt,

b1 : X ×Q → R b1(u,p) := −u(h) · p,
b2 : X ×Q → R b2(u,p) := −u(0) · p,

and recast the equations of motion in the following variational form: find
(u,ph) ∈ X ×Q such thata(u,v) + b1(v,ph) =

∫ h

0

Fu · v dt+ b2(v,p0), ∀v ∈ X,

b2(u, q) + u0 · q = 0, ∀q ∈ Q.

(2)

In the next sections we are going to study the well-posedness of both Prob-
lem (2) and its Galerkin approximation. We also give a new proof of the
convergence properties of such method; this proof is based on the abstract theory
of saddle point problems [3, 11]. As in [3, 11] we denote with Ki the kernel of
the operator associated with the form bi (i = 1, 2) and follows as

Ki := {u ∈ X | bi(u,p) = 0, ∀p ∈ Q} .

In some estimates we shall use the expression A . B to say that there exists
a constant C (that does not depend on A and B) such that A ≤ CB.

3 Analysis of continuous problem
In this section we prove the existence and uniqueness of a solution of the
Problem (2). These results are not really new since the equations of motion for a
mechanical system are deeply understood. Nevertheless they are usually obtained
using classical tools for ordinary differential equations, like the well known Picard–
Lindelöf theorem; here we are going to study such equations starting from weak
formulation. At our knowledge a complete analysis of the Lagrangian mechanics
in this form has never been proposed. Moreover, our analysis provides the
tools required to prove the well posedness and the convergence properties of
the variational integrator that will be discussed in the next section. The main
result of this section is the following theorem of existence and uniqueness for
Problem (2).
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Theorem 1 For all initial condition (u0,p0) and h such that

η :=
3Kh2

mz20
< 1,

there exists a unique solution (u,ph) ∈ X ×Q of the Problem (2). Moreover the
solution map is Lipschitz continuous:

‖u(1) − u(2)‖X + ‖p(1)h − p(2)h ‖ . ‖u(1)
0 − u(2)

0 ‖+ ‖p(1)0 − p(2)0 ‖. 2

For the sake of clarity the proof of this theorem is preceded by two propositions
where the hypotheses of the Theorem 3.1 in [11] are verified.

Proposition 1 Given u ∈ K2, there exists v ∈ K1 such that:

a(u,v)

‖v‖X
≥ m

3
‖u‖X . 2

Proof Given u ∈ K2 (u(0) = 0), then we take v = u+φ, where φ ∈ X is the
solution of the variational problem:

a(φ,ψ) =
m

h
u(h) ·ψ(h), ∀ψ ∈ X.

Such problem admits a unique solution up to an additive constant which is
chosen in order to satisfy the requirement v ∈ K1 (v(h) = 0), so that

φ(h) = −u(h).

Taking ψ = u, we have

a(u,u+ φ) = a(u,u) +
m

h
‖u(h)‖2 ≥ m‖u‖2X . (3)

On the other hand, taking ψ = φ,

a(φ,φ) =
m

h
u(h) · φ(h).

From this identity, using the ellipticity of µ, we can bound the norm of φ

‖φ‖2X ≤ 1

m
a(φ,φ) +

1

h
‖φ(h)‖2 ≤ 2

h
‖u(h)‖‖φ(h)‖,

and using the continuity of the trace operator u 7→ u(h), we obtain the estimate
for the norm of v:

‖v‖X = ‖u+ φ‖X ≤ 3‖u‖X . (4)

The proof is concluded combining (3) and (4). �

Proposition 2 The bilinear forms bi satisfy the inf− sup condition, in particular
β1 ≥ h. 2
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Proof For b1 the proof is trivial, given p and chosen v to be constant and
equal to −p, then

sup
u∈X

b1(u,p)

‖u‖X
≥ b1(v,p)

‖v‖X
≥ h‖p‖.

The same holds for b2 thanks to Remark 1. �

These propositions ensure the well-posedness of the linear part of the Prob-
lem (2) and we are going to exploit this partial result to give the proof of
Theorem 1.

Proof (Proof of Theorem 1) Since we are dealing with a nonlinear prob-
lem, in order to prove the existence of a solution we define a sequence {u(n)}n∈N
obtained by iterating the solution map of a linearization of the original problem:a(u(n),v) + b1(v,p

(n)
h ) =

∫ h

0

Fu(n−1) · v dt+ b2(v,p0), ∀v ∈ X,

b2(u
(n), q) + u0 · q = 0, ∀q ∈ Q.

Taking the difference between two subsequent iterations we obtain the problem:
a(u(n+1) − u(n),v) + b1(v,p

(n+1)
h − p(n)h ) =

=

∫ h

0

(Fu(n) − Fu(n−1)) · v dt, ∀v ∈ X,

b2(u
(n+1) − u(n), q) = 0, ∀q ∈ Q.

(5)

So, starting from u(0) and u(1) (for example taking the constant functions equal
to u0), if the Problem (5) is well-posed, then it uniquely defines the sequence
{u(n)}n∈N. Clearly all the bilinear forms are trivially continuous and all the
other hypotheses of Theorem 3.1 in [11] are satisfied according to the results
of Proposition 1 and Proposition 2. Then the Problem (5) admits a unique
solution, moreover the following estimate holds:

‖u(n+1) − u(n)‖X ≤ 3

m
‖Fu(n) − Fu(n−1)‖X′ .

Now we should give an estimate of the right-hand side using the fact that the
gradient of the potential V is a uniformly Lipschitz continuous function:∣∣∣∣∣

∫ h

0

(Fu(n) − Fu(n−1)) · v dt

∣∣∣∣∣ ≤ K‖u(n) − u(n−1)‖0‖v‖0,

using the Friedrichs’ inequality we get

‖u(n+1) − u(n)‖X ≤ 3Kh2

mz20
‖u(n) − u(n−1)‖X ,
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where we recognize the parameter η; if η < 1 then the solution map is contractive
and in particular the sequence {u(n)}n∈N is a Cauchy sequence. From the
estimate for the second component of the solution

h‖p(n+1)
h − p(n)h ‖ ≤

(
1 +

3M

m

)
‖Fu(n) − Fu(n−1)‖X′ ,

we can state that also the sequence {p(n)h }n∈N is a Cauchy sequence. Hence both
sequences converge to a limit (u,ph) in X ×Q and by continuity of the terms
of Problem (2) it follows that such limit is a solution.
In order to prove the continuity of the solution map, let us consider two different
initial data (u

(1)
0 ,p

(1)
0 ) and (u

(2)
0 ,p

(2)
0 ). We have just proved that for both there

exists at least one solution (u(i),p
(i)
h ) of Problem (2), then taking the difference

we obtain the problem:
a(u(1) − u(2),v) + b1(v,p

(1)
h − p(2)h ) =

=

∫ h

0

(Fu(1) − Fu(2)) · v dt+ b2(v,p
(1)
0 − p(2)0 ), ∀v ∈ X,

b2(u
(1) − u(2), q) + (u

(1)
0 − u(2)

0 ) · q = 0, ∀q ∈ Q.

From these equation, using the stability estimates of Theorem 3.1 in [11] the
continuity of solution map is proved, under the same condition η < 1. The
uniqueness easily follow from the continuity estimates. �

4 Analysis of Galerkin variational integrator
The aim of this section is to introduce a very general theory that can be used to
develop a taxonomic scheme of the Galerkin variational integrators. For the sake
of clarity we start from an informal introduction to the variational integrators.
The reader is referred to [9] for the technical details.

The definition of variational integrators relies on the same principle of the
continuous problem: each numerical integrator is characterized by the discrete
Lagrangian function Ld. Given a discrete set of increasing times t0, t1, . . . , tN ,
the motion between two configurations u0 and uN is the map ti 7→ ui such that
the discrete action given by

N−1∑
i=0

Ld(ui,ui+1) (6)

takes its stationary values. Then by the Fermat’s theorem on the stationary
points the discrete Euler-Lagrange equations read [9, Section 1.3.1]

D2Ld(ui−1,ui) +D1Ld(ui,ui+1) = 0, ∀i = 1, . . . , N − 1,

where Di are the partial derivative operator with respect to the i-th argument.
Comparing Equation (1) and Equation (6) we can see that the discrete Lagrangian
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Ld(ui,ui+1) represents an approximation of the action integral∫ ti+1

ti

L(u(t), u̇(t), t) dt,

and the obtained variational integrators is, in some sense, as good as this
approximation. Thus the aim is to find a good trade-off between the complexity
and the error in the evaluation of action.

The Galerkin method can be used for the definition and the analysis of
arbitrarily high order numerical method for differential problems; the application
of this technique in the context of variational integrators define the class of
Galerkin variational integrators. Each Galerkin method is characterized by two
elements:

• a finite dimensional space XN of functions used for approximating the
trajectory t 7→ u(t). The space of polynomials of degree at most N is the
most common choice, but other choices can be useful in some particular
case, like the Fourier system in the case of periodic orbits. For the sake of
simplicity we consider the problem for a d-dimensional mechanical system
on the time interval [0, h]. The set of functions {φi}Ni=0 ⊂ C1([0, h]) span
the space XN , then each element u ∈ XN can be written as

u(t) =

N∑
i=0

u(i)φi(t), u(0), . . . ,u(N) ∈ Rd.

• a quadrature rule used to evaluate the action integral. Without loss of
generality we can assume that this rule is defined by a discrete set of M +1
quadrature points {tk} and positive weights {wk}:∫ ti+1

ti

f(t) dt ≈
M∑
k=0

f(tk)wk.

Again, the most common choices are the Gauss and Gauss–Lobatto quadra-
ture rules, but it is not strictly required to adopt one of these two rules.

Given a path uN ∈ XN , the discrete action functional is defined as

SN (uN ) :=

M∑
k=0

L(uN |k, u̇N |k, tk)wk,

then the discrete Lagrangian Ld reads

Ld(u0,uh) := inf {SN (uN ) | uN ∈ XN ∧ uN (0) = u0 ∧ uN (h) = uh}. (7)

The solution of this variational problem is equivalent to the application of the
GNI (Galerkin with Numerical Integration) method to the Problem (2), thus
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the formulation of a Galerkin variational integrator becomes: find (uN ,ph,N ) ∈
XN ×Q such thataN (uN ,vN ) + b1(vN ,ph,N ) =

M∑
k=0

(FuN
· vN )|kwk + b2(vN ,p0), ∀vN ∈ XN ,

b2(uN , q) + u0 · q = 0, ∀q ∈ Q,

(8)
where b1 and b2 are the bilinear forms already defined in Section 2 and aN :
XN ×XN → R is defined by:

aN (uN ,vN ) :=

M∑
k=0

µ(u̇N (tk), v̇N (tk))wk.

To investigate the well-posedness in the discrete Problem (8) the same results
exposed in the previous section for the continuous problem are exploited. For
this reason we introduce two seminorms, the discrete counterpart of L2 and H1

norms:

|uN |20,N :=

M∑
k=0

‖uN (tk)‖2wk, ‖uN‖2XN
:= |u̇N |20,N +

1

h
‖u(h)‖2.

In particular, if the following hypotheses are satisfied:

1. the subspace of constant functions is contained in XN ;

2. ‖ · ‖XN
defines a norm of the space XN ;

then Proposition 1 and Proposition 2 are still valid if we replace the bilinear
form a with aN and the norm ‖ · ‖X with ‖ · ‖XN

. The first hypothesis does not
represent a limitation since it is satisfied for all the finite dimensional spaces of
practical relevance. The second hypothesis is harder to prove and it represents a
compatibility condition between the space XN and the quadrature rule. This
hypothesis is not only a technical requirement for proving the well-posedness of
Equations (8); the next lemma clarifies its physical meaning and gives a very
important criterion for proving its validity.

Lemma 1 If the subspace of constant functions is contained in XN then the
problem: {

aN (uN ,vN ) + b1(vN ,ph,N ) = b2(vN ,p0), ∀vN ∈ XN ,

b2(uN , q) + u0 · q = 0, ∀q ∈ Q.
(9)

admits a unique solution for all initial conditions (u0,p0) if and only if ‖ · ‖XN

is a norm on the space XN . 2

Proof If ‖ · ‖XN
is a norm on the space XN then the hypotheses of Theorem 3.1

in [11] are satisfied and Problem (9) admits a unique solution. To prove that
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uniqueness implies that ‖ · ‖XN
is a norm we proceed by reductio ad absurdum.

Assumed that the free system problem admits an unique solution and ‖ · ‖XN

is only a seminorm then there exists wN ∈ XN not equal to 0 such that
‖wN‖XN

= 0, that means:

wN (h) = 0 and ẇN (tk) = 0 for all k = 0, . . . ,M.

Now choose vN = wN in the first equation of (9), thus

b2(wN ,p0) = 0, ∀p0 ∈ Q. (10)

Now we have two alternatives:

• if wN (0) = 0 then Equation (10) is always true and if Problem (9) admits
a solution uN then uN + αwN is also a solution for any α ∈ R;

• if wN (0) 6= 0 then Equation (10) is never verified and the Problem (9) has
no solutions.

This leads to the absurdum. �

In order to prove the well-posedness of the Problem (8) it is necessary to
assume the validity of the Friedrichs’ inequality in the space XN , that reads

|uN |0,N ≤ CN
h

z0
‖uN‖XN

, ∀uN ∈ XN , (11)

where CN is a positive constant that depends on the definition of space XN , but
not on h (by a scaling argument). Since XN is finite dimension space then the
Bolzano–Weierstrass theorem ensures the existence and the finiteness of such
constant CN , but its value could be not uniformly bounded with respect to N .
In such case the next theorem states that in order to ensure the well-posedness
of Problem (8) it is necessary to choose very small value for the time step h.

Theorem 2 For all initial condition (u0,p0) and h such that

η =
3Kh2

mz20
<

1

C2
N

,

there exists a unique solution (uN ,ph,N ) ∈ XN ×Q of Problem (8). Moreover
the solution map is Lipschitz continuous:

‖u(1)
N − u(2)

N ‖XN
+ ‖p(1)h,N − p(2)h,N‖ . ‖u(1)

0 − u(2)
0 ‖+ ‖p(1)0 − p(2)0 ‖. 2

Proof The proof follows exactly the same steps of the proof of Theorem 1. �

We now turn our attention to the the approximation property of the Galerkin
variational integrators in the time interval (0, h), deriving an estimate of the
error ‖u− uN‖X , where u and uN are the solution of Problems (2) and (8)
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respectively. The equivalence of all norms defined on a finite dimension vector
space holds to the existence of ΛN ≥ λN > 0 such that

λN‖uN‖X ≤ ‖uN‖XN
≤ ΛN‖uN‖X , ∀uN ∈ XN . (12)

Thanks to this equivalence we can compare the norm in the discrete and contin-
uous settings and we can prove the following theorem following theorem, that be
considered as an extension to the Galerkin variational integrators of the Strang’s
lemma [3, Theorem 2.2].

Theorem 3 For any initial data u0,p0 and small enough h, the solutions u
and uN of Problems (2) and (8) satisfy the following estimate:

(1−ΛNC2
Nη)‖u− uN‖X . inf

vN∈XN

[
‖u− vN‖X + sup

zN∈K1,N

(a− aN )(vN , zN )

‖zN‖X

]
+

+ sup
zN∈K1,N

1

‖zN‖X

(
M∑
k=0

Fu · zN |kwk −
∫ h

0

Fu · zN dt

)
.

In particular if both ΛN and λN are uniformly bounded with respect to N then
the constants appearing in this estimate does not depend on N . 2

In this estimate we have three terms that bound the error ‖u− uN‖X :
the first one represents the approximation error associated to the definition of
discrete space XN , known as approximation error, the other two are related to
the quadrature rule and they represent the consistency error. In order to balance
the two components of the error the space XN and the quadrature have to be
chosen in a proper way.

Proof Using the equivalence (12) and Theorem 2.2 of [3] we deduce the following
estimate: there exists AN > 0 such that for all vN ∈ XN

‖u− uN‖X ≤ AN‖u− vN‖X +
3

m
sup

zN∈K1,N

(a− aN )(vN , zN )

‖zN‖XN

+

+
3

m
sup

zN∈K1,N

1

‖zN‖XN

(
M∑
k=0

FuN
· zN |kwk −

∫ h

0

Fu · zN dt

)
,

where the last term can be rewritten as
M∑
k=0

(FuN
− Fu) · zN |kwk +

M∑
k=0

Fu · zN |kwk −
∫ h

0

Fu · zN dt.

Since the force field Fu is assumed to be uniformly Lipschitz continuous, then
M∑
k=0

(FuN
− Fu) · zN |kwk ≤ C2

N

Kh2

z20
‖u− uN‖XN

‖zN‖XN
.

In order to conclude the proof is enough to use again the equivalence (12). �
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A second result about the approximation properties of the Galerkin variational
integrators deals with the order of the discrete Hamiltonian map

(u0,p0) 7→ (uh,N ,ph,N ), where uh,N = uN (h).

This result is based on the general theory of the variational integrators exposed
in [9] and in particular it is a corollary of the following general result.

Theorem 4 (Theorem 2.3.1 of [9]) The following statements are equivalent:

• the discrete Hamiltonian map is of order r, i.e.

‖uh − uh,N‖+ ‖ph − ph,N‖ . h1+r;

• the discrete Lagrangian Ld is of order r, i.e.∣∣∣∣∣
∫ h

0

L(u, u̇, t) dt− Ld(u0,uh)

∣∣∣∣∣ . h1+r. 2

Given the boundary values (u0,uh) we denote with u ∈ X and uN ∈ XN

the stationary points of S and SN respectively with the constraints:

u(0) = uN (0) = u0 and u(h) = uN (h) = uh.

Clearly such paths are solutions of the principle of least action and represent
the path of the mechanical system between the configurations u0 and uh (in the
continuous and discrete settings respectively), their existence and uniqueness
can be proved in the same way of Theorem 1 and Theorem 2.

The second statement of Theorem 4 can be recast in the form:

|S(u)− SN (uN )| . h1+r.

Using the triangle inequality the left hand side can be written as:

|S(u)− SN (uN )| ≤ |S(u)− S(uN )|+ |S(uN )− SN (uN )|

where the first term depends only on the definition of the space XN and the second
one on the accuracy of the quadrature rule. If we assume that the Lagrangian
L is smooth enough, than we can apply the Taylor’s theorem, obtaining the
identity

S(uN )− S(u) = DuS[uN − u]+

+

∫ 1

0

(1− s)D2
suN+(1−s)uS[uN − u,uN − u] ds,

where DuS and D2
uS denotes respectively the first and second Fréchet derivatives

of the functional S. Since u is given by the principle of least action then it is
also a solution of Euler–Lagrange equations, then

DuS[uN − u] = ph · (uN − u)(h)− p0 · (uN − u)(0) = 0.
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Moreover, assuming a Lagrangian of the canonical form with the bilinear form
µ bounded and the force field Fu Lipschitz continuous, both uniformly with
respect their arguments, then we have

D2
suN+(1−s)uS[uN − u,uN − u] . ‖uN − u‖2X .

Therefore, we can conclude with the following theorem.

Theorem 5 For any boundary conditions (u0,uh) and for small enough h, the
solutions u ∈ X and uN ∈ XN satisfy the following estimate:

|S(u)− SN (uN )| . ‖u− uN‖2X + |S(uN )− SN (uN )|. 2

5 Discussion of the error estimates
We discuss now the error estimates that can be obtained using the analysis
developed in the previous section. We start by noticing that all the results
presented in [7, 9, 13, 12] can be recast in the theoretical framework presented
in this paper. From now on, the space XN is the space of polynomials of degree
at most N and the quadrature rules are the Gauss or Gauss-Lobatto quadrature
with N or N + 1 nodes. The great advantage of Gauss quadrature is that such
rules integrate exactly polynomials of degree 2M − 1 (2M − 3 for Gauss–Lobatto
quadrature) if M nodes are used. Then in the case of Gauss quadrature with
M ≥ N the norm ‖ · ‖X is evaluated exactly:

‖uN‖XN
= ‖uN‖X , ∀uN ∈ XN .

The same for Gauss-Lobatto quadrature with M ≥ N + 1 and if M = N the
equivalence between the norms ‖ · ‖X and ‖ · ‖XN

is ensured by [4, Lemma 3.2]:

‖u̇N‖0 ≤ |u̇N |0,N ≤
√
2 +

1

N
‖u̇N‖0, ∀uN ∈ XN .

It is worthwhile noticing that the well-posedness in the last case can not be
proved with the theory exposed in [7], as already pointed out in [13]. In fact
Lemma 3.1 in [7] states that a quadrature rule with order at least 2N − 1 is
only a sufficient condition for the well-posedness. On the other hand Lemma 1
gives also a necessary condition and it can be read as “the Galerkin variational
integrator is well-posed if and only if it is able to solve the free particle equations”.

The analysis of convergence properties of these methods is more involved. For
a while let us assume that all the integral are evaluated exactly then Theorem 3
and Theorem 5 reduce to the inequalities:

‖u− uN‖X . inf
vN∈XN

‖u− vN‖X , |S(u)− SN (uN )| . ‖u− uN‖2X ,

thus the error is bounded by the best approximation error in X. In the case of
smooth solutions we obtain [5, Section 5.4]

inf
vN∈XN

‖u− vN‖X . e−γNhN .
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Using Theorem 4 the predicted order is 2N − 1. However, as pointed out in [13],
at least in the case of a harmonic oscillator with exact quadrature, a higher
rate of convergence of order 2N is numerically obtained. This suggest that our
estimates are not optimal and a deeper analysis is required to better understand
the discrepancy between the theoretical estimates and the the numerical results.
In the case of less regular solution the best approximation error estimate is given
by:

inf
vN∈XN

‖u− vN‖X . N−shmin (s,N+1)−1|u|Hs;N (0,h), (13)

where

|u|2Hs;N (0,h) :=

s∑
k=min (s,N+1)

∥∥∥∥dkudtk

∥∥∥∥
L2(0,h)

,

so that also |u|Hs;N (0,h) depends on the value of h and we expect that such
dependence is measured by the numerical experiments. In order to provide
a more reliable estimate of the error on the interval (0, h) with the proper
dependence on h we consider an alternative approach. Instead of considering the
mechanical problem defined on the interval (0, h) we consider a fixed interval:
without loss of generality we can consider the interval (0, 1) divided into K
subintervals of measure h = 1/K. The idea is to compose the error estimate on
each subintervals in order to obtain an estimate for a sub-interval of measure h.
Here we analyze two different measures of the error. The first is a rigorous error
estimate defined as the maximum on all the subintervals:

emax := max
i=0,...,K−1

inf
vN∈XN,i

‖u− vN‖Xi
,

where XN,i = H1(hi, hi+ h) and XN is the space of polynomials of degree at
most N on the interval (hi, hi+h). Using the estimate (13) on each subintervals
we obtain the estimate

emax . N−shmin (s,N+1)−1|u|Hs;N (0,1).

This estimate is very conservative, it is valid for all u ∈ H1(0, 1), in particular it
can be considered optimal in the case there exists i such that

|u|Hs;N (0,1) = |u|Hs;N (hi,hi+h).

The second error measure, which is not a real error estimate, but an error
indicator, is defined as the mean of the errors on all the subintervals:

emean :=
1

K

K−1∑
i=0

inf
vN∈XN,i

‖u− vN‖Xi
,

thus emean is bounded by

emean . N−shmin (s,N+1)−1/2|u|Hs;N (0,1).
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The convergence rate for emean is the same measured in the numerical experi-
ments [13, 12]. Obviously this is not a rigorous bound for the error, but in the
particular case in which

|u|Hs;N (hi,hi+h) = |u|Hs;N (hj,hj+h), ∀i, j ∈ {0, . . . ,K − 1},

the value of emean is of the same order of ‖u− uN‖X,i for all i.
The estimate emax gives the lower bound for the order of the Galerkin

variational integrators based on polynomials spaces. We expect that the estimate
obtained using emean is better in the practice. Nevertheless it can not be taken to
be valid in all cases. Until now we are not able to find an example of mechanical
system such that the measured order is equal to the one predicted by emax.

Finally, we want to estimate the error introduced by the quadrature rule. We
have to estimate both the consistency error in Theorem 3 and the quadrature
order in Theorem 5. In order to estimate the consistency error we use the
following estimate of integration error [5, Section 5.4]:∣∣∣∣∣
∫ h

0

f(t)p(t) dt−
M∑
k=0

f(tk)p(tk)wk

∣∣∣∣∣ . N−shmin (s,M+1)|f |Hs;M (0,h)‖p‖L2(0,h),

which is valid for all polynomial p of degree at most N and for both Gauss–
Lobatto quadrature with M + 1 nodes, where M + 1 ≥ N . Using the Friedrichs’
inequality we obtain that the order of the consistency error is smaller than the
approximation error. Then we can conclude that the all methods presented
in [9, 13, 12] share the same estimate for the error along the path. Moreover,
the convergence order predicted by Theorem 3 depends on the regularity of the
solution and the polynomial order N , in particular for smooth solutions the
order is equal to N + 1/2.

Finally we have to estimate the quadrature error in Theorem 5 that determines
the order of the method. For both the Gauss and Gauss–Lobatto quadrature
the order is determined only by the number of nodes if the integrand function is
smooth enough. If we assume a rule with M + 1 nodes then∣∣∣∣∣

∫ h

0

f(t) dt−
M∑
k=0

f(tk)wk

∣∣∣∣∣ ≈
{
h2M+1 Gauss,
h2M−1 Gauss–Lobatto.

Applying the Theorem 5 to the cases of Gauss quadrature with N nodes and
Gauss–Lobatto quadrature with N + 1 nodes the expected order is 2N − 2 as
measured and proved in a different way in [13, 12].

6 Numerical results
In this section, numerical results assessing the convergence properties of Galerkin
variational integrators will be presented and discussed. Moreover, in order
to show the efficiency of these high-order integrators, the computational cost
required by these high order schemes to reach a prescribed error tolerance will
be compared with standard low-order schemes.
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6.1 Harmonic oscillator
We first consider a simple harmonic oscillator for which the bilinear form and
the potential energy in the Lagrangian (2) are given by

µ(u̇, u̇) = m
(
u̇(t)

)2
, V (t, u) =

1

2
k
(
u(t)

)2
,

where m is the mass and k is a positive constant defining the restoring force
F = −ku, while there are no external forces field acting on the system.

The problem is numerically solved in time using the Galerkin variational
integrators, considering different polynomial degrees N and Gauss quadrature
with N + 1 nodes. The convergence behavior with respect to the time step h
is displayed in Figure 1 (left) for different polynomial degrees. The measured
convergence rate is 2N confirming the super-convergence discussed in Section 4.
The exponential convergence with respect to the polynomial order N has been
also assessed, see Figure 1 (right).
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Figure 1: h-convergence (left) and N-convergence (right) for the harmonic
oscillator test case.

6.2 Brownout simulations
Brownout is a critical phenomenon experienced by helicopters when landing
(or taking off) on sandy soils and consists in a visibility area restriction due
to the uplifting of sand particles in the air by vortices of the aerodynamic
field. Different models have been proposed in the literature to simulate this
phenomenon (see, e.g. [14]). Here we consider a very simple physical model
based on non-interacting particles moving in a given aerodynamic velocity field
that have been used in [10] to perform brownout simulations (see Figure 2).

The trajectory of a particle with mass m can be computed by the second
Newton’s law mü = f , where u is the position of the particle. The force acting
on the particle is given by the drag exerted by the aerodynamic field and by the
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Figure 2: Simulation of the brownout phenomenon: particle distributions at
different time instants. Different colors denote different particle sizes.

gravity force, namely:

f(t, u̇) = −1

2
ρair‖u̇ − vwind‖(u̇ − vwind)

πd2

4
Cd −mg, (14)

where vwind is the wind velocity at the position of the particle, g is the gravi-
tational acceleration, d is the diameter of the particle, ρair is the (uniform) air
density and Cd is a drag coefficient.

The problem is numerically solved by means of the Galerkin variational
integrators with different polynomial degrees. Since the interaction among the
particles is not considered in the brownout model, the numerical convergence
analysis has been carried out on a single particle dynamics, measuring the
L∞ error on the trajectory with respect to a reference solution obtained with
a high polynomial degree (N = 12) The convergence behavior with respect
to the time step h is displayed in Figure 3 (left), for different polynomial
degrees and compared with the solution obtained by a first-order semi-implicit
symplectic Euler scheme. The theoretical convergence analysis presented in
Section 4 is limited to external forces which are only function of time and
position. Nevertheless, the results show that optimal convergence rates can also
be obtained when the external force (in this case Fp) depends on the velocity
too. Note that the error saturation visible in Figure 3 (left) is due to the
tolerance adopted for the convergence of the Newton method used to resolve the
nonlinearity in the forcing term.

The same results have been analyzed taking into account the total CPU time
required by the different time integrators, in order to investigate the trade-off
between the higher rate of convergence of high order schemes and their higher
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computational complexity. In Figure 3 (right), the L∞ error on the trajectory is
displayed as a function of the total CPU time required for different integrators.
These results clearly show that, when low error level are required, high order
variational methods are more efficient than standard low order schemes.
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Figure 3: h-convergence for the particle dynamics test case (left) and comparison
of CPU times (right).

Conclusions
We have presented a new framework for the definition and analysis of Galerkin
variational integrators of arbitrary order. In the presented setting we are able
to solve most of the open issues of the Galerkin variational integrator in the
case of a Lagrangian of canonical form: we give the necessary and sufficient
conditions for the well-posedness and we provide a complete error analysis that
includes a justification for the rate of convergence measured in the numerical
experiments and not predicted by the standard error analysis. The convergence
properties and the computational performance of the proposed time integrators
have been assessed through numerical test cases. In particular, particle dynamics
simulations for the analysis of brownout phenomena have been carried out
proving the effectiveness of the proposed method in reducing the CPU time
required to achieve a prescribed level of accuracy in the prediction of particle
trajectory.
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