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Abstract

In this work, we propose viable and efficient strategies for the stabilization of the reduced basis
approximation of an advection dominated problem. In particular, we investigate the combination
of a classic stabilization method (SUPG) with the Offline-Online structure of the RB method. We
explain why the stabilization is needed in both stages and we identify, analytically and numerically,
which are the drawbacks of a stabilization performed only during the construction of the reduced
basis (i.e. only in the Offline stage). We carry out numerical tests to assess the performances
of the “double” stabilization both in steady and unsteady problems, also related to heat transfer
phenomena.
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1. Introduction

The aim of this work is to study and develop a stabilized reduced basis method suitable for the
approximation of the solution of parametrized advection-diffusion PDEs with high Péclet number,
that is, roughly, the ratio between the advection term and the diffusion one.

Advection-diffusion equations are very important in many engineering applications, because they
are used to model, for example, heat transfer phenomena (with conduction and convection) [20] or the
diffusion of pollutants in the atmosphere or in the water [7, 37]. In such applications, we often need
very fast evaluations of the approximated solution, depending on some physical and/or geometrical
input parameters. This happens, for example, in the case of real-time simulations. Moreover,
we need rapid evaluations also if we have to perform repeated approximation of the solution, for
different input parameters. An important case of this many-query situation is represented by some
optimization problems, in which the objective function to optimize depends on the parameters
through the solution of a PDE.

The reduced basis (RB) method [36, 40] meets our need for rapidity and it is also able to
guarantee the reliability of the solution, thanks to sharp a posteriori error bounds. A crucial feature
of the RB method is its decomposition into two computational steps. During the first expensive
one, called Offline step, some high-fidelity approximated solutions are computed, which will become
the global basis functions of the Galerkin projections performed during the second inexpensive
phase, called Online step. A brief introduction to the RB method will be given in Section 2.
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As the advection-diffusion equations are often used to model heat transfer phenomena, we can
find in literature many results about the RB approximation of heat transfer problems such as the
Poiseuille-Graetz problem or the “thermal fin” problem [11, 30, 36, 39, 41, 42]. However, until now,
only the case in which the Péclet number is reasonably low (i.e. ∼ 102) was considered.

When the Péclet number is higher (i.e. ∼ 105), it is very well known [38] that the Finite Element
(FE) solution of the advection-diffusion equation - that the RB method aims to recover - can show
significant instability phenomena. In order to fix this problem, in the RB framework, some solutions
have been proposed for the steady case [7, 8, 35, 37]. The basic idea is to consider as truth solution
a stabilized FE one, using some classical stabilization method (e.g. the SUPG method [38]), and
then to perform the RB Offline and Online steps using the stabilized bilinear form instead of the
original one. In the cited papers we can find some applications to environmental sciences and
engineering problems concerning, in particular, air pollution. Very recently, also a Petrov-Galerkin
based strategy has been proposed to deal with high Péclet number problems [6].

In our work we want to go further in the study of the stabilized RB method, proposing viable
and efficient strategies to be used combined with the Offline-Online computational procedures
and providing a deeper analysis on the need of stabilization for parametrized advection-diffusion
problems. We start by studying steady problems and then we move to the time dependent case.

After having done, in Section 2, a short presentation of the RB method, in Section 3 we
observe and analyse what happens when we “stabilize” only the Offline stage of the RB method,
thus producing “stable” basis function to be interpolated in the Online stage by projecting with
respect to the non-stabilized advection-diffusion operator. We will show that the latter strategy
is not satisfactory because of “inconsistency” problems between the Offline and Online stages,
arising from the use of two different bilinear forms. We will also prove an a priori error estimate
(Proposition 3.1) which will allow us to quantify this inconsistency. After having determined which
stabilization strategy gives better results and why, in Section 4 we will try to apply it to a test
problem with a parameter dependent internal layer, using also a piecewise quadratic polynomial
truth approximation space. Finally, in Section 5 we extend the investigation of the RB stabilization
method to parabolic problems.

2. A brief review of the reduced basis method

The reduced basis (RB) method is a reduced order modelling (ROM) technique which provides
rapid and reliable solutions for parametrized partial differential equations (PPDEs), in which the
parameters can be either physical or geometrical [36, 40].

The need to solve this kind of problems arises in many engineering applications, in which the
evaluation of some output quantities is required. These outputs are often function of the solution of
a PDE, which can in turn depend on some input parameters. The aim of the RB method is to
provide a very fast computation of this input-output evaluation.

Roughly speaking, given a value of the parameter, the (Lagrange) RB method consists in a
Galerkin projection of the continuous solution on a particular subspace of a high-fidelity approxi-
mation space, e.g. a finite element (FE) space with a large number of degrees of freedom. This
subspace is the one spanned by some pre-computed high-fidelity global solutions (snapshots) of the
continuous parametrized problem, corresponding to some properly chosen values of the parameter.

For a complete presentation of the reduced basis method we refer to [36, 40], now we just recall
its main features and we introduce some notations.

2.1. The continuous problem

Let µ belong to the parameter domain D, a subset of RP . Let Ω be a regular bounded open
subset of Rd (d = 1, 2, 3) and X a suitable Hilbert space. Given a parameter value µ ∈ D, let
a(·, ·;µ) : X ×X → R be a bilinear form and let F (·;µ) : V → R be a linear functional. As we will
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focus on advection-diffusion equations, that are second order elliptic PDE, the space X will be such
that H1

0 (Ω) ⊂ X ⊂ H1(Ω). Formally, our problem can be written as follows:

find u(µ) ∈ X s.t.

a(u(µ), v;µ) = F (v;µ) ∀v ∈ X.
(1)

The coercivity and continuity assumption on the form a can now be expressed by, respectively:

∃α0 > 0 s.t. α0 ≤ α(µ) = inf
v∈X

a(v, v;µ)

‖v‖2X
∀µ ∈ D (2)

and

+∞ > γ(µ) = sup
v∈X

sup
w∈X

|a(v, w;µ)|
‖v‖X‖w‖X

∀µ ∈ D. (3)

We shall make now an important assumption: the affine dependency of a on the parameter µ.
With affine, we mean that the form can be written in the following way:

a(v, w;µ) =

Qa
∑

q=1

Θq
a(µ)a

q(v, w) ∀µ ∈ D. (4)

Here, Θq
a : D → R, q = 1, . . . , Qa, are smooth functions, while aq : X ×X → R, q = 1, . . . , Qa, are

µ-independent continuous bilinear forms. This assumption turns out to be crucial for performing
the Offline-Online decoupling of the computation [36, 40]. At last we assume that also the functional
F depends “affinely” on the parameter:

F (v;µ) =

QF
∑

q=1

Θq
F (µ)F

q(v) ∀µ ∈ D, (5)

where, also in this case, Θq
F : D → R, q = 1, . . . , QF , are smooth functions, while F q : X → R,

q = 1, . . . , Qa, are continuous linear functionals.
Recalling that XN is a conforming finite element space with N degrees of freedom, we can now

set the truth approximation of the problem (1):

find uN (µ) ∈ XN s.t.

a(uN (µ), vN ;µ) = F (vN ;µ) ∀vN ∈ XN .
(6)

As we are considering the conforming FE case, conditions similar to (2) and (3) are fulfilled by
restriction. More precisely, as regards the coercivity of the restriction of a to XN ×XN , we define:

αN (µ) := inf
vN∈XN

a(vN , vN ;µ)

‖v‖2X
∀µ ∈ D (7)

and, as we are considering a restriction, it easily follows that:

α(µ) ≤ αN (µ) ∀µ ∈ D. (8)

Similarly, for the continuity, we can define

γN (µ) := sup
vN∈XN

sup
wN∈XN

|a(vN , wN ;µ)|
‖vN ‖X‖wN ‖X

∀µ ∈ D. (9)

and it holds that:
γN (µ) ≤ γ(µ) ∀µ ∈ D. (10)
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In this work we will consider as truth approximation space XN a classical finite element space [34].
As we have already said, the parameter µ on which the equation depends can be geometrical,

i.e. the domain of the equation depends on some parameters [19, 24, 26, 27, 28]. This means that,
given µ ∈ D, our problem can be expressed in the following way (that we call original problem):

find uo(µ) ∈ Xo(µ) s.t.

ao(uo(µ), vo;µ) = Fo(vo;µ) ∀vo ∈ Xo(µ)
(11)

whereXo(µ) is a functional space on the original domain Ωo(µ), satisfying the conditionH1
0 (Ωo(µ)) ⊂

Xo(µ) ⊂ H1(Ωo(µ)). Moreover ao(·, ·;µ) and Fo(·;µ) are a bilinear and a linear form, respectively,
on Xo(µ). We assume that the bilinear form ao satisfies conditions (2) and (3).

In order to effectively apply the RB method to the problem (11), we need to map the parametric
domain onto a reference one denoted with Ω, via a suitable parameter-dependent transformation T
that is:

T (·;µ) : Ω → Ωo(µ). (12)

The reference domain can be defined by choosing the original domain corresponding to a particular
value of the parameter. In this work we used only affine mappings [36, 40] that allow to easily
recover the affinity assumptions (4) and (5). In [36, 40] it is possible to find, in particular, a detailed
treatment of the advection-diffusion operators. For the sake of completeness, we have to recall that
it would also be possible to use non-affine transformations (e.g. free-form deformation [24, 27],
radial basis functions [26], transfinite maps [19, 25]) to describe parametrically the domain. Note
that these approaches require the use of some interpolation techniques (e.g. empirical interpolation
[1, 9, 12, 24]), in order to recover the affinity assumptions (4) and (5).

2.2. The reduced basis method: main features

Let us suppose that we are given a problem in the form (1) and its truth approximation (6).
We recall that the dimension of the finite element space XN is N . We introduce now a set of N
suitably chosen parameter values:

S = {µ1, . . . ,µN} (13)

and we can define the reduced basis space:

XN
N = span{uN (µn) | 1 ≤ n ≤ N}1. (14)

Given a value µ ∈ D of the parameter we define the RB solution uNN (µ) such that:

a(uNN (µ), vN ;µ) = F (vN ;µ) ∀vN ∈ XN
N . (15)

Recalling that N ≪ N , we emphasize the fact that to find the RB solution we need just to solve a
N ×N linear system, instead of the N ×N one of the FE method.

The set S is built in the Offline stage, together with the particular solutions which span XN
N ,

using a Greedy algorithm [36, 40]. The latter chooses, at each step, the parameter value which
maximizes a suitable a posteriori error estimator µ 7→ ∆N (µ) such that

|||uN (µ)− uNN (µ)|||µ ≤ ∆N (µ) ∀µ ∈ D2 (16)

and the algorithm stops when a prescribed tolerance ε∗tol is reached, that is when

∆N (µ) ≤ ε∗tol ∀µ ∈ D. (17)

1We do not actually consider this set of particular solution as a basis, but we perform a Gram-Schmidt orthonor-
malization process on it [36, 40].

2Here ||| · |||µ is the norm induced by the symmetric part of the bilinear form a(·, ·;µ). See (50) for the definition.
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The error estimator has to be sharp, in order to avoid an unnecessarily high dimension N of the
reduced basis space. Moreover, it must be computationally inexpensive in order to speed up the
Greedy algorithm (within which it is computed many times) and to allow the certification of the
RB solution during the Online stage. The estimator ∆N is based on the residual and it requires the
computation of a lower bound µ 7→ αLB(µ) for the coercivity constant (2), which can be computed
using the Successive Constraint Method (SCM) [18, 40].

We want to point out that all the expensive computations (i.e. those whose cost depend on the
FE space dimension N ) are performed during the Offline stage.

As already mentioned before, the affinity assumptions (4) and (5) are crucial for the Offline-
Online decoupling, as it is extensively shown in [36, 40]. If the latter assumptions are not fulfilled,
it turns out to be necessary an interpolation strategy (e.g. empirical interpolation [1]) in order to
recover them.

The affinity assumptions allow the storage, during the Offline stage, of the matrices corresponding
to the parameter independent forms aq, q = 1, . . . , Qa, restricted to XN

N . Thanks to this fact, during
the Online stage the assembly of the reduced basis system only consists in a linear combination of
these pre-computed matrices. A similar strategy can also be applied to the computation of the
error estimator [36, 40].

3. Stabilized reduced basis: introduction and numerical tests

The main goal of this section is to design an efficient stabilization procedure for the RB method.
More specifically, we will make a comparison between an Offline-Online stabilized method and an
Offline-only stabilized one, when used to approximate the solution of a parametric advection-diffusion
problem:

−ε(µ)∆u(µ) + β(µ) · ∇u(µ) = 0 on Ωo(µ). (18)

given a parameter value µ ∈ D and suitable Dirichlet, Neumann or mixed boundary conditions.
Here Ωo(µ) is an open subset of R

2, while ε(µ) and β(µ) are functions Ωo(µ) → [0,+∞) and
Ωo(µ) → R

2, respectively.
It is well known, from the general theory of the numerical approximation of advection-diffusion

equations, that the FE solution of such equations can show significant instability phenomena when
the advective term dominates the diffusive one. Let us try to give a more detailed explanation. Let
Th be a triangulation of Ω and let K be an element of Th. We say that a problem is advection
dominated if the following condition holds:

PeK(µ)(x) :=
|β(µ)(x)|hK
2ε(µ)(x)

> 1 ∀x ∈ K ∀µ ∈ D, (19)

where hK is the diameter of K. It is very well known from literature (e.g. [38]) the FE approxima-
tion of advection dominated problems can show significant instability phenomena, e.g. spurious
oscillations near the boundary layers. Several ways have been proposed to fix these problems. We
choose to resort to a strongly consistent stabilization method: the Streamline/Upwind Petrov-
Galerkin (SUPG) [3, 16, 22, 23]. For a detailed presentation of the stabilization method for the FE
approximation of advection dominated problems, we refer to [38].

Let us now explain the basic ideas of the two RB stabilization methods mentioned before. As
regards the Offline-Online stabilized method, the choice of the name reveals that the Galerkin
projections are performed, in both Offline and Online stage, with respect to the SUPG stabilized
bilinear form that is

astab(w
N , vN ;µ) =

∫

Ω

ε(µ)∇wN · ∇vN + (β(µ) · ∇wN )vN

+
∑

K∈Th

δK

∫

K

LµvN
(

hK
|β(µ)|L

µ

SSv
N

) (20)
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with wN , vN chosen in a suitable piecewise polynomial space XN . In (20) Lµ is the parameter
dependent advection-diffusion operator, that is

LµvN = −ε(µ)∆vN + β(µ) · ∇vN , (21)

which can be splitted in its symmetric part Lµ

S and in its skew-symmetric one Lµ

SS [38]

Lµ

Sv
N = −ε(µ)∆vN − 1

2
(divβ(µ))vN

Lµ

SSv = β(µ) · ∇vN +
1

2
(divβ(µ))vN .

(22)

Note that in the case of divergence free advection field β (as in our numerical tests), we have

Lµ

Sv
N = −ε(µ)∆vN , Lµ

SSv = β(µ) · ∇vN . (23)

The bilinear form astab is coercive, so we can apply the already developed theory in order to use the
reduced basis method. The alternative method we want to study - the Offline-only stabilized method
- consists in using the stabilized form (20) only during the Offline stage and then projecting, during
the Online stage, with respect to the standard advection-diffusion bilinear form. The underlying
heuristic idea is to be able to build stabilized basis and avoid the Online stabilization.

As we always need an affine expansion of the bilinear form, as in (4), the advantage of using the
Offline-only stabilized method would be a certain reduction of the computational cost, that could
be significant if the number of affine stabilization terms is very high.

We will start from the study of some quite simple test problems, for which is straightforward to
obtain the affine expansion. The first one, in Section 3.1, is a problem that shows strong instability
effect that can be effectively fixed by the Offline-Online stabilized method. The second test case,
shown in Section 3.2, is a Poiseuille-Graetz problem [20, 36].

From here on, we will write explicitly the FE space dimension N only when it will be necessary.

3.1. A first test case

We begin by studying a problem depending only on one “physical” parameter, actually the
global Péclet number. Let Ω be the unit square in R

2, that is (0, 1)× (0, 1). The domain is sketched
in Figure 1. The problem is the following one:











− 1

µ
∆u(µ) + (1, 1) · ∇u(µ) = 0 in Ω

u(µ) = 0 on Γ1 ∪ Γ2

u(µ) = 1 on Γ3 ∪ Γ4

(24)

with µ > 0. Note that µ is the Péclet number of our problem, so we will be interested in the case
in which µ is high (as µ is now a scalar, in this Section we identify µ and µ).

In order to pursue a finite element approximation, we need to write a suitable weak formulation
of the problem:

find u(µ) ∈ V := {v ∈ H1(Ω) | v|Γ1∪Γ2
= 0, v|Γ3∪Γ4

= 1} s.t.

a(u(µ), v;µ) = 0 ∀v ∈ H1
0 (Ω)

(25)

where

a(w, v;µ) :=

∫

Ω

1

µ
∇w · ∇v + (∂xu+ ∂yu) v. (26)

We know from the general theory of PDEs that the problem (25) admits a unique solution.
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Γ2

Γ3

Γ4

Γ1

(0, 0) (1, 0)

(1, 1)(0, 1)

Ω

Figure 1: First test case: domain. On the bold sides we impose u = 1, while on the rest of the
boundary u = 0.

Let Th be a proper triangulation of Ω. The finite element approximation of the problem turns
out to be:

find uh(µ) ∈ Vh := {vh ∈ P
r(Th) | vh|Γ1∪Γ2

= 0, vh|Γ3∪Γ4
= 1} s.t.

a(uh(µ), v
N ;µ) = 0 ∀vN ∈ XN

(27)

with XN defined as the subspace of Pr(Th) made up by the functions that vanish on the boundary
of Ω. Here P

r(Th) is defined by

P
r(Th) = {vh ∈ H1(Ω) | vh|K ∈ P

r(K),K ∈ Th} (28)

Finally, let us define the function gh as a lifting in P
r(Th) of the Dirichlet boundary condition. We

can now define uN (µ) = uh(µ)− gh, that belongs to XN . Thus we obtain the final FE formulation
of our problem:

find uN (µ) ∈ XN s.t.

a(uN (µ), vN ;µ) = F (vN ;µ) ∀vN ∈ XN .
(29)

where
F (vN ;µ) := −a(gh, vN ;µ). (30)

When the parameter µ takes “small” values we do not have instability problems. More precisely,
we can obtain stable solutions if

PeK :=
µhK√

2
< 1 ∀K ∈ Th. (31)

In Figure 2 the approximated P
1-FE solution obtained for µ = 6 is shown. We can use the RB

method to approximate the solution of the problem (24) for a parameter range from 1 to 10. In
Figure 3 we show some representative RB solutions computed in correspondence of some value of the
parameter µ. The dimension of the RB space is N = 8. In Figure 4 we report the energy norm of
the difference between the RB solution and the FE solution (RB approximation error) as a function
of the parameter µ. More precisely, we show the linear interpolation of the RB approximation
error computed for 50 equispaced parameter values between 1 and 10. The vertical dashed lines
are plotted in correspondence of the parameter values selected by the greedy algorithm [36]. It
is evident that the RB approximation error tends to vanish in correspondence of the parameter
values selected by the greedy algorithm, as expected by definition of RB solution to guarantee the
consistency of the method.

A more interesting case is when the Péclet number assumes higher values, thus fulfilling
condition (19). In Figure 5 the solution obtained by using a non-stabilized FE approximation with
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Figure 2: First test case, low
Péclet number. FE solution
for µ = 6.

(a) µ = 2 (b) µ = 6

Figure 3: First test case, low Péclet number. Representative
RB solutions for different values of the parameter.
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Figure 4: First test case, low Péclet number. RB approximation error as a function of the parameter.

µ = 600 is represented. Even in this case we can perform a RB approximation of the solution, but
the RB solutions reflect all the instability problems of the FE solution, as we can see in Figure
6. For this simple case, if we let the parameter range from 100 to 1000 the greedy algorithm
converges and the energy norm of the difference between the RB solution and the FE solution
behaves as for lower values of the Péclet number, as we can see in Figure 7, but this procedure
would lead us to wrong physical results. This happens because the target of the RB approach is
to approximate the exact continuous solution of the problem by trying to recover the FE solution
using a significantly lower number of degrees of freedom. The point is now that the FE solution is
not a good approximation of the exact one.

A possible way to fix this instability problems could be to use some stabilization methods. We
chose to use the SUPG stabilization method. First of all, we have to impose the stabilization
correction to the weak formulation (27). We thus define the following bilinear form:

s(wh, vh;µ) :=
∑

K∈Th

δK

∫

K

(

− 1

µ
∆wh + (1, 1) · ∇wh

)(

hK√
2
(1, 1) · ∇vh

)

(32)

with wh, vh ∈ P
r(Th). We chose, as before, to use P

1 finite elements, that is r = 1. As piecewise
linear functions have null Laplacian, the latter form reduces to:

s(wh, vh;µ) =
∑

K∈Th

δKhK√
2

∫

K

(∂xwh + ∂ywh)(∂xvh + ∂yvh) (33)

8



Figure 5: First test case, high
Péclet number. FE solution
for µ = 600 (zoom on [0.5, 1]×
[0.5, 1]).

(a) µ = 400 (b) µ = 600

Figure 6: First test case, high Péclet number. representative
RB solutions for different values of the parameter (zoom on
[0.5, 1]× [0.5, 1]).
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Figure 7: First test case, high Péclet number. RB approximation error expressed as a function of
the parameter

again with wh, vh ∈ P
1(T ). We can now define the final formulation of the stabilized FE problem:

find usN (µ) ∈ XN s.t.

a(usN (µ), vN ;µ) + s(usN (µ), vN ;µ) = F (vN ;µ) + F s(vN ;µ) ∀v ∈ XN .
(34)

where F is the same as in (30) and F s is

F s(vN ) := −s(gh, vN ). (35)

We finally define ush(µ) = usN (µ)+gh, that is the FE stabilized solution which satisfies the Dirichlet
boundary conditions. Let us call astab the bilinear form and fstab the right-hand side, that is

astab = a+ s,

Fstab = F + F s.
(36)

It is straightforward to prove that, for our choice of polynomial approximation space, we do not
need to fulfil any requirement on the weights δK to guarantee the stability of the discrete problem
(34) with respect to the SUPG norm [38]:

‖vN ‖2SUPG,µ = |||vN |||2
µ
+
∑

K∈Th

δK

(

LSSv
N ,

hK
|β(µ)|L

µ

SSv
N

)

K

∀vN ∈ V N , ∀µ ∈ D,
(37)
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simply because this is actually the norm induced by astab(·, ·;µ) on V N . In (37) ||| · |||µ is the norm
induced by the symmetric part of the advection-diffusion operator that is

|||v|||2
µ
=

∫

Ωo(µ)

|∇v|2, ∀v ∈ H1(Ωo(µ)), (38)

while Lµ

SS is the skew-symmetric part of the advection-diffusion operator, defined in (22). We then
set δK = 1 for each element K ∈ Th. In Figure 8 is shown a SUPG stabilized FE solution for
µ = 600.

Figure 8: First test case, high Péclet number. SUPG FE solution for µ = 600 (zoom on [0.5, 1]×
[0.5, 1]).

Now we can try the two different approaches described before: the Offline-Online stabilized and
the Offline-only stabilized methods. As regards the first one, we have just to perform the whole
RB standard method simply using astab instead of a. The Offline-only stabilized approach consists
in using the form astab during the Offline stage, in order to obtain stable reduced basis, and to
perform the Online Galerkin projection with respect to the form a. Formally, denoted by XN

N the
space spanned by the reduced basis, the Offline-Online stabilized solution usN (µ) ∈ XN

N satisfies

astab(u
s
N (µ), vN ;µ) = Fstab(vN ;µ) ∀ vN ∈ XN

N (39)

while the Offline-only stabilized solution uN (µ) ∈ XN
N is such that

a(uN (µ), vN ;µ) = F (vN ;µ) ∀ v ∈ XN
N . (40)

By using the norm induced by astab to carry out the Offline stage, we are actually taking
the SUPG stabilized FE solution usN (µ) as the “exact” one. So it makes sense to measure the
performance of the method by evaluating the difference between the RB solution and the stabilized
FE one.

The Offline-Online stabilized method, as expected, produces stable RB solutions, as shown
in Figure 9, and the actual error, with respect to the stabilized FE solution, is smaller than the
tolerance guaranteed by the greedy algorithm (ε∗tol = 10−5), as we can see in Figure 11. On the
contrary, the behaviour of the Offline-only stabilized approach is very unsatisfactory. As we can see
in Figure 10, even though the reduced basis are stable, the Offline-only stabilized RB solutions
show large oscillations. We have actually shown that a Galerkin projection on a subspace spanned
by stable functions does not guarantee a stable solution for large values of the Péclet number.

In order to better understand which are the causes of the instability of the Offline-only stabilized
method, we try to use a locally refined mesh to build the reduced basis, instead of the SUPG
stabilization method, during the Offline stage. In this case, “locally” means that we refine the
mesh in the area in which we expect that the boundary layer will arise. Acting in this way, we
can obtain Offline stable reduced basis without resorting to any stabilization method, because the
condition (31) is now satisfied, at least where we previously had instability problems. Obviously, by

10



(a) µ = 400 (b) µ = 600

Figure 9: First test case, high Péclet number. Representative Offline-Online stabilized RB solutions
for different values of the parameter (zoom on [0.5, 1]× [0.5, 1]).

(a) µ = 400 (b) µ = 600

Figure 10: First test case, high Péclet number. Representative Offline-only stabilized RB solutions
for different values of the parameter (zoom on [0.5, 1]× [0.5, 1]).

increasing the number of degrees of freedom, we quite increase the computational cost. The Offline
algorithm, performed using the refined mesh and the original bilinear form, produces 14 basis and it
takes 711 seconds while the Offline algorithm, carried out with the coarser mesh and the stabilized
bilinear form, takes only 114 seconds and builds 8 basis. The RB solutions obtained for the same
parameter range as before (Figure 12) do not show instability phenomena, so an explanation of the
behaviour of the Offline-only stabilized method tested before has to be found analysing the use of
different bilinear forms in the two stages of the RB method, as we will do further. The distance
in energy norm3 between the FE solution and the RB one is showed in Figure 13 (we recall that
ε∗tol = 10−5). Comparing Figure 12 and Figure 9 we can also see how the stabilization method
tends to “smooth” the boundary layer.

Before going on, in Table 1, we report informations about the computations performed in this
section. In all the numerical tests we used a tolerance ε∗tol = 10−5 on the greedy algorithm. With
Toff and Ton we mean the time elapsed during the Offline and Online stage respectively. We can
underline how a stabilization technique performs computationally better than a local refinement
technique.

3i.e. the norm ||| · |||µ induced by the symmetric part of the original advection-diffusion bilinear form (see (50)).
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Figure 11: First test case, high Péclet number. comparison of the RB approximation error obtained
for the two different stabilization strategies; here the error is expressed as a function of the parameter.

Figure 12: First test case, high Péclet number. RB solution with locally refined mesh for µ = 400
(zoom on [0.8, 1]× [0.8, 1]).

D N Off. stab. TOff (s) N On. stab. TOn (s)

[100, 1000] 2605 yes 114 8
no 1.78 · 10−3

yes 1.95 · 10−3

[1, 10] 2605 no 86 13 no 1.83 · 10−3

[100, 1000] 2605 no 98 14 no 1.81 · 10−3

[100, 1000] 21313 no 711 14 no 1.79 · 10−3

Table 1: First test case. Numerical tests
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Figure 13: First test case, high Péclet number. RB approximation error for locally refined mesh,
expressed as a function of the parameter.
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3.2. A second test case: Poiseuille-Graetz flow

We now focus on a different situation, a Graetz problem [11, 20, 36, 42], in which we have two
parameters: a physical one (the Péclet number) and a geometrical one (the length of the domain).
The Graetz problem deals with steady forced heat convection (advective phenomenon) combined
with heat conduction (diffusive phenomenon) in a duct with walls at different temperature. Let us
define µ = (µ1, µ2) where both µ1 and µ2 are positive real numbers. Let Ωo(µ) be the rectangle
(0, 1 + µ2)× (0, 1) in R

2. The domain is shown in Figure 14.
The problem is to find a solution u(µ), representing the temperature distribution, such that:



























− 1

µ1
∆u(µ) + 4 y(1− y)∂xu(µ) = 0 in Ωo(µ)

u(µ) = 0 on Γo 1(µ) ∪ Γo 2(µ) ∪ Γo 6(µ)
u(µ) = 1 on Γo 3(µ) ∪ Γo 5(µ)
∂u

∂ν
= 0 on Γo 4(µ).

(41)

In order to exploit a RB approach, we need to set a reference domain Ω that we choose as
Ω = (0, 2)×(0, 1), that is the original domain Ωo(µ) corresponding to µ2 = 1. It is useful to subdivide
the reference domain into subdomains, so we define Ω1 = (0, 1) × (0, 1) and Ω2 = (1, 2) × (0, 1).
Now we need the affine transformation that maps the reference domain into the original one [36, 40],
so we define:

T 1(µ) : Ω1 → R
2,

T 1

((

x
y

)

;µ

)

=

(

x
y

)

,
(42)

that is the identity map, and

T 2(µ) : Ω1 → R
2,

T 2

((

x
y

)

;µ

)

= G
2

(

x
y

)

−
(

µ2

0

)

,
(43)

where

G
2 =

(

µ2 0
0 1

)

.

If we glue together these two transformations, for each µ ∈ D we actually define a transformation
T (µ) of the whole domain Ω. Note that T (µ) is a continuous one-to-one transformation.

Γo,1

Γo,2 Γo,3

Γo,4

Γo,5Γo,6

(0, 0) (1, 0)

(1, 1)(0, 1)

(1 + µ2, 0)

(1 + µ2, 1)

Ωo,1 Ωo,2

Figure 14: Poiseuille-Graetz test case problem: parametrized domain. Boundary conditions: u = 1
on the bold sides, homogeneous Neumann on the dashed side and homogeneous Dirichlet on the
remaining boundary sides.
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The weak formulation of the Poiseuille-Graetz problem is the following one:

find uo(µ) ∈ Vo := {vo ∈ H1(Ωo) | v|Γo 3(µ)∪Γo 5(µ) = 1, v|Γo 1(µ)∪Γo 2(µ)∪Γo 6(µ) = 0} s.t.

a(uo(µ), vo;µ) = 0 ∀v ∈ H1
0 (Ω),

(44)

where:

a(wo, vo;µ) :=

∫

Ωo(µ)

1

µ1
∇w · ∇v + 4 y(1− y)∂xu v. (45)

We set the standard FE problem, exactly as we did in (27), introducing the stabilization term.
To do so, let us define a mesh Th on the reference domain Ω and let us call T 1

h and T 2
h the restrictions

Th to Ω1 and Ω2, respectively. We can also define a mesh on Ωo(µ) just by taking the image of Th
through the transformation T (·,µ), that is:

Th,o(µ) = {Ko(µ) = T (K;µ) | K ∈ Th}.

We can now write the stabilization term, for the P
1-FE case, to be added to the left-hand side:

s(wh, vh;µ) :=
∑

Ko(µ)∈Th,o(µ)

δKo(µ)

∫

Ko(µ)

(4 y(1− y)∂xwh)
(

hKo(µ)∂xvh
)

. (46)

Now we have to set the problem onto the reference domain, thus our problem turns out to be:

find u(µ) ∈ V := {vh ∈ P
1(Ω) | vh|Γo 3(µ)∪Γo 5(µ) = 1, vh|Γo 1(µ)∪Γo 2(µ)∪Γo 6(µ) = 0} s.t.

a(uh(µ), v
N ;µ) + s(uh(µ), v

N ;µ) = 0 ∀vN ∈ XN
(47)

where XN is defined as in the previous section, a is:

a(wh, vh;µ) :=

∫

Ω1

1

µ1
∇wh · ∇vh + 4 y(1− y)∂xwh vh

+

∫

Ω2

1

µ1µ2
∂xwh∂yvh +

µ2

µ1
∂xwh∂yvh

+ 4µ2 y(1− y)∂xwh vh

(48)

and s is:

s(wh, vh;µ) :=
∑

K∈T 1

h

hK

∫

K

(4 y(1− y)∂xwx) ∂xvh

+
∑

K∈T 2

h

hK√
µ
2

∫

K

(4 y(1− y)∂xwx) ∂xvh.

(49)

By introducing a lifting of the Dirichlet boundary condition we can obtain the stabilized FE
formulation (34). We point out that for K ∈ T 2

h we are choosing δKo(µ) such that δKo(µ) hKo(µ) =
hK

√
µ2. The underlying idea is that we would like to choose δKo(µ) = 1 but we have to consider

how the element diameter transforms, that is hKo(µ) ≈ hK
√

J(µ) = hK
√
µ2, where J(µ) is the

Jacobian of the transformation T (µ). This rescaling is done mainly for preserving the convergence
rate of the SUPG method. We need to make an assumption like this also because it would make no
sense, in an RB point of view, to compute Online every exact value of hKo(µ). Indeed, the Online
stage of the RB method actually is independent of the triangulation Th.

As pointed out in [10], if the advection dominated condition (19) is not fulfilled for all K ∈ T we
locally lose even the hr convergence rate of the standard FE method. A possible way to overcome
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this trouble is to act on the weights δK , distinguishing between the elements for which PeK > 1
and PeK ≤ 1. We want to observe that, unfortunately, by using a weighting that depends on both
parameter and element size we lose the affinity assumption (4) on the bilinear form, or better, we
lose that assumption with a number of affine terms Qa independent of N . So, if we are facing
problems in which the advection dominated condition (19) is not fulfilled for all K ∈ Th and we
want to rigorously recover the convergence order of the FE method, in order to resort to a weighting
δ = δ(x,µ) (as proposed in [10]) we need to exploit some interpolation techniques involving the
empirical interpolation [1]4. In this case it would be also worth to check if it were possible to
define a weighting that does not depend on each hK , but on the mesh size h = maxK∈Th

hk, under
suitable regularity assumptions [23].

We would like also to recall that the convergence performances of the stabilization method
depend on the regularity properties of the mesh. So, as the meshes Th,o(µ) we are actually using
to stabilize on the original domains are the image through T of the triangulation defined on the
reference domain, we should guarantee that the transformation T does not worsen the properties of
the reference triangulation. In our numerical tests the reference domain will be the one corresponding
to µ2 = 1 and we will let the parameter range from 0.5 to 4, so we will not have an excessive
deformation. We will also use a quite coarse mesh (mesh size h = 0.06) and high values for µ1 (from
10000 to 20000) in order to have significant instability problems. The point is that the boundary
layer arises in an area in which the norm of the advection field (an thus the value of the local
Péclet number) is relatively small. In Figure 15 we show the local Péclet number computed on
the reference domain (µ2 = 1) in correspondence of the quadrature point used to compute the
FE matrices, and thus the RB ones. We would like to point out that even if the advection field
vanishes as we get close to the boundary, the Péclet number that is actually considered is just the
one computed in the quadrature points. The lowest value assumed by the local Péclet number is
then 1.79, while the highest is 307.

Figure 15: Poiseuille-Graetz test case. Local Péclet number computed in the quadrature points of
the reference domain (µ2 = 1.)

In Figures 16 and 17 we show some solutions obtained respectively by Offline-Online stabilized
method and Offline-only stabilized method.

Finally, in Figure 18 we show the error curves of the two methods. As in the previous test-case,
we can see that only the Offline-Online stabilized produces satisfactory results, even if now the
Offline-only stabilized method has slightly better performances than in the previous test case. Here
we used a tolerance5 on the greedy algorithm ε∗tol = 10−3.

In Table 2, we report some informations about the numerical tests performed using the parameter
space D = [10000, 20000]× [0.5, 4]. The tolerance for the greedy algorithm is ε∗tol = 10−3.

4We have to remark that the weighting proposed in [10] is discontinuous in both x and µ even if the coefficients ε

and β are smooth.
5The tolerance is on the stabilized energy norm, that is greater than the non-stabilized one (see (50) for the

definitions).
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(a) µ1 = 12500

(b) µ1 = 17500

Figure 16: Poiseuille-Graetz test case. Rep-
resentative Offline-Online stabilized RB so-
lutions for µ2 = 3 and several values of µ1.

(a) µ1 = 12500

(b) µ1 = 17500

Figure 17: Poiseuille-Graetz test case. Repre-
sentative Offline-only stabilized RB solutions
for µ2 = 3 and several values of µ1.
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(a) µ2 = 2.5
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(b) µ2 = 3.5

Figure 18: Poiseuille-Graetz test case. Comparison of the RB approximation error obtained for the
two different stabilization strategies; here the error is expressed as a function of the parameter µ1,
given a value of µ2.

N Off. stab. TOff (s) N On. stab. TOn (s)

1309 yes 168 15
no 0.97 · 10−3

yes 1.04 · 10−3

1309 no 341 22 no 1.81 · 10−3

Table 2: Poiseuille-Graetz test case. Numerical tests

3.3. Discussions on the results

Observing the results obtained up to now, it seems that the best way to perform stabilization
is the Offline-Online stabilized one. But let us try to understand why the Offline-only stabilized
option has a bad behaviour.

Let us introduce some notation. Let us call energy norm the norm on H1
0 (Ω(µ)) induced by the

symmetric part of the advection diffusion operator a and stabilized energy norm the one induced by

16



the symmetric part of astab. In symbols:

||| · |||µ =
√

asym(·, ·;µ)

||| · |||µ,stab =
√

asymstab(·, ·;µ).
(50)

First of all we have to note that by performing the Offline stage using the stabilized operator
and the standard a posteriori error estimators, we are actually assuring that the “reliable” RB
approximation is the Offline-Online stabilized one. This is because the Greedy algorithm [36, 40]
(performed using the stabilized form astab) guarantees that

|||usN (µ)− usN (µ)|||µ,stab ≤ ε∗tol ∀µ ∈ D6, (51)

so the Offline procedure actually allows us to control only the error committed by the Offline-Online
stabilized method.

Thus we have to find some estimates for the difference in norm between uN (µ) and usN (µ).
We can try by splitting the difference in this way:

|||uN (µ)− usN (µ)|||µ ≤ |||uN (µ)− usN (µ)|||µ + |||usN (µ)− usN (µ)|||µ. (52)

Of course, it holds that

|||usN (µ)− usN (µ)|||µ ≤ |||usN (µ)− usN (µ)|||µ,stab ≤ ε∗tol, (53)

therefore we have to provide an estimate of the distance with respect to the energy norm between
uN (µ) and usN (µ). To do so we can simply start from the definition:

|||uN (µ)− usN (µ)|||2
µ
=a(uN (µ)− usN (µ), uN (µ)− usN (µ);µ)

=− F s(uN (µ)− usN (µ);µ) + s(usN (µ), uN (µ)− usN (µ);µ)

=s(usN (µ) + gh, uN (µ)− usN (µ);µ),

(54)

where gh is the lifting of the Dirichlet boundary data. For the SUPG stabilization with P
1 elements,

the following bound holds:

|s(usN (µ) + gh, uN (µ)− usN (µ))| ≤ hmax(µ) ‖β(µ) · ∇(usN (µ) + gh)‖L2(Ωo(µ))

·
∥

∥

∥

∥

β(µ)

|β(µ)| · ∇(uN (µ)− usN (µ))

∥

∥

∥

∥

L2(Ωo(µ))

≤ hmax(µ) ‖β(µ) · ∇(usN (µ) + gh)‖L2(Ωo(µ))

· |uN (µ)− usN (µ)|H1

0
(Ωo(µ)).

where hmax(µ) = maxK∈Th
hK
√

J(T (·,µ)). As the energy norm is equivalent to | · |H1

0
, we have

that:
|v|H1

0
(Ωo(µ)) ≤ C(µ) |||v|||µ ∀v ∈ H1

0 (Ωo(µ)). (55)

We can also bound the L2-norm of the streamline derivative of the Offline-Online stabilized RB
solution with that of the FE stabilized solution:

‖β(µ) · ∇(usN (µ) + gh)‖L2(Ωo(µ)) ≤ ‖β(µ) · ∇(ush(µ))‖L2(Ωo(µ))

+ ‖β(µ) · ∇(usN (µ)− usN (µ))‖L2(Ωo(µ))

≤ ‖β(µ) · ∇(ush(µ))‖L2(Ωo(µ)) + C(µ)‖β(µ)‖L∞(Ωo(µ))ε
∗
tol.

(56)

6More precisely, we can guarantee that the inequality holds for all µ in Ξtrain, that is the subset of D in which
the Greedy algorithm chooses the parameter values corresponding to the reduced basis [36, 40].
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We recall that us
h(µ) = usN (µ) + gh.

We note that this argument allows us to prove the inequalities shown in the following proposition,
that are upper bound for the distance with respect to the energy norm between uN (µ) and usN (µ).
The first one is a proper a priori upper bound, while the second one is a sharper bound, but not
properly a priori.

Proposition 3.1 (Error bounds for the Offline-only stabilized method). The following inequalities
hold:

|||uN (µ)− usN (µ)|||µ ≤hmax(µ)C(µ)‖β(µ) · ∇(us
h(µ))‖L2(Ωo(µ))

+
(

1 + hmax(µ)C(µ)2‖β(µ)‖L∞(Ωo(µ))

)

ε∗tol.
(57)

|||uN (µ)− usN (µ)|||µ ≤ hmax(µ)C(µ)‖β(µ) · ∇(us
N (µ) + gh)‖L2(Ωo(µ))

+ |||us
N (µ)− usN (µ)|||µ.

(58)

Remark 3.1. We point out that the bound in (57) depends on the L2 norm of the streamline
derivative of the stabilized solution (with the non homogeneous Dirichlet boundary conditions).
This means that the Offline-only stabilized method has better performances when applied to problems
in which the strongest variations occur along a direction orthogonal to the advection field. This
could happen in the cases in which the boundary layers are parallel to the advection field, e.g. the
Poiseuille-Graetz problem. The “improvement” of the approximation is confirmed by comparing the
numerical results shown in Figures 11 and 18.

Remark 3.2. A very similar computation shows that the error |||uN (µ)− us
N (µ)|||µ is actually the

same as |||uN (µ)− usN (µ)|||µ (just drop N in the previous computaions).

We performed some numerical tests for the bound in (58). The results are shown in Figures 19
and 20. Concerning the first test case we set:

C(µ) =
√
µ

and for the Poiseuille-Graetz problem:

C(µ) =
√
µ1.

With these choices, (55) is actually an equality.
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Upper bound

Figure 19: First test case. Upper bound (58) compared to the true error

We can see that the bound is sharp in the first test case, while in the Graetz problem the bound
tends to overestimate the real error by two orders of magnitude.
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(b) µ2 = 3.5

Figure 20: Poiseuille-Graetz test case. Upper bound (58) compared to the true error.

The reasonable sharpness of the error bound obtained for at least one test case leads us to state
that the Offline-only stabilized approach is not a good approximation method.

Even if the Offline-only stabilized is strongly consistent with respect to the continuous problem,
we have to note that we actually have a “consistency” problem caused by the use of different bilinear
forms in the two stages. One problem is that the Offline stage, as described in [36, 40], is tailored
to minimize the error between the Offline-Online stabilized solution and the stabilized FE one.
This implies that, during the Offline stage, we are not controlling the approximation error of the
Offline-only stabilized solution, causing the “inconsistency”, quantified by the streamline derivative
term in (57) and (58).

3.3.1. Effectivity of the a posteriori error estimator for the Offline-Online stabilized method

In order to further assess the performances of the Offline-Online stabilized method, we want to
study the effectivity of the error estimators for the Online stage.

We recall that the Offline-Online stabilized method is a particular case of the RB method for
elliptic problems, in which we consider as bilinear form the stabilized one. So we can exploit the
already existing theory for the a posteriori estimation of the error. We can therefore define the
error estimator µ 7→ ∆N,stab(µ) such that

|||us
N (µ)− usN (µ)|||µ,stab ≤ ∆N,stab(µ) ∀µ ∈ D. (59)

Following [36, 40], we define the effectivity of the error estimator ∆N,stab as:

ηN,stab(µ) =
∆N,stab(µ)

|||uN (µ)− uN
N (µ)|||µ,stab

∀µ ∈ D. (60)

It can be proven [40] that:

1 ≤ ηN,stab(µ) ≤
√

γstab(µ)

αN
LB,stab(µ)

∀µ ∈ D, (61)

where γstab and αN
LB,stab are the continuity constant and the lower bound of the coercivity constant,

respectively, of the form astab.
In our numerical tests, we considered a set Ξtest ⊂ D of about 100 elements and then we

computed the average efficiency

ηavN,stab =
1

|Ξtest|
∑

µ∈Ξtest

ηN,stab(µ). (62)

19



In Table 3 we show the results obtained for both the first test case and the Poiseuille-Graetz
problem. We can observe that the effectivity is small and this means that the error estimator does
not provide unnecessary overly conservative estimates.

Test case |Ξtest| ηavN,stab

First test case 101 8.37
Poiseuille-Graetz 126 6.59

Table 3: First test case and Poiseuille-Graetz test case. Average effectivities in numerical tests

4. Stabilized reduced basis: higher order polynomial approximation

In the previous Section our aim was to study a good stabilization strategy for the RB method.
It turned out that the Offline-Online method seems to be a good choice.

In this Section we want to test our stabilization method also for higher order polynomial
approximation spaces, i.e. piecewise quadratic polynomials. To do so, we introduce a different test
problem, also used in [3]. Let Ω be the unit square in R

2, as sketched in Figure 21, and let us define
µ = (µ1, µ2), where µ1, µ2 ∈ R. The problem is the following one:











− 1

µ1
∆u(µ) + (cosµ2, sinµ2) · ∇u(µ) = 0 in Ω

u(µ) = 1 on Γ1 ∪ Γ2

u(µ) = 0 on Γ3 ∪ Γ4 ∪ Γ5.

(63)

Γ2

Γ3

Γ4

Γ5

Γ1

(0, 0) (1, 0)

(1, 1)(0, 1)

(0, 1/5)
Ω

Figure 21: Higher order polynomial approximation. Domain of the problem (63). On the bold sides
we impose u = 1, while on the other ones u = 0.

Let us note that µ1 represents the Péclet number of the advection-diffusion problem, while µ2 is
the angle between the x axis and the direction of the constant advection field. The bilinear form
associated to the problem is:

a(w, v;µ) =

∫

Ω

1

µ1
∇w · ∇v + (cosµ2 ∂xw + sinµ2 ∂yw)v. (64)

We introduce again a triangulation Th on the domain Ω and we consider P
r(Th), that is the

piecewise polynomial interpolation space of order r (r = 1, 2). Now we can define, for r = 1, 2, our
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stabilization term:

sr(wh, vh;µ) =−
(

∑

K∈Th

δrK

∫

K

1

µ1
∆wh (cosµ2, sinµ2) · ∇vh

)r−1

+
∑

K∈Th

δrK

∫

K

(cosµ2, sinµ2) · ∇wh (cosµ2, sinµ2) · ∇vh,
(65)

in which the value of the weights δrK is to be assigned.
Acting as we did in Section 3, we define grh ∈ P

r(Th) a lifting of the boundary conditions and
then we can obtain our final FE approximation problem:

find usNr (µ) ∈ XNr s.t.

arstab(u
sNr (µ), vN ;µ) = F r

stab(v
Nr ;µ) ∀v ∈ XNr ,

(66)

where XNr , arstab and F r
stab are defined as in (34) and (36) (the only difference is that now there is

the dependency on the polynomial degree r).
As regards the weights δrK , we made different choice for the two different polynomial order. As

we saw in Section 3, if r = 1 we do not have any restriction on the weights, so we choose

δ1K = 1 ∀K ∈ Th. (67)

On the contrary, if r = 2, we recall that the weights δ2K have to be sufficiently small to guarantee
the stability with respect to the SUPG norm (37), as shown in [10, 38]:

a(vN , vN ;µ) + s(vN , vN ;µ) ≥ 1

2
‖vN ‖SUPG,µ, (68)

that is

|||vN |||µ,stab ≥
1

2
‖vN ‖SUPG,µ (69)

for all vN ∈ XN .
In particular, to set properly the weights, we follow the choice proposed in [10]. First of all we

need to slightly redefine the “element size” hK , as suggested in [15]:

h2K =
4AK

√

3
∑3

i=1 |xi,K − xc,K |2
∀K ∈ Th, (70)

where, for each element K ∈ Th, AK is the area, xc,K is the barycentre and xi,K , for i = 1, 2, 3, is
the i-th vertex. We also redefine, for any element K ∈ Th, the local Péclet number for the P

2-FE
approximation as:

PeK(µ) =
|β(µ)|hK
C2 ε(µ)

∀µ ∈ D, (71)

where C2 is the constant of the inverse inequality

∑

K∈Th

h2K

∫

K

|∆vN |2 ≤ C2‖∇vN ‖2L2(Ω) ∀vN ∈ XN ⊂ P
2(Th). (72)

It can be proven that, by defining the element size as in (70), the best value for the constant C2 is
48 [15]. Finally, we set:

δ2K =
1

2
∀K ∈ Th. (73)
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r µ1 ∈ µ2 ∈ Toff (s) SCM iter N ηavN,stab TOn(s)

1 {104} [π6 ,
π
3 ] 460 5 20 18.24 1.74 · 10−3

1 {105} [π6 ,
π
3 ] 623 7 21 53.61 1.75 · 10−3

1 [104, 105] [π6 ,
π
3 ] 688 8 36 75.48 1.85 · 10−3

1 [104, 105] {π
4 } 138 2 3 31.30 1.49 · 10−3

2 {104} [π6 ,
π
3 ] 856 7 28 74.94 1.94 · 10−3

2 {105} [π6 ,
π
3 ] 3856 19 29 172.44 2.01 · 10−3

2 [104, 105] [π6 ,
π
3 ] 3067 28 66 154.63 9.03 · 10−3

2 [104, 105] {π
4 } 277 2 4 58.07 1.74 · 10−3

Table 4: Higher order polynomial approximation. Numerical tests

We did different choices also for the tolerance ε∗tol of the greedy algorithm. We recall, at first,
that for stabilized P

1-FE approximation the error scales as h
3

2 , whereas for stabilized P
2-FE it

scales as h
5

2 [10, 38]. Here h stands for the mesh size

h = max
K∈Th

hK (74)

using, as hK , either the element diameter or the quantity defined in (70) depending on the polynomial
order of the approximation we are using (P1-FE and P

2-FE, respectively). We note then that the
total error between the exact (continuous) solution and the stabilized RB one is

‖u(µ)− usN (µ)‖SUPG,µ ≤ ‖u(µ)− usN (µ)‖SUPG,µ + 2 |||usN (µ)− usN (µ)|||µ,stab

≤ C(u(µ),µ)hk+
1

2 + 2 ε∗tol.
(75)

Therefore we choose a value for the tolerance ε∗tol of the same order of magnitude as the FE
approximation error. As in our numerical experiments we chose a mesh size h = 0.03 for the P

1

approximation and h = 0.06 for the P
2 one, ε∗tol was set equal to 10−3 and 10−4 respectively. In

both cases, the truth space dimension is N = 2605.
In Table 4 we report some data about the tests we have performed, such as the Offline

computational time, Toff , and the average effectivity of the a posteriori error estimator, ηavN,stab,
computed on a set Ξtest with 100 elements.

Remark 4.1. We observe that, when building the reduced basis, the variations of the advection
field direction have more influence on the dimension N of the reduced basis than the variations of
the Péclet number. Indeed, if we keep the advection field constant and we let vary only the Péclet
number, the solution shows only variations of the “thickness” of the layers, whose position inside
the domain does not change. On the contrary, if we let the advection field change, the position
of the internal layer changes too. The reduced basis has then to be able to capture a parameter
dependent layer and so, recalling that the reduced solution is a linear combination of the reduced
basis functions, it is reasonable that the dimension N increases.

We note also that the Offline time is often much higher for the P
2 approximation. This is

because of the SCM, which needs more iterations in the P
2 case than in the P

1 one to provide
stability factors approximations [18].

In Figure 22 and 23 we show a visual comparison among the tested methods. The RB
approximations shown in this figures are obtained using a parameter space D = {105} × [π6 ,

π
3 ]. We

note that the internal layer, whose position in the domain is parameter dependent, is well described
in the RB solution.
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(a) P
1-RB solution.

(b) P
1-FE solution

Figure 22: P
1-RB and P

1-FE approximated solution of (63), with µ = (105, π4 ) and mesh size
h = 0.03 (N = 2605).

(a) P
2-RB solution

(b) P
2-FE solution

Figure 23: P
2-RB and P

2-FE approximated solution of (63), with µ = (105, π4 ) and mesh size
h = 0.06 (N = 2605).
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5. Stabilized reduced basis method for time-dependent problems

In this section we want to apply to time dependent advection-diffusion problems the stabilized
RB method introduced for steady problems in the previous sections. The RB method for time
dependent problem has been already studied in several works, e.g. [11, 36, 39, 42], but, as regards
the advection diffusion equations, we can only find applications with low Péclet number. In this
work we are going to test a method that can be effectively applied to advection-diffusion problems
with high Péclet number.

In Section 5.1 we introduce the general RB setting for parabolic problems, while in Section
5.2 we briefly recall the SUPG stabilization method for parabolic problems [2, 3, 23]. Finally, in
Section 5.3, we show and discuss some numerical tests.

5.1. Reduced basis method for linear parabolic equations

As in Section 2.1, we define the parameter domain D as a closed subset of RP and we call µ any
general P -tuple belonging to D. Again, let Ω be a bounded open subset of Rd (d = 1, 2, 3) with
regular boundary ∂Ω and let X be a functional space such that H1

0 (Ω) ⊂ X ⊂ H1(Ω). For each
admissible value of the parameter, i.e. for each µ ∈ D, we define the continuous bilinear forms

a(·, ·;µ) : X ×X → R,

m(·, ·;µ) : L2(Ω)× L2(Ω) → R.
(76)

We suppose that the form a satisfies the coercivity and affinity assumptions (2) and (4), respectively.
We assume also that the mass form m satisfies an affinity assumption like the following one:

m(v, w;µ) =

Qm
∑

q=1

Θm
q (µ)mq(v, w) (77)

where, like in (4), Θm
q : D → R, q = 1, . . . , Qm, are smooth functions whereas mq : L2(Ω)×L2(Ω) →

R, q = 1, . . . , Qm, are continuous µ-independent bilinear forms. Finally, for each µ ∈ D, we define
the right-hand side continuous linear form F (·;µ) : X → R which satisfies the affine assumption
(5). Let us finally denote our time domain with I = [0, T ], where T is the final time.

We can now define our continuous problem:

find u(·;µ) ∈ C0(I;L2(Ω)) ∩ L2(I;X) s.t.

m(∂tu(t;µ), v) + a(u(t;µ), v;µ) = g(t)F (v;µ) ∀v ∈ X, ∀t ∈ I

given the initial value u(0;µ) = u0 ∈ L2(Ω).

(78)

where g : I → R is a control function such that g ∈ L2(I). We want now to explain in which
situations we need such a control function. Let us suppose that the problem we are trying to
approximate is of the form:







∂tu(µ) + Lu(µ) = h in Ω
u(·, t;µ) = 0 on ∂Ω, ∀t ∈ I

+ initial conditions
(79)

where L is a differential operator and h ∈ L2(Ω× I). If we suppose that h(x, t) = g(t)f(x) for each
(x, t) ∈ Ω × I, with g ∈ L2(I) and f ∈ L2(Ω), we obtain a weak formulation like (78). Another
situation can be the following one:







∂tu(µ) + Lu(µ) = 0 in Ω
u(·, t;µ) = h(·, t) on ∂Ω, ∀t ∈ I

+ initial conditions
(80)
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in which L is again a differential operator, while h is a sufficiently regular function defined on the
boundary ∂Ω. We can assume for example that h(x, t) = g(t)f(x) for each (x, t) ∈ Ω × I, with
g ∈ L2(I) and f ∈ H

1

2 (∂Ω). Denoting with f̃ a H1(Ω) lifting of the boundary datum f , we obtain
a weak formulation like (78) in which the functional F is given by:

F (v;µ) = −a(f̃ , v;µ) ∀v ∈ X, (81)

where a is the bilinear form associated with the differential operator L.

5.1.1. Discretization and RB formulation

To discretize the time-dependent problem (78) we follow the approach used in [13, 32, 36] that
is to use finite differences in time and FE in space discretization [38].

We start by discretizing the spatial part of the problem. We thus define the FE truth ap-
proximation space XN and we denote its basis with {ϕi}Ni=1. The semi-discretized problem reads
as

for each t ∈ I, find uN (t;µ) ∈ XN s.t.

m(∂tu
N (t;µ), vN ;µ) + a(uN (t;µ), vN ;µ) = g(t)F (vN ;µ) ∀vN ∈ XN ,

given the initial condition uN 0 s.t.

(uN 0, vN )L2(Ω) = (u0, v
N )L2(Ω) ∀vN ∈ XN .

(82)

To obtain a fully discretized problem, we subdivide the time interval I into J subintervals of
length ∆t = T/J and we define tj = j∆t, j = 1, . . . , J . We then replace the time derivative in (82)
with a backward finite difference approximation. The fully discretized problem we are considering
is:

for each 1 ≤ j ≤ J , find uN j(µ) ∈ XN s.t.

1

∆t
m(uN j(µ)− uN j−1(µ), vN ;µ) + a(uN j(µ), vN ;µ) = g(tj)F (vN ;µ) ∀vN ∈ XN ,

given the initial condition uN 0 s.t.

(uN 0, vN )L2(Ω) = (u0, v
N )L2(Ω) ∀vN ∈ XN .

(83)

We denote with u(µ) the solution array, that is:

uN (µ) = (uN 1(µ), . . . , uN J(µ)) ∈
(

XN
)J
. (84)

The latter problem is the Backward Euler-Galerkin discretization of (78). Of course, this is not
the only way to discretize the time-dependent problem (78), for example we can resort to other
theta-methods (e.g. Crank-Nicholson) or to higher order methods [38].

The RB formulation of the problem is based on a RB space whose basis functions are built
by properly combining snapshots in time and space. More precisely, we construct the reduced
basis in the time-dependent case following the so called POD-greedy approach [14, 31, 32, 36]. It
consists in using a greedy technique to explore the parameter space D and the Proper Orthogonal
Decomposition (POD) method to deal with the time evolution. For the a posteriori error estimates,
we follow the choice presented in [13], but other possibilities have recently been proposed [44, 45].

The RB problem is then:

for each 1 ≤ j ≤ J , find uN j
N (µ) ∈ XN

N s.t.

1

∆t
m(uN j

N (µ)− uN j−1
N (µ), vN ;µ) + a(uN j

N (µ), vN ;µ) = g(tj)F (vN ) ∀vN ∈ XN
N ,

given the initial condition uN 0
N s.t.

(uN 0
N , vN )L2(Ω) = (uN 0, vN )L2(Ω) ∀vN ∈ XN

N .

(85)
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Again, as in (84), we define

uN
N (µ) = (uN 1

N (µ), . . . , uN J
N (µ)) ∈

(

XN
)J
. (86)

that is the RB solution of the time dependent problem.

5.2. SUPG stabilization method for time dependent problems

In this section we briefly introduce the SUPG method for time-dependent problems [2, 3, 23].
The idea is the same of the steady case: we add a stabilization term to the bilinear form in order to
improve the stability. The stabilization term is almost the same than in the steady case, but now
we have to consider also the time dependency to guarantee the strong consistency. We thus set

s(vN (t), wN ;µ) =
∑

K∈Th

δK

(

∂tv
N (t) + LµvN (t),

hK
|β(µ)|L

µ

SSw
N

)

K

(87)

where vN (t) ∈ XN for each t ∈ I and wN ∈ XN . Here Lµ is the steady advection-diffusion
operator and Lµ

SS its skew-symmetric part (22).
We note that if either the coefficients of the equation or its domain are µ-dependent, then the

stabilization terms will depend on µ too, as we have actually shown in Section 3.
Assuming the parametric dependence, we can write the Backward Euler-SUPG formulation as

follows:

for each 1 ≤ j ≤ J , find uN j(µ) ∈ XN s.t.

1

∆t
mstab(u

N j(µ)− uN j−1(µ), vN ;µ) + astab(u
N j(µ), vN ;µ) = g(tj)Fstab(v

N )

∀vN ∈ XN ,

given the initial condition uN 0 s.t.

(uN 0, vN )L2(Ω) = (u0, v
N )L2(Ω) ∀vN ∈ XN .

(88)

in which mstab, astab and Fstab are

mstab(v
N , wN ;µ) = m(vN , wN ;µ) +

∑

Ko(µ)∈Th,o(µ)

δKo(µ)

(

vN ,
hKo(µ)

|β(µ)|L
µ

SS w
N

)

Ko(µ)

astab(v
N , wN ;µ) = a(vN , wN ;µ) +

∑

Ko(µ)∈Th,o(µ)

δKo(µ)

(

LµvN ,
hKo(µ)

|β(µ)|L
µ

SS w
N

)

Ko(µ)

Fstab(v
N ;µ) = F (vN ;µ) +

∑

Ko(µ)∈Th,o(µ)

δKo(µ)

(

f,
hKo(µ)

|β(µ)|L
µ

SS w
N

)

Ko(µ)

(89)

where Ko(µ) are the elements which form the mesh Th,o defined on the original domain Ωo and f
can be a source term of the advection-diffusion equation or a lifting of the Dirichlet boundary data.

For the analysis of stability and convergence of this method, we refer to [2, 4, 21].

5.3. Numerical results

We are showing now some numerical tests of the stabilized RB method for parabolic PDEs. The
first one, discussed in Section 5.3.1 is the time dependent version of the problem studied in Section
4, while the second test case, Section 5.3.2, is a time-dependent Poiseuille-Graetz problem.
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Γ2

Γ3

Γ4

Γ5

Γ1

(0, 0) (1, 0)

(1, 1)(0, 1)

(0, 1/5)
Ω

Figure 24: First time dependent test case. Domain of the problem (90). On the bold sides we
impose u = g, while on the other ones u = 0.

5.3.1. A first time dependent test case

Let us denote with Ω the unit square in R
2, and let us subdivide its boundary into five parts Γi,

i = 1, . . . , 5, as sketched in Figure 24. Moreover, let us denote with I the time interval [0, T ].
Finally, let us define µ = (µ1, µ2), with µ1, µ2 ∈ R. The problem we are dealing with is the

following:



















∂tu− 1

µ1
∆u(µ) + (cosµ2, sinµ2) · ∇u(µ) = 0 in Ω× I

u(·, t;µ) = g(t) on Γ1 ∪ Γ2, ∀t ∈ I
u(·, t;µ) = 0 on Γ3 ∪ Γ4 ∪ Γ5, ∀t ∈ I,
u(·, 0;µ) = 0 on Ω,

(90)

where g is a control function.
To build our approximation procedure, we first define a triangulation Th, with which we

can define the polynomial approximation space P
1(Th) (see (28)). More precisely, we define

XN = P
1(Th) ∩H1

0 (Ω). We can thus obtain the stabilized FE formulation (88) in which, for all
vN , wN ∈ XN , we have:

mstab(v
N , wN ;µ) =

∫

Ω

vNwN +
∑

K∈Th

hK
(

vN , (cosµ2, sinµ2) · ∇wN
)

K

astab(v
N , wN ;µ) =

∫

Ω

1

µ1
∇vN · ∇wN + (cosµ2, sinµ2) · ∇vN wN

+
∑

K∈Th

hK
(

(cosµ2, sinµ2) · ∇vN , (cosµ2, sinµ2) · ∇wN
)

K

Fstab(v
N ;µ) =

∑

K∈Th

hK
(

fh, (cosµ2, sinµ2) · ∇wN
)

K

(91)

where fh is a lifting function corresponding to the boundary condition u = 1 on ∂Ω. We recall
that, as we are using piecewise linear polynomials, we are allowed to omit the term containing the
laplacian into the stabilization term. It is evident from the previous definitions that we have used a
constant weighting δK = 1 ∀K ∈ Th.

The computations were performed using T = 2.5 and subdividing the time interval into J = 50
time-steps. As regards the spatial discretization, we used a mesh with size h ≈ 0.03. The dimension
of the polynomial approximation space is N = 2605. The tolerance on the POD-greedy algorithm is
ε∗tol = 10−2 (see [36] for the definition). In table 5 we report informations about the computational
time and the average efficiency (62) of the error estimator for the stabilized parabolic problem [36]
(computed on a set Ξtest with 100 elements). We note that the variations of the parameter µ2, that
is the direction of the advection field, has stronger effect on the number of reduced basis N than
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the variations of the Péclet number µ1, as we observed also in the steady case in Section 4. In
Figures 25 and 26 we report some pictures of the RB solutions obtained for µ = (105, π6 ), using the
parameter space D = [104, 105] × [π6 ,

π
3 ]. More precisely, in Figure 25, we show the RB solution

(computed at some time-steps) of (90) obtained using a constant control function g ≡ 1. In Figure
26 we show the solution corresponding to the control function g(t) = sin2( 45πt), for all t ∈ [0, T ].

µ1 ∈ µ2 ∈ Toff (s) N Ton (s) ηavN,stab

{105} [π6 ,
π
3 ] 2346 28 8.75 · 10−2 2.35

[104, 105] [π6 ,
π
3 ] 2857 69 8.19 · 10−2 3.43

[104, 105] {π
4 } 339 15 8.44 · 10−2 1.93

Table 5: First time dependent test case. Numerical tests

5.3.2. Time dependent Poiseuille-Graetz problem

In this section we want to test the stabilized RB method for a time dependent Poiseuille-Graetz
problem [11, 20, 36, 42]. We have already dealt with the steady case of this problem in Section 3.2.

Let µ = (µ1, µ2) ∈ R
2 such that µ1, µ2 > 0. For each value of the parameter µ, let Ωo(µ) be

the rectangle in R
2 sketched in Figure 27. We first subdivide Ωo(µ) into two subdomains, Ωo 1(µ)

and Ωo 2(µ), and then we subdivide the boundary ∂Ω into 6 parts Γo i, i = 1, . . . , 6. We then define
I the time interval [0, T ].

The problem is to find the temperature distribution u(µ) such that:


































∂tu(µ)−
1

µ1
∆u(µ) + 4 y(1− y)∂xu(µ) = 0 in Ωo(µ)

u(·, t;µ) = g1(t) on Γo 1(µ) ∪ Γo 2(µ) ∪ Γo 6(µ), ∀ t ∈ I,
u(·, t;µ) = g2(t) on Γo 3(µ) ∪ Γo 5(µ), ∀ t ∈ I,
∂u

∂ν
(·, t;µ) = 0 on Γo 4(µ), ∀ t ∈ I,

u(·, 0;µ) = 1 on Ωo(µ).

(92)

where g1 and g2 are control functions.
Before introducing the FE formulation, we have to set some notation. First of all, we chose

a particular µ̄ ∈ D and we define the reference domain Ω = Ωo(µ̄). We coherently define the
reference subdomains Ωi = Ωo i, i = 1, 2, and the boundary regions Γi = Γo i(µ), i = 1, . . . , 6.
The reference domain can be mapped onto the original domain Ωo(µ), for each µ ∈ D, using the
transformation T (µ), introduced in Section 3.2 by defining its restrictions on the subdomains Ωi,
i = 1, 2 (see (42) and (43)). Now, we build a triangulation T 1

h on Ω1 and a triangulation T 2
h on Ω2

such that their union Th is a proper triangulation on Ω. We can then define the approximation
space XN = P

1(Th) ∩H1
0 (Ω).

We define now the lifting of the boundary data, f1h and f2h , as functions in P
1(Th) such that:

f1h |Γ3∩Γ5
≡ 1 f2h |Γ1∩Γ2∩Γ6

≡ 1 (93)

Like in Section 3.2, we can write the weak formulation of the problem (92) and then track it
back on the reference domain. We can thus obtain the following Backward-Euler/stabilized FE
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t = 0.50

t = 1.00

t = 1.50

t = 2.00

Figure 25: First time dependent test
case. RB solution of (90), with g(t) = 1
for all t ∈ [0, T ], for a parameter value
µ = (105, π6 ).

t = 0.50

t = 1.00s

t = 1.50

t = 2.00

Figure 26: First time dependent test
case. RB solution of (90), with g(t) =
sin2( 45πt) for all t ∈ [0, T ], for a param-
eter value µ = (105, π6 ).
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Γo,1

Γo,2 Γo,3

Γo,4

Γo,5Γo,6

(0, 0) (1, 0)

(1, 1)(0, 1)

(1 + µ2, 0)

(1 + µ2, 1)

Ωo,1 Ωo,2

Figure 27: Time dependent Poiseuille-Graetz problem. Domain of the problem (92). On the bold
sides we impose u = g2, on the dashed side we impose homogneous Neumann conditions, on the
remaining sides we impose u = g1.

problem:

for each 1 ≤ j ≤ J , find uN j(µ) ∈ XN s.t.

1

∆t
mstab(u

N j(µ)− uN j−1(µ), vN ;µ) + astab(u
N j(µ), vN ;µ)

= g1(t
j)F 1

stab(v
N ) + g2(t

j)F 2
stab(v

N )

∀vN ∈ XN ,

given the initial condition uN 0 s.t.

(uN 0, vN )L2(Ω) = (u0, v
N )L2(Ω) ∀vN ∈ XN

(94)

where, in the left-hand side:

mstab(v
N , wN ;µ) =

∫

Ω1

vNwN +
∑

K∈T 1

h

hK

∫

K

vN∂xw
N

+

∫

Ω2

µ2

µ1
vNwN +

∑

K∈T 1

h

hK√
µ2

∫

K

vN∂xw
N

astab(v
N , wN ;µ) =

∫

Ω1

1

µ1
∇vN · ∇wN + 4 y(1− y)∂xv

N wN

+
∑

K∈T 1

h

hK

∫

K

(

4 y(1− y)∂xv
N
)

∂xw
N

+

∫

Ω2

1

µ1µ2
∂xv

N∂yw
N +

µ2

µ1
∂xv

N∂yw
N

+ 4µ2 y(1− y)∂xv
N wN

+
∑

K∈T 2

h

hK√
µ
2

∫

K

(

4 y(1− y)∂xw
N
)

∂xv
N .

(95)

and, concerning the right-hand side, we have:

F 1
stab(v

N ;µ) =− astab(f
1
h , v

N ;µ)

F 2
stab(v

N ;µ) =− astab(f
2
h , v

N ;µ),
(96)

for all vN , wN ∈ XN . The weighting has been chosen as in Section 3.2.
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In order to apply the RB method exposed in Section 5.1, we exploit the linearity of the
problem (92) and we consider the two problems:

for each 1 ≤ j ≤ J , find ϕN j(µ) ∈ XN s.t.

1

∆t
mstab(ϕ

N j(µ)− ϕN j−1(µ), vN ;µ) + astab(ϕ
N j(µ), vN ;µ) = g1(t

j)F 1
stab(v

N )

∀vN ∈ XN ,

given the initial condition ϕN 0 = θuN 0

(97)

and

for each 1 ≤ j ≤ J , find ψN j(µ) ∈ XN s.t.

1

∆t
mstab(ψ

N j(µ)− ψN j−1(µ), vN ;µ) + astab(ψ
N j(µ), vN ;µ) = g2(t

j)F 1
stab(v

N )

∀vN ∈ XN ,

given the initial condition ψN 0 = (1− θ)uN 0,

(98)

with θ ∈ [0, 1] to be set.
Obviously, if ϕN (µ) and ψN (µ) are solution of (97) and (98), respectively, then ϕN (µ)+ψN (µ)

is a solution of (94).
Once we have this “separation” of the problem, we can apply the RB method to (97) and (98)

separately. We then define the RB solution of (94) uNN (µ) := ϕN
N (µ) + ψN

N (µ). Concerning the RB
approximation error, the triangular inequality implies that:

|||uN (µ)− uN
N (µ)|||t−dep ≤ |||ϕN (µ)−ϕN

N (µ)|||t−dep + |||ψN (µ)−ψN
N (µ)|||t−dep, (99)

where:

|||vN (µ)|||t−dep =



m(vN J(µ), vN J(µ);µ) +

J
∑

j=1

a(vN j(µ), vN j(µ);µ)∆t





1

2

(100)

for all sequences vN (µ) = (vN 1(µ), . . . , vN J(µ)) ∈
(

XN
)J

. In our numerical tests we have used
D = [10000, 20000]× [0.5, 4], T = 5, J = 100 and θ = 1. The dimension of the FE space is N = 1309
(h ≈ 0.06). The RB method yields N1 = 98 basis for the problem (97) (Offline computational time:
5773 s) and N2 = 50 basis for the problem (98) (Offline computational time: 1658 s). The tolerance
on the greedy algorithm is ε∗tol = 10−2 (see [36] for the definition).

In Figure 28, we show the RB solution of (94) for µ = (15000, 2), computed at some time steps.
Here we used the following control functions:

g1(t) = 1 ∀t ∈ I,

g2(t) = e−t ∀t ∈ I.
(101)

The a posteriori error estimator give the following result:

|||ϕN (µ)−ϕN
N (µ)|||t−dep ≤ 0.058, |||ψN (µ)−ψN

N (µ)|||t−dep ≤ 0.047, (102)

then for the total RB approximation error holds

|||uN (µ)− uN
N (µ)|||t−dep ≤ 0.105. (103)

This error has the same order of magnitude as the time dependent SUPG approximation error,
which is bounded by C(h3 +∆t2)

1

2 [21]. The computational time of the Online stage is 0.255 s.
The average effectivity (62), computed on a set Ξtest with 100 elements, is 1.85.
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Figure 28: Time dependent Poiseuille-Graetz problem. RB solution computed at some time steps.
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6. Conclusions

In this work we have dealt with stabilization techniques for the approximation of the solution of
advection dominated problems using the reduced basis approach, in both steady and unsteady case,
for high Péclet numbers.

Concerning the steady case, we have carried out a comparison between two possible stabilization
techniques, an Offline-Online stabilization strategy and an Offline-only option. The Offline-Online
strategy has turned out to be the best choice because it produces stable RB solutions and also the
a posteriori error estimators discussed in [36, 40] are still effective. As regards the Offline-only
method, we have observed strong instability phenomena in the RB solution and we have shown that
this is because of “inconsistency” problems arising from the use of different bilinear forms in the
two stages of the RB method. We have provided also some explanations of the different behaviour
of the two stabilization techniques based on physical considerations involving the advection field
and the boundary layer.

Having determined which stabilization strategy gives the best results, we have tested it also
using the piecewise quadratic FE space as truth approximation space, instead of the usual piecewise
linear one, obtaining satisfactory results. We performed in particular some numerical test on a
problem with steep boundary layers and an internal layer that strongly depend on the direction of
the parametric advection field.

In the last part of our work, we have developed a stabilization strategy for the RB approximation
of time dependent advection dominated problems. The FE stabilization method - on which our
strategy has been based upon - is a time-dependent SUPG method [2, 3]. Considering what we
have shown in the steady case, we have proposed to use the same stabilized form in both Offline
and Online stage. The method has been successfully tested on some test problems, in particular on
an unsteady Poiseuille-Graetz problem with time dependent boundary conditions.

A first natural continuation of this work could be the application of these stabilization strategies
to problems with more complex affine geometries, in order to understand if bigger geometrical
variations in the shape of the domain can affect negatively the stabilized RB solution. Then,
the next step could be to use non-affinely parametrized geometries, which requires an empirical
interpolation pre-processing [1, 24], in order to obtain a suitable RB formulation.

Stabilization techniques are also needed in problems dealing with reduced order modelling for
advection-diffusion stochastic equations [5].

Possible further developments will be related to stabilization techniques for nonlinear problems,
e.g. Navier-Stokes equations to increase Reynolds number.
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