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Abstract
We consider an incompressible flow problem in a N -dimensional fractured porous do-

main (Darcy’s problem). The fracture is represented by a (N − 1)-dimensional interface,
exchanging fluid with the surrounding media. In this paper we consider the lowest-order
(RT0, P0) Raviart-Thomas mixed finite element method for the approximation of the cou-
pled Darcy’s flows in the porous media and within the fracture, with independent meshes
for the respective domains. This is achieved thanks to an enrichment with discontinuous
basis functions on triangles crossed by the fracture and a weak imposition of interface
conditions.

First, we study the stability and convergence properties of the resulting numerical
scheme in the uncoupled case, when the known solution of the fracture problem provides
an immersed boundary condition. We detail the implementation issues and discuss the
algebraic properties of the associated linear system. Next, we focus on the coupled problem
and propose an iterative porous domain / fracture domain iterative method to solve for
fluid flow in both the porous media and the fracture and compare the results with those
of a traditional monolithic approach.

Numerical results are provided confirming convergence rates and algebraic properties
predicted by the theory. In particular, we discuss preconditioning and equilibration tech-
niques to make the condition number of the discrete problem independent of the position
of the immersed interface. Finally, two and three dimensional simulations of Darcy’s
flow in different configurations (highly and poorly permeable fracture) are analyzed and
discussed.

1 Introduction

The numerical approximation of fluid flows in porous media is particularly challenging in
presence of strong heterogeneities of the model parameters. This is a known issue of the
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Darcy’s problem in geophysical applications, such as groundwater flows or two-phase flows
for oil migration. In fact, the permeability of the considered medium (the ground, or, at a
larger scale, a geological basin) may easily span several orders of magnitude. Mixed finite
element methods are known to be robust with respect to such heterogeneity, while ensuring
mass conservation properties. However, heterogeneities can be geometrically structured in
the form of fractures (thin regions with a different porous structure). In the relevant case of
fractures whose thickness is very small compared to the characteristic length of the domain,
a reduced model can be set up in which the fracture is represented as an immersed interface.
The development and the analysis of such models for the single phase flow have been exten-
sively addressed in [1], [15], [12], where the fracture flow equations and the proper interface
conditions across the fracture have been identified and mixed finite element schemes for the
coupled porous medium flow / fracture flow have been proposed.

In the aforementioned works, the computational grid of the porous domain is considered
to be matching with the fracture mesh: in practice, the fracture is the (conforming) interface
between two mesh blocks. Non-conforming meshes on the interface could be easily dealt with
by mortaring [3], however, this does not allow having an immersed interface, where some of
the elements of the porous grid may be cut by the fracture. The aim of this work is precisely
to extend the already known reduced models of Darcy’s flow in fractured media to the case
where the porous mesh and the fracture mesh are independent and non-matching. To do this,
we adopt the approach of enriching the classical Raviart-Thomas finite element basis on the
elements cut by the fracture with discontinuous functions. This XFEM concept is borrowed
from the works by Hansbo et al. [14], [6], [5] that focus on the elasticity problem in domains
with fractures.

The aim of this study is to provide a flexible tool for handling the fractures and the
porous bulk of the considered medium independently. This is of interest in several typical
situations. First, it is often difficult to force the computational grid to be conformal with
a given fracture network, especially if the latter has a complex geometry. Moreover, there
are important applications that require to run multiple simulations with different fracture
configurations. Among some relevant instances we mention the geological scenario analysis,
more generally the quantification of uncertainty on physical parameters, or the upscaling
of random fractured media [7]. In this context, the possibility of running simulations with
different fracture geometries while keeping the mesh of the porous domain unchanged is an
advantage of the proposed approach.

2 Formulation of the problem

To make the exposition more clear, we specifically address the (N = 2)-dimensional case;
nevertheless, this assumption will not be a limitation. We consider a bounded open domain
Ω ⊂ R2 (the porous media or bulk) and a line Γ ⊂ Ω (the fracture).

For the sake of simplicity, we shall consider the case where Γ separates Ω in two disjoint
domains Ωi, i = 1, 2. This is not a strict limitation of the proposed method; however, handling
the case of a “partially immersed fracture” is more complex from the analytical point of view
(see [2] for a thorough investigation concerning the proper analytical setting of the continuous
problem).

We shall denote nΓ a normal unit vector with fixed orientation on Γ from Ω1 to Ω2, and
τΓ the tangential unit vector on Γ (in N > 2 dimensions τΓ will be a N × (N − 1) matrix,
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whose columns constitute an orthonormal basis for the tangent space at each point x̂ ∈ Γ).
We will often refer to the canonical local coordinates (s, t) to map a neighborhood of x̂ ∈ Γ
by x = x̂ + sτΓ + tnΓ (or, if N > 2, x = x̂ + τΓs + tnΓ where s ∈ RN−1 is the vector of the
tangential components).

According to the different porous microstructure of the bulk and the fracture, we consider
a permeability tensor field K in Ω, and assume the permeability tensor in the fracture to be
block-diagonal in local coordinates (s, t), i.e.

KΓ =
[
KΓ,n 0

0 KΓ,τ

]
,

where KΓ,n is the normal permeability and KΓ,τ is the tangential permeability tensor.
We assume that the motion of the incompressible fluid in Ω is governed by the Darcy’s

equation. In particular, let u, p be respectively the filtration velocity and the fluid pressure
in Ω, and let η = K−1. Assume ∂Ω = ΓD ∪ ΓN , ΓD ∩ ΓN = ∅, and let the boundary flux
u0 : ΓD → R and the external pressure p0 : ΓN → R be given. The flow equations and
boundary conditions read

ηu +∇p = fv in Ω,
∇ · u = fq in Ω,

u · n = u0 on ΓD,
p = p0 on ΓN ,

(1)

where fv, fq are given data (representing for instance gravitational effects and mass sources/sinks
inside the domain).

Finally, suitable interface conditions on Γ have to be provided. A first example is the
following: i) the fluid pressure in the fracture is the mean value of the fluid pressures on the
two sides of the surrounding porous medium, and ii) the mean normal flow rate is proportional
to the pressure jump across Γ, i.e.

0 = {p} − p̂ on Γ,
ηΓ{u · nΓ} = JpK on Γ,

(2)

where p̂ is the fluid pressure in the fracture, ηΓ = lΓ
KΓ,n

, lΓ being the actual fracture thickness,
and we adopt the following notations for the jump and the average of any function u that
may be discontinuous across Γ:

JuK := u1 − u2, {u} :=
1
2
(u1 + u2), where u1,2(x) = lim

ε→0±
u(x− εnΓ) ∀x ∈ Γ.

This is a particular case (ξ = 1
2) of the following interface conditions [15]

ξu1 · nΓ + (1− ξ)u2 · nΓ = η−1
Γ (p1 − p̂) on Γ,

(1− ξ)u1 · nΓ + ξu2 · nΓ = η−1
Γ (p̂− p2) on Γ,

(3)

where ξ ∈ [0, 1] is a parameter. For ξ > 1
2 , these interface conditions can be rewritten as

follows,
ηΓJu · nΓK = 4

2ξ−1({p} − p̂) on Γ,

ηΓ{u · nΓ} = JpK on Γ.
(4)

Note that (2) are recovered from (4) in the limit ξ → 1
2

+.
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The pressure p̂ can be known a priori, or it can be computed solving a fracture flow
problem. This requires the derivation of a reduced model for the fracture flow, for which
we refer to [2], [1], [15], [12]. Following the cited references, we assume that the flow within
the fracture is governed by a reduced Darcy’s equation. Define the tangential gradient ∇τ =
(τΓτT

Γ )∇ as the projection of the gradient onto the tangent space. Let uΓ be the fluid velocity
in the fracture, and let û = lΓ(τΓτT

Γ )uΓ (which is a “mean flow rate” within the fracture, in
the tangential direction). Denote by f̂v a generic momentum forcing term and by f̂q a mass
source term in the fracture. Although different boundary conditions would be admissible, for
the sake of simplicity and symmetry with respect to the boundary conditions of the bulk flow
problem, we will split the endpoints ∂Γ of Γ in a Dirichlet boundary ∂DΓ, where no flow takes
place, and a homogeneous Neumann boundary ∂NΓ, where the pressure p̂ is set to a reference
value. In this case, the fracture velocity and pressure satisfy the following problem,

η̂û +∇τ p̂ = f̂v on Γ,

∇τ · û = f̂q(u) on Γ,

û · τΓ = 0 on ∂DΓ,
p̂ = p̂0 on ∂NΓ,

(5)

where η̂ = [lΓKΓ,τ ]
−1, and f̂q(u) = lΓf̃q + (u1 − u2) · nΓ.

Equations (1), (5), with interface conditions (3), constitute a system of coupled problems
governing the fluid motion in the fractured domain. In [15], the well posedness of such coupled
problem has been proved for 1

2 < ξ ≤ 1. We will show in the next section that this assumption
is needed also in our formulation. Hence, in general we will refer to coupling conditions (4)
with 1

2 < ξ ≤ 1.
In the next sections, we will proceed along the following lines. In section 3 and 4 we

consider the problem of the numerical approximation of (1), (4) with an unfitted mixed finite
element scheme, assuming that p̂ is known, focusing on the treatment of fractures which are
not conformal with the triangulation on Ω, studying the algebraic properties of the discrete
problem. In section 5 we introduce an iterative scheme to include the fracture flow equations
and solve the coupled problems. Finally, we will verify the predicted properties by numerical
experiments.

3 Finite element approximation of the bulk flow problem

In order to set up our finite element scheme, let us assume that Ω is a convex polygon, and
consider a family of triangulations Th, being h the maximal diameter of the elements of Th.
We point out that Th may not be conformal with the fracture Γ, so that triangles K ∈ Th

may be cut by Γ.
The technique of enriching the elements cut by an “embedded” interface with discontinu-

ous functions is the basic idea of the extended finite element method [16], originally developed
for the computational analysis of the evolution of cracks in solid mechanics. Recently, this idea
has been applied in combination with Nitsche’s method based on penalization, see [5], [14].
Here we follow a similar approach considering Raviart-Thomas finite elements and coupled
porous domain / fracture domain problems.

In this work the notation a . b means that there is a constant C > 0, independent of
h and of the physical parameters η, η̂, ηΓ, such that a ≤ Cb; we will use a & b similarly.
Following [14], we require that the following assumptions are satisfied.

A1. The triangulation is shape-regular, i.e., ρK . hK . ρK ∀K ∈ Th, where hK is the
diameter of K and ρK is the diameter of the largest ball contained in K.
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A2. If Γ∩K 6= ∅, K ∈ Th, then Γ intersects ∂K exactly twice, and each (open) edge at most
once.

A3. Let ΓK,h be the straight line segment connecting the points of intersection between Γ
and ∂K. We assume that ΓK is a function of length on ΓK,h: in particular, in local
coordinates (s, t) we have ΓK,h = {(s, t) : 0 < s < |ΓK,h|, t = 0} and ΓK = {(s, t) : 0 <

s < |ΓK,h|, t = δ(s)}, where δ is positive in the direction of nΓ, i.e., nΓ = (−δ′(s),1)T

(δ′(s)2+1)1/2 in
local coordinates. This hypothesis is always fulfilled on sufficiently fine meshes if Γ has
bounded curvature.

We shall denote Ki = K ∩ Ωi for any element K ∈ Th, and Gh = {K ∈ Th : Γ ∩K 6= ∅} the
collection of elements that are crossed by the fracture. Let us introduce the finite element
spaces that will be used in the set up of the method. We consider discrete velocities vh and
pressures qh in the following spaces,

Vh = V1,h ×V2,h, Qh = Q1,h ×Q2,h,

Vi,h = {vh ∈ Hdiv(Ωi) : vh|Ki
∈ RT0(Ki) ∀K ∈ Th},

Qi,h = {qh ∈ L2(Ωi) : qh|Ki
∈ P0(Ki) ∀K ∈ Th}.

Each discrete velocity vh = (v1,h,v2,h) and pressure qh = (q1,h, q2,h) is thus made of two
components, associated to the domains Ωi, i = 1, 2. With little abuse of notation, by the
same symbols we will denote the functions defined by vh = vi,h on Ωi, qh = qi,h on Ωi.

For the sake of simplicity, we shall consider the case in which η is a scalar rather than a
positive definite tensor; to further ease the analysis, we will assume that η = ηi ∈ R on each
subdomain Ωi. The numerical scheme can be easily modified to account for variable, tensor
valued coefficients.

Let us introduce the following bilinear and linear forms:

a(uh,vh) =
∫

Ω
ηuh · vh +

∫
ΓD

γh−1(uh · n)(vh · n) (6)

+
∫

Γ
ηΓ{uh · nΓ}{vh · nΓ}+ ξ0

∫
Γ

ηΓJuh · nΓKJvh · nΓK,

b(ph,vh) =−
∫

Ω
ph(∇ · vh) +

∫
ΓD

ph(vh · n), (7)

F(vh, qh) =
∫

Ω
fv · vh −

∫
ΓN

p0(vh · n) +
∫

ΓD

γh−1u0(vh · n) (8)

+
∫

Ω
fqqh −

∫
ΓD

u0qh −
∫

Γ
p̂Jvh · nΓK,

where γ is a positive penalization coefficient, 2ξ0 = ξ − 1
2 , and where we denote (with a little

abuse of notation) h a piecewise constant function defined on all edges E ⊂ ∂K, K ∈ Th,
and such that h|E = diam(E). Note that in order to ensure the strict positivity of the
associated interface term, the assumption ξ > 1

2 is indeed required, even if our formulation
also accommodates the limit case ξ = 1

2 (or ξ0 = 0).
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Figure 1: The porous domain Ω and the fracture Γ. The boundary ∂Ω = ΓD∪ΓN is split in a
Dirichlet boundary (where the Darcy’s normal velocity is imposed) and a Neumann boundary
(where the pressure is prescribed). The inflow ΓD,in ⊂ ΓD is also shown (homogeneous
conditions being prescribed on ΓD\ΓD,in). Standard P0 degrees of freedom of the pressure
associated to internal nodes (marked with black triangles) are duplicated (gray triangles) on
elements K ∈ Gh crossed by Γ (shaded), to provide constant pressure on each sub-element K1,
K2. Analogously, the RT0 degrees of freedom of the velocity, associated to the edges midpoints
(black squares) are duplicated (gray squares) on elements K ∈ Gh, leading to independent
RT0 functions on K1 and K2, as outlined in the box. Note also that a “partially immersed
fracture” Γ can be treated as a full interface Γ ∪ Γe between Ω1 and Ω2, and imposing the
continuity of the pressure and of the normal velocity on Γe by properly modifying the interface
conditions (4).

Our finite element method reads as follows: given the boundary data u0, p0, and the
fracture pressure p̂, find (uh, ph) ∈ Wh such that

C((uh, ph), (vh, qh)) = F(vh, qh) ∀(vh, qh) ∈ Wh,

where (9)
C((uh, ph), (vh, qh)) = a(uh,vh) + b(ph,vh)− b(qh,uh).

The choice of the (RT0, P0) finite element pair is typical for applications to geophysical
problems. Single and possibly multi-phase flows in porous media require robust, locally con-
servative numerical method to provide accurate solution without mass losses. We also point
out that different formulations using stabilized (Pk+1, Pk) finite elements (with interior penal-
ties) for the Darcy’s equation have been studied in [9], [10], which allow a unified formulation
in the framework of coupling with viscous flows. On a similar finite element pair is also based
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the work presented in [5]. In such works, it has been shown that Nitsche’s method is a flexible
tool to treat interface conditions (IC). We observe that ICs (4) are of mixed (Robin) type,
relating velocity to stress (pressure); no essential IC is considered. Correspondingly, in this
work we insert (4) as natural ICs in our variational formulation. However, we make use of the
Nitsche’s method to impose the Dirichlet boundary conditions. Different formulations could
extend the application of the method also for the ICs.

4 Consistency, stability and convergence analysis

Under minimal regularity assumptions, the finite element scheme (9) is consistent with (1),
(4). Let us introduce the following spaces

V = {v = (v1,v2) : vi ∈ Hdiv(Ωi), vi · nΓ ∈ L2(Γ), i = 1, 2},
Q = {q = (q1, q2) : qi ∈ H1(Ωi)} ⊂ L2(Ω), W = V ×Q.

Note that the normal component v · nΓ of a function v ∈ V is discontinuous on Γ.

Lemma 4.1 (Consistency) Let (u, p) be the solution of (1) with interface conditions (4),
and let (uh, ph) ∈ Wh be the solution of (9). If (u, p) ∈ W, we have

C((u− uh, p− ph), (vh, qh)) = 0 ∀(vh, qh) ∈ Wh. (10)

Proof Let us show that C((u, p), (vh, qh)) = F(vh, qh) ∀(vh, qh) ∈ Wh. Using the Green’s
theorem in both subdomains1 Ωi, i = 1, 2, we have b(p,vh) =

∫
Ω vh · ∇p −

∫
ΓN

p(vh · n) −∫
ΓJp(vh ·nΓ)K. Hence, replacing ηu+∇p = fv, ∇·u = fq, and using the boundary conditions,

we have

C((u, p), (vh, qh)) =
∫

Ω
fv · vh +

∫
Γ

ηΓ{u · nΓ}{vh · nΓ}+ ξ0

∫
Γ

ηΓJuh · nΓKJvh · nΓK

+
∫

ΓD

γh−1u0(vh · n)−
∫

ΓN

p0(vh · n)−
∫

Γ
Jp(vh · nΓ)K +

∫
Ω

fq∇ · vh −
∫

ΓD

qhu0.

Thanks to the algebraic identity JabK = JaK{b} + {a}JbK and to the interface conditions
(4) we can write ∫

Γ
Jp(vh · nΓ)K =

∫
Γ
JpK{vh · nΓ}+

∫
Γ
{p}Jvh · nΓK = I + II

where

I =
∫

Γ
ηΓ{u · nΓ}{vh · nΓ}, II = ξ0

∫
Γ

ηΓJu · nΓKJvh · nΓK +
∫

Γ
p̂Jvh · nΓK,

so that

C((u, p), (vh, qh)) =
∫

Ω
fv · vh +

∫
ΓD

γh−1u0(vh · n)−
∫

ΓN

p0(vh · n) +
∫

Ω
fq∇ · vh

−
∫

Γ
p̂Jvh · nΓK−

∫
ΓD

qhu0 = F(vh, qh).

2

1In the case of a “partially immersed” fracture this step would be more complex, see [2], sec. 3.
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We will consider the following discrete norms:

|||vh|||2 =‖η
1
2 vh‖2

L2(Ω) + ‖η
1
2
Γ {vh · nΓ}‖2

L2(Γ) + ξ0‖η
1
2
Γ Jvh · nΓK‖2

L2(Γ) + ‖h−
1
2 vh · n‖2

L2(ΓD),

‖vh‖2
Vh

=|||vh|||2 + ‖η
1
2∇ · vh‖2

L2(Ω),

‖qh‖2
Qh

=‖η−
1
2 qh‖2

L2(Ω),

and define
‖(vh, qh)‖2

Wh
= ‖vh‖2

Vh
+ ‖qh‖2

Qh
. (11)

Note that ‖η
1
2∇·vh‖2

L2(Ω) is in fact a broken norm, since η
1
2∇·vh stands for (η

1
2
1 ∇·v1,h, η

1
2
2 ∇·

v2,h); however, it is sometimes convenient to identify L2(Ω1)×L2(Ω2) with L2(Ω). Sometimes
we will also make use of the h-dependent norms ‖u‖2

h,± 1
2
,Σ

:=
∫
Σ h∓1u2.

Lemma 4.2 (F-Boundedness) If ξ0 > 0, there exists a constant Ch (depending on h and
on the quantities reported below) such that

F(vh, qh) ≤ Ch(fv, fq, u0, p0; ξ0, p̂)‖vh, qh‖Wh
∀(vh, qh) ∈ Wh.

Proof We can estimate each term in F as follows,

F(vh, qh) ≤ ‖η−
1
2 fv‖L2(Ω)‖η

1
2 vh‖L2(Ω) + ‖η−

1
2 p0‖h,− 1

2
,ΓN

‖η
1
2 vh · nΓ‖h,+ 1

2
,ΓN

+ γ‖u0‖h,+ 1
2
,ΓD
‖vh · nΓ‖h,+ 1

2
,ΓD

+ ‖η
1
2 fq‖L2(Ω)‖η−

1
2 qh‖L2(Ω)

+ ‖η
1
2 u0‖h,+ 1

2
,ΓD
‖η−

1
2 qh‖h,− 1

2
,ΓD

+ ‖η−
1
2

Γ p̂‖L2(Γ)‖η
1
2
Γ Jvh · nΓK‖L2(Γ).

Using standard inverse inequalities we have, for Σ = ΓD or ΓN ,

‖η
1
2 vh · nΓ‖h,+ 1

2
,Σ . ‖vh‖Vh

, ‖η−
1
2 qh‖h,− 1

2
,Σ . ‖qh‖Qh

.

By using Cauchy-Schwarz inequality, we get the boundedness result with

Ch(fv, fq, u0, p0; ξ0, p̂)2 .‖η−
1
2 fv‖2

L2(Ω) + ‖η−
1
2 p0‖2

h,− 1
2
,ΓN

+ γ2‖u0‖2
h,+ 1

2
,ΓD

+ ‖η
1
2 fq‖2

L2(Ω) + ‖η
1
2 u0‖2

h,+ 1
2
,ΓD

+ ξ−1
0 ‖η−

1
2

Γ p̂‖2
L2(Γ).

Note that for ξ0 → 0 the linear functional F becomes unbounded (we loose the control of
the jump of the normal velocity across the fracture). The dependence on h concerns only the
non-homogeneous boundary data p0 and u0, and will not affect the convergence properties of
our scheme when estimating the error. 2

Similarly, the following properties are immediately verified.

Lemma 4.3 (Boundedness) The bilinear form C is bounded, i.e.

C((uh, ph), (vh, qh)) ≤ ‖uh, ph‖Wh
‖vh, qh‖Wh

∀(uh, ph), (vh, qh) ∈ Wh. (12)

Lemma 4.4 (Positivity) Provided that γ & 1,

C((vh, qh), (vh, qh)) ≥ |||vh|||2 ∀(vh, qh) ∈ Wh. (13)
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Proof We have

C((vh, qh), (vh, qh)) =a(vh,vh) = |||vh|||2

so that the lemma follows immediately. 2

In [5] an “extended” Clément interpolant has been constructed to derive a stabilized inf-
sup condition for the Stokes (elasticity) problem using the (P1, P0) finite element pair; the
same scheme can be used for the Darcy’s problem, see [9], [10]. In [19] it was numerically shown
that if a inf-sup stable, mixed finite element scheme is extended in the pressure space only,
degeneration of the inf-sup constant may occur (and can be cured by a suitable modification
of the extended space).

Here we prove that using the extended (RT0, P0) pair we can obtain an inf-sup condition
under some additional assumptions on the interface Γ. First of all, we split the domain Ω in
three subregions. One is the strip of (cut) elements in Gh; then, we also define Ti,h = {K ∈
Th : K ⊂ Ωi} the collections of all the elements fully included in each Ωi. We shall refer to the
subregions formed by all such elements using the same symbols. Thus, Ω = T1,h ∪ Gh ∪ T2,h

is a disjoint union. We denote by Γi,h the interface between Ti,h and Gh.
For each K ∈ Gh, let EK be the only edge of K that is not cut by Γ. For a given index

i = 1, 2, there are only two cases: either EK ∩ Ωi = ∅, or EK ⊂ Γi,h. In the first case, the
sub-element Ki is a (curved) triangle: we say that K is of type T and write K ∼ T . In the
other case, the sub-element Ki is a (curved) quadrangle: we say that K is of type Q and
write K ∼ Q (see fig. 2). Note that this classification depends on i.

For each i = 1, 2, it is always possible to split Gh in patches of elements of different types,
that we call Pn (see fig. 3 in the case i = 1 for an example).

• Patches of type P0 are formed by a single element K ∼ T .

• Patches of type Pn are formed by one element K ′ ∼ T and n elements Kj ∼ Q.

B

A

C

K1
2

K1
1

G1,h

G

EK2 W1

A'

B'

EK1

B

A

C K1
2

K1
1

G1,h

G

EK2 W1

A'

C'

B'
EK1

Figure 2: Two elements Kj ∈ Gh, j = 1, 2, cut by an interface Γ = ABC. On the left: K1 ∼ T
(K1

1 is a triangle, EK1 is outside Ω1), K2 ∼ Q (K2
1 is a quadrangle, EK2 is on Γ1,h ⊂ Ω1).

On the right: K1,K2 ∼ Q (Kj
1 is a quadrangle, EKj is on Γ1,h ⊂ Ωi, j = 1, 2).

Hypothesis 4.5 Let K1, K2 be two adjacent elements in Gh (i.e. sharing an edge E). There
exist two constants c, C > 0, dependent on Γ only, such that

|K1
i | ≤ C|K2

i | if K1 ∼ T and K2 ∼ Q; (14)

c|K1
i | ≤ |K2

i | ≤ C|K1
i | if K1,K2 ∼ Q. (15)

9



Property 4.6 Hypothesis 4.5 is satisfied if the ratio between the curvature radius ρ of Γ and
the mesh size h is large enough, i.e. ρ ≥ CΓh with CΓ a positive constant. Hence, it holds for
a sufficiently refined mesh.

Proof We will restrict the proof to the case in which Γ is piecewise linear, as Γ = ABC in
fig. 2. In this case ρ will be the radius of the circle passing by three consecutive nodes of Γ,
ρ = ρ(A,B, C). Note also that ρ(A,B, C) ≥ CΓh means that Γ cannot change direction too
rapidly from AB in element K2 to BC in element K1 – precisely, the angle AB̂C has to be
large enough with respect to the internal angles of the elements, i.e. AB̂C ≥ ĈΓ with ĈΓ a
reference angle, that in 2D can be for instance chosen in (2π/3, π), representing the “typical”
mesh curvature, such that ĈΓ ' A′B̂′C ′ in fig. 2.

Consider the estimate (14): the situation is depicted in fig. 2, on the left. K1
i = BB′C ∼ T

is a triangle, and |K1
i | . BB′ ·BC. On the other hand, K2

i = AA′BB′ is a quadrangle having
a fixed edge EKj ⊂ Γi,h, so that |K2

i | = O(|EK2 | · 1
2(BB′+AA′)). Thanks to shape regularity,

BC . h . EK2 , so that (14) follows (with no assumptions on ρ).
Now consider (15): the situation is depicted in fig. 2, on the right. K1

i = BB′CC ′ ∼ Q
and K2

i = AA′BB′ ∼ Q are both quadrangles. Let us show that |K1
i | & |K2

i | (the opposite
estimate follows by symmetry). We have |K1

i | = O(|EK1 | · 1
2(BB′ + CC ′)), |K2

i | = O(|EK2 | ·
1
2(BB′ + AA′)). Thanks to shape regularity, EK2 . EK1 . EK2 . To conclude, we need to
show that 1

2(BB′ + CC ′) cannot degenerate w.r.t. 1
2(BB′ + AA′). This can only happen if

A is kept fixed and B, C tend respectively to B′, C ′, so that |K1
1 |/|K2

1 | is arbitrarily small,
while K1 and K2 are both of type Q. Note that this implies AB̂C < A′B̂′C ′, i.e. AB̂C < ĈΓ.
As we said, that would not be possible if ρ/h is large enough. 2

As a consequence of (14) and (15), on each patch {Kj ∼ Q,K ′ ∼ T, j = 1, . . . , n} of type Pn,
we have

|K ′
i| . |Kj

i |, |Kj2
i | . |Kj1

i | . |Kj2
i |, j, j1, j2 = 1, . . . , n. (16)

We will also need the following auxiliary lemma about the surjectivity of the divergence
operator onto L2.

Lemma 4.7 Let Ω be a Lipschitz domain, and let Γ ⊂ ∂Ω, Γ 6= ∂Ω, be a Lipschitz subset of
its boundary. For any q ∈ L2(Ω), there exists v ∈ H1(Ω) such that

∇ · v = q, v|Γ = 0, ‖v‖H1(Ω) . ‖q‖L2(Ω).

Proof If q ∈ L2
0(Ω) = {f ∈ L2(Ω) :

∫
Ω f = 0} and Γ = ∂Ω, this is a well known result [13].

To deal with the general case in which Γ is only part of the boundary, consider any lifting
h ∈ H1(Ω) of a smooth boundary datum satisfying h|Γ = 0,

∫
∂Ω h ·n 6= 0. By normalization,

we can then require
∫
Ω∇ · h = 1. Let q̄ =

∫
Ω q ∈ R, and consider q0 = q − q̄(∇ · h). We have

q0 ∈ L2
0(Ω). Then, there exists v0 ∈ H1(Ω) such that

∇ · v0 = q0, v0|∂Ω = 0, ‖v0‖H1(Ω) . ‖q0‖L2(Ω).

Let v = v0 + q̄h. Since ∇ · v = q0 + q̄(∇ · h) = q, and ‖v‖H1(Ω) ≤ ‖v0‖H1(Ω) + |q̄|‖h‖H1(Ω) .
‖q0‖L2(Ω) + |q̄| . ‖q‖L2(Ω) the proof is concluded. 2
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Lemma 4.8 (inf-sup condition) For any ph ∈ Qh, there exists vp,h ∈ Vh such that

b(ph,vp,h) & ‖η−
1
2 ph‖2

L2(Ω),

‖vp,h‖Vh
. MΓ‖ph‖Qh

,

vp,h = 0 on ΓD,

where MΓ = max{1, h
√

ηΓ/ηmin}, ηmin = min{η1, η2}.

Proof Let us analyze the three different subregions Ω = T1,h ∪ Gh ∪ T2,h. We will also need
the piecewise constant functions gi,h ∈ L2(Ωi) such that gi,h|Ki

= η−1
i pi,h|Ki

on each K. For
the sake of simplicity, we will consider the case in which ΓN ∩ Ti,h 6= ∅.

Let us start with Ti,h ⊂ Ωi. Thanks to lemma 4.7, there exists v̄i ∈ H1(Ti,h) such that

v̄i = 0 on ∂Ti,h\ΓN , ∇ · v̄i = −gi,h, ‖v̄i‖H1(Ti,h) . ‖gi,h‖L2(Ti,h).

Note that v̄i = 0 on Γi,h ⊂ ∂Ti,h and ‖η
1
2
i v̄i‖H1(Ti,h) . ‖η−

1
2

i pi,h‖L2(Ti,h), ηi being constant on
Ti,h. Owing to the Hdiv(Ti,h)-conformal RT0 interpolant Ii,h such that

∫
E(I− Ii,h)v̄i ·nE = 0

on all edges E of all elements K ∈ Ti,h, let us define v̄i,h ∈ Vh as the extension of Ii,hv̄i by

zero on Ω\Ti,h. We have ‖η
1
2
i v̄i,h‖H1(Ti,h) . ‖η−

1
2

i pi,h‖L2(Ti,h), v̄i,h · n = 0 on ∂Ti,h ∩ ΓD, and

b(ph, v̄i,h) = −
∫
Ti,h

pi,h(∇ · v̄i,h) = −
∫
Ti,h

pi,h(∇ · v̄i) = ‖η−
1
2 ph‖2

L2(Ti,h).

We are left with finding ṽh ∈ Vh such that b(ph, ṽh) = ‖η−
1
2 ph‖2

L2(Gh) and ‖η
1
2
i ṽh‖H1(Gh) .

‖η−
1
2

i pi,h‖L2(Gh), with supp(ṽh) ⊂ Gh. This is not standard, since our finite element spaces is
enriched on Gh. To this end, we exploit the splitting of Gh in patches of element of type Pn,
as follows. Let K ∈ Gh. Note that ph|K is represented by a couple of real values pi,K , i = 1, 2,
where pi,K = ph|Ki

. Recall that EK denotes the only edge of K which is not cut by Γ.

• If K ∼ T is a single element P0 patch, define ṽi,K,h ∈ Vi,h by ṽi,K,h = (mEK
φEK

)|Ωi
,

where φEK
is the RT0 basis function associated to EK such that φEK

· nK = 1 on
EK and φEK

· nK = 0 on the remaining edges. Such functions are “local” in that the
only “active” degree of freedom is not shared with the adjacent elements in Gh (see
fig. 3, where active d.o.f. are represented by small circles on each edge, whereas we have
zero normal fluxes on the remaining edges, marked with small bars). The support of
such ṽi,K,h is thus Ki. Let us choose mEK

such that ∇ · ṽi,K,h = −η−1
i pi,K . Since on

K we have ∇ · φEK
= 1

|K|
∫
K ∇ · φEK

= 1
|K|

∫
∂K φEK

· nK = |EK |
|K| , it suffices to set

mEK
= −η−1

i
|K|
|EK |pi,K , yielding

b(ph, ṽi,K,h) = −
∫

Ki

pi,K∇ · ṽi,K,h =
∫

Ki

η−1
i p2

i,K = ‖η−
1
2 ph‖L2(Ki).

On the other hand, we have ‖η
1
2
i ṽi,K,h‖H1(Ki) = η

1
2
i |mEK

|‖φEK
‖H1(Ki). Owing to stan-

dard inverse inequalities, we have ‖φEK
‖H1(Ki) . h−1|Ki|

1
2 and, thanks to shape regu-

larity, |K|/|EK | . h. Hence,

‖η
1
2
i ṽi,K,h‖H1(Ki) . η

− 1
2

i |pi,K ||Ki|
1
2 = ‖η−

1
2 pi,h‖L2(Ki).
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K1

E'

E

G

W1

G1,h

P1

P0

P0

P3
K'1

P1

Figure 3: The strip Gh of all elements cut by Γ is split in patches of different types: single-
element P0 patches and n-elements Pn patches. On the restriction to Ωi of each patch, a local
discrete velocity vi,Pj ,h is introduced by activating the RT0 degrees of freedom indicated by
the circles on the edges. The remaining (inactive) degrees of freedom are denoted by bars:
on such edges vi,Pj ,h · n = 0. Marked are the interface Γ1,h between Gh and Ti,h (Ti,h being
the collection of all elements internal to Ωi)

• If K ∼ Q, we cannot apply the previous construction of a suitable discrete velocity with
local support. Hence, assume that K is in a patch P1 = {K, K ′}, sharing an edge E
with an element K ′ ∼ T ; let E′ = EK′ . In this case, the idea is to build a discrete
velocity having support localized on the patch K ∪K ′. Specifically, we set

ṽi,P1,h = (mEφE + mE′φE′)|Ωi
∈ Vi,h.

Again, note that this function is localized on the patch as all degrees of freedom as-
sociated with edges on Γi,h or shared with other elements of Gh are inactive. Choos-
ing mE = −η−1

i
|K|
|E| pi,K yields (∇ · ṽi,P1,h)|K = −η−1

i pi,K , irrespective of mE′ since

supp(φE′) = K ′. Then, we have (∇ · ṽi,P1,h)|K′ = mE′
|E′|
|K′| −mE

|E|
|K′| , so that for mE′ =

|E|
|E′|mE − η−1

i
|K′|
|E′| pi,K′ = −η−1

i

[
|K|
|E′|pi,K + |K′|

|E′| pi,K′

]
we get (∇ · ṽi,P1,h)|K′ = −η−1

i pi,K′ .

With this construction, we have b(ph, ṽi,P1,h) = ‖η−
1
2 ph‖2

L2(∆i)
, ∆i = Ki ∪K ′

i. On the
other hand, proceeding as in the previous case, observing that supp(φE) ∩ Ωi = ∆i,
supp(φE′) ∩ Ωi = K ′

i, we have

‖η
1
2
i ṽi,P1,h‖H1(∆i) . η

1
2
i h−1(|∆i|

1
2 |mE |+ |K ′

i|
1
2 |mE′ |) . η

− 1
2

i (|∆i|
1
2 |pi,K |+ |K ′

i|
1
2 |pi,K′ |)

. η
− 1

2
i (|Ki|

1
2 |pi,K |+ |K ′

i|
1
2 |pi,K′ |) . ‖η−

1
2 ph‖L2(∆i),

where we used |∆i| = |Ki|+|K ′
i| . |Ki| thanks to (16). Note how we “tune” the velocity

on Ki by first acting on mE . Since E is shared with K ′, mE affects the velocity also in
K ′; but we can still use mE′ as a corrector on K ′, with no consequences on neighboring
elements of Gh since K ′ ∼ T (i.e. φE′ has local support in K ′).

• If K is in a patch Pn = {K1, . . . ,Kn ∼ Q;K ′ ∼ T}, we proceed as in the previous case.
Let E′ = EK′ , and let Ej be the edge shared by Kj and Kj+1 if j = 1, . . . , n− 1, and
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by Kn and K ′ if j = n. Again, the idea is to build a discrete velocity having support
localized on the patch, defining

ṽi,Pn,h = (mE1φE1 + mE2φE2 + . . . + mEnφEn + mE′φE′)|Ωi
∈ Vi,h,

where φEj ·nKj = 1 on Ej , φEj ·nKj = 0 on ∂Kj\Ej . Again, we proceed by choosing:

mE1 = −η−1
i

|K1|
|E1| pi,K1 s.t.: (∇ · ṽi,Pn,h)|K1 = −η−1

i pi,K1 ;

mE2 = |E1|
|E2|mE1 − η−1

i
|K2|
|E2| pi,K2 s.t.: (∇ · ṽi,Pn,h)|K2 = −η−1

i pi,K2 ;
...
mE′ = |En|

|E′| mEn − η−1
i

|K′|
|E′| pi,K′ s.t.: (∇ · ṽi,Pn,h)|K′ = −η−1

i pi,K′ .

We have |mEj | . η−1h(|pi,K1 | + . . . + |pi,Kj−1 |), |mE′ | . η−1h(|pi,K1 | + . . . + |pi,Kn |).
Let ∆j

i =
⋃

k=j,...,n Kj
i ∪K ′

i, and denote by ∆i = ∆1
i the whole patch; we have

‖η
1
2
i ṽi,Pn,h‖H1(∆i) . η

− 1
2

i

(
|∆1

i |
1
2 |pi,K1 |+ |∆2

i |
1
2 |pi,K2 |+ |∆3

i |
1
2 |pi,K3 |+ . . .

+ |Kn
i ∪K ′

i|
1
2 |pi,Kn |+ |K ′

i|
1
2 |pi,K′ |

)
. η

− 1
2

i (|K1
i |

1
2 |pi,K1 |+ . . . + |Kn

i |
1
2 |pi,Kn |+ |K ′

i|
1
2 |pi,K′ |) . ‖η−

1
2 ph‖L2(∆i),

where, again, estimates (16) have been used (note that n is bounded by a moderate
constant due to shape regularity). Note that the position of K ′ in the patch is not
affecting the validity of our estimates.

Now consider vp,h =
∑

i=1,2 v̄i,h + ṽi,h ∈ Vh, where ṽi,h =
∑

Pj
ṽi,Pj ,h, including all the

patches Pj covering Gh. We have, by construction,

b(ph,vp,h) = ‖η−
1
2 ph‖L2(Ω) = ‖ph‖Qh

,
∑

i

‖η
1
2 vi,p,h‖H1(Ωi) . ‖ph‖Qh

.

Finally, let us estimate the terms in ‖vp,h‖Vh
that are not immediately controlled by∑

i ‖η
1
2
u vi,p,h‖H1(Ωi). As concerns the boundary terms, ‖h−

1
2 vp,h · n‖2

L2(ΓD) = 0. To conclude,

we need to estimate the interface terms ‖η
1
2
Γvi,p,h · nΓ‖L2(Γ), i = 1, 2, in order to find an

upper bound for ‖η
1
2
Γ {vp,h · nΓ}‖2

L2(Γ) and ‖η
1
2
Γ Jvp,h · nΓK‖2

L2(Γ). To this end, we first observe
that ‖vi,p,h · nΓ‖2

L2(Γ) =
∑

K∈Gh

∫
ΓK

(ṽi,h · nΓ)2. For each K ∈ Gh, the function ṽi,h is
vanishing at some point of Γi,h (at a vertex, if K ∼ T ; at some point of the only edge
lying on Γi,h, otherwise); as a consequence, we have ‖ṽi,h‖L2(ΓK) . h|vi,p,h|H1(Ki) yielding

‖η
1
2
Γvi,p,h‖L2(Γ) . η

1
2
Γ h‖η−1

i pi,h‖L2(Ωi) = h
(

ηΓ
ηi

) 1
2 ‖ph‖Qh

. Collecting all the estimates, we have

‖ṽh‖Vh
. MΓ‖ph‖Qh

, MΓ = max

{
1, h

(
ηΓ

ηmin

)1/2
}

.

In other words, the fact that vi,p,h is zero near Γ (but not exactly zero on Γ) provides us
with a mild dependence of the stability estimate on the coefficients, which is asymptotically
robust for h → 0. 2
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Remark The procedure of dividing Gh in patches and constructing velocities with local
support on the patches is rather technical, but also necessary. It seems to us that simpler
approaches do not allow to obtain the same result. As an example, let us consider pi,h ∈ Qi,h,
supp(pi,h) ⊂ Gh ∩ Ωi. Let p∗i,h a piecewise constant function such that p∗i,h|K = pi,h|Ki

for all
K ∈ G. Let v∗i,p,h be the classical Fortin’s interpolant associated to p∗i,h; we can set vi,p,h =
(v∗i,p,h)|Ωi

∈ Vi,h, and since ∇·v∗i,p,h = −p∗i,h on each K ∈ G, b(pi,h,vi,p,h) = ‖pi,h‖2
L2(Ωi)

. But
we would only have the estimate ‖vi,p,h‖2

1,Ωi
.

∑
K∈Gh

‖p∗i,h‖2
L2(K), that we cannot control by∑

K∈Gh
‖p∗i,h‖2

L2(Ki)
= ‖pi,h‖2

L2(Ωi)
(|Ki| can be arbitrarily small w.r.t. |K|).

The inf-sup condition implies the following stability result.

Theorem 4.9 (Stability) Let (uh, ph) ∈ Wh, and let MΓ be the constant of lemma 4.8.
Then,

‖(uh, ph)‖Wh
. MΓ sup

(vh,qh)∈Wh

C((uh, ph), (vh, qh))
‖(vh, qh)‖Wh

.

Proof Let vp,h be the function associated to ph as in lemma 4.8, and let

(vh, qh) = (uh + δ1vp,h, ph + δ2η∇ · uh), δ1, δ2 > 0.

We shall first show that C((uh, ph), (vh, qh)) & ‖(uh, ph)‖2
Wh

; next, we will check that ‖(vh, qh)‖2
Wh

.
MΓ‖(uh, ph)‖2

Wh
. For the first part, we exploit the bilinearity of C to obtain,

C((uh, ph), (vh, qh)) = C((uh, ph), (uh, ph)) (17)
+ δ1C((uh, ph), (vp,h, 0)) + δ2C((uh, ph), (0, η∇ · uh)).

Thanks to lemma 4.4 we have

C((uh, ph), (uh, ph)) ≥|||uh|||2. (18)

Let us consider the second term of (17). Thanks to lemmas 4.3, 4.8, for all ε1 > 0 we get

a(uh,vp,h) . |||uh||| |||vp,h||| ≤
1
ε1
|||uh|||2 + ε1|||vp,h|||2 .

1
ε1
|||uh|||2 + ε1‖η−1ph‖2

L2(Ω),

so that

C((uh, ph), (vp,h, 0)) = a(uh,vp,h) + b(ph,vp,h)

≥ b(ph,vp,h)− C1ε1‖ph‖2
Qh
− C1

ε1
|||uh|||2.

Then, thanks again to lemma 4.8 we have

C((uh, ph), (vp,h, 0)) & (1− C1ε1)‖ph‖2
Qh
− C1

ε1
|||uh|||2.

Now consider the third term in eq. (17). Thanks to standard inverse inequalities, we can
estimate

−
∫

E
(η∇ · uh)(uh · n) ≤ ‖h

1
2 η

1
2 (∇ · uh)‖L2(E)‖h

1
2 η−

1
2 uh · n‖L2(E)

. ε2‖η
1
2∇ · uh‖2

L2(K) +
1
ε2
‖h−

1
2 η

1
2 uh · n‖2

L2(E)
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for all edges E ⊂ ΓD ∩ ∂K, K ∈ Th, and any ε2 > 0. As a consequence,

C((uh, ph), (0, η∇ · uh)) = ‖η
1
2∇ · uh‖2

L2(Ω) −
∫

ΓD

(η∇ · uh)(uh · n)

≥ (1− C2ε2)‖η
1
2∇ · uh‖2

0,Ω −
C2

ε2
‖η

1
2 uh · n‖2

h,+ 1
2
,ΓD

.

Collecting the previous results, and observing that ‖η
1
2 uh · n‖2

h,+ 1
2
,ΓD

. |||uh|||, we get

C((uh, ph), (vh, qh)) &

(
1− C1

δ1

ε1
− C2

δ2

ε2

)
|||uh|||2 + δ1(1− C1ε1)‖ph‖2

Qh
(19)

+ δ2(1− C2ε2)‖η
1
2∇ · uh‖2

L2(Ω).

Now, let us choose sufficiently small parameters εi and δi such that all the norms in (19) are
multiplied by positive coefficients. For instance, take εi = 1/(2Ci) and δi = 1/(8C2

i ). From
(19) we get

C((uh, ph), (vh, qh)) & |||uh|||2 + ‖η−
1
2 ph‖2

L2(Ω) + ‖η
1
2∇ · uh‖2

L2(Ω) = ‖(uh, ph)‖2
Wh

. (20)

For the second part of the proof, since δi . 1, and ‖(0, η∇ ·uh)‖Wh
. ‖(uh, ph)‖Wh

, we have
‖(vh, qh)‖Wh

. ‖(uh, ph)‖Wh
+ δ1‖(vp,h, 0)‖Wh

. Moreover, using lemma 4.8,

δ1‖(vp,h, 0)‖Wh
. MΓ‖ph‖Qh

. MΓ‖(uh, ph)‖Wh
.

2

Based on this stability result, we can state in a standard way the convergence of our numerical
scheme.

Theorem 4.10 (Convergence) Let (u, p) ∈ W be the solution of problem (1). There exist
a unique solution (uh, ph) ∈ Wh of the discrete problem (9), and

‖(uh − u, ph − p)‖Wh
. MΓ inf

(vh,qh)∈Wh

‖(vh − u, qh − p)‖Wh
. (21)

In particular, if ui ∈ H2(Ωi), pi ∈ H1(Ωi), we have

‖(uh − u, ph − p)‖Wh
. MΓ

h
∑
i=1,2

(
|η

1
2∇ · ui|H1(Ωi) + |η−

1
2 pi|H1(Ωi)

) . (22)

Proof By theorem 4.9, the matrix associated with C evaluated on Wh×Wh is non-singular
(precisely, its smallest singular value is positive). Hence, there exists a unique discrete solution
(uh, ph) of (9). Moreover, by using stability, consistency and boundedness (theorem 4.9 and
lemmas 4.1, 4.3) we get, for any (vh, qh) ∈ Wh,

‖(uh − u, ph − p)‖Wh
≤ ‖(vh − u, qh − p)‖Wh

+ ‖(vh − uh, qh − ph)‖Wh

. ‖(vh − u, qh − p)‖Wh
+ MΓ sup

(v′h,q′h)∈Wh

C((vh − uh, qh − ph), (v′h, q′h))
‖(v′h, q′h)‖Wh

= ‖(vh − u, qh − p)‖Wh
+ MΓ sup

(v′h,q′h)∈Wh

C((vh − u, qh − p), (v′h, q′h))
‖(v′h, q′h)‖Wh

. MΓ‖(vh − u, qh − p)‖Wh
,
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so that (21) follows. Eq. (22) is then obtained by taking vh = I∗hu, qh = C∗
hp, where

I∗h : H2(Ω1) ×H2(Ω2) → Vh is an extended Raviart-Thomas intepolant and C∗
h : H1(Ω1) ×

H1(Ω2) → Qh is an extended piecewise constant interpolant. Based on the results obtained in
[5], these interpolant can be easily constructed. In particular, given u = (u1,u2) ∈ H2(Ω1)×
H2(Ω2), let u∗i = E∗

i ui where E∗
i : H2(Ωi) → H2(Ω) is a continuous extension operator.

Let Ii,h be the standard RT0 interpolant, and define I∗hu = (I1,hu1, I2,hu2) ∈ Vh. The
interpolant C∗

h is defined similarly (and is the same of [5, th. 3]). Proceeding as in [5, th. 3],

estimates of the interpolation error for of the form ‖v − I∗hv‖Vh
. h

∑
i |η

1
2
i vi|H2(Ωi) and

‖q − C∗
hq‖Qh

. h
∑

i |η
− 1

2
i qi|H1(Ωi) are obtained. 2

Let us comment on the robustness of the stability estimate in lemma 4.9, i.e., on the depen-
dence of MΓ on the coefficients. Since MΓ = max{1, h

√
ηΓ/ηmin}, the estimate is asymptoti-

cally robust with respect to the coefficients ηΓ, η, as h → 0 (in which case MΓ → 1), the only
issue being having a large ηΓ compared to ηmin when using “coarse” grids. We recall that
this behavior is due to the fact that we are not allowed to choose function vp,h of lemma 4.8
such that vi,h · nΓ = 0 on Γ (the proof only ensured that the normal components are O(h)).

We also recall that the norms are depending on parameters: for instance, η appears in the
norms ‖ · ‖Vh

and ‖ · ‖Qh
, weighting the velocity and the pressure with antagonistic actions.

Velocities are weighted by η
1
2 , pressures by η−

1
2 . This means that in highly permeable regions

(η � 1) our norms mostly control the pressure, whilst in almost impervious regions (η � 1)
they mostly control the velocity.

Finally, our assumption that ηi is constant on each subdomain Ωi is obviously very re-
strictive; in the more general case η ∈ Qh, MΓ would also depend on the ratios ηi,max/ηi,min

(see [5]).

4.1 A natural preconditioner

Let us consider the algebraic properties of the discrete problem (9). As in [11], we expect
the robustness of the stability estimate to be an advantage at the algebraic level. With little
abuse of notation, uh ∈ Vh and ph ∈ Qh will also denote the vectors uh ∈ Rdim(Vh) and
ph ∈ Rdim(Qh) associated to the respective finite element bases of the spaces Vh, Qh, and so
for vh, qh, etc. According to this notation, the linear system corresponding to problem (9)
reads

C

[
uh

ph

]
=

[
A BT

−B 0

] [
uh

ph

]
=

[
fv

fq

]
, (23)

whose blocks are related to the bilinear forms by a(uh,vh) = (vh, Auh) and b(qh,uh) =
(qh, Buh), where (·, ·) is the Euclidean scalar product.

Let us equip Rdim(Vh) × Rdim(Qh) with the norm

|||vh, qh|||2 = (vh,HV vh)2 + (ph,HQph)2,

being HV and HQ the symmetric, positive matrices inducing the natural norms on Vh and
Qh, i.e. (vh,HV vh)2 = ‖vh‖2

Vh
, (qh,HQqh)2 = ‖qh‖2

Qh
. Consider the following block-diagonal,

symmetric and positive definite matrix,

P =
[
HV 0
0 HQ

]
. (24)
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With a simple algebraic manipulation (see also [11] for a similar analysis), the boundedness
and stability properties 4.3, 4.9 lead to the following estimates: for all uh ∈ Vh, ph ∈ Qh,

M−1
Γ ‖(uh, ph)‖2 . sup

vh,qh

((uh, ph), P− 1
2 CP− 1

2 (vh, qh))2
‖(vh, qh)‖2

. ‖(uh, ph)‖2. (25)

Thanks to (25), we have that the singular values of the matrix P− 1
2 CP− 1

2 are lower and upper
bounded by positive constants σ, σ, such that σ & M−1

Γ , and σ is independent of h, η and ηΓ

(see also [8], section II.3.1, and [11], section 3 and theorem 3.8; a general presentation of block-
diagonal preconditioning of saddle point problems arising form stable mixed finite element
approximation of Darcy’s problem is also addressed in [17]). It follows that σ ≤ |λi(P−1C)| ≤
σ, being λi(P−1C) the eigenvalues of the preconditioned matrix P−1C. By changing the sign
in the mass conservation equation, system (23) can be recast in a symmetric (indefinite) form.
It follows that the P -preconditioned MinRes methods can be successfully employed at each
time step: for a fixed tolerance, the number of iterations will be independent of h, and also
of the physical parameters (at least asymptotically for h → 0).

The preconditioner P has a block-diagonal structure, each block being a symmetric posi-
tive definite matrix. Whilst the pressure block is a pressure mass matrix and is easily dealt
with, the velocity block features a div-div term (η∇ · uh,∇ · uh)Ω, requiring suitable a sub-
preconditioner to be used to efficiently solve systems associated to matrix HV . A detailed
analysis and an effective sub-preconditioning strategy was proposed by Arnold in [4].

4.2 Condition number of matrix C and interface location

4.2.1 Full P -preconditioning

In this section, we report numerical tests that support the fact that the extreme eigenvalues
of matrix P−1C are independent of both h and the position of the fracture Γ with P defined
as in (24), i.e. we numerically verify (25). If h-optimality is an important feature of any
preconditioner, Γ-optimality is even more important. Indeed, since each element K ∈ Gh is
divided by Γ into two sub-elements K1, K2, one could expect the conditioning of the matrix to

degenerate as µ(Th,Γ) = min
K∈Gh

min
i=1,2

|Ki|
|K|

tends to zero. This is a potentially critical situation,

that must be carefully handled since we want the mesh to be irrespective of the position of
Γ. We refer to [20] for a detailed analysis of this issue for the FEM approximation of contrast
problems.

To study the spectrum of C for different fracture configurations, we solved problem (1)
on a square domain Ω = [0, 1]× [0, 1], with (non-homogeneous) Dirichlet boundary conditions
on ∂Ω. We considered a regular triangulation, cut by a vertical embedded interface Γ =
{x̄} × [0, 1], for different values of x̄ ∈ (0, 1) in order to obtain smaller and smaller values of
µ(Th,Γ) by creating elements K with small |Ki|

|K| ratios.
That was obtained using structured meshes on Ω such that vertical midline ΓM = {(x, y)|x =

0.5} was always covered by triangle edges, and taking x̄ → 0.5, i.e. taking the interface Γ very
close to ΓM .

Table 1 shows the maximum and minimum eigenvalues of the matrix C for x̄ → 0.5 (i.e.,
for µ(Th,Γ) → 0) for two grids of 200 and 800 triangles respectively. As µ(Th,Γ) tends to
zero the eigenvalue of lowest module decreases, and the ratio between the maximum and
minimum |λi| is larger for the finest mesh. The maximum and minimum eigenvalues of the
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preconditioned matrix instead are constant for any position of the interface and independent
on the mesh size h, confirming the optimality of the preconditioner (24).

(a)

x̄ µ(Th,Γ) max |λi(C)| min |λi(C)| max |λi(P−1C)| min |λi(P−1C)|
0.49 1.00e-2 0.2805 0.1005e-3 1 0.9895
0.495 2.50e-3 0.2805 0.0337e-3 1 0.9897
0.4975 6.25e-4 0.2805 0.0128e-3 1 0.9898
0.499 1.00e-4 0.2805 0.0045e-3 1 0.9898
0.4995 2.50e-5 0.2805 0.0025e-3 1 0.9898
0.4999 1.00e-6 0.2805 0.0001e-3 1 0.9898

(b)

0.49 1.00e-2 0.1411 0.1005e-4 1 0.9895
0.495 2.50e-3 0.1411 0.0337e-4 1 0.9897
0.4975 6.25e-4 0.1411 0.0128e-4 1 0.9898
0.499 1.00e-4 0.1411 0.0045e-4 1 0.9898
0.4995 2.50e-5 0.1411 0.0025e-4 1 0.9898
0.4999 1.00e-6 0.1411 0.0001e-4 1 0.9899

Table 1: Extreme eigenvalues of C and of P−1C for different positions x̄ of the interface. Two
regular meshes of Nh = 200 (a) and Nh = 800 (b) triangles are considered.

4.2.2 Matrix equilibration

As mentioned above the preconditioner P is not easy to deal with due to the div-div term,
therefore a simpler alternative would be desirable. We will provide experimental evidence
of the fact that matrix equilibration (that is an instance of diagonal preconditioning) can
make the conditioning of the discrete problem independent of the position of the interface.
Of course, we loose the optimality with respect to h; nevertheless, the fact that the simple
equilibration procedure (implemented by automatic routines in most linear algebra packages)
can cure the potentially severe ill-conditioning due to small ratios |Ki|/|K| is obviously very
important. Here, we consider the following equilibration method. Consider the block diagonal
matrix

P̃ =
[
A 0
0 HQ

]
,

and denote by PL its lumped diagonal matrix, such that (PL)ii =
∑

j(P̃ )ij . This diagonal
preconditioner performs an effective scaling of the matrix: as shown in Figure 4 (left) the
eigenvalues of P−1

L C remain constant as µ(Th,Γ) tends to zero and depend mildly on the
mesh size. Of course, the equilibration algorithm is not unique and many other techniques
could be applied as well, including automatic equilibration routines.

Finally, we point out that the limit case in which µ(Th,Γ) = 0 can be handled in practice
eliminating the extended DOFs associated to “small” sub-elements [19].
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Figure 4: Extreme eigenvalues of C preconditioned by the lumped preconditioner PL for
different positions of the interface. Three different meshes of Nh = 200, 800, 3200 triangles
are considered.

5 The coupled problem: an iterative method

5.1 Fracture flow

The weak formulation and finite element approximation of the fracture flow problem (5) is
obtained following the same method employed for the bulk flow problem (1). Moreover, we
now consider standard (i.e. not extended) finite element spaces V̂h = {v̂h ∈ Hdiv(Γ) :
v̂h |K ∈ RT0(K) ∀K ∈ T̂h}, Q̂h = {q̂h ∈ L2(Γ) : q̂h |K ∈ P0(K) ∀K ∈ T̂h}, Ŵh = V̂h × Q̂h.
Let us introduce the following bilinear forms related to the fracture flow,

â(uh,vh) =
∫

Γ
η̂ûh · v̂h +

∫
∂DΓ

γh−1(ûh · τΓ)(v̂h · τΓ), (26)

b̂(p̂h, v̂h) =−
∫

Γ
p̂h(∇ · v̂h) +

∫
∂DΓ

p̂h(v̂h · τΓ), (27)

F̂(v̂h, q̂h) =
∫

Γ
f̂v · v̂h +

∫
Γ
(lΓf̃q + Juh · nΓK)q̂h −

∫
∂ΓN

p̂0(v̂h · n). (28)

Our finite element method reads as follows: given the normal velocity jump Juh · nΓK, find
(ûh, p̂h) ∈ Ŵh such that

Ĉ((ûh, p̂h), (v̂h, q̂h)) = F̂(v̂h, q̂h) ∀(v̂h, q̂h) ∈ Ŵh,

where (29)

Ĉ((ûh, p̂h), (v̂h, q̂h)) = â(ûh, v̂h) + b̂(p̂h, v̂h)− b̂(q̂h, ûh).

Note that problems (9) and (29) are coupled, since F depends on the pressure within the
fracture, and F̂ on the normal jump of the bulk velocity. We also observe that the bilinear
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forms C and Ĉ associated to problems (9) and (29) have exactly the same structure, although
they are related to Darcy’s problems on domains having different dimensions, and no extended
element is introduced in the fracture flow problem. In particular, all boundedness, stability
and convergence properties of (9) are immediately extended to (29) (with M̂Γ = 1, since there
is no embedded interface).

5.2 Iterative solution of the coupled problem

The reduction of the solution of the coupled problem to successive solutions on decoupled bulk
flow and fracture flow problems has the clear advantage of allowing the use of different solvers
and possible parallel implementation. As already observed (without convergence analysis) in
[15] in the case of matching meshes, this implies exchanging data on the “immersed” interface
Γ and building suitable Steklov-Poincaré operators acting on interface variables.

In our case, we follow a similar approach providing some more information about the
convergence of the related iterative algorithm. In particular, we introduce the following
operators.

• Let (Hv,Hq) : L2(Γ) → Wh be the (porous bulk) resolvent operator associated to (9)
corresponding to u0 = 0, p0 = 0, fv = 0, fq = 0 (the only nonhomogeneous datum
being the fracture pressure ẑ = p̂h), i.e.

C((Hv ẑ,Hq ẑ), (vh, qh)) = −
∫

Γ
ẑJvh · nΓK ∀(vh, qh) ∈ Wh. (30)

• Analogously, let (Ĥv, Ĥq) : L2(Γ) → Ŵh be the (fracture) resolvent operator corre-
sponding to f̂v = 0, f̂q = 0 (the only nonhomogeneous datum being the trans-fracture
normal velocity jump z = Juh · nΓK), i.e.

Ĉ((Ĥvz, Ĥqz), (v̂h, q̂h)) =
∫

Γ
zq̂h ∀(v̂h, q̂h) ∈ Ŵh. (31)

• Denote by (u0
h, p0

h) and (û0
h, p̂0

h) respectively the solution of problem (9) for p̂h = 0 and
the solution of problem (29) for Juh · nΓK = 0.

• Thanks to linearity, we can express the solution of problems (9) and (29) by

(uh, ph) = (u0
h, p0

h) + (Hvp̂h,Hqp̂h), (ûh, p̂h) = (û0
h, p̂0

h) + (ĤvJuh · nΓK, ĤqJuh · nΓK).

Lemma 5.1 For all z, ẑ ∈ L2(Γ) we have

‖(Hv ẑ,Hq ẑ)‖2
Wh

. C‖ẑ‖2
L2(Γ). ‖(Ĥvz, Ĥqz)‖2

Ŵh
. Ĉ‖z‖2

L2(Γ), (32)

with C = M2
Γ

ξ0ηΓ
, Ĉ = η̂, where MΓ is the constant of lemma 4.8.

Proof By lemma 4.2 and theorem 4.9, we get immediately

‖(Hv ẑ,Hq ẑ)‖Wh
. ξ

− 1
2

0 MΓ‖η
− 1

2
Γ ẑ‖L2(Γ),

and the first estimate in (32) follows since ηΓ is constant. The second estimate is obtained
analogously. 2
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Now, we reformulate our coupled problem (9), (29), as an equation for p̂h ∈ Q̂h,

p̂h = p̂0
h + ĤqJuh · nΓK = p̂0

h + ĤqJu0
h · nΓK + ĤqJ(Hvp̂h) · nΓK. (33)

Let us introduce the operators S : L2(Γ) → L2(Γ), Ŝ : L2(Γ) → Q̂h defined by Sẑ =
−J(Hv ẑ) · nΓK, Ŝẑ = Ĥq ẑ, and respectively associated to the bilinear forms

s(p̂, q̂) := −
∫

Γ
J(Hvp̂) · nΓKq̂, ŝ(p̂, q̂) :=

∫
Γ
(Ĥqp̂)q̂. (34)

Then, equation (33) becomes

p̂h = Ŝ(−Sp̂h + Ju0
h · nΓK) + p̂0

h. (35)

Let ω ≥ 0 be a relaxation parameter; we shall first consider the following iterative method
for the solution of (35),

p̂
(k+1)
h + ω(p̂(k+1)

h − p̂
(k)
h ) =

[
Ŝ(−Sp̂

(k)
h + Ju0

h · nΓK) + p̂0
h

]
. (36)

Theorem 5.2 The following properties hold true.

i) S is symmetric positive semidefinite and Ŝ symmetric positive definite on Q̂h, i.e. s(q̂h, q̂h) ≥
0, ŝ(q̂h, q̂h) > 0 ∀ 0 6= q̂h ∈ Q̂h.

ii) The iterative method (36) converges for ω & M2
Γ

η̂

ξ0ηΓ
.

iii) The convergence rates only depend on ω, and not on h, at least asymptotically for h
small (MΓ ' 1). Moreover, there is an optimal relaxation parameter ω∗ > 0 that
maximizes the convergence speed.

Proof Let us consider each point separately.
i) By (34) and (30) with ẑ = q̂h, we have b(qh,Hv q̂h) = 0 ∀qh ∈ Qh, s(p̂h, q̂h) =

a(Hv q̂h,Hvp̂h) + b(Ĥq q̂h,Hvp̂h), so that

s(p̂h, q̂h) = a(Hv q̂h,Hvp̂h). (37)

This shows that if a is positive definite then S is positive semidefinite. Note also that in
our case a is symmetric, and so is S. Similarly, by (34) and (31) we have â(Ĥvp̂h, v̂h) +
b̂(Ĥqp̂h, v̂h) = 0 ∀v̂h ∈ V̂h, ŝ(p̂h, q̂h) = −b̂(Ĥqp̂h, Ĥv q̂h), so that taking v̂h = Ĥv q̂h

ŝ(p̂h, q̂h) = â(Ĥv q̂h, Ĥvp̂h). (38)

We observe that, from (31) we have
∫
Γ q̂2

h = b̂(q̂h, Ĥv q̂h) ∀q̂h ∈ Q̂h, which implies ‖q̂h‖L2(Γ) .

η̂−1‖Ĥv q̂h‖V̂h
. This shows that Ĥv is injective, and so, by eq. (38), Ŝ is positive definite. Note

also that we cannot upper bound ‖Ĥvz‖2
V̂h

by â(Ĥvz, Ĥvz) unless using inverse inequalities,
which would give a coercivity constant depending on h. Nevertheless, as we will see, we do
not need uniform coercivity for Ŝ.

ii) Introduce the operator T := ŜS. T is obviously non-negative, thanks to i). Note that Ŝ
and S are bounded; in fact, by (32) and (37), (38), we have s(p̂h, q̂h) ≤

√
C‖p̂h‖L2(Γ)‖q̂h‖L2(Γ),
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ŝ(p̂h, q̂h) ≤
√

Ĉ‖p̂h‖L2(Γ)‖q̂h‖L2(Γ). As a consequence, T is bounded, i.e. (q̂h, T p̂h)L2(Γ) ≤
CT ‖p̂h‖L2(Γ)‖q̂h‖L2(Γ), CT =

√
ĈC.

Now, let us focus on the iterative method (36). Consider first the case of homogeneous data
(p0

h = u0
h · nΓ = 0), i.e. given p̂

(0)
h compute the sequence defined by

p̂
(k+1)
h + ω(p̂(k+1)

h − p̂
(k)
h ) = −T p̂

(k)
h . (39)

We claim that sequence to be convergent to zero for all p̂
(0)
h . Observing that

(p̂(k+1)
h , T p̂

(k)
h )L2(Γ) = (p̂(k+1)

h , T p̂
(k+1)
h )L2(Γ) − (p̂(k+1)

h , T (p̂(k+1)
h − p̂

(k)
h ))L2(Γ),

(p̂(k+1)
h , p̂

(k+1)
h − p̂

(k)
h )L2(Γ) =

1
2

[
‖p̂(k+1)

h − p̂
(k)
h ‖2

L2(Γ) + ‖p̂(k+1)
h ‖2

L2(Γ) − ‖p̂
(k)
h ‖2

L2(Γ)

]
,

by multiplying eq. (39) times p̂
(k+1)
h and integrating on Γ, owing to the positivity of T , and

to the Young inequality, for any ε > 0 we get

‖p̂(k+1)
h ‖2

L2(Γ) +
ω

2

[
‖p̂(k+1)

h − p̂
(k)
h ‖2

L2(Γ) + ‖p̂(k+1)
h ‖2

L2(Γ) − ‖p̂
(k)
h ‖2

L2(Γ)

]
≤ εCT ‖p̂(k+1)

h ‖2
L2(Γ) +

1
ε
CT ‖p̂(k+1)

h − p̂
(k)
h ‖2

L2(Γ),

where CT is the boundedness constant of T with respect to the L2(Γ) norm; note that C2
T .

M2
Γ

η̂
ξ0ηΓ

. Taking ε = 1/(2CT ), we get

‖p̂(k+1)
h ‖2

L2(Γ) + (ω − 4C2
T )‖p̂(k+1)

h − p̂
(k)
h ‖2

L2(Γ) + ω‖p̂(k+1)
h ‖2

L2(Γ) ≤ ω‖p̂(k)
h ‖2

L2(Γ).

Summing over k, exploiting the telescopic terms ω‖p̂(k+1)
h ‖2

L2(Γ) and ω‖p̂(k)
h ‖2

L2(Γ), we conclude
that for ω > 4C2

T
∞∑

k=0

‖p̂(k)
h ‖2

L2(Γ) ≤ ω‖p̂(0)
h ‖2

L2(Γ).

As a consequence, ‖p̂(k)
h ‖L2(Γ) → 0 as k → ∞ for any p̂

(0)
h ∈ Q̂h. This in turns implies that

the spectral radius of the iteration operator associated with eq. (35) is strictly smaller than
one, and the iterative method is convergent also for non homogeneous data.

iii) We observe that since Ŝ is positive definite, it is invertible; the iterative method (36)
can be recast in the following preconditioned Richardson form,

p̂
(k+1)
h = p̂

(k)
h + αR̂−1

[
b̂h −Rp̂

(k)
h

]
, b̂h = Ju0

h · nΓK + Ŝp̂0
h, α =

1
1 + ω

, (40)

where the linear operator R := R̂ + S is preconditioned by R̂ = Ŝ−1. Note that R and R̂
are both symmetric positive definite, and R̂−1R = I + T . This provides us with a further
convergence proof. In fact we have

(ẑ, ẑ)L2(Γ) ≤ (ẑ, ẑ)L2(Γ) + (ẑ, T ẑ)L2(Γ) = (ẑ, R̂−1Rẑ)L2(Γ) ≤ (1 + C2
T )(ẑ, ẑ)L2(Γ),

and we can bound the Rayleigh quotient of the preconditioned iteration operator as

1 .
(ẑ, R̂−1Rẑ)L2(Γ)

(ẑ, ẑ)L2(Γ)
. 1 + M2

Γ

η̂

ξ0ηΓ
.
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From the convergence theory of preconditioned Richardson iterations (see for instance [18],

ch. 2) we see that the iterative method is convergent for 0 < α .
(
1 + M2

Γ
η̂

ξ0ηΓ

)−1
, confirm-

ing our previous estimate for ω; moreover, we have that an optimal convergence parameter
α∗ exists, and, more importantly, the convergence rates of the iterative methods are asymp-
totically independent of h, since the spectral bounds above are so. A confirmation of this
fact will be given also by numerical experiments (see Table 2 in sect. 6). Approximating the
minimum and maximum eigenvalues of R̂−1R respectively by 1 and 1 + m, m = M2

Γ
η̂

ξ0ηΓ
, we

have α∗ ' 2
2+m (or ω∗ ' m/2), and, at each iteration, the error is reduced by a factor that

in the optimal case is about m
2+m ; we thus expect the convergence rates to degrade when m

is big. 2

As a consequence of Theorem 5.2, the coupled problem is well-posed. Moreover, the the-
orem provides an iterative algorithm to solve the coupled problem, which is (asymptotically)
optimal with respect to h. From the computational point of view, it is also convenient to
write the iterative method (36) as follows.

For k = 0, 1, . . .:

1. Given p̂
(k)
h , solve the bulk flow and compute u(k)

h = u0
h +Hvp̂

(k)
h ;

2. Solve the fracture flow and compute p̂
(k+ 1

2
)

h = p̂0
h + ĤqJu

(k)
h · nΓK;

3. Update the fracture pressure:

p̂
(k+1)
h = θp̂

(k)
h + (1− θ)p̂

(k+ 1
2
)

h , θ =
ω

1 + ω
. (41)

6 Numerical experiments and applications

6.1 Convergence of the decoupled problem

Let Ω = [0, 1]2, R ∈ (0, 1) and Γ = {(x, y) ∈ Ω : r2 = x2 + y2 = R2}. We consider problem
(1) with η = 1, ηΓ = 2

3R, ΓN = ∂Ω, ΓD = ∅, and

fq =

{
2/R2 if r2 > R2,

4/R2 if r2 < R2,
p0 =


r2

2R2
+

3
2

if r2 > R2,

r2

R2
if r2 < R2.

In this case, the boundary data p0 provides also the exact pressure solution p and velocity
u = −∇p. The pressure in the fracture is imposed, p̂ = 19

12 , and choosing ξ = 3
4 yields

Ju · nΓK = 1
R . The numerical solution, computed on a grid of about 6500 elements is shown

in Figure 5. Figure 6 shows the error in the norm defined by (11) for different h, confirming
the estimate (22), i.e. the error decreases linearly with the mesh size.
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Figure 5: Left: numerical solution to the uncoupled Darcy’s problem. Right: zoom on the
cut region Gh showing the extended pressure elements.

Figure 6: Convergence of the error ‖(u− uh, p− ph)‖Wh
for the uncoupled problem.

6.2 Coupled bulk-fracture flow problems

The full coupled system for the bulk and fracture flow reads
A BT 0 E
−B 0 0 0
0 0 Â B̂T

−ET 0 −B̂ 0




u
p
û
p̂

 =


fv

fq

f̂v

f̃q


where the blocks E and ET are due to the interface conditions that couple the two problems.
In particular the entries of E are eij =

∫
Γ (q̂h)j J(vh)i ·nΓK. Since the basis functions defining

eij are related to different meshes (although the integral is computed on Γ, hence using the
fracture mesh), in general an interpolation has to be performed between the bulk mesh Th

covering Ω and the fracture mesh T̂h on Γ. The system can be solved either directly or using
the iterative method of Section 5. We observe that also for the coupled problem, by changing
sign in the mass conservation equations the system can be recast in a symmetric (indefinite)
form.

We here consider a two-dimensional problem in a square domain cut by a slanting fracture
and analyze the solution for different values of the inverse permeabilities η, ηΓ, η̂. Let Ω =
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[0, 1]2, Γ = {(x, y) ∈ Ω : y+2x = 1.4}, ΓD = {0, 1}× [0, 1], and ΓN = [0, 1]×{0, 1}. The bulk
flow and the flow in the fracture are described by equations (1) and (5), with fq = f̂q = 4,
p0 = y, considering full Neumann boundary conditions p̂ = y on ∂NΓ = ∂Γ, coupled by the
interface conditions (3) with ξ = 0.75.

Figure 7 represents the numerical solutions for different choices of the parameters. In

a) b)

c) d)

Figure 7: Pressure in the porous domain and in the fracture for different values of parameters,
namely a) η = 1, ηΓ = 1, η̂ = 1; b) η = 1, ηΓ = 0.01, η̂ = 1; c) η = 1, ηΓ = 1, η̂ = 0.01. In d):
streamlines corresponding to case c), where the fracture with a high tangential permeability
becomes a preferential path for the flow.

case a) ηΓ = 1, thus the normal permeability KΓ,n = lΓ
ηΓ

is low and there is a pressure jump
across Γ, while in case b) pressure is nearly continuous across Γ thanks to the high transverse
permeability. In case c) the fracture is very permeable in the tangential direction. As a
consequence p̂ is almost linear and the streamlines are directed towards Γ as shown in d),
because the fracture tends to become a preferential path for the flow. Finally, Figure 8 shows
analogous results in a three-dimensional domain cut by a planar fracture for the choices of
the parameters a) and c).
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a) b)

Figure 8: Pressure in a 3D porous domain cut by a plane for different values of parameters,
namely a) η = 1, ηΓ = 1, η̂ = 1 and b) η = 1,ηΓ = 1, η̂ = 0.01. Pressure is imposed on the
top and bottom boundaries, while the normal velocity is set to zero on the remaining faces.

6.3 Convergence of the iterative scheme

The results of the coupled problem obtained with the iterative scheme (41) can be compared
with the monolithic approach to assess experimentally the convergence of the iterative pro-
cedure. Figure 9 shows the max norm of the pressure (p and p̂) as a function of the number
of iterations compared to the “exact” one computed with a monolithic approach for the test
cases presented in the previous section. The three cases are characterized by different rates
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a) b)

Figure 9: Convergence of the iterative scheme (compared to the monolithic solution) for
different values of the parameters: a) η̂/ηΓ = 1, θ = 0.8, b) η̂/ηΓ = 100, θ = 0.99751.

of convergence since the relaxation parameter depends on the η̂/ηΓ ratio (assuming MΓ ' 1).
Taking ξ = 0.75, and thus ξ0 = 0.125 for case a), we choose ω as in theorem 5.2, resulting
in θ = 0.8. Iterations stabilize, in the maximum norm, at about 20. Case b) is critical;
having η̂/ηΓ = 100 we take θ > 0.9975 and indeed after 1000 iterations the solution has not
reached convergence yet. Notice that in general we expect that the smaller η̂/ηΓ the faster
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the convergence of the iterative method (with optimal relaxation parameters, see the proof of
theorem 5.2). For instance, for η̂/ηΓ = 0.01, our theory predicts that a very small relaxation
parameter (θ ' 0.04) is sufficient. Correspondingly, the convergence of the iterative procedure
is very fast and after only a couple of iterations convergence is achieved.

Although only values of ω chosen according to theorem 5.2 are guaranteed to ensure
convergence, the iterative scheme may converge for smaller ω, i.e. for smaller relaxation
parameters θ. Let us consider case b) and impose values of θ ranging from 0 to 1 irrespective
of the constraint on ω. The iterations to converge to a normalized error in the max norm
below 10−5 are reported in Table 2 for three different meshes, with h respectively about 0.05,
0.025, 0.0125. The results show that θ∗ = 0.4 is the optimal value for θ for the three grids,
and that both the number of iterations and θ∗ are minimally affected by h.

θ

Nh 882 3362 13122

0.1 13 14 13
0.2 9 9 9
0.3 6 6 6
0.4 4 4 4
0.5 6 6 6
0.6 9 9 9
0.7 13 13 13
0.8 21 22 21
0.9 44 47 45

Table 2: Number of iterations of (41) as a function of θ for different mesh sizes. Note the
h-independent optimal parameter θ = θ∗ ' 0.4, corresponding to the optimal acceleration
parameter α∗ of the Richardson iterations (40).

7 Conclusions

In this work we proposed an unfitted, mixed finite element method for the numerical approx-
imation of Darcy’s flows in fractured porous media. In particular, fractures were treated as
interfaces using suitable reduced models [1] and coupling conditions. Owing to an enrichment
of the finite element basis on elements cut by the interface, the proposed formulation is able to
handle independent meshes for the bulk flow and the fracture flow. We analyzed the abstract
properties of the method from stability to convergence. We studied the algebraic properties
associated to the resolution of the linear system, and introduced two preconditioners. The
first one turned out to be optimal with respect both the mesh size and interface location.
We also introduced a much simpler (diagonal) preconditioner, which is optimal with respect
to the interface location only. This fact indicates that matrix equilibration is an effective
tool to keep the condition number of the discrete problem bounded irrespective of the inter-
face position. Finally, we proposed an iterative method to solve the coupled bulk/fracture
flows, analyzed its convergence properties, and reported examples of computations in 2 and
3 dimensions.

The capability of handling independent meshes is a key advantage of our approach, which
can express its full potential in applications with variable interfaces, for instance for scenario
analysis or in time dependent problems with a mobile interface. Several interesting points are
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still to be investigated: for instance, the case of branching fractures, or a different numerical
technique to impose the coupling conditions (e.g. using suitable Lagrange multipliers, or the
Nitsche’s method).
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