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Abstract. Physical models often contain unknown functions and relations. The goal of our work
is to answer the question of how one should excite or control a system under consideration in an

appropriate way to be able to reconstruct an unknown nonlinear relation. To answer this question, we

propose a greedy reconstruction algorithm within an offline-online strategy. We apply this strategy
to a two-dimensional semilinear elliptic model. Our identification is based on the application of

several space-dependent excitations (also called controls). These specific controls are designed by

the algorithm in order to obtain a deeper insight into the underlying physical problem and a more
precise reconstruction of the unknown relation. We perform numerical simulations that demonstrate

the effectiveness of our approach which is not limited to the current type of equation. Since our
algorithm provides not only a way to determine unknown operators by existing data but also protocols
for new experiments, it is a holistic concept to tackle the problem of improving physical models.

1. Introduction

The identification of unknown operators in semilinear systems plays a fundamental role in various
scientific disciplines, including physics, chemistry, and biology [4, 15, 34]. Accurately characteriz-
ing these operators is crucial for understanding and predicting complex system behavior. However,
they often remain unknown or only partially known, necessitating efficient and reliable reconstruction
methods.

E-mail addresses: jan.bartsch@uni-konstanz.de, simon.buchwald@uni-konstanz.de,

gabriele.ciaramella@polimi.it, stefan.volkwein@uni-konstanz.de.

Date: May 22, 2024.
2020 Mathematics Subject Classification. 35K57, 35R30, 49N45, 49M41, 93B30 .
Key words and phrases. Reaction-diffusion equations, greedy reconstruction algorithm, optimal control of

partial differential equations, semilinear partial differential equations.
This work was financed by the Deutsche Forschungsgemeinschaft (DFG) within SFB 1432, Project-ID 425217212.

The present research is part of the activities of “Dipartimento di Eccellenza 2023-2027”.

1



2 RECONSTRUCTION NONLINEAR OPERATORS IN SEMILINEAR MODELS

Many techniques exist for such identification, drawing from the fields of inverse problems and
optimization. Traditional approaches involve inverse problem methods, inferring the operator from
measured outputs under controlled inputs. Techniques like gradient descent, least squares minimiza-
tion, or Bayesian approaches are commonly employed [19, 27]. Optimization methods formulate the
identification problem as an optimization task, minimizing the discrepancy between model outputs
and data.

With the recent surge of machine learning, neural networks are increasingly applied to identification
tasks [25, 31]. While these methods have achieved significant progress, a common challenge lies in
data quality. Real-world data often suffers from noise and uncertainties, leading to inaccuracies in
the reconstructed operator. Additionally, limited data availability due to cost or time constraints can
hinder accurate identification. Furthermore, biased data can lead to biased estimates of the operator,
necessitating careful data collection and analysis procedures.

This paper extends the approach introduced in [26] and optimized in [7] to reconstruct unknown
nonlinear operators in semilinear elliptic models, addressing some of the challenges mentioned above.
We leverage the power of optimal control techniques, formulating the reconstruction problem as an
optimization problem where the objective function measures the discrepancy between the model output
and observed data. By strategically designing control functions and employing optimization algorithms,
we aim to drive the model output toward observed data that provides significant insights into the
underlying physical system, thereby revealing the characteristics of the unknown operator. Our method
develops optimal protocols to generate data that yields as much insight into the system as possible. In
other words, the goal of the algorithm is to convexify the identification problem in order to be able to
find a unique solution and speed up the solution process. This optimized algorithm was used to identify
different linear and nonlinear unknown operators and distributions [8, 9, 10]. We extend the existing
results by considering a system of elliptic partial differential equations (PDEs) and reconstructing
infinite-dimensional objects.

The proposed approach offers several advantages. Unlike traditional methods that require large
amounts of high-quality data, our framework incorporates an active learning strategy. The algorithm
selects new data points to collect, focusing on those that provide the most information about the un-
known operator, leading to reduced data dependency. Additionally, the framework provides theoretical
guarantees for convergence to the true operator under certain conditions.

Building upon this foundation, we present a computationally efficient numerical scheme to solve
the formulated optimization problem, enabling implementation for various semilinear elliptic models.
Our semilinear PDE can be motivated as the steady-state solution to PDEs describing models from
epidemics, biochemical systems, and nuclear reactor models or general reaction-diffusion models [28,
30]. Similar models are also used to describe membrane-resonators; see, e.g., [37]. We refer to [2, 22, 23,
33] and the references therein for existing investigations on the identification of unknown nonlinearities
in semilinear PDEs. Furthermore, we refer the reader to the work [21] on general inverse problems
with PDEs.

The paper is organized as follows. In the next section, we introduce our specific setting including
the formulation of our reconstruction problem. In Section 3, we analyze the semilinear PDE model and
state the existence and uniqueness of solutions in Theorem 3.6. Furthermore, we present continuity
results for the control-to-state map, the parameter-to-state map, and the inverse parameter-to-state
map in Theorems 3.8, 3.11 and 3.12, respectively. In Section 4, we describe our numerical method
to solve the reconstruction problem using a greedy approach (cf. Algorithm 4.1). Afterwards, in
Section 5, we report the numerical approximation in terms of spatial discretization and numerical
strategy to solve the governing equation. To validate our strategy, we perform numerical experiments
and report the results in Section 6. A section of conclusions finishes this work.

Notation. For a natural number n ∈ N, we define [n] := {1, . . . , n}. For a vector α ∈ Rn, we denote
by ∥ · ∥p the standard ℓp norms for 1 ≤ p ≤ ∞. Furthermore, we denote for vectors α, α̃ ∈ Rn the
standard scalarproduct in Rn as α⊤α̃ = α · α̃ = ⟨α, α̃⟩2. Whenever two vectors in Rn are compared
with each other, then the comparison has to be understood componentwise.

For a domain Ω ∈ Rn and 1 ≤ p ≤ ∞, we set Lp(Ω) := Lp(Ω;R) and Lp(Ω) := Lp(Ω) × Lp(Ω);
analogously, we define Hk(Ω) = Hk(Ω) ×Hk(Ω) for k ∈ N. Furthermore, we set H1

0(Ω) := H1
0 (Ω) ×
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H1
0 (Ω) and C(Ω̄) := C(Ω̄)× C(Ω̄). The space H1

0 (Ω) is equipped with the inner product

⟨φ,ψ⟩H1
0 (Ω) :=

∫
Ω

∇φ · ∇ψ dx for φ,ψ ∈ H1
0 (Ω).

For more details, we refer to the standard notation for Lebesque and Sobolev spaces; see, e.g., [1, 16].

2. Formulation of the problem

We consider a convex two-dimensional spatial domain Ω ⊊ R2 with Lipschitz-continuous boundary
Γ = ∂Ω. For x = (x1, x2)

⊤ ∈ Ω and y(x) = (y1(x), y2(x))
⊤, we consider the following system of

semilinear PDEs with homogeneous Dirichlet boundary conditions

−∆y(x) + g(y(x)) = ε(x) in Ω,(2.1a)

y(x) = 0 on Γ,(2.1b)

where ε : R2 → R2 is a control input and g : R2 → R2 an unknown nonlinearity. For ε = (ε1, ε2)
⊤, we

define the set of admissible controls as

Ead :=
{
ε ∈ L2(Ω)

∣∣ εa ≤ ε(x) ≤ εb for almost all (f.a.a.) x ∈ Ω
}
,

with given bounds εa, εb ∈ R2, εa ≤ εb. Notice that the elements in Ead ⊂ L∞(Ω) are uniformly
bounded in L∞(Ω) by εmax := max{∥εa∥∞, ∥εb∥∞}.

The nonlinearity g is assumed to lie in a K-dimensional space G. Thus, given a basis G =
{φ1,φ2, . . . ,φK} of G with functions φi : R2 → R2, we can write

g(y) = gα(y) :=

K∑
j=1

αjφj(y) = Φ(y)α ∈ R2, y ∈ R2,(2.2)

for some coefficient vector α = (αj)
K
j=1 ∈ RK and Φ(y) = (φ1(y), . . . ,φK(y)) ∈ R2×K . Our true

unknown nonlinearity is now assumed to be given by

gα⋆(y) =

K∑
j=1

α⋆
jφj(y)

for an unknown coefficient vector α⋆ = (α⋆
j ) ∈ RK . Notice that g is locally Lipschitz continuous if all

elements in G are polynomials or piecewise linear and continuous functions.
For the coefficients α ∈ RK , we assume that they are elements of

AK :=
{
α ∈ RK

∣∣ 0 ≤ αi ≤ αmax for i ∈ [K]
}
,

with a scalar αmax ≥ 0. Notice that AK is nonempty, compact and convex. Further, we denote by yα,ε

the solution to (2.1) using the nonlinearity gα and applying controls (inputs) ε ∈ Ead (cf. Section 3).
To identify the unknown true nonlinearity gα⋆ , we generate a K-dimensional set of control functions
{εm}Km=1 ⊂ Ead to perform K (laboratory) experiments and obtain the data yεm

⋆ for m ∈ [K]. Then
the nonconvex parameter identification problem in order to estimate the nonlinearity gα⋆ is given by

min
α∈AK

K∑
m=1

∥∥∥yα,εm − yεm

⋆

∥∥∥2
L2(Ω)

.(2.3)

Since α ∈ AK is a vector in RK , we did not add an additional regularisation term depending on
α. The controls {εm}Km=1 ⊂ Ead will be chosen properly by the iterative Algorithm 4.1 presented in
Section 4.
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3. Analysis of the governing equation

From now on, we always assume a nonlinearity

g(y) = gα(y) =

K∑
j=1

αjφj(y), for α ∈ AK .

We omit the subscript α in the first part of this section. Now, we analyze the model (2.1). In particular,
we recall results about the existence and uniqueness together with wellposedness results and continuity
properties of the control-to-state map. Afterwards, we deal with the Lipschitz continuity (stability)
of the equation with respect to the parameters α. Specifically, we formulate the wellposedness of the
parameter-to-state map as well as of its inverse, the state-to-parameter map. We refer to [2, 22, 23, 33]
for similar investigations. Furthermore, we refer the reader to the work [21] on general inverse problems
governed by PDEs.

3.1. Existence of solutions and wellposedness. We apply the results of [11]; see also [36, Chapter
4]. For the basis functions and the nonlinearity g, we state the following assumptions.

Assumption 3.1. 1) The basis elements φj are continuously differentiable. This implies in
particular that they are (locally) Lipschitz continuous, i.e., there exist constants Lφj

> 0, such

that for all j ∈ [K] and y, ỹ ∈ R2 it holds that

∥φj(y)−φj(ỹ)∥2 ≤ Lφj
∥y − ỹ∥2.

We set Lφ := maxj∈[K] Lφj
.

2) The basis elements are bounded from below and above, i.e., there exist vectors cφj
, Cφj

∈ R2

with only positive entries and cφj
< Cφj

, such that for all j ∈ [K] and y ∈ R2 it holds that

cφj
≤ φj(y) ≤ Cφj

.

We set cφ := minj∈[K] ∥cφj∥∞ and Cφ := maxj∈[K] ∥Cφj∥∞.
3) The basis elements are monotone non-decreasing functions and satisfy

∀M > 0 ∃ϕM > 0 : ∥φj(y)∥2 ≤ ϕM ∀∥y∥2 ≤M.

For the nonlinearity g : R2 → R2, we impose the following:

Assumption 3.2. The Jacobian matrix ∇g(y) ∈ R2×2 of the nonlinearity g is positive semi-definite.

These hypotheses on the nonlinearity and the definition of Ead lead to the following statement.

Corollary 3.3. Suppose that Assumptions 3.1 and 3.2 hold true. Then it follows that

1) The nonlinearity g and its derivative g′ are continuous in R2.
2) The nonlinearity g satisfies

∀M > 0 ∃ϱM > 0 : ∥g(y)∥2 ≤ ϱM ∀∥y∥2 ≤M.

3) The nonlinearity g is non-decreasing.

Proof. Part 1) follows directly from Assumption 3.1-1) and part 2) from Assumption 3.1-2). The part
3) follows from [32, Proposition 12.3]. □

Remark 3.4. 1) From Assumption 3.1-2) it follows that for all j ∈ [K], there exist a constant
Iφj > 0 such that for any bounded subset Υ ⊂ R2 it holds

∥φj(y)∥L2(Ω) ≤ Iφj
.(3.1)

We define Iφ := maxj∈[K] Iφj .
2) We need Cφj

for (3.1) and cφj
for Theorem 3.12.

3) The monotonicity of Corollary 3.3-3) is needed for the uniqueness of solutions to (2.1) in
Theorem 3.6 below.

Whenever we attempt to solve (2.1), we consider its weak formulation [36, Chapter 4]:
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Definition 3.5. A function y = (y1, y2)
⊤ ∈ H1

0(Ω) is called a weak solution of (2.1) if the following
variational equality is fulfilled∫

Ω

⟨∇y(x),∇v(x)⟩F dx+

∫
Ω

v(x) · g(y(x)) dx =

∫
Ω

v(x) · ε(x) dx ∀v ∈ H1
0(Ω),(3.2)

for fixed ε ∈ Ead and fixed g fulfilling Assumptions 3.1 and 3.2. We introduce the bilinearity

a[y,v] :=

∫
Ω

⟨∇y(x),∇v(x)⟩F dx for y,v ∈ H1
0(Ω).

In Definition 3.5, we denote with ⟨· , ·⟩F the Frobenius inner product of matrices and furthermore
with ∇y the Jacobian matrix of y. An important property of the bilinearity a[· , ·] needed in the sequel
is the existence of a constant CE > 0 such that

a[v,v] ≥ CE ∥v∥2H1
0(Ω) ∀v ∈ H1

0(Ω).

This property is also called the ellipticity of the bilinearity. In our specific case, it even holds that

a[v,v] = ∥v∥2H1
0(Ω) ∀v ∈ H1

0(Ω).(3.3)

Next, we formulate our existence and uniqueness result in the following statement. We introduce the
solution space

Y := H2(Ω) ∩H1
0(Ω),

equipped with the norm

∥v∥Y := ∥∆v∥L2(Ω).

We remark that the norm ∥ · ∥Y is equivalent to the standard H2(Ω) norm; see, e.g., [18, Chapter 3].
Furthermore, recall that we use the following norm on H1

0(Ω)

∥v∥H1
0(Ω) := ∥∇v∥L2(Ω).

Theorem 3.6. Suppose that Assumptions 3.1 and 3.2 hold. Then there exists a constant C0 > 0,
independent of ε and g, such that for all controls ε ∈ Ead the equation (2.1) possesses a unique weak
solution y ∈ Y in the sense of Definition 3.5 satisfying

∥y∥Y ≤ C0.

Proof. By the virtue of Corollary 3.3, since Ω is convex with Lipschitz boundary Γ, it is possible to
apply [11, Theorem 2.10]. Notice in particular that all elements ε ∈ Ead are uniformly bounded by
εmax and that the value of g at the origin is bounded by our assumption on the basis elements (cf.
Assumption 3.1). □

Remark 3.7. We refer to [5, 6, 35] for related discussions on the analysis of semilinear elliptic PDEs.

We are now able to introduce the control-to-state map S for a fixed nonlinearity gα for α ∈ AK as

Sα : Ead → Y, ε 7→ yα,ε := Sα(ε),

where Sα(ε) is the unique weak solution to (2.1) provided by Theorem 3.6 given the control ε and
the nonlinearity gα. Therefore, we can conclude that Sα is well defined. Furthermore, we have the
following result from [11, Lemma 3.5]:

Theorem 3.8. Let Assumptions 3.1 and 3.2 hold and fix a nonlinearity gα for α ∈ AK . Then the
control-to-state map Sα is Lipschitz continuous from L2(Ω) to Y: There exists a constant L > 0, such
that for all ε, ε̃ ∈ Ead it holds

∥Sα(ε)− Sα(ε̃)∥Y ≤ L ∥ε− ε̃∥L2(Ω).

We refer the reader to [36, Chapter 4] as well as [11, 12, 13] for more details.
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3.2. Stability with respect to the parameters. In this section, we investigate the wellposedness
and Lipschitz continuity (stability) of the parameter-to-state map defined below. In the following
analysis, we take account of the iterative structure of the algorithm defined in Section 4. More
specifically, we consider a k ∈ [K] that indicates the k-th iteration of the algorithm in the next
results. We introduce for 1 ≤ k ≤ K − 1 the set

Ak := {α ∈ AK |αj = 0, j = k + 1, . . . ,K}.(3.4)

From Theorem 3.6 and Assumption 3.1, we deduce the following proposition.

Proposition 3.9. Let Assumptions 3.1 and 3.2 hold and ε ∈ Ead be chosen arbitrarily. Introduce the
parameter-to-state map Pε by

Pε : AK → Y, α 7→ yα,ε := Pε(α),

where Pε(α) is the solution in the sense of Definition 3.5 given the nonlinearity gα and the control ε.
Then, Pε is well-defined.

Since we are interested in the dependence of the solution with respect to the parameters α, we
assume in the following that the control ε ∈ Ead is fixed and therefore omit to write ε.

We recall the weak formulation (3.2) for our structure of the nonlinearity given in (2.2) and α ∈ AK

a[yα,v] +

∫
Ω

v(x) ·
( K∑

j=1

αj φj(y
α(x))

)
dx =

∫
Ω

ε(x) · v(x) dx ∀v ∈ H1
0(Ω).(3.5)

Notice that the difference ȳ := yα1 − yα2

of the solutions yα1

and yα2

for any α1,α2 ∈ AK fulfills
the following variational equality

a[ȳ,v] +

∫
Ω

v(x) ·

 K∑
j=1

(
α1
j φj

(
yα1

(x)
)
− α2

j φj

(
yα2

(x)
)) dx = 0 ∀v ∈ H1

0(Ω).(3.6)

If we choose v = ȳ ∈ H1
0(Ω) we obtain

a[ȳ, ȳ] +

∫
Ω

ȳ(x) ·
( K∑

j=1

(
α1
j φj

(
yα1

(x)
)
− α2

j φj

(
yα2

(x)
)))

dx = 0.(3.7)

We derive the following energy estimate for ȳ.

Lemma 3.10. Let Assumptions 3.1 and 3.2 hold and k ∈ [K]. Let α1,α2 ∈ Ak. For the difference

ȳ = yα1 − yα2

of two corresponding solutions it holds that

∥yα1 − yα2∥H1
0(Ω) ≤ C k ∥α1 −α2∥∞,

with a constant C > 0 independent of gα1 , gα2 ,α1 and α2.

Proof. The claim is true if ȳ := yα1 − yα2 ≡ 0 ∈ H1
0(Ω). Hence we now assume that ȳ ∈ H1

0(Ω) \ {0}.
From (3.7), we obtain

∥ȳ∥2H1
0(Ω)

(3.3)
= a[ȳ, ȳ] =

K∑
j=1

∫
Ω

ȳ(x) ·
(
−α1

j φj

(
yα1

(x)
)
+ α2

j φj

(
yα2

(x)
))

dx(3.8a)

=

k∑
j=1

∫
Ω

ȳ(x) ·
[
−α1

jφj

(
yα1

(x)
)
+ α2

jφj

(
yα2

(x)
)
+ α1

jφj

(
yα2

(x)
)
− α1

jφj

(
yα2

(x)
)]

dx

=

∫
Ω

−
k∑

j=1

α1
j

(
φj

(
yα1

(x)
)
−φj

(
yα2

(x)
))
· ȳ(x)︸ ︷︷ ︸

≤0

+

k∑
j=1

(
α2
j − α1

j

)
φj

(
yα2

(x)
)
· ȳ(x) dx(3.8b)

≤
k∑

j=1

∫
Ω

(
α2
j − α1

j

)
φj

(
yα2

(x)
)
· ȳ(x) dx(3.8c)
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≤
k∑

j=1

∫
Ω

∣∣∣(α2
j − α1

j

)
ȳ(x) ·φj

(
yα2

(x)
)∣∣∣ dx(3.8d)

≤ ∥ȳ∥L2(Ω) ∥α2 −α1∥∞
k∑

j=1

∥φj

(
yα2)∥L2(Ω)(3.8e)

≤ k Iφ ∥α1 −α2∥∞ ∥ȳ∥L2(Ω) ≤ k Iφ CΩ ∥α1 −α2∥∞ ∥ȳ∥H1
0(Ω).(3.8f)

In (3.8), we use the following: In (3.8c), we apply the monotonicity of the nonlinearity provided by
Assumption 3.1-3), i.e. that we have

(
φj(y)−φj(ỹ)

)
· (y − ỹ) ≥ 0 for y, ỹ ∈ R2 and j ∈ [K], in (3.8d),

we use the triangle inequality, in (3.8e) we use the general version of the Hölder inequality (cf. [3,
Lemma 1.18]), and in (3.8f), we use (3.1) and the Poincaré inequality from which we get the constant
CΩ > 0. Summarizing, we have

∥ȳ∥2H1
0(Ω) ≤ k Iφ CΩ ∥α1 −α2∥∞ ∥ȳ∥H1

0(Ω),

which leads to

∥ȳ∥H1
0(Ω) ≤ C k ∥α1 −α2∥∞

with C := Iφ CΩ. □

The result of Lemma 3.10 can be further improved in the sense that we can obtain an estimate in
the Y norm. From this, the continuity of the parameter-to-state map Pε follows.

Theorem 3.11. Let Assumptions 3.1 and 3.2 hold and k ∈ [K]. Let α1,α2 ∈ Ak. For the difference

ȳ = yα1 − yα2

of two corresponding solutions it holds that

∥yα1 − yα2∥Y ≤ C k2 ∥α1 −α2∥∞
for a constant C > 0 independent of gα1 , gα2 ,α1 and α2.

Proof. The claim is true if ȳ ≡ 0 ∈ Y. Hence we now assume that ȳ ̸≡ 0 ∈ Y. We know from
Theorem 3.6 that ȳ ∈ Y since it is the sum of two functions in Y. Hence it fulfils the following equation
(cf. (3.8b)) with homogeneous Dirichlet boundary conditions:

−∆ȳ +

k∑
j=1

∫
Ω

(
α1
j

(
φj

(
yα1

(x)
)
−φj

(
yα2

(x)
))

+
(
α2
j − α1

j

)
φj

(
yα2

(x)
))
· ȳ(x) dx = 0.(3.9)

We now take the L2 inner product of (3.9) with ∆ȳ and obtain

∥∆ȳ∥2L2(Ω) ≤ k
(
∥α1∥∞ Lφ ∥ȳ∥L2(Ω) + Cφ ∥α1 −α2∥∞

)
∥ȳ∥L2(Ω) ∥∆ȳ∥L2(Ω),

where we have used the Lipschitz continuity of the basis elements and the Cauchy-Schwarz inequality.
Now we divide by ∥∆ȳ∥L2(Ω), apply the Poincaré inequality, which gives us the factor CΩ > 0, and
use the boundedness of the solutions provided by Theorem 3.6 to obtain

∥∆ȳ∥L2(Ω) ≤ k αmax (Lφ 2C0 + Cφ)CΩ ∥ȳ∥H1
0
.

Now we can apply Lemma 3.10 to estimate

∥∆ȳ∥L2(Ω) ≤ k2 αmax (Lφ 2C0 + Cφ) Iφ C
2
Ω ∥α1 −α2∥∞.

The statement follows by setting C := αmax (Lφ 2C0 + Cφ) Iφ C
2
Ω. □

3.3. Wellposedness of inverse-map. This section is devoted to the stability analysis of the param-
eters with respect to small perturbations in the solution. Let us again fix the control ε ∈ Ead. We are
interested in the stability estimate of the form

∥α1 −α2∥∞ ≤ Cinv ∥yα1 − yα2∥Y.
This inequality implies the Lipschitz continuity of the inverse parameter-to-state map P−1

ε , i.e., the
state-to-parameter map given for fixed controls ε ∈ Ead as

P−1
ε : B→ AK , yα 7→ α = P−1

ε (yα),
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where we introduced the compact set B := P(AK) ⊂ Y. Therefore, if the difference of two solutions
is small in the Y norm, then the corresponding parameters will be close with respect to the maximum
norm (which is equivalent to all other norms in RK). This is the content of Theorem 3.12. Notice that
an essential assumption is that the basis elements are bounded away from zero.

Theorem 3.12. Suppose that Assumption 3.1 and k ∈ [K] hold. Furthermore, let α1,α2 ∈ Ak. Then
there exists a constant Cinv > 0 independent of α1,α2 such that

∥α1 −α2∥∞ ≤ Cinv ∥yα1 − yα2∥Y.
Moreover, the constant has the form

Cinv :=
√
2c̃ (1 + k Lφ αmax CΩ)c

−1
φ

for constants c̃, CΩ > 0.

Proof. With ᾱ := α1 −α2 and Φ = (φ1, . . . ,φK), we find

∥ᾱ∥2∞ ≤ c̃ ∥ᾱ∥
2
2 = c̃ c−2

φ ∥cφ ᾱ∥22 ≤ c̃ c−2
φ ∥Φ(yα1)ᾱ+Φ(yα2)α2 −Φ(yα2)α2∥2L2(Ω)(3.10a)

≤ 2 c̃ c−2
φ

(
∥Φ(yα1)α1 −Φ(yα2)α2∥2L2(Ω) + ∥ (Φ(yα2)−Φ(yα1))α2∥2L2(Ω)

)
(3.10b)

≤ 2 c̃ c−2
φ

(
∥∆(yα1 − yα2

)∥2L2(Ω) + k2 L2
φ α

2
max ∥yα1 − yα2∥2L2(Ω)

)
(3.10c)

≤ 2 c̃ c−2
φ

(
1 + k Lφ αmax

)2∥yα1 − yα2∥2Y.(3.10d)

In (3.10a) we use the equivalence of norms in RK and Assumption 3.1-2); in (3.10b) we apply the

triangle inequality and a binomial inequality; in (3.10c) we use that the difference yα1 − yα2

fulfills
(3.6) and that φj are Lipschitz continuous for j ∈ [K]; in (3.10d) we exploit that the Laplace operator
is an isometry. □

4. Greedy-reconstruction algorithm

In this section, we present our strategy to tackle the identification problem (2.3). For this, we recall
some notation. We denote by yβ,ε the solution of (2.1) with the control ε and nonlinearity gβ. We
have for 1 ≤ k ≤ K − 1 the set Ak := {α ∈ AK |αj = 0, j = k + 1, . . .K} (cf. (3.4)). Further, we

set ek ∈ RK as the k-th canonical vector in RK . Hence, yek,ε denotes the solution of (2.1) with the
control ε and nonlinearity φk.

We show now how to construct a set of optimized controls and basis elements, in particular with
the goal of improving local convexity properties of (2.3). We follow the idea of [7, 8, 9, 26], where
linear and bilinear dynamical systems have been investigated. It is the aim of this work to extend this
strategy to the general semilinear PDE case (2.1).

The main idea is to split the reconstruction process of gα⋆ into offline and online phases. In the offline
phase, a greedy algorithm computes a set of optimized controls {εm}Km=1 by exploiting only simulations
of the semilinear model (2.1) and without using any laboratory data. In the online phase, the computed
controls {εm}Km=1 are used experimentally to produce the laboratory data yεm

⋆ form ∈ [L] and to define
the nonlinear problem (2.1). While the online phase consists (mathematically) of solving a classical
parameter-identification inverse problem, the offline phase requires the greedy algorithm that was first
introduced in [26] and analyzed and improved in [8]. The goal of this offline/online framework is to
find a good approximation of the unknown operator gα⋆ for which the difference between observed
experimental data and numerically computed data is the smallest for any control. To do so, the
algorithm attempts to distinguish numerical data for any two gα1 , gα2 ∈ span G [26]. This is achieved
by an iterative procedure that performs a sweep over the basis G and computes a new control at
each iteration. Suppose that at iteration k the control fields ε1, . . . , εk are already computed; the
new control function εk+1 is obtained by two substeps, the so-called fitting and splitting step. One
first solves the identification problem (4.1) which gives the coefficients βk = (βk

j )j=1,...,k. Then one
computes the new control as the solution of the splitting step (4.2).

This general procedure can be optimized using some extensions. More specifically, in each iteration,
all elements of G are considered in parallel and the ‘best’ one is chosen in a greedy way; see [7, Section
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6.1] for further explanation of the original and optimized greedy reconstruction algorithm in a linear
case.

This offline procedure for our nonlinear case is summarized in Algorithm 4.1. We refer to [8] for a
general idea to prove that this algorithm is able to make problem (2.3) (locally) uniquely solvable.

Algorithm 4.1 Optimized Nonlinear Greedy Reconstruction (ONGR) Algorithm

Require: A set of K basis functions G = {φ1, . . . ,φK} and a tolerance tol1 > 0.
1: Compute ε1 and the index i1 ∈ [K] by solving the initialization problem

max
i∈[K]

max
ε∈Ead

1

2

∥∥∥y0,ε − yei,ε
∥∥∥2

L2(Ω)
+

ν

2
∥ε∥2L2(Ω).

2: Swap φ1 and φi1
in G, and set k = 1 and fmax = 1

2

∥∥y0,ε1 − yei1 ,ε1
∥∥2

L2(Ω)
.

3: while k ≤ K − 1 and fmax > tol1 do
4: for ℓ = k + 1, . . . ,K do
5: Fitting step: Find βℓ that solves the problem

(4.1) min
β∈Ak

1

2

k∑
m=1

∥∥∥yβ,εm − yeℓ,εm
∥∥∥2

L2(Ω)
.

6: end for
7: Splitting step: Find εk+1 and ik+1 that solve the problem

(4.2) max
i∈{k+1,...,K}

max
ε∈Ead

1

2

∥∥∥yβi,ε − yei,ε
∥∥∥2

L2(Ω)
+

ν

2
∥ε∥2L2(Ω).

8: Swap φk+1 and φik+1
in G.

9: Set fmax = 1
2
∥yβ

ik+1 ,εk+1

− ye
ik+1 ,εk+1

∥2L2(Ω).

10: Set k ← k + 1.
11: end while
12: return G and the computed {εm}km=1.

We now present the optimality system for the optimization problems appearing in Algorithm 4.1.
Let us define gk(y) := φk(y) for y = (y1, y2)

⊤ ∈ R2 an k ∈ [K]. We start with the discussion of the
fitting step at the k-th iteration. For this let us introduce Yk := Y × . . . × Y (k times) and define
{ym

k+1}km=1 ⊂ Yk as the solutions to

−∆ym
k+1 + gk+1(y

m
k+1) = c εm for m ∈ [k]

with homogeneous Dirichlet boundary conditions. For the fixed controls {εm}km=1 ⊂ Ead and with
given {ym

k+1}km=1 ⊂ Yk, the fitting step is given as the following minimization problem (the subscript
f stands for “fitting step”)

min Jf (β,y
1, . . . ,yk) :=

k∑
m=1

1

2

∥∥ym − ym
k+1

∥∥2
L2(Ω)

subject to −∆ym + gβ(y
m) = εm, ym

|Γ = 0 for m ∈ [k]

and β ∈ Ak.

(4.3)

Using the parameter-to-state map Pε defined in Proposition 3.9, we can introduce the reduced cost

Ĵf (β) := Jf (β,Pε1(β), . . . ,Pεk(β))

and the reduced problem

min Ĵf (β) s.t. β ∈ Ak.(4.4)

We can state the following theorem.

Theorem 4.1. Let Assumptions 3.1 and 3.2 hold. Then the optimization problem (4.3) has at least
one solution β̄ ∈ Ak.
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Proof. Notice that the reduced cost Ĵf is non-negative and thus there exists a minimizing sequence

{βℓ}ℓ∈N ⊂ Ak such that

0 ≤ J̄f = inf{Ĵf (β) |β ∈ Ak} = lim
ℓ→∞

Ĵf (β
ℓ) <∞.

We set yβ,ε := {Pεm(β)}km=1 ⊂ Yk. Due to Theorem 3.6, the sequence {yβℓ,ε}ℓ∈N ⊂ Yk is well defined.

Since Ak is compact in Rk, there exists a subsequence (which is still labeled by βℓ) {βℓ}ℓ∈N ⊂ Ak of

the minimizing sequence and an element β̄ ∈ Ak such that we have the strong convergence βℓ → β̄ in

Rk as ℓ → ∞. Due to Lemma 3.10 we have yβℓ,ε → ȳ := yβ̄,ε in Yk. Using the lower semicontinuity
of the norms and the continuity of the parameter-to-state map from AK to Y (Lemma 3.10)

Ĵf (β̄) ≤ lim
ℓ→∞

Ĵf (β
ℓ) = J̄f .

□

Let us now introduce the adjoint variable q = q(x) = (q1(x), q2(x))
⊤. The adjoint equations for the

fitting step read as follows

−∆qm + g′
β(y

m)⊤qm = −
(
ym − ym

k+1

)
, for m ∈ [k],

completed with homogeneous Dirichlet boundary conditions. Since ∇gβ(y) is positive semidefinite, we
can ensure a constrained qualification for (4.4), so that first-order necessary optimality conditions can
be formulated; cf. [36, Section 6.1.2].

Supposing that β̄ solves (4.4), the optimality condition of the fitting step in iteration k reads〈
∇Ĵf (β̄),β − β̄

〉
2
≥ 0 ∀β ∈ Ak,

where ∇Ĵf = (∇β1
Ĵf , . . . ,∇βk

Ĵf )
⊤ is given by

∇βj Ĵf = ν βj +

k∑
m=1

∫
Ω

qm(x) ·φj(y
m(x)) dx, j ∈ [k].

Now we fix β and turn to the splitting step in which the new control εk+1 is computed. The splitting
step at iteration k < K is given by (the subscript s stands for “splitting step”)

min Js(ε,y
β,yk+1) := −1

2

∥∥yβ − yk+1
∥∥2
L2(Ω)

+
ν

2
∥ε∥2L2(Ω)

subject to

{
−∆yβ + gβ(y

β) = ε, yβ
|Γ = 0,

−∆yk+1 + gk+1(y
k+1) = ε, yk+1

|Γ = 0,

and ε ∈ Ead.

Exploiting the control-to-state map S defined in Theorem 3.8, we can introduce the reduced cost

Ĵs(ε) := Js(ε, Sβ(ε), Sek+1(ε)),

where ek ∈ RK denotes again the k-th unit vector in RK . We also introduce the reduced problem

min Ĵs(ε) s.t. ε ∈ Ead.(4.5)

We can state the following theorem on the existence of solutions to (4.5).

Theorem 4.2. Let Assumptions 3.1 and 3.2 hold. Then the optimization problem (4.5) has at least
one solution ε̄ ∈ Ead.

Proof. Since our Ĵs is bounded from below by the virtue of Theorem 3.6 and the boundedness of the
set of admissible controls Ead, we can apply [11, Theorem 3.1]. □

The adjoint equations for the fitting step read as follows

−∆qβ + g′
β(y

β)⊤qβ = −∇yβJs(ε;y),

−∆qk+1 + g′
k+1(y

k+1)⊤qk+1 = −∇yk+1Js(ε;y),
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completed with homogeneous Dirichlet boundary conditions. Since ∇gβ(y) and ∇gk+1(y) are positive
semidefinite, we can ensure a constrained qualification for (4.4), so that first-order necessary optimality
conditions can be formulated; cf. [36, Section 6.1.2].

Suppose that ε̄ solves (4.5), then an optimality condition of the splitting step reads〈
∇εĴs(ε̄), ε− ε̄

〉
L2(Ω)

≥ 0 ∀ε ∈ Ead,

where ∇εĴs is given ∇εĴs(ε) = ν ε− (qβ + qk+1).

5. Numerical approximation

In this section, we present the numerical approximation of the governing equation. First, we describe
our method to solve the governing model (2.1). We choose now Ω = (−xmax, xmax)

2 for a fixed
xmax > 0. We set a numerical grid that provides a partitioning of Ω in N ×N , N > 1, equally-spaced
non-overlapping square cells of side length h = 2xmax/N . We define the nodal points

xi1 = i h− xmax, xj2 = j h− xmax.

Our discrete domain is then given by

Ωh :=

N⋃
i,j=1

ωij ,

where an elementary cell is defined as

ωij :=
{
(x1, x2) ∈ Ω

∣∣ (x1, x2) ∈ (
xi−1
1 , xi1

)
×
(
xj−1
2 , xj2

)}
, i, j ∈ [N ].

In our numerical examples, we use xmax = 1.

We define the discrete vectors yN , εN ∈ R2(N+1)2 as yN = (y01 , . . . , y
N2

1 , y02 , . . . y
N2

2 )⊤ and εN =

(ε01, . . . , ε
N2

1 , ε02, . . . , ε
N2

2 )⊤.
After discretization of (2.1), we end up with

−AyN + g(yN ) = εN ,(5.1)

where A is the discrete Laplace operator using finite differences and zero boundary conditions [24,
Section 2.2].

We consider a fixed-point method for solving (5.1) numerically [14]. The procedure is summarized
in Algorithm 5.1.

Algorithm 5.1 Fixed-point method

Require: Parameter 0 ≤ λa ≤ 1, tolerance tol > 0, maximum iteration depth ℓmax ≫ 1
1: Set ℓ = 0 and E ≫ tol
2: Generate initial guess yN

0 that satisfies −AyN
0 = εN

3: while E < tol and ℓ < ℓmax do
4: Calculate ỹN as solution to −AỹN = εN − g(yN

ℓ )

5: Set yN
ℓ+1 = λay

N
ℓ + (1− λa)ỹN and E = h ∥yN

ℓ+1 − yN
ℓ ∥2

6: Set ℓ← ℓ+ 1
7: end while
8: return yN

ℓ

Next, we explain the ingredients for Algorithm 4.1 that we use in our numerical experiment. We choose
the following nonlinearity, motivated by the steady state solutions of coupled Lotka-Volterra equations
(see, e.g., [17, 20, 29]):

gα(y) := (γ1Gα(y),−γ2Gα(y))
⊤,

where γ1 ≥ γ2 > 0 are given constants and

Gα(y) :=

K∑
j=1

αjφj(y),(5.2)
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(A) Desired bilinear G1
⋆ (B) Desired sinusoidal G2

⋆ (C) Desired exponential G3
⋆

Figure 6.1. The three different desired nonlinearities Gi
⋆, i = 1, 2, 3 defined in (6.1).

with basis functions φj : R2 → R, j ∈ [K].
We use the two-dimensional monomials as basis functions to reconstruct the unknown nonlinearity

Gα. More precisely, we approximate the nonlinearity using polynomials up to order d2, i.e.,

Gα(y1, y2) =

d∑
i1=0

d∑
i2=0

αi1,i2y
i1
1 y

i2
2 .(5.3)

With this setting, the support of the solution yα of (2.1) does not need to be known in advance.
Furthermore, it is possible to make predictions of the nonlinearity outside of the support of the solutions
due to the non-locality of the monomials.

In particular, the two-dimensional monomials of order P ∈ N are given by

G =
{
y1, y2, y1y2, y

2
1 , y

2
2 , y

2
1y2, . . . , y

P
1 y

P
2

}
.

The cardinality of G, which is the maximum number of iterations K in the algorithm, is then given by(
2+P
P

)
. We now discuss Assumption 3.1 for our choice of the basis elements in the following remark.

Remark 5.1. 1) All basis elements are smooth and in particular (locally) Lipschitz continuous
since they are monomials.

2) The basis elements are not bounded away from zero and in general not bounded from above.
However, on every bounded set in R2

+ they are also bounded and strictly greater than zero.
3) All monomials are monotonically increasing for nonnegative entries. However, by our special

structure (5.2), the nonlinearity gα is not monotonically increasing on the full space R2 but
on a (non-empty) subspace.

Hence our choice of monomials does not fit perfectly with our assumptions. However, they can be ful-
filled after restricting ourselves to a non-empty subset of R2. Furthermore, even though the theoretical
assumptions are not completely fulfilled, we observe that our strategy works very well in our numerical
experiments.

6. Numerical experiments

In the following, we present the results of numerical tests in order to validate the reconstruction
ability of our strategy described above.

We consider three different desired nonlinearities Gi
⋆, i = 1, 2, 3 and aim to reconstruct them. All

have different fundamental properties. One of them lies within the span of the basis G (cf. Section 2)
and the other two can only be approximated by monomials from which one is bounded and enjoys
some similarities to the basis elements and the other one is unbounded. Specifically, we choose

G1
⋆(y) = 0.05y1y2, G2

⋆(y) = 0.01 sin(2y1) sin(2y2), G3
⋆(y) = 0.01 exp(2y1) exp(2y2).(6.1)

These nonlinear functions are plotted in Figure 6.1. Furthermore, we use εa = (−1,−1)⊤, εb = (1, 1)⊤,
γ1 = γ2 = 0.2 and run Algorithm 4.1 for three different bases G for monomials of order P = 2, 3, 5,
respectively.
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Figure 6.2. Reconstruction and error plots (cf. (6.2)) for P = 2, 3, 5 and the bilinear
nonlinearity with solutions curves in magenta.

In order to evaluate our results, we consider the error

e(y;α) := G⋆(y)− gα(y) = G⋆(y)−
K∑
j=1

αjφj(y)(6.2)

between the true and reconstructed nonlinearity, for y ∈ R2 and α ∈ AK , on a subset ΩM of R2. This
subset ΩM is the smallest square in R2 that contains all points of the corresponding (discrete) solution
curves (yN

1,m,y
N
2,m), m ∈ [K]. Here, we use the notation that yN

i,m is the i-th component of the discrete

solution yN while applying the m-th control. Recall, that the true and reconstructed nonlinearities
G⋆ and Gα as well as the error e are defined on the whole R2 since we use nonlocal basis functions.

Remark 6.1. The final identification only takes the values on the solution curves (yN
1,m,y

N
2,m), m ∈

[K] for each control into account because only there we have information from the underlying system of
equations. However, since we know the nonlinearities that we try to reconstruct, we are able to define
the error on the whole domain ΩM .

6.1. Reconstruction of a bilinear function. Let us consider first the bilinear G1
⋆(y) = 0.05y1y2,

shown Figure 6.1(A), which clearly lies in the span G for any order P ≥ 1. We run Algorithm 4.1, use
the selected controls to compute the data, and solve the corresponding online identification problem
(2.3). The results are shown in Figure 6.2, where the three different subfigures correspond to the three
different bases G of order P = 2, 3, 5.

Each subfigure of Figure 6.2 contains the nonlinearity Gα reconstructed by problem (2.3) (left plot)
and the error e(y;α) between the true and the reconstructed nonlinearity (right plot). In the error
plot, the solution curves (yN

1,m,y
N
2,m), m ∈ [K], are plotted in magenta.

We observe that the order of magnitude of the error is quite small for all three cases. As discussed
above, this is to be expected since the desired nonlinearity G1

⋆ is one of the basis elements. However,
even though the final identification for P = 5 has access to the most data points (as shown by the
number of magenta lines), the error is actually smallest for P = 3. The reason for this is that for P = 5
more basis elements with higher polynomial degrees are taken into account. Hence, in particular, at
the boundary of the domain the error e might become quite large if the solution curves do not reach
this part of the domain; see also Remark 6.1. To avoid this issue, it even seems that Algorithm 4.1 is
trying to select the controls such that the corresponding solution curves reach into more parts of ΩM

(cf. beginning of Section 6). This is particularly apparent for P = 3 and P = 5.
In order to investigate further how Algorithm 4.1 chooses the controls, we consider the solutions

y1(x) = η κ(x1, x2), y2(x) = −ϑκ(x1, x2) with κ(x1, x2) := sin

(
x1 + 1

2
π

)
sin

(
x2 + 1

2
π

)
.

inside the domain Ω = (−1, 1)2, for some η, ϑ ∈ R\{0} with ϑ > η. Then, the graphs of the solutions
(y1, y2) in the y1–y2 plane are given by straight lines starting in the origin, having slope −ϑ/η and

length
√
η2 + ϑ2. Hence, we can reach every point in the y1–y2 plane within the [η, ϑ] rectangle. The
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Figure 6.3. Controls functions. Left: two pairs of controls obtained by Algo-
rithm 4.1; Right: two pairs of controls with the same structure as the right-hand
side of (6.3) with different η, ϑ.

partial derivatives for i = 1, 2 are given by

∂2xixi
y1(x) = −

π2

4
y1(x), ∂2xixi

y2(x) =
π2

4
y2(x),

which implies by the structure of our equation that

−∆y1 + 0.05γ1y1y2 = η
π2

2
κ(x1, x2)− 0.05γ1 η ϑκ(x1, x2)

2,

−∆y2 − 0.05γ2y1y2 = −ϑπ
2

2
κ(x1, x2) + 0.05γ2 η ϑκ(x1, x2)

2.

(6.3)

Recalling (2.1), we observe that by choosing the controls according to the right-hand side of (6.3), the
corresponding solutions are able to reach any point within the [η, ϑ] rectangle.

In Figure 6.3, we plot on the left a representative selection of the controls {εm}Km=1 found by
Algorithm 4.1, and on the right some controls chosen according to the right-hand side of (6.3). We
observe that Algorithm 4.1 attempts to compute controls that mimic the structure of the right-hand
side in (6.3) in order to reach different parts of the domain.

As a way of measuring the effectiveness of our procedure, we compare the behavior of the error
when applying random controls for P = 5. For this, we consider the bilinear nonlinearity G1

⋆(y1, y2) =
0.05y1y2. As controls, we (randomly) choose constant functions in Ead. When we now try to reconstruct
the nonlinearity, we obtain the results plotted in Figures 6.4(A) and 6.4(B). In Figure 6.4(A), we plot
on the left the reconstructed nonlinearity and on the right the error e together with the solution curves
{(yN

1,m,y
N
1,m)}Km=1 applying 19 random controls in Ead having a constant value. We see clearly that the

true nonlinearity is not recovered and that all solution curves lie on one straight line in the y1-y2-plane.
In Figure 6.4(B), we plot the desired and reconstructed nonlinearity on this straight line together with
the error between them. We see that there is a very good alignment. Hence the final identification
problem (2.3) is solved very precisely, however, this does not directly lead to a good reconstruction
of the nonlinearity. The reason for this is, that the controls – and with this the data – were chosen
poorly in the sense that they provide barely insights into the behavior of the nonlinearity. On the
contrary, the controls that were found by our algorithm are able to reconstruct the nonlinearity very
well as we have seen above. Furthermore, some of them remind us of the structure of the controls
that we constructed in (6.3) by theoretical considerations. This is visualized in Figure 6.3. Hence, the
algorithm seems to provide an effective tool to generate robust controls automatically.

An important property of the algorithm is that it tries to make the problem more convex. This is
visualized in Figure 6.5. In both figures, the functional is plotted for different values of the coefficient
in front of the basis elements y21 and y1y2. Clearly, applying the optimal controls it is evident that
the functional is convex and therefore the problem has a unique minimum. For random controls, there
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(A) Plot of reconstruction and error.

−0.5 −0.25 0 0.25 0.5
0

0.5

1

1.5

·10−2
reconstruct
desired

−0.5 0 0.510−6

10−5

10−4 error

(B) Cut through the diagonal of the do-
main.

Figure 6.4. Results of robustness test case (using random controls).

Figure 6.5. Making the problem more convex. Left: random controls; Right: opti-
mal controls.

Figure 6.6. Reconstruction and error plots (cf. (6.2)) for P = 2, 3, 5 and the sinu-
soidal nonlinearity with the solutions curves in magenta.

seem to be infinitely local minima; at least the functional is quite flat in some directions. See also
Tables 6.1-6.3 in [7].

6.2. Sinusoidal and exponential nonlinearity. Let us now consider the two remaining nonlinear-
ities G2

⋆(y) = 0.01 sin(2y1) sin(2y2) and G3
⋆(y) = 0.01 exp(2y1) exp(2y2) as shown in Figures 6.1(B)

and 6.1(C), respectively. We repeat the experiments from Section 6.1 and obtain the results shown in
Figure 6.6 and Figure 6.7, respectively.

From the error plots in Figure 6.7, we observe that we need P = 5 to have a sensible reconstruction
of the exponential nonlinearity. This is to be expected since the Taylor expansion of the exponential
function consists of the sum of all monomials. Furthermore, we see more clearly that the error on
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Figure 6.7. Reconstruction and error plots (cf. (6.2)) for P = 2, 3, 5 and the expo-
nential nonlinearity with the solutions curves in magenta.

each coefficient in the Taylor expansion goes down when increasing the order of reconstruction P (cf.
Figure 6.8). The reason is that in every iteration functions that are part of the Taylor function enter
the reconstruction.

Since within ΩM the sinusoidal nonlinearity is very similar to a bilinear one, the error is in principle
smaller than for the exponential nonlinearity. We also observe that the error in Figure 6.6 is worse
for P = 3 than for P = 2. This can be explained by the fact that uneven functions enters for P = 3
compared to P = 2. Notice also that the error in the first subfigure in Figure 6.6 is symmetric with
respect to a diagonal line. Hence the error that this function imposes outside of the solution curves
might be quite high.

6.3. Error in Taylor coefficients. To round up our numerical experiments, we discuss a different
way of measuring the error of the final reconstruction: the absolute value of the difference of the
coefficient of each monomial in the Taylor expansion of the true nonlinearity and the reconstructed
nonlinearity, respectively.

More precisely, let the Taylor expansion up to order d2 around the origin given by

Td2(y1, y2) =

d∑
i1=0

d∑
i2=0

ti1,i2y
i1
1 yi22 , ti1,i2 =

1

i1! i2!

(
∂i1+i2

∂i1y1 ∂
i2
y2

g(0, 0)

)
.(6.4)

Now, we compare the coefficients α = (αi1,i2)
d
i1,i2=0 from our reconstruction of the polynomials given in

(5.3) with the coefficients ti1,i2 of the Taylor expansion given in (6.4). The difference in each coefficient
is shown in increasing order of the coefficients. In Figure 6.8, the error in the Taylor coefficients (up
to the corresponding approximation order) is plotted. In all of these plots, we observe a saturation
effect of the error for higher orders of degree. This can be seen most strongly for P = 3 and P = 5.
The reason for this is that for a higher order of polynomial degree the influence of the corresponding
monomial growths with the distance to the origin. Since we consider here a quite small domain, it is
harder to reconstruct the correct coefficient.

7. Conclusion

In this work, we presented a greedy reconstruction algorithm to identify unknown operators in
nonlinear elliptic models. We proved the Lipschitz continuity of the parameter-to-state map and its
inverse. We performed several numerical experiments that successfully validate our proposed scheme.

This paper represents a significant step towards untangling the mysteries of unknown nonlinear
operators within semilinear elliptic models. By harnessing the power of optimal control and active
learning, we pave the way for a deeper understanding and more accurate predictions of complex
physical phenomena governed by these models.
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