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Abstract

Medicated cardiovascular stents, also called drug eluting stents (DES)
represent a relevant application of controlled drug release mechanisms.
Modeling of drug release from DES also represents a challenging problem
for theoretical and computational analysis. In particular, the study of drug
release may require to address models with singular behavior, arising for
instance in the analysis of drug release in the small diffusion regime. More-
over, the application to realistic stent configurations requires to account for
complex designs of the device. To efficiently obtain satisfactory simulations
of DES we rely on a multiscale strategy, involving lumped parameter models
(0D) to account for drug release, one dimensional models (1D) to efficiently
handle complex stent patterns and fully three-dimensional models (3D) for
drug transfer in the artery, including the lumen and the arterial wall. The
application of these advanced mathematical models makes it possible to
perform a computational analysis of the fluid dynamics and drug release
for a medicated stent implanted into a coronary bifurcation, a treatment
where clinical complications still have to be fully understood.
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1 Introduction and motivations

The main limiting factor after stenting interventions for coronary artery diseases
remains in-stent restenosis, the re-narrowing of a blood vessel after stent implan-
tation, mainly due to inflammatory healing followed by neointimal proliferation
[12]. The most popular approach for the prevention of restenosis consists in the
use of the drug eluting stent (DES), a medical device able to release antiprolifer-
ative drugs with programmed pharmacokinetics into the arterial wall. The stent
acts as a source of drug which is transported into and through the arterial wall.
The drug may be any biologically active agent that acts on the cell life cycle so
that a step in the replication cascade is inhibited, according to the drug nature
[20]. Computational studies on drug elution from stents have been shown to
be a very promising tool for the device optimization and have provided insights
into the pharmacokinetics of the drug delivered via DES [21, 36, 1]. Most of
the studies rely on simplified geometries of stented arteries; only recently some
efforts have been devoted to realistic geometries [22, 27, 35].

Besides being a relevant bioengineering application, modelling of DES also
represents a challenging problem from the mathematical and computational
standpoint. In particular, modeling of drug release from DES features two main
difficulties. Firstly, it requires to couple different models with possible singular
behavior, i.e. coupling drug release in the small diffusion regime with mass trans-
port in the arterial wall. Secondly, modern stents feature a complex geometrical
configuration of the active surface for drug release (see for instance figure 2).
Then, a particular effort must be devoted to set up mathematical models that
do not require excessive computational resources for their numerical approxima-
tion.

To efficiently obtain satisfactory simulations of DES we rely on a multiscale
strategy, involving lumped parameter models (0D) to account for drug release,
one dimensional models (1D) to efficiently handle complex stent patterns and
fully three-dimensional models (3D) for drug transfer in the artery, including
the lumen and the arterial wall.

Starting from early works, [27], the multiscale description of drug release
from stents has been continuously developed by the authors, by first coupling
lumped models for drug release based on pure diffusion, [34], with advection,
diffusion, reaction equations for drug pharmacokinetics in the artery, [32, 13].
Recently, the drug release formula has been extended in [2] to a more realistic
case combining drug dissolution and diffusion, which has been a well accepted
model for drug release for more than fifty years, see for instance [18, 19, 5] for
specific contributions, or [26] for a general overview. The main limitation of this
model consists in the description of the stent as a three dimensional structure,
because at the numerical approximation level this makes it difficult to build up
a computational mesh. As shown in [35], a fully 3D model of a single stent cell
is achievable, but the extension to multiple cells still represents a computational
challenge that cannot be handled with standard computational resources. The
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main purpose of this work is to combine the modeling of drug release in the
artery with a one dimensional description of the stent structure, inspired by
the immersed boundary method and thoroughly developed in [8]. The main
advantage of this technique consists in the fact that the geometrical description
of the stent does not need to conform with the computational mesh for the artery,
remarkably simplifying the steps needed to perform a computational analysis of
realistic stents deployed in arterial bifurcations.

To pursue these objectives, we first introduce in section 2 a fully 3D model for
drug release from DES to arteries. Then, we present in section 3 an extension
of the lumped drug release model addressed in [2] and we discuss the model
accuracy with the help of numerical simulation. In section 4 we set up the
immersed boundary method for mass transfer on the basis of [8] and we make
it specific for drug release by coupling it with the lumped parameter model of
section 3. Finally, in section 5, we apply the resulting multi-scale model to the
computational analysis of drug release from a realistic DES implanted into a
coronary artery bifurcation.

2 Problem set up

The objective of this section is to describe the coupling of drug dissolution and
release from medicated stents with drug diffusion and transport in arteries. We
introduce a domain Ωc ⊂ R

3 corresponding to the thin substrate surrounding
the stent and releasing drug. Moreover, let Γs be the interface between Ωc and
the artery, including the lumen and the arterial wall. We assume that the drug
release is controlled by drug dissolution and diffusion. To the best of our knowl-
edge, the most recent description and analysis of such phenomena is provided
by Frenning in [14, 15]. It consist of a two phase model (solid and dissolved
drug) for drug dissolution and diffusion accounting for a finite dissolution rate.
In particular, we refer here to the simple case [14] where dissolved drug does not
chemically interact with the substrate.

Let ŝ, ĉ be respectively the concentration of the solid and dissolved drug in
the coating, according to the so called Noyes-Whitney formula, see [26], it is
possible to quantify the dissolution rate of the solid drug, denoted by kd(ŝ) as
follows,

kd(ŝ)

s̄
= K

(

ŝ+

s̄

)
2

3

(

cs − ĉ

s̄

)

where s̄ is a reference concentration that is often chosen equal to cs, the satu-
ration level of dissolved drug in water, K > 0 is the dissolution constant and
f+ = 1

2

(

|f |+f
)

denotes the positive part of a function f . As a result of that, de-
noting with c = ĉ/cs, s = ŝ/cs, respectively, the nondimensional concentration
of the dissolved and solid drug with respect to cs, with t and x being the time
and space coordinates, the diffusion/dissolution model for drug release reads as
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follows,























∂tc−∇ · (Dc∇c) = K(s+)2/3(1− c) in Ωc × R
+

∂ts = −K(s+)2/3(1− c) in Ωc × R
+

s = s0, c = 0, in Ωc × {t = 0}

(1)

complemented with suitable boundary conditions to be addressed later on. In
equation (1) Dc > 0 is the diffusion coefficient, s0 is a non-negative function
describing the (possibly non-uniform) initial solid drug loading.

For the modeling of the artery we consider a computational domain Ωa, given
by a truncated portion of an artery including both the lumen and the arterial
wall, i.e. Ωa = Ωw∪Ωl where Ωw represents the arterial wall and Ωl is the lumen.
The boundary ∂Ωa can be split into Γadv, the interface with the outer wall tissue
called adventitia, Γcut, the artificial sections where the artery has been truncated
from the entire vascular system and Γs = ∂Ωa ∩ ∂Ωc is the interface with the
coating. We denote by na and n the unit normal vectors associated with Ωa and
Γs, respectively. We refer to figure 1 for a schematic illustration of domains and
boundaries. We assume that n is oriented from the stent coating towards the
artery, but the arbitrariness of n will not influence the model setup.

arterial wall
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Figure 1: A sketch of two single stent wires laying on the arterial wall, with
indication of domains and boundaries for problems (1), (3).

To analyze the distribution of the drug in the artery, we denote by a(t,x)
the drug concentration in the artery, which can be split as al(t,x) and aw(t,x)
for the lumen and the wall respectively. According to [25, 32], we observe that
the drug released into the arterial wall can assume two different states: a state
where the drug is dissolved into the plasma permeating the interstices between
cells and a state where the drug binds to specific sites of the tissue extracellular
matrix. Let us denote by bw(t,x) the density of the free binding sites, with
bw,0(x) = bw(t = 0,x) their initial density and with dw(t,x) the concentration
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of the drug attached to the extracellular matrix. We assume that the drug in
the state dw can no longer diffuse or be transported by plasma. By virtue of the
mass conservation principle, we immediately get dw(t,x) = bw,0(x) − bw(t,x).
The ligand/receptor interaction between the dissolved drug and the free binding
sites is represented by the following equation:

aw + bw
kon→ dw, dw

koff→ aw + bw in Ωw (2)

where kon, koff are the association and dissociation constants. Due to the mass
action law, the previous relations state that the rate of change of dw is equal to
konawbw+koff(bw− bw,0). As regards the lumen, there is no chemical interaction
between drug and blood flowing into the artery. Then, we set bl,0 = 0 and by
consequence of (2) we get bl(t,x) = dl(t,x) = 0 for any x ∈ Ωl and t > 0. In
conclusion, the transport of drug into the artery can be modeled by means of
the following equations:



















































∂ta−∇ · (Da∇a) + u · ∇a+ konab+ koff(b− b0) = 0 in Ωa × R
+

∂tb+ konab+ koff(b− b0) = 0 in Ωa × R
+

a = a0(x), b = b0(x) in Ωa × {t = 0}

a = 0 on Γadv × R
+

∇a · na = 0 on Γcut × R
+

(3)
where Da is the diffusivity of the drug into the arterial tissue or into the blood
and u is the velocity field describing the filtration of the plasma inside the wall or
the blood flow in the lumen. A suitable model that governs u will be addressed
later on. Concerning boundary conditions of (3), we observe that the adventitia
is perfused by micro-vasculature. Thus, drug reaching this boundary is quickly
washed out. A simple model to account for this effect is given by the perfect
sink condition on Γadv. We also assume that drug concentration profiles are
unperturbed along Γcut, if the artificial cuts are located far enough from the
drug release source Γs.

The model (1), (3) becomes solvable provided that some transmission con-
ditions between Ωc and Ωa are defined,

c = a, Da∇a · n = Dc∇c · n on Γs × R
+ . (4)

For the numerical discretization of problem (1),(3),(4) we aim to apply a finite
difference scheme in time and a finite element method for the space dependence.
This is a strong limitation for the simulation with our model where Ωc may be
7 µm thin, while Ωa is comparable to a cylinder 5 mm wide and 20 mm long
with a wall thickness of 0.75 mm. A further difficulty, also illustrated by figure 2,
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consists in the fact that new generation stents can assume very complex designs.
The forthcoming set up of a multi-scale method is mandatory to override these
obstacles.

Figure 2: An illustration of a realistic cardiovascular stent implanted into an
arterial bifurcation. The stent is depicted by means of its centerline. The length
of the visualized portion of artery is about 2 centimeters, while the inner and
outer reference diameters are equal to 2.78 and 4.58 millimeters respectively,
[16].

3 A lumped model for the release rate

The coating of DES is very thin and to study drug release it can be approximated
by a indefinite slab. For this reason, the domain Ωc becomes a one dimensional
interval with space coordinate x ∈ (0, L), L being the thickness of the stent
surface coating. We first address the nondimensional form of equation (1). We
select L as reference length, K−1 as reference time (being K the dissolution
constant in the aforementioned Noyes-Whitney model) and cs as reference con-
centration. Then, given τ = Kt, y = x/L the nondimensional time and space
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coordinates, respectively, the nondimensional counterpart of (1) reads as follows,























































∂τc− Λ∂yyc = (s+)2/3(1− c) in (0, 1)× R
+

∂τs = −(s+)2/3(1− c) in (0, 1)× R
+

∂yc = 0 on {0} × R
+

c = a(τ) on {1} × R
+

s = s0, c = 0, in (0, 1)× {t = 0}

(5)

where the fundamental characteristic parameter Λ (known as Thiele modulus)
is defined as

Λ :=
Dc

KL2

and a(τ) is an assigned function that will be later replaced with the drug con-
centration in the arterial wall, according to (4). For any dissolution based drug
release system, it is mandatory to assume 0 ≤ a(τ) < 1; otherwise drug release
is prevented by adverse concentration gradients. Furthermore, for the sake of
simplicity, we restrict ourselves to the case of uniform initial drug loading: thus
s0 > 0 is a constant.

The parameter Λ, controlling the balance between diffusion and reaction, is
indeed one of the most significant to determine the behavior of the system. It
can be also interpreted as the ratio between the characteristic time of reaction
and diffusion, i.e. in the regime of small Λ diffusion is much slower than reaction.
A slow release rate is often desirable, because the released drugs can be toxic
at high concentrations. This is for instance the case for release devices such
as patches, implantable tablets, drug eluting stents. For this reason, the small
diffusion regime is the most interesting from the point of view of applications.

The initial state of the system, namely s0, is another significant parameter.
If the initial drug load is larger than the saturation level of dissolved drug, taken
here as unit reference concentration, we say that the substrate has been charged
with a saturated loading. In the opposite case, we talk about unsaturated load-
ing.

The initial and boundary conditions of (5) are chosen such as to model the
following physical situation. We assume that at the initial time all the drug is
loaded in the solid phase, and thus c(x, 0) = 0 for all x. The extreme points of
the substrate respectively represent an inert boundary at x = 0, where no drug
is released, while at x = 1 the external medium maintains the concentration
level a(τ). Indeed, with respect to the analysis performed in [2], we consider
here a slightly more general case, because a(τ) is here a given function that will
be later replaced by a(t,x) on Γs. However, the forthcoming analysis relies on a
quasi-steady approximation for a(τ). More precisely, we formulate the following
assumptions that will be later justified by means of model (3).
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Assumption 3.1 The external drug concentration a(τ) is such that:

max
τ

|∂τa(τ)| = |∂τa(τ = 0)|;

increments of a(τ) are small, i.e. |a(τ)− a(0)| ≪ τ ;

As a result of 3.1 we easily conclude that a(τ) is quasi-steady because,

|∂τa(τ)| ≤ |∂τa(τ = 0)| ≃ τ−1|
(

a(τ)− a(0)
)

| ≃ 0 . (6)

For the aforementioned reasons, we restrict our analysis to the small diffusion
regime, Λ ≪ 1, with saturated loading, s0 > 1 and we briefly summarize the
behavior of (5) in this case. In particular, we address in figure 3 the numerical
approximation of its solutions, in a case with mildly stiff coefficients, i.e. Λ =
10−2, s0 = 3, a(τ) = 0.5. Different coefficients, corresponding to the application
of drug eluting stents will be discussed in section 5.

Under these conditions, the dynamics of the system can be split into two
phases, the former dominated by reaction and the latter by diffusion. The evo-
lution starts with a sudden decrease of solid drug concentration, that jumps from
the initial state s = s0 to s ≃ s0 − 1 and c ≃ 1, where the difference 1 − c is
positive but almost vanishing, see figure 3 (top). Without the influence of the
external boundary, the state variables s, c would converge to s = s0 − 1, c = 1
with c(τ, x) < 1 and s(τ, x) > s0 − 1 for any x ∈ (0, 1). In this phase, the
concentration jump 1− c is almost completely absorbed, i.e. c ≃ 1, except that
in the neighborhood of the external boundary, where the drug concentration is
fixed to c = a(τ) < 1. It is shown in [2] that the characteristic time of this phase

is proportional to s
1/3
0 , which is very small with respect to the characteristic

time needed to release the entire drug load.
Because of the interplay between the diffusion operator and the Dirichlet

boundary condition c(τ, 1) = a(τ), the state s = s0 − 1, c = 1 is perturbed,
and the system shifts to a stable equilibrium s = 0, c = a(τ). This is the
second transition phase for the saturated loading problem and it is shown in
figure 3 (bottom). Due to the boundary condition c = a(τ), the highest drug
concentration jump with respect to the saturation level is now located at x = 1,
and starting from this point a propagating front for the solid drug concentration
s moves towards the inner part of the interval (0, 1). In doing so, it leaves behind
a region in which s = 0, where c obeys a simple homogeneous diffusion equation.

For such system configuration, we aim to study how the release rate varies
during the evolution of the moving front. We denote by Y (τ) ∈ (0, 1) the
interface that discriminates between the region where s(y, τ) > 0 and s(y, τ) = 0.
The propagating front subdivides the interval (0, 1) into three subregions; the
internal region (0, Y (τ)− δ) where for any point y the solid drug concentration
s(y, τ) ≃ s0 − 1, the intermediate layer (Y (τ) − δ, Y (τ)) whose thickness δ =
O(

√
Λ) when Λ → 0+ remains constant along the dissolution process, and the

depleted one that is (Y (τ), 1) where the solid drug has dissolved into free drug,
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i.e. s(y, τ) = 0. Since the propagating front moves from the external boundary
y = 1 inward to the domain, we assert that Ẏ (τ) < 0. We notice that the
evolution of the system in the second phase is much slower than in the first one.
Indeed, the state s ≃ s0−1 and c ≃ 1 is reached for τ ≃ 2 (nondimensional time
units), while the second transition requires τ ≃ 300 to approach the final state
s ≃ 0, c ≃ a.

s(t, y) c(t, y)

s0 = 3, t ∈ [0, 2] time evolves from top to bottom for s and inversely for c

s0 = 3, t ∈ [2, 300] time evolves from right to left for s and for c

Figure 3: Numerical solutions of problem (5), plotted with respect to the nondi-
mensional space coordinate y ∈ (0, 1) and for different time scales.

Due to (6) it is possible to mimic the analysis preformed in [2] in order to
derive an analytic expression for the drug release rate from the stent coating.
For the sake of clarity, we recall here the main steps of the derivation addressed
in [2], Section 4.3. On the basis of the aforementioned observations, we seek
solutions of (5) that might be expanded in terms of the parameter Λ, where the
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first terms of the expansion are given by

s̃(y, τ) =























0 if y > Y (τ))

ς

(

y − Y (τ)√
Λ

)

if Y (τ)− δ < y < Y (τ)

s0 − 1 if y < Y (τ)− δ,

c̃(y, τ) =

{

a(τ) + cdiff(y, τ) if y > Y (τ)

1 if y < Y (τ),

(7)

where ς and cdiff are functions to be determined. In particular, cdiff can be inter-
preted as the dissolved drug concentration in the substrate that is superposed
to the bulk value a(τ), determined by the external conditions. Solutions (7)
represent the qualitative behavior of the system in the case of saturated drug
loading and long time scales, as illustrated in figure 3 (bottom). Replacing (7)b
for y > Y (τ) in (5) and exploiting (6) we obtain the diffusion problem

∂τ cdiff − Λ∂yycdiff = 0, cdiff(1, τ) = 0, cdiff(Y (τ), τ) = 1− a(τ) (8)

for which we seek self-similar solutions of the form

cdiff(y, τ) =
(

1− a(τ)
)

γ

(

1− y

1− Y (τ)

)

, γ(y = 1) = 0, γ(y = Y (τ)) = 1 (9)

where γ is a (positive) function to be determined. We observe that applying a
change of variables from y to z = (1 − y)/(1 − Y ) and replacing (9) in (8) the
following boundary value problem is obtained for γ(z),

Λγ′′ − Ẏ (1− Y )zγ′ = 0, γ(0) = 0, γ(1) = 1 (10)

Exploiting (1 − Y ) > 0 and Ẏ < 0, we set Γ2 := −Ẏ (1 − Y )/(2Λ). As a result
of that (10) can be rewritten as,

γ′′ + 2Γ2zγ′ = 0, γ(0) = 0, γ(1) = 1

which admits the following family of solutions

γ(z) =
erf(Γz)

erf(Γ)
(11)

where Γ will be determined from Ẏ , i.e. the speed of propagation at which the
front of the solid drug s(τ, y) evolves towards y = 0. As performed in the seminal
work by Higuchi, [18], Ẏ can be estimated by a simple mass-balance argument.
Indeed, the amount of drug stored in the whole system at any time τ is given by

Q(τ) =

[

(s0 − 1)
(

Y − δ
)

+

∫ Y

Y−δ
ς dy

]

+

[

Y + (1− Y )a+ (1− a)

∫ 1

Y
γ dy

]
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where the terms within the brackets respectively correspond to the amount of
drug stored in the solid and in the liquid phase. The time derivative of Q, i.e.
Q̇, must be balanced by the release rate. Due to (6), the external concentration
a(τ) is assumed to be constant with time. The first integral on the right hand
side is also constant. After a change of variables from y to z in the last integral
such that

∫ 1
Y γ dy = (1−Y )

∫ 1
0 γ(z) dz, where

∫ 1
0 γ(z) dz is constant with respect

to τ , we obtain

Q̇ = s0Ẏ − aẎ − (1− a)Ẏ

∫ 1

0
γ(z) dz.

The release rate from the stent coating is defined as Υ(τ) := −Λ∂yc(τ, y = 1)
that, due to (9), can be rewritten as

Υ(τ) =
Λ(1− a)γ′(z = 0)

1− Y
(12)

and according to the mass conservation principle Q̇ = Υ(τ) leads to

(

s0 − a− (1− a)

∫ 1

0
γ(z) dz

)

Ẏ =
Λ(1− a)γ′(0)

1− Y

that can be manipulated as follows

Γ2 =
(1− a)γ′(0)

2
(

s0 − a− (1− a)
∫ 1
0 γ(z) dz

) . (13)

Equation (13) represents a compatibility condition that allows us to implicitly
determine Γ. Indeed, by replacing (11) in (13) we obtain

exp(−Γ2)√
πΓerf(Γ)

=
s0 − 1

1− a
(14)

whose solution can be approximated by means of a numerical algorithm. Then,
assuming that Γ is known and due to the expression Γ2 = −Ẏ (1− Y )/(2Λ), the
velocity of propagation of the dissolution front satisfies the Cauchy problem,

Ẏ (τ) = − 2ΛΓ2

1− Y (τ)
, Y (τ = 0) = 1

which admits the solution Y (τ) = 1−2
√
ΛΓ2τ allowing us to compute the time at

which the front touches the point y = 0, i.e. T =
(

4ΛΓ2
)−1

in nondimensional
variables. We notice that for τ > T all the solid drug has dissolved into the
dispersed state and by consequence most of the drug has been released (as it
will be verified in the forthcoming section). Furthermore, the present model
is no longer valid, because the release rate will be then regulated by the pure
diffusion problem,

∂τ c− Λ∂yyc = 0, with c(1, τ) = a(τ) and ∂yc(0, τ) = 0.
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In conclusion, replacing the expression of Y (τ) in (12) we obtain an explicit
expression for the release rate

Υ(τ) = −
(

1− a(τ)
)(

erf(Γ)
)−1

√

Λ

πτ

that can be translated into dimensional form for time and space, but still nondi-
mensional for concentrations,

J(t) = −
(

1− a(t)
)(

erf(Γ)
)−1

√

Dc

πt
(15)

that is valid until the final time T = L2/(4DcΓ
2).

We observe that equation (15) admits a straightforward physical interpreta-
tion in analogy with Fick’s law of diffusion. Indeed,

(

1 − a(t)
)

corresponds to
a discrete drug concentration gradient through the coating, where 1 is the bulk
concentration and a(t) is the external concentration, while the term P (t) :=
√

(Dc)/erf
2(Γ)(πt) can be interpreted as a permeability coefficient that modu-

lates the intensity of the gradient.
The efficacy of (15) for predicting the release rate will be later verified by

means of a comparison with the classical Higuchi model [18, 19] and also with
the numerical solution of problem (5) in order to verify the validity of (15) in
presence of an external concentration a(τ) satisfying assumption 3.1.

3.1 Preliminary validation of the lumped drug release model

The release rate expression (15) is first compared with the Higuchi’s model, see
[18, 19, 26], which under a derivation similar to the one of section 3 but based on
stronger assumptions, obtains an analogous formula. Comparing the Higuchi’s
formula for drug release rate, JH(t), with J(t) we obtain

JH(t) = −
√

(2s0 − 1)Dc

πt
, J(t) = −(1− a)

(

erf(Γ)
)−1

√

Dc

πt
. (16)

We notice that, although similar to JH(t), (15) generalizes Higuchi’s expression
by modulating the release rate with the nonhomogeneous external concentration,
term 1 − a(τ), and by differently accounting for the effect of dissolution, term
(erf(Γ))−1 instead of

√

(2s0 − 1). Furthermore, exploiting (14) to rewrite s0 in
terms of a and Γ and replacing this expression in JH , taking the limit s0 → 1
or equivalently Γ → ∞ we obtain J/JH → (1− a). This shows that, for a → 0
and s0 → 1 the expressions of JH and J match. We also compare the relative
amount of drug released defined as q(t)/q∞ where q(t) := |Γs|

∫ T
0 J(t)dt is the

amount of drug released and q∞ = s0L|Γs| is the total drug that can be released
during an arbitrarily long time (it is also equivalent to the initial charge of the
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stent). The comparison with Higuchi’s model gives,

qH(t)

q∞
= (Ls0|Γs|)−1

√

4π−1(2s0 − 1)Dct,

q(t)

q∞
= (Ls0|Γs|)−1

(

1− a(τ)
)(

erf(Γ)
)−1

√

4π−1Dct.

(17)

In figure 4 we report the comparison among (16) and (17) with the parameters
a = 0, s0 = 10 and Dc = 10−8 mm2/s, which will be more carefully discussed in
section 5 for the application of drug eluting stents. For t < T the two expressions
closely match. In particular, we observe that (17)b can be considered slightly
more accurate than (17)a because at time T the relative amount of drug released
per unit surface approaches from below the unit value. It is shown in [2] and
also confirmed by numerical simulations that at time T the only drug remaining
in the coating is in the dissolved phase, c, and it assumes an almost linear profile
connecting c = 1 at x = 0 with c = a ≃ 0 at x = L. Then, the residual amount
of drug resident in the coating can be estimated as 1/(2s0). Thus, if s0 = 10,
almost the 95% of drug has been released at time T .
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Figure 4: A comparison of fluxes per unit surface (16) (left) and relative amount
of drug released (17). The solid line represents the present model, the dashed
line depicts Higuchi’s formulas.

The validity of (15) for a time dependent external concentration a(τ) could
be investigated by exploiting the numerical approximation of problem (5), per-
formed exploiting Lagrangian finite elements for the space discretization and
backward finite difference schemes to advance in time. For further details, we
refer to [31, 17]. The main difficulty consists in the efficient solution of the
nonlinear system of equations corresponding to the fully discrete scheme. To
this aim, we have applied the damped Newton method proposed in [11]. We
denote by ch(t, x), sh(t, x) the numerical solution of (5) in dimensional coordi-
nates. Accordingly, Jh(t) = −Dc∂xch(t, x = L) is the release rate computed
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with the numerical simulations, that will be compared to J(t) in (15). On this
basis, we consider several tests for different values of nonhomogeneous Dirich-
let datum, a(τ) in (5), and we fix L, Dc, s0 to realistic values reported in
section 5. We first start from the verification that, when a(τ) = 0, it is true
that J(t) ≃ Jh(t). This is indeed verified since the computed relative error,
|J(t)− Jh(t)|/|Jh(t)| ≃ 1%. Then, we address the case of nonhomogeneous but
constant Dirichlet datum, a(τ) = 0.5 and due to the analysis previously devel-
oped, we expect that this case should be equivalent to the homogeneous one,
as confirmed by a relative error equivalent to 1% even though a = 0.5 cannot
be considered to be small. Finally, we perform the comparison for a small, but
time dependent value of a(τ), such as assumption 3.1 is satisfied. More precisely,

setting a(τ) = 0.0316(τ+0.1)−
1

2 such that a(0) = 0.1, the relative error between
the fluxes is again nearby 1%, which confirms that under assumption 3.1 the
expression (15) represents an accurate approximation of the exact release rate.
We do not report the corresponding visual comparisons because the curves are
almost superimposed in all cases.

4 An immersed boundary method for drug release

from thin devices

Immersed boundary methods were first introduced by Peskin [28, 29] to effi-
ciently simulate flow around heart valves and they rely upon the idea of replac-
ing an immersed interface with the related interface conditions by an equivalent
forcing term. By using such techniques, we will be able to avoid resolving the
complex 3D geometry of the stent; basically we will only need the 1D geometri-
cal description of the centerline Λs, as depicted in figure 5. The application of
the forthcoming immersed boundary method for modeling stents has two main
consequences: on one hand, we neglect the stent in the blood flow model (where
it would act as an obstacle); on the other hand, we represent the stent as an
immersed boundary in the mass transport model (where it acts as a mass source,
releasing drug).

4.1 Model set up

Let Ω be a generic domain and let Γs be the portion of active surface that is
embedded in Ω. For the models presented in section 2, Ω corresponds to the
artery Ωa and Γs is the stent surface releasing drug. The mass flux released
by Γs is denoted by f , that is a mass flux per unit area. From the modeling
point of view, if a(t,x) with x ∈ Γs is the drug concentration in the artery, then
f(t, a(t,x)) is a pointwise constitutive law for the release rate.

In this work, as in standard immersed boundary methods, we will consider
the case in which the action of f is represented as an equivalent source term, F ,
distributed on the entire domain Ω. More precisely, F = F (t, a) is a measure
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Figure 5: Immersed boundary Γs ⊂ Ω (the actual surface of the stent).

defined by
∫

Ω
F (t, a)v =

∫

Γs

f(t, a)v ∀v ∈ C(Ω) (18)

where v plays the role of a test function in the variational formulation of problem
(3). Hence, we use the notation F (t, a) = f(t, a)δΓs meaning that F is the Dirac
measure concentrated on Γs, having (time and concentration dependent) density
f on Γs. Following the lines of [9] (see also [8] for a theoretical study of the
resulting mathematical model), we represent such mass flux per unit area by
an equivalent mass flux per unit length, distributed on the centerline Λs of the
stent. Assuming that Γs has a circular transversal section, with small radius
ρ, we approximate the action of F on v in (18) by a similar equivalent one-
dimensional formulation based on numerical integration. Referring to figure 5,
and using cylindrical coordinates (s, θ) on Γs, we have

∫

Ω
F (t, a)v =

∫

Λs

∫

γ(s)
f(t, a(t, s, ρ, θ))v(s, ρ, θ)ρdθds.

Then, applying the (midpoint) rectangle quadrature formula to approximate the
integral over the arc γ(s) (of radius ρ) given by the intersection of Γs with the
normal plane to Λs at point s, we have, for g = v, a,

ḡ(s) :=
1

|γ(s)|

∫

γ(s)
g(s, ρ, θ)dθ = g(s, ρ, θ = π) +O(|γ(s)|3)

where O(x3) denotes any function such that limρ→∞O(x3)/x3 = C > 0. Due to
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the rectangle quadrature formula:

∫

Ω
F (t, a)v ≃

∫

Λs

|γ(s)|f(t, ā(s))v̄(s)ds. (19)

The coupling between the immersed boundary model for the stent and the
lumped model for drug release is easily achieved by replacing (15) in the defini-
tion of f(t, a), more precisely setting

f(t, a) := P (t)(1− a), with P (t) =
(

erf(Γ)
)−1

√

Dc

πt
.

Then, fixing the generic domain Ω to Ωa and defining,

∫

Ωa

Fa(t, a)v := 2πρP (t)

∫

Λs

ξ(s)(1− ā(s))v̄(s)ds (20)

we obtain a one-dimensional model for drug release from a stent. In equation
(20), the function ξ(s) = |γ(s)|/(2πρ) with 0 ≤ ξ(s) locally quantifies the fraction
of stent surface that is embedded into the artery. By splitting the artery into
lumen, Ωl, and wall, Ωw, we will later denote by ξl(s) and ξw(s) respectively,
the part of stent surface exposed to one or other sub-domains.

According to (20) equation (3) becomes,







∂ta−∇ · (Da∇a) + u · ∇a = Fa(t, a) + ∂tb in Ωa × R
+

∂tb+ konab+ koff(b− b0) = 0 in Ωa × R
+

(21)

whilst initial and boundary conditions are as in (3), the coupling conditions (4)
are now taken into account by Fa due to the immersed boundary formulation.

4.2 Numerical approximation

For the numerical approximation of the weak counterpart of problem (21) we
consider a standard implicit Euler time advancing scheme together with piece-
wise linear finite element space discretization. For the space approximation we
first introduce Th being a family of conforming triangulations made of affine
simplexes K. We also denote by Fh the set of all interior faces F of Th. The
corresponding space of linear finite elements is denoted by Vh. It is well known
that the standard Galerkin-FEM method is unsatisfactory for singularly per-
turbed problems such as the advection dominated problem for drug transport in
the blood flow. For this reason we employ a continuous interior penalty (CIP)
stabilization (see [3, 4]). We denote by ah(t) the approximation of a(t,x) and
with uh the approximation of steady blood flow and plasma filtration, obtained
exploiting the methods addressed in [10]. The main features of the numerical
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approximation method are characterized by the following bilinear form,

Ba(ah(t), ψh) =

∫

Ωa

Dl∇ah(t) · ∇ψh +

∫

Ωa

uh · ∇ah(t)ψh

+

∫

Λs

2πρP (t)ξāh(t)ψ̄h

+

∫

Fl,h

γu
(hF )

2

|uh|F
J(uh · ∇)ah(t)KJ(uh · ∇)ψhK.

The space discretization must be complemented with a time advancing scheme.
Let ∆t > 0 be time step, tn = n∆t the n-th time step and anh ∈ Vi,h the
numerical approximation of a(tn). The time advancing scheme reads as follows:
given anh ∈ Vh, find a

n+1
h ∈ Vh such that

1

∆t

∫

Ωa

an+1
h ψh +Ba(a

n+1
h , ψh) =

1

∆t

∫

Ωa

anhψh

+

∫

Λs

2πρP (tn+1)ξān+1
h ψ̄h ∀ψh ∈ Vi,h. (22)

The error analysis of the present scheme can be addressed with the tools provided
in [8] and [4].

4.3 A numerical validation of the immersed boundary model

Our modeling technique is de facto an immersed boundary method. However,
since the immersed boundary is the surface of a thin cylinder, Γs, the result-
ing source terms will behave similarly to Dirac measures concentrated on the
centerline Λs. In this case, it is known that the solution is singular on Λs, [8],
and the analysis of the accuracy of our immersed boundary model is particularly
important. We address this issue by means of a sequence of numerical tests.

We consider the following steady model problem. Let be Ω = {(z, r, θ) ∈
(0, 1) × [0, 1) × [0, 2π)} (in cylindrical coordinates) and let ∂Ω be the disjoint
union ΓD ∪ ΓN , with ΓD = {x ∈ ∂Ω : r = 1}. We introduce a parametrized line
Λs ⊂ Ω and generate the curvilinear cylinder Θρ by sweeping a (small) circle of
radius ρ along Λs. The resulting external surface Γs, with outgoing unit normal
vector n, is the immersed boundary. Then, we define the domain Ωρ := Ω\Θρ,
and compare the solutions of the following two problems:















−D∆aρ = 0 in Ωρ,
∂naρ = P (1− aρ) on Γs,
∂naρ = 0 on ΓN ,
aρ = 0 on ΓD,















−D∆a = F (a) in Ω,

∂na = 0 on ΓN ,
a = 0 on ΓD,

(23)

where D is the diffusion coefficient and F (a) = P (1−a)δΓs is defined as in (18).
At least for ρ small, we expect the immersed boundary solution a to be a

good approximation of aρ in Ωρ. To quantify the accuracy of the immersed
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Figure 6: On the left: the domain Ωρ featuring the thin inclusion Θρ considered
in problem (23). The dashed line will be used for sampling solution profiles. On
the right: zoom on the line Λs (in red), showing the external surface Γs of the
inclusion Θρ. The domain Ω is precisely Ωρ ∪Θρ.

boundary solution, we perform several computations on different meshes and
report the percent relative errors in Ωρ in Table 1. In particular, we compute

the solution aρ on five meshes T (N)
h (whose element number is denoted by N),

covering the whole domain Ω. Then we approximate aρ on a sufficiently refined

mesh T (Nρ)
ρ,h of Ωρ (whose element number is denoted by Nρ).

N

ρ Nρ 53446 97792 121315 455952 844244

1.25 · 10−2 629469 (8.3, 49.7) (6.8, 24.7) (6.9, 24.4) (6.9, 24.4) (6.8, 20.6)

6.25 · 10−3 2393248 (5.1, 56.5) (1.5, 25.5) (1.5, 25.9) (1.4, 25.3) (1.4, 15.4)

Table 1: Mesh invariance tests. Shown are the relative errors ‖aρ − a‖/‖aρ‖ (%
units) measured in (L2(Ωρ), H

1(Ωρ)) norms, for different values of the element
number Nρ of the mesh on Ωρ, of the element number N of elements of the mesh
on Ω, and of the radius ρ. The mesh corresponding to N = N (1) was uniform,
whilst the other meshes were graded near Λs (as shown in Fig. 6).

All computations were done for the nondimensional form of (23), with the
characteristic parameter k = LP/D = 1, L being the characteristic length of Ω.
Due to linearity, we expect relative errors to be independent of k. Errors between
the full model governing aρ and the immersed boundary model governing a
represent our model error, i.e. the error introduced by the immersed boundary
representation of our embedded surface.

The results confirm that the immersed boundary solution, a, is an accurate
approximation of the solution aρ computed by means of a real internal boundary

with transmission conditions, at least in the limit case when the mesh T (N)
h is
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Figure 7: Profiles of the solutions a (red markers) and aρ (black markers) on the
dashed line crossing Ωρ reported in Figure 6 (left). Top row: ρ = 1.25 · 10−2,
Nρ = 629’469. Bottom row: ρ = 6.25 · 10−3, Nρ = 2’393’248. The mesh element
number N for the immersed boundary computations are N = 53’446 in the first
column, N = 844’244 in the second column.

refined, but the error in the H1 norm is generally not so small as the error in
the L2 norm, because large gradients appear in the solutions near the immersed
interfaces.

In particular, the smaller is the radius ρ, the more accurate is the immersed
boundary solution, a. For instance, in Table 1 we see that the L2 error reduces
from 6.8% to 1.7% (in average) when the radius is halved, starting from a value
corresponding to about 1/100 of the domain diameter. We also observe that

the number N of elements of the T (N)
h mesh can be significantly smaller than

that of the Tρ(Nρ) mesh while providing accurate concentration profiles. For
instance, from Table 1 we see that using only 97K elements (second N -column)
is satisfactory, since the model error will not decrease significantly by further
mesh refinement. The saving in number of mesh elements is more pronounced

for small ρ, when severe mesh refinement is needed in T (Nρ)
ρ,h to represent the

geometry of the thin inclusion Θρ. Finally, looking at Figure 7 we notice that
most of the error is concentrated near the internal boundary. More precisely,
the gain in accuracy that is observed in the profiles of a using a finer mesh is
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most important near Λs. That is why a mesh grading strategy can improve the
accuracy of the immersed boundary simulations avoiding the need to refine the
mesh where this is not required; this is thoroughly analyzed in [7].

5 Computational analysis of drug release from DES

Stent implantation in complex geometries such as coronary bifurcations remains
a challenging problem in the clinical field. In these conditions, a lot of com-
plications and difficulties often occur either during or after the intervention [6].
Computational analysis of such critical cases may help to improve the safety
of stent implantation. Due to the limited computational cost of the proposed
model, we are able to address the very challenging problem of studying drug
release in stented bifurcations.

5.1 A coupled model for drug release in arteries

Before proceeding towards the discussion of numerical simulation results, we
briefly summarize the entire coupled model for drug release, fluid dynamics of
blood and plasma filtration and transport in the arterial lumen and wall. First
of all, we split the domain representing the entire artery into two subregions, the
lumen Ωl and the wall Ωw, denoting with a∗, b∗with ∗ = l, w the corresponding
free drug concentration and density of free binding sites. More precisely, the
advection-diffusion-reaction equations for drug release and transport are



























































































∂taw −∇ · (Dw∇aw) + uw · ∇aw = Fw(t, aw) + ∂tbw in Ωw × R
+

∂tbw + konawbw + koff(bw − bw,0) = 0 in Ωw × R
+

∂tal −∇ · (Dl∇al) + ul · ∇al = Fl(t, al) in Ωl × R
+

al = aw = 0 on Γadv × R
+

∇al · na = ∇aw · na = 0 on Γcut × R
+

al = al,0, bl = 0 in Ωl × {t = 0}

aw = aw,0, bw = bw,0 in Ωw × {t = 0} .
(24)

As discussed in [1] and confirmed by fully three dimensional computational
analysis preformed in [35, 10], the interaction between mass transport and fluid
dynamics is relevant to the understanding of drug deposition into the artery.
The vector fields ul and uw in (24) represent respectively lumenal blood flow
and transmural plasma filtration velocities. We model blood flow with the incom-
pressible Navier-Stokes equations, while plasma filtration is governed by Darcy’s
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model. The coupled model reads as follows,











































∂tul − ν∆ul + (ul · ∇)ul +∇pl = 0 in Ωl × R
+

∇ · ul = 0 in Ωl × R
+

ηuw +∇pw = 0 in Ωw × R
+

∇ · uw = 0 in Ωw × R
+.

(25)

complemented with the initial, boundary and interface conditions discussed in
[10].

5.2 Set up of a geometrical model for stented bifurcations

Different techniques which involve the insertion of two or more angioplastic
balloons and/or stents into a coronary bifurcation are described in [23]. The
preferred strategy by the physicians is the provisional side branch stenting. This
technique consists of the implantation of only one stent in the main branch (MB)
of the bifurcation with the opportunity of expanding another angioplastic balloon
in the side branch (SB) only if the clinical results are considered suboptimal. In
such a case the expansion of a balloon through the stent struts is required in
order to restore the SB patency. To the best of our knowledge the effects of drug
elution in a simplified model of arterial bifurcations have been investigated by
means of computational models by Kolachalama et al. [24]. Their approach is
not realistic as they do not include the possibility of struts that are detached from
the arterial wall or stent configurations deformed nonuniformly. On the contrary,
the approach here presented can be easily applied to realistic arterial stented
bifurcations. Indeed, as shown in figure 2, we consider the realistic configuration
of a DES implanted in a bifurcation. The stent has been represented as a one-
dimensional line, according to the application of the immersed boundary method.
To reach such a realistic configuration, the stented bifurcation model has been
obtained running structural analyses with the method developed by Gastaldi et
al. [16]. Briefly, their simulations included 7 different steps: i) positioning of the
delivery system (balloon and stent) inside the coronary bifurcation; ii) expansion
of the stent in the MB by means of the application of a pressure of 1 MPa on
the internal surface of the balloon; iii) deflation of the MB balloon to obtain the
elastic recoil of the system; iv) dilatation of the stent cell in the proximity of the
bifurcation by means of the application of 1 MPa pressure on internal surface
of the SB balloon; v) deflation of the SB balloon; vi) simultaneous expansion of
two balloons respectively in the two branches of the bifurcation (Final Kissing
Balloon) by application of a pressure 1 MPa; vii) deflation of the balloons.
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5.3 Results and discussion

Combining equations (24) with the geometrical model addressed in section 5.2
and with the numerical discretization technique discussed in 4.2, we are able to
perform a computational analysis of the problem.

Model (24) has to be complemented with coefficients describing drug release
from a stent and mass transport in the arterial wall and lumen. We assume that
the released drug is heparin, as considered in the experimental investigations
presented in [25]. According to [25] we set the diffusivity of the drug in the
arterial tissue toDw = 7.7×10−6 mm2/s and the diffusivity in the lumen toDw =
1.5×10−4 mm2/s. As regards the ligand/receptor interaction involving drug and
proteins contributing to form the tissue extracellular matrix, i.e. equation (2),
we apply the reaction constants proposed in [32], that is kon = 102 s−1 and
koff = 10−2 s−1. The same reference provides also the average concentration of
receptors in the tissue, that is set to bw,0 = 5 (we recall that all data refer to
nondimensional concentrations). To completely close problem (24) we assume
the at the initial time the artery does not contain drug, namely aw,0 = al,0 = 0.
For the stent coating, we estimate a thickness L = 7 µm and we assume that
the initial drug charge is s0 = 10. The diffusivity of the drug within the coating
strongly depends on the material that has been chosen for this purpose. Most
often, DES are coated with polymers, in particular aliphatic polyesters such as
poly-lactic or poly-glycolic acids. Furthermore, the parameter Dc also depends
on the average polymeric chain length and density of such materials [33]. A
reasonable average value seems to be Dc = 10−8 mm2/s, also confirmed by [32].
Such data, together with equation (15) allows us to find a preliminary estimate
of the emptying time of the stent. In particular, setting a = 0 in (15) we obtain
that after T = 6h 20′ about 95% of the available drug has been released.

The most significant feature of concentration profiles reported in figure 8
consists in the fact that the highest concentrations are located on the opposite
part of the artery with respect to the bifurcation branch. Such effect can be
explained by a combination of fluid dynamics and mass transport phenomena.
The origin of these profiles resides in a specific feature of the artery configuration
after the implantation of a stent with the kissing-balloon technique (see Section
5.2). As a consequence of such a technique, the deformation of the artery devi-
ates from the original axial-symmetric configuration and the cross section of the
artery assumes an elliptic shape, more elongated on the plane that contains the
bifurcation branch. Figure 9 confirms that such configuration is responsible for
promoting low axial velocities and possible blood recirculations on the lower part
of the lumen, combined with the fact that the bifurcation subtracts a consider-
able part of the flow from the upper part of the artery (where top and bottom
refer to the orientation of pictures in figure 8). As already observed in [1] for the
case of DES and in [30] for the study of atherosclerosis, penetration of chemicals
is promoted into regions of low axial blood flow, because the components of the
transversal velocities towards the arterial wall are more relevant.
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Figure 8: Concentration profiles in the artery al, aw +dw, al+aw +dw from top
to bottom, at different times t = 30′, t = 5 h from left to right.

A second significant remark consists in the analysis of the drug distribution
into the arterial wall for relatively long time periods, see figure 8 with t = 5 h.
Indeed, we observe that the drug does not uniformly distribute in the wall, but
the concentration of the drug is much higher in the neighborhood of the stent
filaments. This is due to the ligand/receptor interaction between the drug and
the tissue where the forward reaction in (2), characterized by constant kon = 102

s−1, is much faster than the backward one, driven by koff = 10−2 s−1. As a
result of that, the drug in the arterial wall is mostly present in the bound state,
denoted by dw, which can neither diffuse nor be transported by the slow filtration
of plasma across the wall.

Finally, we validate the results of section 3 by means of a comparison with the
full three-dimensional simulations of model (24). The most important quantity
to analyze is the evolution in time of the free drug concentration in the lumen
and in the wall, namely al and aw, in order to verify whether assumption 3.1 is
satisfactorily verified or not. We denote by ā∗(s, t), ∗ = l, w , the mean value
along each virtual perimeter, γ(s), of the immersed boundary model of the stent
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Figure 9: Streamlines of blood flow in the lumen. Colors denote the velocity
magnitude in cm/s.

(see figure 5)

ā∗(s, t) :=
1

ξ∗(s)|γ(s)|

∫

γ(s)
a∗(x, t)ξ∗(s) dx .

We then consider the maximal value along the arc length of ā∗(s, t), more pre-
cisely ¯̄a∗(t) := maxs∈Λs |ā∗(s, t)|.
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Figure 10: The evolution of the concentrations ¯̄al(t), ¯̄aw(t) and ¯̄al(t) + ¯̄aw(t)
with time (left). A comparison of the relative amount of released drug (right)
estimated by model (24) (label 3D) and by model (15) (label 0D).

Figure 10 (left) shows that the requirements of assumption 3.1 are accurately
satisfied. On the one hand, the small variations of the concentration in the lu-
men, al, are justified reminding us that the governing equation for drug released
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in the lumen consists of a transport dominated advection diffusion equation. As
a result of that the drug released by the surface of the stent exposed to blood
flow is immediately washed away. Possible effects of drug accumulation in the
fluid recirculation in proximity of the stent cannot be taken into account here,
because the immersed boundary model of the stent does not affect the blood
stream. Anyway, for a realistic three-dimensional stent model, it was shown in
[35] that these phenomena minimally affect drug release. On the other hand, aw
is small because of the previously mentioned ligand/receptor reaction.

In a second test, we analyze the relative amount of drug released. For the
three-dimensional model, this quantity is defined as q(t)/q∞|3D where q∞|3D =
s0L|Γs| while q(t)|3D is

q(t)|3D =

∫

Ωw

(

aw(x, t) + dw(x, t)
)

dx+

∫

Ωl

al(x, t) dx.

Concerning the amount of released drug estimated by (15), we proceed as in
the comparison with Higuchi’s model, with the difference that now the external
concentration is the function ¯̄al(t) + ¯̄aw(t) computed with model (24). The fact
that the estimate relative to the fully three-dimensional model is considerably
lower than the one for the lumped model, as depicted in figure 10 (right), in-
dicates that part of the total drug release is removed from the vascular district
under consideration. This can be explained by noticing that most of the drug
released in the lumen is transported away. Furthermore, also part of the drug
penetrating in the arterial wall can abandon the arterial tissue, because of the
possible exchange of drug between lumen and wall. The former source of loss
is predominant, as confirmed by observing that the amount of drug penetrating
into the arterial wall is approximately half the total, in agreement with the fact
that half of the stent surface is exposed to blood flow.

Conclusions

We have shown that the present multiscale model for drug release, complemented
with the mechanical analysis of stent expansion, see for instance [27, 35, 16],
represents a complete tool to study mechanics, fluid dynamics and pharma-
cokinetics of realistic and complex cases of DES implantation, with affordable
computational cost on any up to date computing platform. We hope that in
silico analyses may become in future a complementary tool for DES design and
clinical investigation.
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