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Abstract

The reduced basis (RB) methods are proposed here for the solution of parametrized equa-
tions in linear elasticity problems. The fundamental idea underlying RB methods is to
decouple the generation and projection stages (offline/online computational procedures)
of the approximation process in order to solve parametrized equations in a rapid, inex-
pensive and reliable way.
The method allows important computational savings with respect to the classical Galerkin-
finite element method, ill suited to a repetitive environment like the parametrized contexts
of optimization, many queries and sensitivity analysis. We consider different parame-
trization for the systems: either physical quantities –to model the materials and loads–
and geometrical parameters –to model different geometrical configurations–. Then we
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describe three different applications of the method in problems with isotropic and or-
thotropic materials working in plane stress and plane strain approximation and subject
to harmonic loads.

1 Introduction and motivation

In many systems governed by partial differential equations (PDE), the most important quan-
tities of interest are not the full field variable, but rather outputs that describe the char-
acteristic features of the system, such as energies, forces, temperatures, fluxes or critical
stresses/strains. These outputs are controlled by parameters, or inputs, that describe the
configuration of the system, or else by components, such as geometry, properties, loads or
environment settings. The relevant system behavior is thus described by an implicit input-
output relationship, or a mathematical description of the physical problem. As the physical
problem becomes more complex, the computational time may increase prohibitively; in some
cases, it is even impossible to provide enough resources to store the necessary data. The cur-
rent computational methods may thus prove inadequate, especially in those contexts requir-
ing real-time response or many queries, for example, engineering optimization and adaptive
design, parameter estimation or feedback control of processes.

The reduced basis (RB) method is a computational procedure that provides both fast
and reliable evaluation of an input-output relationship. The main ingredients are (i) rapid
uniformly convergent reduced basis approximations [16]; (ii) the possibility to use a poste-
riori error estimation [25] which provides sharp and rigorous bounds for the error in the
output and (iii) offline/online computational strategy which allows rapid calculation of both
output approximation and associated error bound. The result is straightforward: an output
calculation method which has both the accuracy of a “full” numerical simulation model (say,
using the finite element method) and inexpensive computational cost. Besides, the develop-
ment of a posteriori error estimators is another key ingredient which leads to minimize the
computational cost while ensuring the achievement of finite element accuracy.

The reduced basis approximation has been first introduced in the late 1970s [17, 20, 21,
22, 23] for complex nonlinear structural analysis, but only recently it has received a lot of
attention and has been analyzed from a methodological point of view, and developed to be
applied to a much larger class of parametrized PDEs (with emphasis on reliability, efficiency,
accuracy and convergence), − in particular, linear and nonlinear elliptic PDEs with affine
and nonaffine parametric dependence − relevant to many engineering applications. In the
elasticity field see, for example, recent works such as [18, 33, 12, 10]. For a wider perspective
on RB see [24].

Goal of this paper is the extension of RB method to problems arising in linear elasticity
with many parameters of different nature (either physical and geometrical) representing dif-
ferent materials, configurations and loads. We apply RB methods to approximate problems
using plane stress and plane strain formulation [31] and to deal both with isotropic and or-
thotropic materials, for example composites [3], by parametrizing also the constitutive law
for the material.
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The paper is organized as follows. In the next Section we introduce an abstract formula-
tion for a general parametrized problem and the approximation of its solution and an output
of interest. Then in Section 3 we briefly recall the reduced basis methodology, based on our
“truth” finite element approximation, and its ingredients and properties. In Section 4 we
recall the mathematical formulation of linear elasticity problems, in Sections 5, 6 and 7 we
present several model problems as examples: numerical results are discussed and compared
to theoretical and other numerical results already available whenever possible. In particular
in Section 5 we present a bi-material rod working in plane strain formulation and made up of
isotropic material; then in Section 6 we deal with an orthotropic lamina and then composite
materials in plane stress formulation. In Section 7 we discuss results dealing with a damaged
isotropic lamina working in plane stress and under harmonic shear loads. Finally we discuss
some future works and perspectives.

2 Parametrized problems

2.1 Exact formulation

We consider a polygonal domain Ω ⊂ R
d, with d = 1, 2 or 3 and a functional space X

with its associated scalar product (., .)X and norm ‖.‖X = (., .)1/2. We define a set of P
parameters Dµ ⊂ R

P , whose elements (the parameters) are indicated with µ. We introduce
a parametrized bilinear, symmetric, continuous and coercive form a : X ×X ×Dµ → R and
the continuos linear forms f : X ×Dµ → R and l : X ×Dµ → R.

A crucial property to deal in an efficient way with parametrized problems is the affine
decomposition of the operator that governs our problem, so that we can rewrite the bilinear
form a(w, v; µ) as

a(w, v; µ) =

Q
∑

q=1

σq(µ)aq(w, v), ∀w, v ∈ X, ∀µ ∈ Dµ

for q = 1, ..., Q (not too large) parameter-dependent functions σq : Dµ → R, and parameter-
independent forms aq : X × X → R.
The affine parameter decomposition is also applied to f(v; µ) and l(v; µ), but for simplicity we
may consider f(v) and l(v). The abstract formulation of the problem is: ∀µ ∈ Dµ, compute
the output s(µ) ∈ R with:

s(µ) = l(u(µ)) (1)

where u(µ) ∈ X is called the state variable and is in fact the solution of the variational
problem

a(u(µ), v; µ) = f(v), ∀v ∈ X. (2)

2.2 Galerkin Approximation

To compute the solution u(µ) of (2) we first introduce a finite element discretization. For
that, let Xh ⊂ X be a finite element space of dimension N associated with a fine triangulation

3



of our domain Ω [26]. The Galerkin-finite element approximation reads: ∀µ ∈ Dµ, compute
the output:

sh(µ) = l(uh(µ))

where uh ∈ Xh is the solution of

a(uh(µ), v; µ) = f(v), ∀v ∈ Xh. (3)

We introduce a suitable basis for Xh {ϕm, m = 1, ...,N}, the associated s.d.p. matrix
Ah(µ) ∈ R

N×N , defined as:

Ahm,k
= a(ϕm, ϕk; µ), ∀m, k ∈ {1, ...,N}, (4)

and the discrete functionals F h (or Lh) ∈ R
N as

Fhm
= f(ϕm)(or Lhm

= l(ϕm)), ∀m ∈ {1, ...,N}. (5)

We can formulate the Galerkin problem as: for all µ ∈ Dµ, compute the output:

sh(µ) = LT
h uh(µ) (6)

where uh(µ) ∈ R
N is the unique solution of

Ah(µ)uh(µ) = F h. (7)

Note that uh(µ) and uh(µ) = (uh1 , ..., uhN
) are related by the expression:

uh(µ) =
N
∑

m=1

uhm
(µ) ϕm.

For simplicity we consider just “compliant” output, i.e. l(u) = f(u).

3 Reduced basis (RB) approximation

We introduce a set of “snapshots” SN = {µ1, ..., µN} where µn ∈ Dµ, n = 1, ..., N . For each
µn we compute a finite element solution uh(µn) in the space Xh on a sufficiently fine mesh.
We define the global reduced basis space as:

WN = span{ζn ≡ uh(µn), n = 1, ..., N}. (8)

In the RB formulation we look for an approximation uN (µ) of uh(µ) in WN , given as:

uN (µ) =
N
∑

j=1

uNj(µ)ζj = (uN (µ))T ζ, (9)
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where uN (µ) ∈ R
N is the vector of the “weights” uNj , j = 1, ..., N ; uN (µ) ∈ R

N is the
reduced basis solution, according to (9). The reduced basis approximation is: ∀µ ∈ Dµ,
compute sN (µ) = l(uN (µ)), where uN (µ) ∈ WN is given by:

a(uN (µ), v; µ) = f(v), ∀v ∈ WN . (10)

In Figure (1) we heuristically represent the main idea of the method: we suppose that
every point on the line represents a different solution for a different µn, the line represents
the (smooth) manifold induced by the parametric dependence of the specific problem, this
manifold is the subspace WN ⊂ Xh: a new and generic solution uh(µnew), for a new value
µnew of the parameter is gotten as a linear combination (uh(µ1), uh(µ2), uh(µ3),... uh(µN ))
of previously computed solutions.

WN = {uh(µn), µn ∈ D}WN = {uh(µn), µn ∈ D}

Xh Xh

uh(µ1)

uh(µ2) uh(µnew)

uh(µN )

Figure 1: Heuristic idea of low dimensional manifold on which the parametrized solutions
reside (left): the space WN made up of global selected approximation functions; solutions
uh(µn) for selected values of parameter µ on the manifold and uh(µnew) as combination of
previously computed solutions (right).

By selecting as test functions the basis elements of WN components, i.e. v = ζi, i =
1, ..., N and replacing (9) in (10) we build the algebraic system to get uN (µ) ∈ R

N :

AN (µ)uN (µ) = FN , (11)

and to compute the output
sN (µ) = F T

NuN (µ). (12)

The elements of AN (µ) ∈ R
N×N are given by

ANi,j(µ) = a(ζj , ζi; µ), ∀i, j ∈ {1, ..., N}. (13)

As ζi is the finite element solution for a certain µi, we can develop ζi in terms of ϕm,
m = 1, ...,N :

ζi =
N
∑

m=1

ζi
mϕm. (14)
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By replacing (14) in (13) we have:

ANi,j(µ) = a(
N
∑

m=1

ζi
mϕm,

N
∑

k=1

ζj
kϕk; µ), ∀i, j ∈ {1, ..., N},

and thanks to the bilinearity of a(., .; µ), ∀µ ∈ Dµ, we get:

ANi,j(µ) =
N
∑

m=1

N
∑

k=1

ζi
mζj

ka(ϕm, ϕk; µ), ∀i, j ∈ {1, ..., N}.

Using a more compact formulation:

ANi,j(µ) = (ζi)T Ah(µ)(ζj), ∀i, j ∈ {1, ..., N}. (15)

Indicating with Z = {ζ1, ..., ζN} we write:

AN (µ) = ZT Ah(µ)Z. (16)

Thanks to the affine decomposition of the operator, the bilinear form a(., ., µ) can be split as
follows:

a(., .; µ) =

Q
∑

q=1

σq(µ)aq(., .) (17)

Consequently, we can get a great computational saving by decomposing

N
∑

j=1

a(ζj , ζi; µ)uNj = f(ζi), ∀i = 1, ..., N (18)

into this form:
Q
∑

q=1

N
∑

j=1

σq(µ)aq(ζj , ζi)uNj = f(ζi), ∀i = 1, ..., N. (19)

Then from (19) we get

ANi,j(µ) =

Q
∑

q=1

σq(µ)aq(ζi, ζj) =

Q
∑

q=1

σq(µ)aq(
N
∑

m=1

ζi
mϕm,

N
∑

k=1

ζj
kϕk) =

Q
∑

q=1

σq(µ)
N
∑

m=1

N
∑

k=1

ζi
mζj

ka
q(ϕm, ϕk)

=

Q
∑

q=1

σq(µ)(ζi)T Aq
h(ζj) =

Q
∑

q=1

σq(µ)Aq
Ni,j , ∀i, j ∈ {1, ..., N},
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The Q matrices Aq
N ∈ R

N×N need to be computed only once since they are parameter
independent,

Aq
N = ZT Aq

hZ, q = 1, ..., Q.

Then the parametrized operator can be obtained by a simple assembling procedure:

AN (µ) =

Q
∑

q=1

σq(µ)Aq
N . (20)

We adopt the same procedure for the right-hand-side:

FNi = f(ζi) = f(
N
∑

m=1

ζi
mϕm)

=
N
∑

m=1

ζi
mf(ϕm) = (ζi)T F h, i = {1, ..., N}

so that:
FN = ZT F h.

The resulting RB problem
AN (µ)uN (µ) = FN , (21)

with AN (µ) ∈ R
N×N and FN ∈ R

N , features matrices AN (µ) that are full, whereas those
Ah(µ) of the underlying finite element method are sparse. To solve (21) we will use direct
methods [27], since the size of matrix N is in general small (much smaller than N ).

The computational procedure can be split into two parts: an (expensive) offline part
devoted to the computation of parameter independent terms and performed only once, and
an (inexpensive) online part devoted to the computation of parameter dependent terms and
performed many times. We report the two steps for the calculations and their computational
costs in term of operations:

• offline: we compute N FE solutions uh(µn), one for each µn ∈ SN . We assemble and
store the parameter-independent matrices Aq

N = ZT Aq
hZ for q = 1, ..., Q and the same

is done for FN = ZT F h;

• online: we compute parameter-dependent functions σq(µ), the matrix AN (µ) =
∑Q

q=1 σq(µ)Aq
N

is assembled, then the system AN (µ)uN (µ) = FN is solved and we compute the output
of interest sN (µ) = F T

NuN (µ).

All the online operations are independent of the dimension of N , but they depend only on
N and Q, since N is normally really small, the output can be computed in real time, once
all the offline calculations are carried out and the corresponding results are stored. For all
the new values of µ we need O(QN2) assembling operations and O(2

3N3) operations to solve
the linear system.
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Other important aspects of RB formulation are (i) the availability of an error bound
theory to develop a rapid a posteriori error estimation based on residual calculations, see
for example [25, 28] and (ii) the studies on a-priori convergence and error estimation, see
[16, 24].

A crucial aspect is the availability of a good algorithm to select snapshots and basis
functions to build the reduced basis approximation space. Given the higher powers of N
that appear in the online complexity estimates, it is crucial to control N more tightly. We
first construct, offline, an approximation that, over most of the domain, exhibits an er-
ror ǫN (µ) = ‖e(µ)‖X = ‖uh(µ) − uN (µ)‖X less than ǫprior

d : we begin with a first point
µ1(SN ′=1 = {µ1}); we next evaluate ǫN ′=1(µ) over a large test sample of parameter points in
Dµ, Σprior; we then choose for µ2 (and hence SN ′=2 = {µ1, µ2}) the maximizer of ǫN ′=1(µ)
over Σprior. We repeat this process until the maximum of ǫN ′=Nprior(µ) over Σprior is less
than ǫprior

d . Then, online, given a new value of the parameter, µ, and an error tolerance

ǫpost
d (µ), we essentially repeat this adaptive process - but now our sample points are drawn

from SNprior , and the test sample is a singleton - µ. Typically we choose ǫprior
d ≪ ǫpost

d (µ)
since our test is not exhaustive; and therefore, typically, Npost(µ) ≪ Nprior. With the adap-
tive process we get higher accuracy at lower N : modest reductions in N can translate into
measurable performance improvements. This procedure is very important not only to get
a computationally cheaper and faster procedure but also to avoid ill-conditioning in matrix
assembling procedures [30]. For this reason many different algorithms have been developed
to apply also a posteriori error bounds adaptively, see [34, 24].
Important extensions on the application of RB methods in linear elasticity may involve a dual
problem to treat general outputs [33, 19] (the latter can be either linear or quadratic [12]) as
well as the treatment of more general operators [18] accounting also for inertial effects.

4 Linear elasticity equations and their parametrization

We briefly recall the elliptic equations for a general linear elasticity equilibrium problem
[15, 2, 5, 32, 35], considering a homogeneous body in a domain Ω̂ ∈ R

d with boundary Γ̂

∂σ̂ij

∂x̂j
+ b̂i = 0 in Ω̂, 1 ≤ i, j ≤ d (22)

and boundary conditions Γ̂, σ̂ij = Ĉijklε̂kl represent stresses, b̂i the components of a given

force field, Ĉijkl is the elastic tensor1 (everywhere in this paper summation on repeated
indices is understood). Thanks to the symmetry of the latter we can write

σ̂ij = Ĉijkl
∂ûk

∂x̂l
, 1 ≤ i, j, k, l ≤ d (23)

1If we consider isotropic materials the elastic tensor is given by Ĉijkl = c1δijδkl + c2 (δikδjl + δilδjk), where
c1 and c2 are the Lamé constants given by c1 = Eν

(1+ν)(1−2ν)
and c2 = E

2(1+ν)
, where E is the Young Modulus

and and ν is the Poisson coefficient. Thanks to the symmetry of σij and εkl, for the elastic tensor we have
Ĉijkl = Ĉjikl = Ĉijlk = Ĉklij . This formulation is still valid in the plane stress approximation, while when we
consider orthotropic materials the elastic tensor should be redefined.
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where uk represents a displacement. The linearized deformations ε̂kl are given by

ε̂kl =
1

2
(
∂ûk

∂x̂l
+

∂ûl

∂x̂k
), 1 ≤ k, l ≤ d,

which represents the linearized strain tensor. For the problem (22) we consider Dirichlet
conditions (where we impose a displacement ûi, tipically zero) on Γ̂D ⊂ Γ̂. Precisely:

û = 0 , on Γ̂D , (24)

and Neumann conditions (as we impose a distributed load or a free-stress condition) on Γ̂\Γ̂D:

σ̂ij ê
n
j = f̂nên

i on Γ̂n
N , (25)

σ̂ij ê
t
j = f̂tê

t
i on Γ̂t

N , (26)

where ên
i and êt

i represent the components of normal (n) and tangential (t) unit vector,
respectively. Note that Γ̂D ∩ Γ̂N ≡ 0.

We now derive the weak formulation of (22), we introduce the functional space

Ŷ = {v̂ ∈
(

H1(Ω̂)
)d

| v̂ = 0 on Γ̂D} , (27)

and the associated seminorm in (H1(Ω̂))d:

|v̂|Ŷ =

(

d
∑

i=1

|v̂i|2H1(Ω̂)

)1/2

=





∫

Ω̂

d
∑

i,j=1

(

∂v̂i

∂x̂j

)2

dΩ̂





1/2

. (28)

Multiplying (22) for the test function v̂ ∈ Ŷ , integrating on Ω̂, using the divergence theorem
and applying boundary conditions we get

∫

Ω̂

∂v̂i

∂x̂j
σ̂ijdΩ̂ =

∫

Ω̂
v̂ib̂idΩ̂ +

∫

Γ̂N

v̂if̂nên
i dΓ̂ +

∫

Γ̂N

v̂if̂tê
t
idΓ̂ . (29)

In compact notation we can write

〈Âû, v̂〉 = 〈F̂ , v̂〉 , ∀ v̂ ∈ Ŷ , (30)

where

〈Âŵ, v̂〉 =

∫

Ω̂

∂v̂i

∂x̂j
Ĉijkl

∂ŵk

∂x̂l
dΩ̂, (31)

〈F̂ , v̂〉 = 〈F̂f , v̂〉 + 〈F̂b, v̂〉 (32)

with

〈F̂f , v̂〉 =

∫

Γ̂N

v̂if̂nên
i dΓ̂ +

∫

Γ̂N

v̂if̂tê
t
idΓ̂ , 〈F̂b, v̂〉 =

∫

Ω̂
v̂ib̂idΩ̂ . (33)
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In the case Ω̂ is made up by different portions of different materials, for example R homoge-
neous subdomains Ω̂r such that

Ω̂ =

R
⋃

r=1

Ω̂r , (34)

where we indicate with Ω̂ the closure of Ω̂, the weak formulation is still governed by (30),
however now we have

〈Âŵ, v̂〉 =
R
∑

r=1

∫

Ω̂r

∂v̂i

∂x̂j
Ĉr

ijkl

∂ŵk

∂x̂l
dΩ̂ (35)

〈F̂ , v̂〉 = 〈F̂f , v̂〉 + 〈F̂b, v̂〉 , (36)

with

〈F̂b, v̂〉 =
R
∑

r=1

∫

Ω̂r

v̂ib̂
r
i dΩ̂ , 〈F̂f , v̂〉 =

R
∑

r=1

(∫

∂Ω̂r∩Γ̂N

v̂if̂
r
nên

i dΓ̂ +

∫

∂Ω̂r∩Γ̂N

v̂if̂
r
t êt

idΓ̂

)

, (37)

Ĉr
ijkl is the elastic tensor in Ω̂r, and (∂Ω̂r ∩ Γ̂N) is the portion of Γ̂N ⊂ Ω̂

r
.

4.1 Parametrized formulation and mappings

On problem (30) - (35) - (37) we highlight the parameters that are associated with variation
in the geometry (domains), boundary conditions (loads), physical properties (materials) to
apply the affine decomposition of the operators into different components.
In the case of geometrical parametrization, at each subdomain Ω̂r, r = 1, . . . , R, a reference
subdomain Ωr, r = 1, . . . , R, is associated so that Ω =

⋃R
r=1 Ω

r
where, for each x̂ ∈ Ω̂r,

r = 1, . . . , R, its corresponding image x ∈ Ωr is given by

x = Gr(µ; x̂) = Gr(µ)x̂ + gr(µ), (38)

and we get the following transformation to be applied to each derivative term

∂

∂x̂i
=

∂xj

∂x̂i

∂

∂xj
= Gji(µ)

∂

∂xj
. (39)

We introduce a new functional space Y (Ω) = Ŷ (G−1(µ; Ω)) = Ŷ (Ω̂), i.e.

Y (Ω) = {v ∈
(

H1(Ω)
)d | v = 0 on ΓD} , (40)

and for all ŵ ∈ Ŷ , we define w ∈ Y such that w(x) = ŵ(G−1(µ; x)). We get

dΩ̂ = det G−1(µ) dΩ , (41)

dΓ̂ =
∣

∣G−1(µ) et
∣

∣ dΓ , (42)
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where et is the tangential unit vector to Γ and

∣

∣G−1(µ) et
∣

∣ =

(

d
∑

i=1

(

Gije
t
j

)2

)1/2

. (43)

It follows that 〈A(µ)w, v〉 = 〈Âŵ, v̂〉 where Â is given by (35) while A(µ) by

〈A(µ)w, v〉 =
R
∑

r=1

∫

Ωr

(

Gr
jj′(µ)

∂wi

∂xj

)

Ĉr
ij′kl′(µ)

(

Gr
ll′(µ)

∂vk

∂xl

)

det(Gr(µ))−1dΩ (44)

=
R
∑

r=1

∫

Ωr

∂wi

∂xj

(

Gr
jj′(µ)Ĉr

ij′kl′(µ)Gr
ll′(µ) det(G(µ))−1

) ∂vk

∂xl
dΩ ∀w, v ∈ Y. (45)

Note that we introduce a parametric dependence also for Cr
ijkl(µ). In the same way: 〈F (µ)w, v〉 =

〈F̂ ŵ, v̂〉 where F̂ is given by (36) and

〈F (µ), v〉 =

R
∑

r=1

(∫

Ωr

(

b̂r
i det (Gr(µ))−1

)

vidΩ +

∫

∂Ωr∩ΓN

(

f̂ r
nên

i

∣

∣(Gr(µ))−1et
∣

∣

)

vidΓ

+

∫

∂Ωr∩ΓN

(

f̂ r
t êt

i

∣

∣(Gr(µ))−1et
∣

∣

)

vidΓ

)

. (46)

The abstract formulation (30) is the following:

〈A(µ)w, v〉 =
R
∑

r=1

∫

Ωr

∂wi

∂xj
Cr

ijkl(µ)
∂vk

∂xl
dΩ ∀ w, v ∈ Y , (47)

〈F (µ), v〉 = (〈Fb(µ), v〉 + 〈Ff (µ), v〉) , (48)

where

〈Fb(µ), v〉 =
R
∑

r=1

∫

Ωr

br
i (µ)vidΩ, (49)

〈Ff (µ), v〉 =
R
∑

r=1

(∫

∂Ωr∩ΓN

fn r
i (µ)vidΓ +

∫

∂Ωr∩ΓN

f t r
i (µ)vidΓ

)

. (50)

The compact tensor Cr
ijkl(µ) is given by

Cr
ijkl(µ) = Gr

jj′(µ) Ĉr
ij′kl′(µ) Gr

ll′(µ) det(Gr(µ))−1 , (51)

while br
i (µ), fn r

i (µ) e f t r
i (µ) by

br
i (µ) = b̂r

i det (Gr(µ))−1 , (52)

fn r
i (µ) = f̂ r

nên
i

∣

∣(Gr(µ))−1et
∣

∣ , (53)

f t r
i (µ) = f̂ r

t êt
i

∣

∣(Gr(µ))−1et
∣

∣ . (54)
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The terms arising from the affine decomposition are:

Θq(i,j,k,l,r)(µ) = Cr
ijkl(µ), 〈Aq(i,j,k,l,r)w, v〉 =

∫

Ω

∂vi

∂xj

∂wk

∂xl
(55)

and q : {1, . . . , d}4 × {1, . . . , R} → {1, . . . , QA}.
Thanks to the symmetry of Cijkl(µ), QA can be assumed as d2(d2 + 1)R/2.

4.2 Helmholtz equations

To account also for inertial effects due to harmonic loads with frequency ω, the D’Alembert
principle leads to the following equilibrium equations

∂Σ̂ij

∂x̂j
+ B̂i = ρ

∂2Ûi

∂t̂2
in Ω̂, ∀i = 1, .., d , (56)

where Σ̂ij = σ̂ije
−κωt (with κ imaginary unit) are the harmonic stresses, B̂i = b̂ie

−κωt the
harmonic volume forces, Ûi = ûie

−κωt the harmonic response of the system and ρ the material
density. Same boundary conditions than in the steady case apply. From (56), we get

∂σ̂ij

∂x̂j
+ b̂i + ρω2ûi = 0 in Ω̂, (57)

so that σ̂ij , b̂i and ûi (functions of ω) represent the amplitude of the same quantities as in
the steady case. The weak formulation of (57) is

〈Âŵ, v̂〉 =

∫

Ω̂
v̂ib̂idΩ̂ +

∫

Γ̂N

v̂if̂nên
i dΓ̂ +

∫

Γ̂N

v̂if̂tê
t
idΓ̂ , (58)

where

〈Âŵ, v̂〉 =

∫

Ω̂

(

∂v̂i

∂x̂j
Ĉijkl

∂ŵk

∂x̂l
− ρω2ŵiv̂i

)

dΩ̂. (59)

4.3 Examples of parametrization

We consider various kind of parametrizations, which characterize:

(a) geometry (domain);

(b) engineering: load intensity and direction;

(c) physics (material properties): Young modulus (E), shear modulus (G) and Poisson
coefficient (ν);

(d) multi subdomains for modular structures;

Applications will concern isotropic constitutive law (where Cijkl depends on E, G and ν),
orthotropic materials (where Cijkl depends on Ex, Ey, νxy, νyx and Gxy), general orthotropic
law (where Cijkl depends on Ex, Ey, νxy, νyx, Gxy and also on the fibers angle θ with respect
to the load direction).

12



5 Isotropic materials in plane strain

We propose a first application concerning an isotropic material in plane strain formulation.
We compare the solutions obtained by the reduced basis method and by the finite element
method, by computing the errors on the H1 semi-norm and we provide some indications on
computational times and savings.

The plane strain approximation is used to study linear elasticity problems in two-dimensional
domains [13, 6], considering a generic section and assuming equal to zero the deformations
in the orthogonal direction of the section. Starting from (23) we can write















































σx

σy

σz

τxy

τxz

τyz















































=
E

(1 + ν)(1 − 2ν)

























1 − ν ν ν 0 0 0

ν 1 − ν ν 0 0 0

ν ν 1 − ν 0 0 0

0 0 0 1−2ν
2 0 0

0 0 0 0 1−2ν
2 0

0 0 0 0 0 1−2ν
2







































































εx

εy

εz

γxy

γxz

γyz















































, (60)

where γij = 2εij . We impose the plane strain approximation:

εz = γxz = γyz = 0 , (61)

where z is the direction orthogonal to the section x, y, so that from (60) we get the plane
strain formulation:















σx

σy

τxy















=
E

(1 + ν)(1 − 2ν)









1 − ν ν 0

ν 1 − ν 0

0 0 1−2ν
2























εx

εy

γxy















. (62)

In this case the Lamé constants are given by

c1 = λ =
Eν

(1 + ν)(1 − 2ν)
, (63)

c2 = G =
E

2(1 + ν)
, (64)

where G is the elastic tangential modulus for the material.

5.1 A Bi-material rod

We consider a long and isotropic structure with a compression load on one side of its section
(the other one is clamped). See Figure 2. The parameters we are considering are (Figure 3
(left)):
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Figure 2: Bi-material long and isotropic structure with a compression load in plane strain
formulation.
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Figure 3: Schematic representation of the rod (left); reference mesh (right) made up by 680
elements.

• Geometry: the domain Ω̂ is made up by two variable subdomains: Ω̂1 = (L, W 1) and
Ω̂2 = (L, W 2), with L, W 1 and W 2 being geometrical parameters.

• Physics: the materials in the subdomains are parametrized by the Lamé coefficients,
i.e. G1, G2, λ1 and λ2, bound to Young modulus and Poisson coefficient by (63) and
(64).

• Engineering: the loads f̂1
n = − P

W 1 and f̂2
n = − P

W 2 depend on a variable total force P
acting on each subdomain.

The vector of parameters is: µ = {G1, G2, λ1, λ2, L, W 1, W 2, P} ∈ Dµ ⊂ R
P=8.
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The boundary conditions on Γ̂D = Γ̂1
D ∪ Γ̂2

D are:

û = 0 on Γ̂D , (65)

while on Γ̂N = Γ̂1
N ∪ Γ̂2

N we have:

σ̂ij ê
n
j =

{

f̂ r
n ên

i on Γ̂r
N

0 on Γ̂\(Γ̂D ∪ Γ̂N)
(66)

where r = 1, 2. Note that f̂t is zero.
The mathematical formulation of the problem is: given µ ∈ Dµ ⊂ R

P=8, find s(µ) =
〈L̂, û〉, where û ∈ Ŷ = (H1(Ω̂))2 is the solution of

〈Âû, v̂〉 = 〈F̂ , v̂〉, ∀ v̂ ∈ Ŷ

and
〈L̂, v̂〉 = 〈F̂ , v̂〉, ∀v̂ ∈ Ŷ ,

〈Âŵ, v̂〉 =
R
∑

r=1

∫

Ω̂r

∂v̂i

∂x̂j
Ĉr

ijkl

∂ŵk

∂x̂l
dΩ̂ ∀ ŵ, v̂ ∈ Ŷ , (67)

〈F̂ , v̂〉 =
R
∑

r=1

∫

∂Ω̂r∩Γ̂N

v̂if̂
r
nên

i dΓ̂ ∀ v̂ ∈ Ŷ , (68)

where R = 2.
The geometrical transformation to the reference domain is Gr(x̂)(µ) : Ω̂ −→ Ω, given by

(38), where g = 0 and

G1(µ) =

[

1
L 0

0 1
W 1

]

G2(µ) =

[

1
L 0

0 1
W 2

]

. (69)

For Ω1:

dΩ̂ = det G1 −1(µ) dΩ = LW 1 dΩ, (70)

dΓ̂ =
∣

∣G1 −1(µ) et
∣

∣ dΓ = W 1 dΓ, (71)

while for Ω2:

dΩ̂ = det G2 −1(µ) dΩ = LW 2 dΩ, (72)

dΓ̂ =
∣

∣G2 −1(µ) et
∣

∣ dΓ = W 2 dΓ. (73)

Introducing all the parameters in the problem and in the domain transformation we obtain:

〈A(µ)w, v〉 = 〈Âŵ, v̂〉 =
R
∑

r=1

∫

Ωr

∂wi

∂xj
Cr

ijkl(µ)
∂vk

∂xl
dΩ ∀ w, v ∈ Y, (74)

〈F (µ), v〉 = 〈F̂ , v̂〉 =
R
∑

r=1

∫

∂Ωr∩ΓN

fn r
i (µ)vi dΓ ∀ v ∈ Y, (75)
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and (74) (compacting the notation so that ∂wi

∂xj
= wi,j) becomes

〈A(µ)w, v〉 =
W 1

L
(2G1 + λ1)

∫

Ω1

v1,1w1,1 dΩ + λ1

∫

Ω1

(v2,2w1,1 + v1,1w2,2) dΩ +

+
L

W 1
G1

∫

Ω1

v1,2w1,2 dΩ + G1

∫

Ω1

(v1,2w2,1 + v2,1w1,2) dΩ +

+
W 1

L
G1

∫

Ω1

v2,1w2,1 dΩ +
L

W 1
(2G1 + λ1)

∫

Ω1

v2,2w2,2 dΩ +

+
W 2

L
(2G2 + λ2)

∫

Ω2

v1,1w1,1 dΩ + λ2

∫

Ω2

(v2,2w1,1 + v1,1w2,2) dΩ +

+
L

W 2
G2

∫

Ω2

v1,2w1,2 dΩ + G2

∫

Ω2

(v1,2w2,1 + v2,1w1,2) dΩ +

+
W 2

L
G2

∫

Ω2

v2,1w2,1 dΩ +
L

W 2
(2G2 + λ2)

∫

Ω1

v2,2w2,2 dΩ. (76)

By the affine decomposition we write:

Θ1(µ) =
W 1

L

(

2G1 + λ1
)

, 〈A1w, v〉 =

∫

Ω1

v1,1w1,1dΩ,

Θ2(µ) = λ1, 〈A2w, v〉 =

∫

Ω1

(v2,2w1,1 + v1,1w2,2) dΩ,

Θ3(µ) =
L

W 1
G1, 〈A3w, v〉 =

∫

Ω1

v1,2w2,1 dΩ,

Θ4(µ) = G1, 〈A4w, v〉 =

∫

Ω1

(v1,2w2,1 + v2,1w1,2) dΩ,

Θ5(µ) =
W 1

L
G1, 〈A5w, v〉 =

∫

Ω1

v2,1w2,1 dΩ,

Θ6(µ) =
L

W 1

(

2G1 + λ1
)

, 〈A6w, v〉 =

∫

Ω1

v2,2w2,2dΩ,

Θ7(µ) =
W 2

L

(

2G2 + λ2
)

, 〈A7w, v〉 =

∫

Ω2

v1,1w1,1dΩ,

Θ8(µ) = λ2, 〈A8w, v〉 =

∫

Ω2

(v2,2w1,1 + v1,1w2,2) dΩ,
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Θ9(µ) =
L

W 2
G2, 〈A9w, v〉 =

∫

Ω2

v1,2w2,1 dΩ,

Θ10(µ) = G2, 〈A10w, v〉 =

∫

Ω2

(v1,2w2,1 + v2,1w1,2) dΩ,

Θ11(µ) =
W 2

L
G2, 〈A11w, v〉 =

∫

Ω2

v2,1w2,1 dΩ,

Θ12(µ) =
L

W 2

(

2G2 + λ2
)

, 〈A12w, v〉 =

∫

Ω2

v2,2w2,2dΩ.

By using (50) and (53), (75) becomes

〈F (µ), v〉 =

∫

∂Ω1∩ΓN

fn 1
1 (µ)v1dΓ +

∫

∂Ω2∩ΓN

fn 2
1 (µ)v1dΓ =

= −
∫

∂Ω1∩ΓN

P

W 1
W 1v1dΓ −

∫

∂Ω2∩ΓN

P

W 2
W 2v1dΓ =

= −P

(∫

∂Ω1∩ΓN

v1dΓ +

∫

∂Ω2∩ΓN

v1dΓ

)

= −P

∫

ΓN

v1dΓ. (77)

The output of interest is the average displacement on Γn
N

s(µ) = −
∫

ΓN

w1(µ) dΓ for µ ∈ Dµ. (78)

5.2 Numerical results

We report as example in Figure (4) a visualization of displacements for the problem we are
considering, assuming a bi-material section made up of aluminium and steel, for example see
[7].

The reduced basis method is very efficient for the solution of parametrized problems. We
report the Matlab cputime using an implementation on Intel Pentium IV, 2.6 GHz and 512
MB RAM. In Figure (5) the comparisons are carried out by computing 80 and 50 FE and RB
solutions for the same parameters combinations and for different dimensions of the RB space
(N). RB allows a computational saving of 95% with respect to FE, without considering time
to build (and rebuild) meshes using FE or to assemble the basis for RB. The average time
to get a FE solution is 1.4s while to get a RB solution for N = 20 is 0.06s.

We report now some results concerning the rapid convergence of the method: in Figure
(6) we show the max and the average relative error |eN (µ)|Y = |uh(µ)−uN (µ)|Y

|uh(µ)|Y
testing a large

number of different configurations (500) depending on 8 parameters and varying N . The
basis is optimized according to the procedure described in Section 3. The points (spots) for
every N represent the error for a single configuration.
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Figure 4: Displacements: u in x direction (left) and v in y direction (right) considering a
bi-material section.
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Figure 5: Computational times and savings versus N : for 80 solutions (left) and 50 solutions
(right).

6 Applications to orthotropic materials in plane stress

We consider an orthotropic material and one of its generalized model used to describe a
composite material, made up of fibers and matrices, changing the fibers direction with re-
spect to the load, using a micro-mechanical approach [4, 9]. Composite materials are often
designed to demonstrate some specific mechanical properties in the framework of material
tayloring where it is important to get a real-time answer (i.e. output representing stress
or displacement) when loads, mechanical or geometrical properties are varying. Composite
materials are considered working in a regime of plane stress and in a two-dimensional lamina,
the width (z) is in fact considered very small compared with the planar dimension (x, y). We
make the following assumptions:

• matrices have an elastic, linear, homogeneous and isotropic behavior;
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(500) depending on 8 parameters and varying N .

• fibers have an elastic, linear, homogeneous and isotropic behavior and are aligned;

• the lamina should have an elastic, linear and orthotropic or general orthotropic behav-
ior;

• there are no holes in the material and between fibers and matrices;

• we refer to a small volume of material on which we consider stresses and displacements
as uniform.

A simple approach to get global mechanical properties of the lamina starting from the
ones of fibers and matrices is provided by the Reuss-Voigt model [4] where

Ex = cmEm + cfEf , Ey =
EmEf

cmEf + cfEm
, (79)

νxy = cmνm + cfνf , νyx =
Ey

Ex
νx, (80)

Gxy =
GmGf

cmGf + cfGm
, (81)

under the constraint of volumetric fractions composition:

cm + cf = 1 . (82)

Note that Gf =
Ef

2(1+νf ) and Gm = Em

2(1+νm) . The subscripts f and m represent fibers and

matrices respectively. See [8] for more analytical and experimental considerations about
composite materials homogenization. We report the mathematical formulation of the plane
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stress approximation [3] for an orthotropic material:
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. (83)

By definition we impose
σz = τxz = τyz = 0, (84)

where z is the direction along which the width is very small (and can be neglected).
Substituting (84) in (83), we get
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By inverting the matrix in (85), we find:
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which we denote by
{σ} = [Q] {ε} . (87)

The elements of the matrix Qrs represent the terms of the stiffness tensor Cijkl of the isotropic
case. The relationship between Qrs and the physical coefficients describing the material is















σx

σy

τxy















=









Q11 Q12 0

Q21 Q22 0

0 0 Q66























εx

εy

γxy















, (88)
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where

Q11 =
Ex

1 − νxyνyx
, (89)

Q12 =
νxyEy

1 − νxyνyx
=

νyxEx

1 − νyxνxy
= Q21 , (90)

Q22 =
Ey

1 − νxyνyx
, (91)

Q66 = Gxy . (92)

Remark. In the parametric case the condition Qrs > 0 yields: ν2
xy ≤ Ex

Ey
. The condition

that Q is s.p.s.d. is Q11, Q22, Q66 ≥ 0 (i.e. ν2
xy ≤ Ex

Ey
and Gxy > 0) and |Q12| ≤

√
Q11 · Q22,

i.e. always ν2
xy ≤ Ex

Ey
. The (parametric) coercivity is guaranteed by the sufficient condition

Q12 ≤ 1
2(Q11 + Q22) (i.e 2νxy − 1 ≤ Ex

Ey
). This condition is related with the imposition of

keeping matrix diagonally dominant. See [14] and [1].

6.1 An orthotropic lamina

We first consider the case in which the fibers are aligned along the x axis. There is a
compression load applied to Γ̂N and the lamina is clamped on Γ̂D; no loads on upper and
lower side. We have the following parameters (Figure 7 (left)):

L

W

p = P
W

Ef , Gf , νf

Em, Gm, νm

x̂

ŷ

Γ̂D Γ̂N
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−0.5

−0.4

−0.3
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−0.1

0
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0.2

0.3

0.4

0.5

 

Figure 7: Schematic problem representation (left); mesh with 1296 elements (right).

• Geometry: the domain Ω̂ = (L, W ). The parameter is the ratio L
W .

• Physics: materials and their concentrations, so that coefficients Q11, Q12, Q22 and
Q66 are varying with Ex, Ey, νxy, νyx and Gxy, by (89) - (92), and are related to local
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coefficient of E, G, ν and c of fibers and matrices by (79)- (82). Considering relative
variations of fibers properties with respect to matrices the independent parameters are
Ef

Em
,

cf

cm
,

νf

νm
.

The vector of parameters is: µ = { L
W ,

Ef

Em
,

cf

cm
,

νf

νm
} ∈ Dµ ⊂ R

P=4. On the boundary Γ̂ of the

domain Ω̂ concerning displacement we have

û = 0 on Γ̂D , (93)

and concerning stresses:

σ̂ij ê
n
j =

{

− P
W ên

i on Γ̂N

0 on Γ̂\(Γ̂D ∪ Γ̂N).
(94)

The mathematical formulation is: given µ ∈ Dµ ⊂ R
P=4, find s(µ) = 〈L̂, û〉, where

û ∈ Ŷ = (H1(Ω̂))2 is the solution of 〈Âû, v̂〉 = 〈F̂ , v̂〉, ∀ v̂ ∈ Ŷ , knowing that 〈L̂, v̂〉 =
〈F̂ , v̂〉, ∀v̂ ∈ Ŷ (compliant),

〈Âŵ, v̂〉 =

∫

Ω̂

∂v̂i

∂x̂j
Ĉijkl

∂ŵk

∂x̂l
Ω̄ ∀ ŵ, v̂ ∈ Ŷ , (95)

〈F̂ , v̂〉 =

∫

Γ̂N

v̂if̂nên
i Γ̄ ∀ v̂ ∈ Ŷ , (96)

The geometrical transformation G(x̂)(µ) : Ω̂ −→ Ω is given by the following tensor

G(µ) =

[

1
L 0

0 1
W

]

. (97)

It follows

dΩ̂ = detG−1(µ) dΩ = LW dΩ, (98)

dΓ̂ =
∣

∣G−1(µ) et
∣

∣ dΓ = W dΓ. (99)

We rewrite the problem as

〈A(µ)w, v〉 = 〈Âŵ, v̂〉 =

∫

Ω

∂wi

∂xj
Cijkl(µ)

∂vk

∂xl
dΩ ∀ w, v ∈ Y, (100)

〈F (µ), v〉 = 〈F̂ , v̂〉 =

∫

ΓN

fn
i (µ)vi dΓ ∀ v ∈ Y. (101)
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Developing the first term (100), by affine decomposition, and using the compact notation
(∂wi

∂xj
= wi,j), we get

〈A(µ)w, v〉 =
W

L
Q11

∫

Ω
v1,1w1,1 dΩ + Q12

∫

Ω
(v2,2w1,1 + v1,1w2,2) dΩ +

+
L

W
Q66

∫

Ω
v1,2w1,2 dΩ + Q66

∫

Ω
(v1,2w2,1 + v2,1w1,2) dΩ +

+
W

L
Q66

∫

Ω
v2,1w2,1 dΩ +

L

W
Q22

∫

Ω
v2,2w2,2 dΩ . (102)

and by the affine decomposition we have:

Θ1(µ) =
W

L
Q11, 〈A1w, v〉 =

∫

Ω
v1,1w1,1dΩ,

Θ2(µ) = Q12, 〈A2w, v〉 =

∫

Ω
(v2,2w1,1 + v1,1w2,2) dΩ,

Θ3(µ) =
L

W
Q66, 〈A3w, v〉 =

∫

Ω
v1,2w1,2 dΩ,

Θ4(µ) = Q66, 〈A4w, v =

∫

Ω
(v1,2w2,1 + v2,1w1,2) dΩ,

Θ5(µ) =
W

L
Q66, 〈A5w, v〉 =

∫

Ω
v2,1w2,1 dΩ,

Θ6(µ) =
L

W
Q22, 〈A6w, v〉 =

∫

Ω
v2,2w2,2dΩ. (103)

6.1.1 Numerical results

We report in Figure (8) the numerical results representing horizontal and vertical displace-
ment (u and v respectively). In this case material is homogeneous (Em = Ef = E0 =
10, νm = νf = ν0 = 0.3, L = D = 1, cm = cf = 0.5). E0 and ν0 are reference values.

We report now some results concerning the rapid convergence of the method: in Figure (9)
we show the max and the average relative error |eN (µ)|Y testing a large number of different
configurations (500) depending on 4 parameters and varying N . The basis is optimized
according to the procedure described in Section 3. The points at each N represent the error
for a single configuration.

We provide also in Table 1 the values of coefficients for the two phases of the material:
as fiber we have selected glass and an Epoxy resin for the matrix. In Table 2 we report the
value of the global coefficient for the lamina after homogenization.

The values of parameters in the configurations we have tested was varying around the
average value we reported in the tables.
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Figure 8: Displacement u and v for the orthotropic lamina (×10−3m).
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Figure 9: Max and average relative errors testing a large number of different configurations
(500) depending on 4 parameters and varying N .

6.2 Lamina in the general orthotropic case with varying geometry and

angle of fibers

We generalize the example of Section 6.1 by assuming that both the geometry and the fibers
direction with respect to the load aligned with x axis may vary. In Figure (10) we represent
the schematic lamina under the approximation of plane stresses. In Figure (11) we report the
parameters of our model, the mesh is the same as in Figure (7), while Figure (12) represents
the direction of rotation.
The parameters are the following ones (Figure 11):

• Geometry: the domain Ω̂ = (L, W ), with variable basis L and height W .

• Physics: materials and their concentrations, so that coefficients Q11, Q12, Q22 and Q66
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Coefficients Glass/Epoxy Resin

Ef 70

νf 0.17

Em 2.85

νm 0.33

cf 0.66

Table 1: Coefficients for glass fibers and epoxy resin. Young modulus is in [GPa].

Coefficients Reuss - Voigt

Ex 47.16

Ey 7.77

Gxy 2.95

νxy 0.224

Table 2: Coefficients computed using homogenization model by Reuss and Voigt. Young and
tangential elastic modulus are in [GPa].

Resin

 Fiber

θ

x̂x̂

ŷŷ

ẑ

Figure 10: Orthotropic lamina: schematic representation.

vary, being related to Ex, Ey, νxy, νyx and Gxy, by (89) - (92). Consequently, the local
coefficient of E, G, ν and c of fibers and matrices are given by (79)- (82). Considering
relative variations of fibers properties with respect to matrices, the independent para-
meters are

Ef

Em
,

cf

cm
,

νf

νm
. In addition we also consider the angle θ of fibers with respect

to the main load direction.

The vector of parameters is: µ = { L
W ,

Ef

Em
,

cf

cm
,

νf

νm
, θ} ∈ Dµ ⊂ R

P=5. The fibers direction is
influencing the constitutive relationship between σ and ε, see (86). We describe rotation of
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Figure 11: Orthotropic lamina: parameters.
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θ

Figure 12: Introducing rotation in the system.

fibers as the rigid one shown in Figure (12) and given by

{

x

y

}

=

[

cos θ − sin θ

sin θ cos θ

]{

x1

x2

}

. (104)

As described in [4], we may write:















σ11

σ22

σ12















= [T (θ)]















σx

σy

τxy















,















ε11

ε22

ε12/2















= [T (θ)]















εx

εy

εxy















, (105)

where the rotation tensor [T (θ)] is given by:

[T (θ)] =









cos2 θ sin2 θ 2 sin θ cos θ

sin2 θ cos2 θ −2 sin θ cos θ

− sin θ cos θ sin θ cos θ cos2 θ − sin2 θ









. (106)

Defining [T (θ)]−1 as the inverse of [T (θ)] and thanks to the properties of transformation
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matrix [T (θ)], we may verify:

[T (θ)]−1 = [T (−θ)] =









cos2 θ sin2 θ −2 sin θ cos θ

sin2 θ cos2 θ 2 sin θ cos θ

sin θ cos θ − sin θ cos θ cos2 θ − sin2 θ









. (107)

Therefore














σx

σy

τxy















= [T (−θ)]















σ11

σ22

σ12















,















εx

εy

εxy















= [T (−θ)]















ε11

ε22

ε12/2















. (108)

Introducing Reuter matrices

[R] =









1 0 0

0 1 0

0 0 2









, [R]−1 =









1 0 0

0 1 0

0 0 1
2









, (109)

and recalling that εxy = γxy/2, thanks to (87), we can write:















σx

σy

τxy















= [T (−θ)] [Q] [R] [T (θ)] [R]−1















εx

εy

γxy















. (110)

Thanks to (106), (107) and (109), we may verify

[R] [T (θ)] [R]−1 =









cos2 θ sin2 θ sin θ cos θ

sin2 θ cos2 θ − sin θ cos θ

−2 sin θ cos θ 2 sin θ cos θ cos2 θ − sin2 θ









= [T (−θ)]T . (111)

The rotation transformation is


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





σx

σy

τxy






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





=
[

Q(θ)
]
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γxy




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

=









Q11 Q12 Q16

Q12 Q22 Q26
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
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


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
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γxy




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







, (112)

where

[

Q(θ)
]

= [T (−θ)] [Q] [T (−θ)]T . (113)
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The components of matrix Q will be used in the general orthotropic case and are:

Q11(θ) = Q11 cos4 θ + 2(Q12 + 2Q66) sin2 θ cos2 θ + Q22 sin4 θ,

Q12(θ) = (Q11 + Q22 − 4Q66) sin2 θ cos2 θ + Q12(sin
4 θ + cos4 θ),

Q22(θ) = Q11 sin4 θ + 2(Q12 + 2Q66) sin2 θ cos2 θ + Q22 cos4 θ,

Q16(θ) = (Q11 − Q12 − 2Q66) sin θ cos3 θ + (Q12 − Q22 + 2Q66) sin3 θ cos θ,

Q26(θ) = (Q11 − Q12 − 2Q66) sin3 θ cos θ + (Q12 − Q22 + 2Q66) sin θ cos3 θ,

Q66(θ) = (Q11 + Q22 − 2Q12 − 2Q66) sin2 θ cos2 θ + Q66(sin
4 θ + cos4 θ), (114)

where Q11, Q12, Q22 e Q66 are defined in (89) - (92).
There are additional non-zero components due to the coupling between tangential (normal)
stresses and normal (tangential) deformations which are typical of an anisotropic material.
The lamina is always orthotropic and it is described by 4 physical coefficients (Ex, Ey, νxy

and Gxy). This is the general orthotropic case [4]. The model is the same of the previous
section, only the term (100) is changing due to the rotation of fibers. By an affine decompo-
sition we write:

〈A(µ)w, v〉 =
W

L
Q11

∫

Ω
v1,1w1,1 dΩ + Q16

∫

Ω
(v1,2w1,1 + v1,1w1,2) dΩ +

+
W

L
Q16

∫

Ω
(v2,1w1,1 + v1,1w2,1) dΩ +

+ Q12

∫

Ω
(v2,2w1,1 + v1,1w2,2) dΩ +

+
L

W
Q66

∫

Ω
v1,2w1,2 dΩ + Q66

∫

Ω
(v1,2w2,1 + v2,1w1,2) dΩ +

+
L

W
Q26

∫

Ω
(v1,2w2,2 + v2,2w1,2) dΩ +

+
W

L
Q66

∫

Ω
v2,1w2,1 dΩ + Q26

∫

Ω
(v2,1w2,2 + v2,2w2,1) dΩ +

+
L

W
Q22

∫

Ω
v2,2w2,2 dΩ . (115)

By separation of parameter-dependent and parameter-independent contributions we have:

Θ1(µ) =
W

L
Q11, 〈A1w, v〉 =

∫

Ω
v1,1w1,1dΩ,

Θ2(µ) = Q16, 〈A2w, v〉 =

∫

Ω
(v1,2w1,1 + v1,1w1,2) dΩ,
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Θ3(µ) =
W

L
Q16, 〈A3w, v〉 =

∫

Ω
(v2,1w1,1 + v1,1w2,1) dΩ,

Θ4(µ) = Q12, 〈A4w, v〉 =

∫

Ω
(v2,1w1,1 + v1,1w2,2) dΩ,

Θ5(µ) =
L

W
Q66, 〈A5w, v〉 =

∫

Ω
v1,2w1,2 dΩ,

Θ6(µ) = Q66, 〈A6w, v〉 =

∫

Ω
(v1,2w2,1 + v2,1w1,2) dΩ,

Θ7(µ) =
L

W
Q26, 〈A7w, v〉 =

∫

Ω
(v1,2w2,2 + v2,2w1,2) dΩ,

Θ8(µ) =
W

L
Q66, 〈A8w, v〉 =

∫

Ω
v2,1w2,1 dΩ,

Θ9(µ) = Q26, 〈A9w, v〉 =

∫

Ω
(v2,1w2,2 + v2,2w2,1) dΩ,

Θ10(µ) =
L

W
Q22, 〈A10w, v〉 =

∫

Ω
v2,2w2,2dΩ.

The terms 〈Aqw, v〉, with q = 1, ..., 10, are computed once; the only terms varying are the
ones depending on µ, thus just Θq’s.

6.2.1 Numerical results

We report in Figures (13)-(16) some physical examples at different angles for fibers in the
resin. Numerical results represent horizontal and vertical displacement (u and v respectively).
In this case the material has the following properties: Em = 2.85 · E0, Ef = 7.0 · E0, νm =
3.3 · ν0, νf = 1.7 · ν0, L = D = 1, cm = 0.67, cf = 0.33, while θ = π

6 , π
4 , π

3 ,−π
4 . E0 = 10, ν0 =

0.10, θ0 = 0, L = W = 1.0 are reference values.
We report now some results concerning the rapid convergence of the method: in Figure

(17) we show the max and the average relative error by testing a large number (500) of
different configurations depending on 5 parameters and letting N vary. The basis is optimized
according to the procedure described in Section 3. The points (spots) at each N represent
the error for a single configuration. In Table 3 we report the reference value considered as
average values for the parametrized configurations.

In Figure (18) we report the output (i.e. the average displacement of the loaded side)
computed using RB when fibers angle and fibers concentration vary, and all other parameters
are frozen.

As already seen the reduced basis method is very efficient for the solution of parametrized
problems, we report Matlab cputime on the same architecture of Section 5.2 in Figure (19)
(the comparisons are carried out by computing 100 and 150 FE and RB solutions for the
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Figure 13: Displacement v and u for fibers with θ = π
6 , [×10−3m].
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Figure 14: Displacement v and u for fibers with θ = π
4 , [×10−3m].

same parameters combinations and for different dimensions(N) of the RB space. RB are
providing a computational saving of 97% with respect to FE, without considering the time
to build (and rebuild) meshes using FE or to assemble the basis for RB. The average time
to get a FE solution is 0.78s and 0.03s for RB with N = 20.

7 Applications to isotropic damaged materials under harmonic

loads

Our last example is a problem with shear harmonic loads and isotropic materials in plane
stress. We consider that the material has a damaged zone in the center, so that the stiffness of
the central zone is reduced of a damage factor that we indicate with δ and the Young modulus
is δE. Also in this case we deal with geometrical, physical and engineering parameters.

The plane stress formulation for an isotropic material is:
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4 , [×10−3m].















σx

σy

τxy















=
E

1 − ν2









1 ν 0

ν 1 0

0 0 (1−ν)
2























εx

εy

γxy















. (116)

By the relationship σ − ε of (116), we get the two Lamé constants c1 and c2:

c1 = β =
Eν

(1 + ν)(1 − ν)
, c2 = G =

E

2(1 + ν)
. (117)

In Figure (20) we represent a lamina subject to shear harmonic loads on a side and
clamped on the other one, and with a damaged inner zone.
As represented in Figure (21) the parameters are:

• Geometry: the domain Ω̂ is divided in 9 subdomains with variable dimensions: Ω̂1 =
(S, V ), Ω̂2 = (M, V ), Ω̂3 = (L, V ), Ω̂4 = (S, R), Ω̂5 = (M, R), Ω̂6 = (L, R), Ω̂7 =
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(500) depending on 5 parameters and varying N .

Coefficients Values Coefficients Values

Ef 70.3 cf 0.84

νf 0.18 L 1.23

Em 3.8 W 1.22

νm 0.35 θ 13.6

Table 3: Reference values considered, Young modulus was in [GPa], geometrical quantities
in [m] and angles in degree.
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Figure 20: Isotropic lamina with a damaged inner zone under shear harmonic load and in
plane stress approximation.

(S, W ), Ω̂8 = (M, W ) and Ω̂9 = (L, W ) such that:

{

S + M + L = 3

W + R + V = 3
. (118)

Only 4 over 6 parameters are independent, for example S, M, W, R. Both the dimension
and the center of gravity of the damaged zone can vary.

• Physics: The material can change its properties β and G, and we also introduce a
damage factor δ ∈ [0.5, 1] to create a variation in the Young modulus (stiffness).

• Engineering: loads f̂3
t = − T

V , f̂6
t = −T

R and f̂9
t = − T

W are variable and they represent
the static load T , the shear force in each subdomain. The other parameter is ω, the
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Figure 21: Schematic representation of the application (left); mesh used for FE calculation
made up of 4896 elements (right).

frequency of the load.

The vector of parameters is µ = {S, M, W, R, β, G, δ, T, ω} ∈ Dµ ⊂ R
P=9.

Concerning boundary conditions, we have: Γ̂D = Γ̂1
D ∪ Γ̂4

D ∪ Γ̂7
D, so that:

û = 0 on Γ̂D , (119)

Concerning stresses, by denoting Γ̂N = Γ̂3
N ∪ Γ̂6

N ∪ Γ̂9
N, we get:

σ̂ij ê
n
j =

{

f̂ r
t êt

i on Γ̂r
N

0 on Γ̂\(Γ̂D ∪ Γ̂N)
(120)

where r = 3, 6, 9. The mathematical formulation of the problem is: given µ ∈ Dµ ⊂ R
P=9,

find s(µ) = 〈L̂, û〉, where û ∈ Ŷ = (H1(Ω̂))2 (see (27) with d = 2) is the solution of
〈Âû, v̂〉 = 〈F̂ , v̂〉, ∀ v̂ ∈ Ŷ , where 〈L̂, v̂〉 = 〈F̂ , v̂〉, ∀v̂ ∈ Ŷ and

〈Âŵ, v̂〉 =
R
∑

r=1

∫

Ω̂r

(

∂v̂i

∂x̂j
Ĉr

ijkl

∂ŵk

∂x̂l
− ρω2ŵiv̂i

)

dΩ̂ ∀ ŵ, v̂ ∈ Ŷ , (121)

〈F̂ , v̂〉 =
R
∑

r=1

∫

∂Ω̂r∩Γ̂N

v̂if̂
r
t êt

idΓ̂ ∀ v̂ ∈ Ŷ , (122)

with R = 9.
The geometrical mapping from the original domain to the reference one is: Gr(x̂)(µ) :

Ω̂ −→ Ω given by (38), where g = 0 and

G1(µ) =

[

1
S 0

0 1
V

]

, G2(µ) =

[

1
M 0

0 1
V

]

, G3(µ) =

[

1
L 0

0 1
V

]

, (123)
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G4(µ) =

[

1
S 0

0 1
R

]

, G5(µ) =

[

1
M 0

0 1
R

]

, G6(µ) =

[

1
L 0

0 1
R

]

, (124)

G7(µ) =

[

1
S 0

0 1
W

]

, G8(µ) =

[

1
M 0

0 1
W

]

, G9(µ) =

[

1
L 0

0 1
W

]

. (125)

For the first subdomain (for example) we write:

dΩ̂ = det G1 −1(µ) dΩ = SV dΩ, (126)

dΓ̂ =
∣

∣G1 −1(µ) et
∣

∣ dΓ = V dΓ, (127)

while for the other subdomains we can replace S and V with the other corresponding geo-
metrical parameters. By applying the domain transformation we write 〈A(µ)w, v〉 = 〈Âŵ, v̂〉
and 〈F (µ), v〉 = 〈F̂ , v̂〉, where

〈A(µ)w, v〉 =
R
∑

r=1

∫

Ωr

(

∂wi

∂xj
Cr

ijkl(µ)
∂vk

∂xl
− ρω2wivi

)

dΩ ∀ w, v ∈ Y, (128)

〈F (µ), v〉 =
R
∑

r=1

∫

∂Ωr∩ΓN

f t r
i (µ)vi dΓ ∀ v ∈ Y, (129)

By applying an affine decomposition to each subdomain from (128) and the compact notation
we get:

〈A(µ)w, v〉 =
V

S
(2G + β)

∫

Ω1

v1,1w1,1 dΩ + β

∫

Ω1

(v2,2w1,1 + v1,1w2,2) dΩ +

+
S

V
G

∫

Ω1

v1,2w1,2 dΩ + G

∫

Ω1

(v1,2w2,1 + v2,1w1,2) dΩ +

+
V

S
G

∫

Ω1

v2,1w2,1 dΩ +
S

V
(2G + β)

∫

Ω1

v2,2w2,2 dΩ −

− ρω2SV

∫

Ω1

(w1v1 + w2v2) dΩ + . . .

(130)

For the sake of notation we have just written the terms related with one subdomain: by re-
placing the quantities (S, V ) with (V, L), (V, M), (R, S), (R, M), (R, L), (W, S), (W, M), (W, L)
we can get all the terms omitted. For example for one subdomain (number 5) where we have a
damage factor δ we report parameter dependent quantities Θq(µ) and parameter independent
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ones 〈Aqw, v〉:

Θ1(µ) =
R

M
δ (2G + β) , 〈A1w, v〉 =

∫

Ω5

v1,1w1,1dΩ,

Θ2(µ) = δβ, 〈A2w, v〉 =

∫

Ω5

(v2,2w1,1 + v1,1w2,2) dΩ,

Θ3(µ) =
M

R
δG, 〈A3w, v〉 =

∫

Ω5

v1,2w1,2 dΩ,

Θ4(µ) = δG, 〈A4w, v〉 =

∫

Ω5

(v1,2w2,1 + v2,1w1,2) dΩ,

Θ5(µ) =
R

M
δG, 〈A5w, v〉 =

∫

Ω5

v2,1w2,1 dΩ,

Θ6(µ) =
M

R
δ (2G + β) , 〈A6w, v〉 =

∫

Ω5

v2,2w2,2dΩ,

Θ7(µ) = −ρω2MR, 〈A7w, v〉 =

∫

Ω5

(w1v1 + w2v2) dΩ.

The same procedure is applied to also to 〈F (µ), v〉:

〈F (µ), v〉 =

∫

∂Ω3∩ΓN

f t 3
2 (µ)v2dΓ +

∫

∂Ω6∩ΓN

f t 6
2 (µ)v2dΓ +

∫

∂Ω9∩ΓN

f t 9
2 (µ)v2dΓ =

= −
∫

∂Ω3∩ΓN

T

V
V v2dΓ −

∫

∂Ω6∩ΓN

T

R
R v2dΓ −

∫

∂Ω9∩ΓN

T

W
W v2dΓ =

= −T

(∫

∂Ω3∩ΓN

v2dΓ +

∫

∂Ω6∩ΓN

v2dΓ +

∫

∂Ω9∩ΓN

v2dΓ

)

=

= −T

∫

ΓN

v2dΓ. (131)

used also as output of interest.

7.1 Numerical results

In Figure (22) we report the max and the average relative error using an optimized basis
(left) and a random one (right) by testing a large number of parametrized configurations
(represented by spots in the plot area) and increasing N . In Table 4 we report the range
of variation for the parameters. We are interested here to maintain the coercivity of the
operator, but the method can be extended also in the non-coercive case [18]. In Table 5 we
report also some coefficients used to visualize an example in Figure (23) where we report shear
stress and shear deformation γxy: the damaged zone is visible in both stress and deformation
plots. In Figure (24) we compare computational times for FE and RB solutions: also in this
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Coefficients Range Coefficients Range

E 70 ÷ 80 [GPa] S 0.1 ÷ 1.1 [m]

ν 0.3 ÷ 0.4 M 0.1 ÷ 1.1 [m]

δ 0.5 ÷ 1.0 W 0.1 ÷ 1.1 [m]

T (1.0 ÷ 2.0) · 106 [N ] R 0.1 ÷ 1.1 [m]

ω 90 ÷ 100† [Hz]

Table 4: Ranges of parameters; † under the first resonance frequency.
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Figure 22: Max and average relative error seminorm is H1) using an optimized basis (left) and
a random one (right) by testing a large number of parametrized configuration (represented
by spots in the plot area) and increasing N .
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Figure 23: Shear stress τxy and shear deformation γxy: the damaged zone is visible.

case we can guarantee computational time with a saving of 95% in the online calculation if
compared with a FE solution.
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Coefficients Values

E 70.48 [GPa]

ν 0.37

δ 0.5

T 1.5 · 106 [N ]

ω 98 [Hz]

Table 5: Values used as reference.
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Figure 24: Computational times and savings for 50 configurations (left) and 100 configura-
tions (right).

8 Conclusions

We have provided some examples of applications of reduced basis methods in linear elasticity
problems depending on many parameters of different kind (geometrical, physical, engineer-
ing) using linear elasticity approximation of plane strain and plane stress formulation. Both
isotropic and orthotropic models have been considered, using homogenization for the latter
to deal with composite materials. Reduced basis methods have confirmed a computational
saving of about 95% with respect to a classical finite element formulation, not very suitable
to solve parametrized problems in the real-time and many-query contexts. The possibility
to treat with more complex outputs introducing a dual problem [24] and also with 3D appli-
cations [29] makes reduced basis methods quite promising. Another very important aspect
is the certification of the errors in the reduced basis approximation by means of a posteriori
error estimators, see for example [11].
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