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Abstract

Numerical simulations of cardiac blood pump systems are integral to
the optimization of device design, hydraulic performance and hemocom-
patibility. In wave membrane blood pumps, blood propulsion arises from
the wave propagation along an oscillating immersed membrane, which gen-
erates small pockets of fluid that are pushed towards the outlet against an
adverse pressure gradient. We studied the Fluid-Structure Interaction be-
tween the oscillating membrane and the blood flow via three-dimensional
simulations using the Extended Finite Element Method, an unfitted nu-
merical technique that avoids remeshing by using a fluid fixed mesh. Our
three-dimensional numerical simulations in a realistic pump geometry high-
lighted the role of the membrane deformation in promoting a blood flow
towards the outlet despite of a resistive pressure gradient. We also sim-
ulated the pump system at different pressure conditions and we validated
the numerical results against in-vitro experimental data.

*This work has been supported by the European Union’s Horizon 2020 research and inno-
vation programme under the Marie Sk lodowska-Curie grant agreement ROMSOC No 765374.
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1 Introduction

Heart failure is a global pandemic disease that affects more than 26 million people
worldwide, a number which will continue to increase in the next decades [1, 2].
To address this challenge, there is an increasing interest in developing reliable
mechanical circulatory support devices which take over, totally or partially, the
pumping function of the failing heart. These devices can be employed as bridge
to heart transplantation or as destination therapy, to permanently support heart
function.

Ventricular Assist Devices (VADs) [3, 4], which are designed to support the
heart’s ventricle function, are becoming the standard of care for patients with
end-stage heart failure. In comparison to other devices (such as total artificial
hearts [5]), VADs have proved to be less invasive, featuring better performance
in terms of hemocompatibility and risk of adverse events [4].

In Left-Ventricular Assist Devices (LVADs), blood pumps collect the blood
from the left ventricular chamber and eject it into the ascending aorta via a flex-
ible cannula. The standard blood pumps currently available for clinical use are
rotary pumps, based on the rotation of an internal impeller that imparts kinetic
energy to the blood. Rotary pumps are divided in axial [6, 7] and centrifugal flow
pumps [8, 9, 10], depending on the direction of the imparted blood acceleration
[3]. However, rotary pumps cause damage to blood elements producing hemol-
ysis, thrombosis, and bleeding complications because of the elevated velocity
gradients of their rotors [11, 12]. Furthermore, since these pumps are oper-
ated at a single pump speed, their clinical use results in a reduction of patient
pulse pressure and, consequently, to possible complications related to continuous
non-physiologic blood pumping, such as gastro-intestinal bleeding, aortic valve
insufficiency or stroke [4]. Therefore, LVAD companies have developed pulsation
algorithms for rotary pumps, with the aim of improving wash-out in the pumps
and reducing thrombosis. However, the LVAD pulsation algorithms currently
used clinically do not restore a physiologic pulse [13].

With the aim to overcome the drawbacks of rotary pumps, CorWave SA
(Clichy, France) is developing a novel LVAD, referred to as wave membrane
blood pump or progressive wave blood pump, which employs an innovative pump-
ing technology based on the gentle propelling action of an elastic membrane
on the blood. Compared with current rotary VADs, wave membrane blood
pumps have two major advantages: i) the membrane generates smaller shear
stresses and may provoke less trauma on the blood cells; ii) due to the low
inertia of the membrane, the oscillation frequency can be rapidly changed to al-
ter hydraulic performance in order to get physiologic pulsatile flow, potentially
reducing the risks of complications like stroke, non-surgical bleeding and renal
dysfunction. This novel fluid propulsion approach requires a deep insight into
the fluid-structure dynamics arising within the pump.

Mathematical modeling and numerical simulations are valuable tools in the
field of cardiovascular medicine, allowing to better understand the complex pro-
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cesses involved in cardiovascular diseases and to support clinical decisions in
treatments and surgical procedures [14, 15, 16, 17]. Particularly, in the case
of biomedical devices, computational simulations are widely used to investigate
and optimize performance under different clinical conditions. Among others, we
mention the following fields of application: the optimization of coronary arterial
bypass grafts to reduce critical factors, like flow vorticity and wall shear stress
rate [18, 19]; the study of blood dynamics in transcatheter aortic valve, a bio-
logical prosthesis that replaces the native aortic valve in patients with high-risk
valve diseases [20, 21, 22, 23]; the performance of drug-eluting stents, which pre-
vent restenosis by local releasing of a specific drug [24, 25, 26, 27]; the study of
optimal anastomotic angle in arteriovenous fistula for hemodialysis [28, 29].

In the case of VADs, Computational Fluid Dynamics (CFD) has proven to be
a powerful tool to improve the pump performance and efficiency, while reducing
blood trauma. Indeed, starting in the 1990s with the first numerical studies
carried out in simplified pump models [30, 31], in silico simulations emerged to
be more time- and cost-effective than in vitro or in vivo testings, overcoming
limitations in prototype fabrication and experimental setup [12]. In the last
decades, there have been plenty of numerical studies concerning the design and
performance of rotary blood pumps. Among these, we mention, for instance:
parametric studies of geometric features in centrifugal [32, 33] and axial pumps
[34], to analyze the effects on hydraulic efficiency and stagnation time; CFD-
based optimization of the pump design to avoid retrograde leakage flow [35, 36];
computational study of the effect of the impeller position in a magnetically
levitated blood pump [37]. Other works focused on the optimal implantation of
the device [38, 39, 40, 41] or on the hemocompatibility requirements of VADs,
trying to understand and prevent the mechanisms that favor hemolysis [42, 43,
44], thrombogenicity [45, 46, 47], and gastrointestinal bleeding [48].

Regarding progressive wave blood pumps, to our knowledge the only refer-
ence is the work from Perschall et al. [49], who performed a Fluid-Structure In-
teraction (FSI) study, providing a validation of their results against experimental
data. The authors also proposed a new tubular configuration of the pump. FSI
numerical experiments have been carried out by considering a 2D axi-symmetric
approximation of the discoidal geometry. The fluid-structure dynamics are de-
scribed through the coupling of incompressible Navier-Stokes (NS) equations,
written in the Arbitrary Lagrangian-Eulerian (ALE) formulation, with linear
elastodynamic equations. Moreover, a Design Of Experiment (DOE) method is
applied to build a virtual prototype of the tubular design by the accurate tuning
of geometric parameters, like membrane diameter, membrane thickness or pump
walls angle.

The objective of this paper is to provide a significant step forward with re-
spect to [49], by means of numerical investigation of the pump functioning in
a three-dimensional pump domain for different key functional parameters. To
this aim, we need to identify a numerical strategy that is able to accurately
describe the behaviour of a thin wave membrane immersed in the blood flow,
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which undergoes large displacements. Numerical methods for this FSI problems
are divided in two main classes: fitted and unfitted mesh methods. In the former
group, the fluid and the solid meshes are conforming. ALE technique [50, 51] and
Space-Time Finite Elements [52, 53] belong to this family of methods. However,
in case of large structural deformations, as it happens in wave membrane blood
pumps, such methods may fail due to excessive distortion of the fluid mesh,
requiring frequent remeshing procedures. On the contrary, unfitted methods
are specifically designed to avoid remeshing issues by using a fixed background
mesh for the fluid and an overlapping solid mesh which is free to move on the
foreground, leading to split fluid mesh elements. The most important unfitted
techniques are: Immersed Boundary (IB) [54, 55, 56], Fictitious Domain (FD)
[57, 58, 59], Extended Finite Element Method (XFEM) [60, 61, 62], and polygo-
nal Discontinuous Galerkin (PolyDG) method [63]. In the framework of XFEM,
the degrees of freedom (d.o.f.) of the split elements are doubled so that the so-
lution can be integrated independently in the two sub-regions, thus permitting
an internal discontinuity [64]. Compared to the other unfitted methods, XFEM
is more capable of capturing the fluid-structure interface without loss of accu-
racy in the coupling dynamics, but it is more complex to implement due to the
intersection between the unfitted meshes. XFEM has already proven to be an
effective, robust and versatile numerical strategy to solve FSI problems of thin
immersed membranes, both in 2D [65, 66] and in 3D [67, 68]. For these reasons,
in this work we adopted an XFEM-based strategy to handle the FSI problem
arising in our progressive wave blood pump.

The structure of this paper is the following: in Section 2, we describe the
working mechanisms of the wave membrane blood pump under study; in Section
3, we introduce the mathematical formulation of the FSI model together with
its numerical discretization; in Section 4, we present the results of the numerical
simulations for different pressure conditions and we validate the model against
experimental data from real pump performance curves; in Section 5, we finally
draw the main conclusions of the current study and we depict the possible future
developments of the work.

2 Pump functioning principle

In case of heart failure, the cardiac function is compromised and only a reduced
volume of oxygenated blood is ejected into circulation, leading to poor oxy-
genation of the tissues. Therefore, blood pumps are implanted at the apex of
the failing heart to collect part of the blood from the left ventricle in the pump
chamber and mechanically pump it into the distal aorta via a flexible outlet can-
nula (Figure 1, left). In particular, progressive wave pumps differ from standard
blood ones for utilizing an innovative pumping mechanism based on the mutual
interaction between an elastic undulating membrane and the blood flow, with
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the potential to produce physiologic flow rates with minimum blood trauma.

Figure 1: Left: Blood path through the left heart with an implanted LVAD. The
oxygenated blood coming from the left atrium is collected into the implantable
pump apparatus placed at the left ventricle apex, and then ejected into the
proximal aorta via an outlet cannula. Right: Cross sectional view of the main
components of the implantable wave membrane pump, including inlet and outlet
channel, the central actuator (stator, electromagnetic coils and magnet ring), the
membrane assembly (silicon membrane and membrane holder), and one (of the
three) supporting posts.

The main components of the membrane wave pump are shown in the right
panel of Figure 1 and correspond to the inlet and the outlet cannula, the actu-
ator assembly and the membrane assembly. The inlet and the outlet channels
are located at the opposite ends of the pump cylindrical body. The actuator
assembly is composed of a stationary part, consisting of the central stator and
the electromagnetic coils, and a mobile part, the magnet ring, that is suspended
concentrically around the stator. The membrane assembly consists of the silicon
membrane and the membrane holder. The silicon membrane is a discoidal poly-
mer elastic body that is displaced concentrically to the pump axis, in the pump
head region, i.e. a narrow space proximal to the outlet channel delimited by rigid
walls of the pump housing, called pump head flanges. Both the gap between these
flanges and the membrane thickness gradually decrease going towards the inner
circular opening. The membrane holder is a rigid titanium ring that is enclosed
in the most external part of the membrane disc and that is connected to the
magnet ring by means of three supporting posts placed equidistantly over the
actuator circumference.

The action of the blood pump is driven by the electromagnetic actuator
which triggers the undulating motion of the flexible silicon membrane. An alter-
nating current is applied to the coils to generate a magnetic field that guides the
periodic displacement of the magnet ring and, consequently, of the membrane
holder. Notice that the motion of the magnet ring is axially constrained because
of the presence of suspension rings which do not permit radial displacements. In
this way, the actuator exerts a periodic excitation force that is substantially nor-
mal to the membrane disc, inducing a wavelike displacement which propagates
in the membrane medium from the membrane holder towards the center in di-
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Figure 2: Functional block scheme of the subcomponents of the implantable
LVAD pump system as described in [69].

rection of the outlet channel. Therefore, this progressive wave propagation along
the membrane transports the blood that is enclosed in the spaces between the
membrane wave and the pump head flanges radially inward towards the outlet
channel. These masses of blood transported by the membrane wave are referred
to as fluid pockets. During its wave motion, the membrane may approach to
the pump flanges very closely, resulting in a quasi-contact configuration that
allows to isolate the fluid pockets and to minimize any potential backflow from
the outlet towards the inlet, thus increasing the pump efficiency. Moreover, the
membrane displacement gets damped by the effect of the surrounding viscous
fluid, provoking an energy transfer to the blood that ends up in the form of pres-
sure buildup and addition of kinetic energy. The characteristics of the pressure
gradient and the blood flow depend on the size and the shape of the membrane,
the spacing between the pump head flanges, and the excitation parameters.
Thus, the pump works as an energy transducer, that converts electromechanical
energy into hydraulic power.

The pump model of our study is similar to the discoidal design described in
Perschall et al. [49], but there are important differences: (i) in the prototype in
Perschall’s work we find two inlet channels located 180 degrees apart, while in
our case we have a unique inlet, that results in a more homogeneous flow field;
(ii) our pump actuator is magnetic, not mechanic, so that we avoid the need of
contact seals or bearings.

The pump device is coupled with an external controller, that sets the oscil-
lation frequency and voltage applied to the coils in the actuator, and a set of
extracorporeal batteries, to power the system. An external programmer is used
to configure the working parameters of the pump. A scheme of the complete
structure of the LVAD system is represented at Figure 2 .
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Figure 3: Mathematical and computational domain of interest.

3 Mathematical and numerical methods

3.1 Mathematical model

In this section, we describe the mathematical approach employed to model the
interaction between the blood and the oscillating structure in the progressive
wave blood pump.

Let Ω be the whole pump domain composed by the region occupied by the
fluid and by the immersed oscillating structures. The latter are composed by
three main components:

- The membrane assembly Ωs
1(t) (yellow region in Figures 1, right, and 3,

left). It is composed by a flexible region, referred to as the flexible mem-
brane, and a rigid region, referred to as the membrane frame (see zoom in
Figure 3, right). The first region interacts with the fluid through the fluid-
structure interface Σ(t), where the wave displacement propagates towards
the inner orifice of the membrane disc; here no-slip and traction continuity
conditions hold true. The second region interacts with the fluid through
the interface ΓD1 (t). However, here the motion is not determined by the
interaction with the fluid, rather by the movement of the membrane holder
(green sub-component in Figure 3, right). For the sake of simplicity, we
assume that the movement of the region delimited by ΓD1 is completely
rigid, so that we can apply a displacement field ϕ directly on ΓD1 as a
Dirichlet condition, see right panel in Figure 3. Accordingly, for the fluid
we prescribed a compatible Dirichlet data ϕ̇ on ΓD1 . Notice that, since we
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are prescribing two Dirichlet conditions with known data, we cannot say
anything about the interface tractions.

- The magnet ring Ωs
2(t) (red region in Figures 1, right, and 3). Like the

membrane holder, its movement is determined by the pump actuator and
thus compatible Dirichlet conditions have been again prescribed at the
interface ΓD2 (t) (see Figure 3) both for fluid and structure. Notice that,
since the magnet ring is mechanically joined to the membrane holder, the
whole complex moves rigidly and therefore the same data ϕ and ϕ̇ have
been prescribed on the magnet ring.

- The supporting posts (dark blue region in Figure 1). Unlike the magnet
ring that surrounds the actuator and thus occupies all the fluid path region,
these posts are three thin columns whose presence should not influence
significantly blood flow dynamics. For these reason, we decided here to
neglect the posts in our domain. In any case, specific investigations on
their real influence will be the subject of future studies.

Then, the fluid domain Ωf (t) is determined by

Ωf (t) = Ω \ Ωs(t), (1)

with Ωs(t) = Ωs
1(t) ∪ Ωs

2(t).
The intertwined dynamics arising inside a wave membrane pumps can be

mathematically described in the framework of FSI modeling, where a system
of partial differential equations describes separately the behaviour of the fluid
and of the structure in the respective domains, while proper coupling conditions
define their interaction at the interface Σ.

In particular, we assumed the blood to be an incompressible, viscous and
Newtonian fluid, because, apart from local (in space and time) exceptions in
the quasi-contact region, the characteristic size of the pump domain is generally
much larger than the diameter of blood cells. Denoting by ρf the fluid density
and by µf the dynamic viscosity, we can then express the fluid Cauchy stress
tensor as Tf (u, p) = −pI + 2µfD(u), with D(u) = 1

2(∇u + ∇uT ), where u
and p are the fluid velocity and pressure, respectively. Therefore, we used the
Navier-Stokes equations to model the conservation of momentum and mass of
blood, respectively.

Concerning the structural problem, the membrane disc domain Ωs
1 and the

magnet ring domain Ωs
2 feature different material properties. In both cases, we

considered them to be made of linear and isotropic material, as reported in [49].
To shorten the formulation we have written the structural problem for the whole
domain Ωs with density spatial function ρ̃s(x) = ρs1 if x ∈ Ωs

1 and ρ̃s(x) = ρs2 if

x ∈ Ωs
2. Analogous definitions were used for Lamé parameters λ̃s(x) and µ̃s(x).

In this way, we could apply Hooke’s Law and write the solid Cauchy stress
tensor as Ts(d) = λ̃s (∇·d) I+2µ̃sD(d), where d is the structure displacement.
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Thus, we have written the elastodynamic equation with respect to the reference
configuration Ω̂s = Ωs(0) (superscript ·̂ has been used to refer to quantities
defined in the Lagrangian configuration). We also introduced the first Piola-

Kirchhoff tensor T̂
s
(d̂) = J Ts (d)F−T , with Ts being the solid Cauchy stress

tensor, F = ∇x the gradient of deformation and J = detF its determinant.
For a given T > 0, the fluid-structure interaction problem reads as follows:

for each time t ∈ (0, T ], find the fluid velocity u(t) : Ωf (t) → R3, the fluid
pressure p(t) : Ωf (t)→ R, and the structure displacement d̂(t) : Ω̂s → R3, such
that:

ρf (∂tu + u · ∇u)−∇ ·Tf (u, p) = 0 in Ωf (d), (2a)

∇ · u = 0 in Ωf (d), (2b)

ρ̃s∂ttd̂−∇ · T̂
s
(d̂) = 0 in Ω̂s, (2c)

u = ∂td on Σ(d), (2d)

Tf (u, p)nf = −Ts(d)ns on Σ(d), (2e)

where we have highlighted the dependence of the fluid domain Ωf (and thus
of the interface Σ) on the structure displacement d through its definition (1)
(geometric coupling).

In System (2), Equations (2a) and (2b) are the non-linear incompressible
Navier-Stokes equations, while Equation (2c) is the linear elastodynamic equa-
tions. Equations (2d) and (2e) are the coupling conditions imposed on the inter-
face Σ guaranteeing the continuity of velocity and of tractions, respectively, and
where n = nf = −ns is the external fluid normal. We highlight that the com-
bination of the incompressibility of the fluid (Equation (2b)) with the no-slip
kinematic condition (2d) allows to consider a quasi-contact assumption when
the membrane and the pump walls come into contact. Indeed, previous studies
[70, 71] showed that in such conditions, from the mathematical and numerical
point of view, contact - strictly speaking - cannot occur when a moving body
approaches to a wall, because the interstitial fluid cannot slip away and allow
for actual collision. Therefore, despite physical contact may occur between the
membrane and the pump head flanges under certain operating conditions of the
pump, no contact models were introduced.

Referring to Figure 3, system of equations (2) has to be closed with proper
initial and boundary conditions. For the fluid problem, we considered Neumann
conditions both at the inlet Γin and at the outlet Γout to represent the pressure
difference of the pump. Owing to the linearity of the structure problem, we
could set the zero level of pressure at the outlet by using homogeneous Neumann
condition on Γout. We also applied an homogeneous Dirichlet condition at the
pump walls Γw. Finally, in order to model the effect of the actuator on the
motion of the membrane frame and the magnet ring, as anticipated we impose
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Dirichlet conditions on ΓD = ΓD1 ∪ ΓD2 . In summary, we have:

Tf (u, p)nf = −∆P nf on Γin, (3a)

Tf (u, p)nf = 0 on Γout, (3b)

u = 0 on Γw, (3c)

d = ϕ on ΓD, (3d)

u = ϕ̇ on ΓD, (3e)

where ∆P > 0 is a given pressure value corresponding to the pressure difference
between the pump outlet and the inlet. At time t = 0, we finally imposed the
initial conditions u(0) = u0, d(0) = d0 and ḋ(0) = w0. In our application, we
considered null initial conditions, i.e. u0 = 0, d0 = 0 and w0 = 0.

3.2 Numerical method

3.2.1 The Extended Finite Element Method

Numerical methods for FSI problems are divided into fitted and unfitted meth-
ods, depending whether the fluid and solid meshes are fitted to each other or
not. In case of fitted methods, the meshes move together. In our problem,
fitted methods are not the best option for two main reasons: i) the wave mo-
tion of the membrane in the limited pump head region (see Section 2) would
cause high distortion of the fluid elements and consequently it would require fre-
quent remeshing; ii) the quasi-contact assumption between the membrane and
the pump walls would be complex to implement efficiently.

Among the unfitted methods, we selected the Extended Finite Element
Method (XFEM), proposed in [64], which is based on the extension of the fea-
tures of the classical Finite Elements and allows to have higher geometrical
flexibility without loss of accuracy. Thanks to such extension, solutions with
discontinuities are well described and complex problems with immersed inter-
faces or structures could be accurately solved. XFEM has proven to be an effec-
tive strategy for many problems, in particular for FSI with immersed structures
[66, 72, 60, 62], maintaining a good accuracy at the fluid-structure interface. For
our study, we specifically refered to the 3D formulation reported in [67], which
treats the case of a 3D thin structure, by using a Discontinuous Galerkin (DG)
mortaring to weakly impose the continuity conditions (2d)-(2e) at the interface.

Let Ωf,n
h ' Ωf (tn) and Ωs,n

h ' Ωs(tn) be the approximated fluid and structure
domains after space (XFEM) and time discretization, the latter being based on
the timestep parameter ∆t > 0 such that tn = n∆t for n = 1, 2, . . . .

In the framework of XFEM, a global mesh Th defined in Ωh is kept fixed on
the background, while a structure mesh T s,nh defined in Ωs,n

h moves on the fore-
ground cutting the underlying elements. Hence, these elements are overlapped
(partially or totally) by the structure mesh and they are divided in multiple sub-
portions that are, in general, polyhedra. Such elements are named fluid cut ele-
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Figure 4: Global mesh Th (gray) is overlapped by the structure meshes T sh,1
(membrane assembly, in yellow) and T sh,2 (magnet ring, in red). Fluid cut mesh

T fh in light blue.

ments. Therefore, we can define the cut-mesh as the polyhedral fluid mesh T f,nh

that covers the fluid domain Ωf,n
h , composed by the union of all fluid elements

in Th that are not cut by the structure mesh and all the non-overlapped parts of
the cut elements. In our case, referring to Figure 4, we have T s,nh = T s,nh,1 ∪T

s,n
h,2 ,

where T s,nh,i , i = 1, 2, represent the meshes corresponding to Ωs,n
h,i , i = 1, 2, that

is the membrane assembly (i = 1) and the magnet ring (i = 2).
Notice that the cut-mesh has to be updated at each time instant, computing

the new mesh intersections generated by the motion of the structure mesh. To
this aim, we have used the alternating digital tree algorithm, see [73].

If the cut elements are separated by the structure in multiple disjoint fluid
sub-elements, they are called split elements (see Figure 5). In XFEM, the classi-
cal Finite Elements Lagrangian basis functions defined on the split element are
used to build the numerical solution in all the sub-elements, thus requiring the
duplication of the original d.o.f. for each sub-elements (see Figure 5, right). This
allows to have an accurate description of the fluid solution across the structure
mesh, possibly characterized by discontinuities [62]. For more details on the
computational implementation of XFEM in our scenario, we refer the reader to
[67].

3.2.2 Full discretization

As mentioned, for the spatial discretization we considered a DG method in
the XFEM framework to manage the numerical solution at the fluid-structure
interface Σh.

Regarding the fluid problem, we needed to consider again a DG approach
to ensure continuity of velocity and tractions between two adjacent fluid mesh
elements, where at least one of the two is a cut element and thus, possibly, a
general polyhedron. Indeed, in this scenario, strong continuity with standard
Finite Elements is very hard to implement. This happens close to the interfaces
Σh and ΓDh . For simplicity, we decided to use DG in all of the fluid domain,
including far from the interfaces Σh and ΓDh .

For the structure problem instead, the mesh is always composed of the origi-
nal tetrahedra, thus standard Finite Elements are considered for its approxima-
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Figure 5: Left: Different fluid elements in XFEM: completely overlapped element
(green), partially overlapped cut element (blue) and split element (red). Right:
D.o.f. duplication of the split element. The same basis functions are used for
PK1 and PK2 .

tion.
According to the previous discussion, we introduce the following discrete

spaces in the fluid and structure domains:

Xf,n
h =

{
vh ∈ L2(Ωf,n

h ) : vh|K ∈ P1(K), ∀K ∈ Th
}
,

Xs
h,i =

{
v̂h ∈ C0(Ω̂s

h,i) : v̂h|K ∈ P1(K), ∀K ∈ T̂ sh,i
}

for i = 1, 2,

Xs
h = Xs

h,1 ⊕Xs
h,2,

and the corresponding spaces for the approximation of fluid velocity and pressure
and of structure displacement:

Vn
h,ϕ =

{
vh ∈ [Xf,n

h ]3 : vh = 0 on Γw,nh , vh = ϕ on ΓD,nh

}
,

Qnh = Xf,n
h ,

Wh,ϕ =
{
ŵh ∈ [Xs

h]3 : ŵh = ϕ̂ on Γ̂Dh

}
.

In view of the DG formulation for the fluid problem, we introduce the mean
operator {·} and the jump operator J·K, defined over an element face F as:

{q} =
1

2
(q+ + q−) JqK = q+ − q−,

where q is a function that assumes values q+ and q− on the two sides of face F .
To manage the geometric non-linearity, we considered an explicit treatment of

the geometric coupling by taking the first order extrapolation from the previous
timestep, i.e. Ωf,n+1

h ' Ωf,n
h = Ωf

h(dnh). To simplify the notation, we omit
in what follows the current temporal index n+1 for variables and domains. We
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considered the Backward Differentiation Formula of order 1 for the discretization
of both the fluid and solid time derivatives and we used a semi-implicit approach
for the treatment of the fluid convective term. Let (·, ·)Θ be the internal product
in L2 in a domain Θ.

Then, we define the following forms:

� The fluid form

Afh(uh,u
∗
h, ph;vh, qh) =

ρf

∆t
(uh,vh)

Ωf,n
h

+ ρf (u∗h · ∇uh,vh)
Ωf,n

h

+ 2µf (D(uh),D(vh))
Ωf,n

h
− (ph,∇ · vh)

Ωf,n
h

+ (qh,∇ · uh)
Ωf,n

h

+ ch(u∗h,uh;vh) + sh(uh, ph;vh, qh) + gh(uh;vh),

which collects the terms of the weak formulation of the stabilized Navier-
Stokes equations with convective velocity u∗h = unh.

In the previous form, we have considered the correction term of the con-
vective term defined as

ch(u∗h,uh;vh) =
ρf

2
((∇ · u∗h)uh,vh)

Ωf,n
h
−

∑
F∈Fp,n

h

ρf ({u∗h} · nJuhK, {vh})F

−
∑

F∈Fp,n
h

ρf

2
(Ju∗hK · n {uh · vh})F ,

where Fp,nh is the set of the faces of the fluid mesh elements at time n,
excluding the portions overlapped by the structure mesh, see [74, 75].

The stabilization term sh(uh, ph;vh, qh) corresponds to the Continuous
Interior Penalty (CIP) stabilization [76], introduced to handle spurious
instabilities due to equal order of Finite Elements for velocity and pressure,
and have better control on the convective term and on the incompressibility
condition. It is defined over the set Fnh of all the faces of the fluid elements
at time n as

sh(uh, ph;vh, qh) = γv1

∑
F∈Fn

h

ξ (ReF )h2
F ||u∗h · n||∞,F (J∇uh · nK, J∇vh · nK)F

+ γv2

∑
F∈Fn

h

ξ (ReF )h2
F ||u∗h||∞,F (J∇ · uhK, J∇ · vhK)F

+ γp
∑
F∈Fn

h

ξ (ReF )
h2
F

||u∗h||∞,F
(J∇phK, J∇qhK)F ,

where γv1, γv2 and γp are positive penalty parameters, ReF is the local
Reynolds number over the face F , hF is a characteristic mesh size for F ,
and ξ(x) = min(1, x).
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The ghost-penalty stabilization gh(uh;vh) [77] is added to prevent possible
instabilities caused by the arbitrarily small dimension of the generated cut
elements. It is defined over the set of faces FΣ,n

h crossed by the interface
Σn
h as

gh(uh;vh) = γg
∑

F∈FΣ,n
h

µfhF
(
J∇uhKnF , J∇vhKnF

)
F
,

with γg > 0;

� The form related to the DG fluid terms over the faces in Fph , defined as

Dfh(uh, ph;vh, qh) =−
∑

F∈Fp,n
h

({
Tf (uh, ph)

}
nf , JvhK

)
F
−

∑
F∈Fp,n

h

(
JuhK,

{
Tf (vh,−qh)

}
nf
)
F

+
∑

F∈Fp,n
h

γdgµ
f

hF
(JuhK, JvhK)F ,

where γdg > 0 is the stability parameter [78];

� The structure bilinear form

Ash
(
d̂h; ŵh

)
=

1

∆t2

(
ρ̃sd̂h, ŵh

)
Ω̂s

h

+
(
λ̃s∇ · d̂h,∇ · ŵh

)
Ω̂s

h

+2
(
µ̃sD(d̂h),D(ŵh)

)
Ω̂s

h

;

� The form Ih(uh, ph,dh;vh, qh,wh) corresponding to the DG FSI coupling
terms at the fluid-structure interface Σn

h [60, 67]:

Ih(uh, ph,dh;vh, qh,wh) =−
(
Tf (uh, ph)nf ,vh −wh

)
Σn

h

−
(
Tf (vh, qh)nf ,uh −

dh
∆t

)
Σn

h

+
γΣµ

f

h

(
uh −

dh
∆t

,vh −wh

)
Σn

h

,

where γΣ > 0 is the penalty parameter associated with the interface Σ;

� The form related to the right hand side formed by the terms arising from
time integration and Neumann boundary conditions:

Fh(vh, qh,wh) =
ρf

∆t
(unh,vh)

Ωf,n
h

+
∑
F∈Γin

(
∆P nf ,vh

)
F

+
1

∆t2

(
ρ̃s
(

2d̂
n

h − d̂
n−1

h

)
, ŵh

)
Ω̂s

h

+

(
Tf (vh, qh)nf ,

dnh
∆t

)
Σn

h

− γΣµ
f

h

(
dnh
∆t

,vh −wh

)
Σn

h

.
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The full discretization of problem (2)-(3) reads then as follows: for n =
0, 1, . . . , find (uh, ph,dh) ∈ Vh,ϕ̇ × Qh ×Wh,ϕ such that u0

h = 0, d0
h = 0,

d−1
h = 0 and

Afh(uh,u
n
h, ph;vh, qh) + Ash

(
d̂h; ŵh

)
+ Dfh(uh, ph;vh, qh)

+ Ih(uh, ph,dh;vh, qh,wh) = Fh(vh, qh,wh) (4)

∀ (vh, qh,wh) ∈ Vh,0 ×Qh ×Wh,0.

4 Numerical results

In this section, we report 3D numerical results obtained by solving problem (4)
for different working conditions of the pump system. The numerical settings
and the physical parameters used for our numerical experiments are detailed
in Section 4.1. Next, we studied the fluid dynamics induced by the membrane
wave deformation in Section 4.2, whereas in Section 4.3 we compared the simula-
tion results for different pressure conditions and we validated the model against
experimental data.

4.1 Numerical settings and parameters

In all the numerical experiments, we studied the pump system in continuous
conditions, i.e. for fixed pressure and pump working conditions. Therefore, we
applied a constant pressure difference ∆P between outlet Γout and inlet Γin and
an oscillatory motion to the membrane frame (ΓD1 ) and the magnet ring (ΓD2 ).

Boundary conditions (3a)-(3b) define the pressure difference ∆P = P out −
P in > 0 acting over the pump, indicating the hydraulic resistance that the wave
membrane has to overcome in order to generate positive blood flow in the outlet
direction against negative pressure gradients. We studied the pump dynamics
for different values of pressure parameter ∆P .

Moreover, we modeled the motion imposed on the magnet ring and on the
membrane frame by the electromagnetic actuator by means of the Dirichlet
condition (3d). Although in the real pump system the control on the oscillations
may not be optimal due to instabilities in the electro-mechanical dynamics or
manufacturing tolerances, its motion can be approximated with a sinusoid in
time in the vertical direction. Therefore, in our simulation the displacement
function ϕ has been defined as

ϕ(t) =
Φ

2
sin(2πft) ez t ∈ (0, T ), (5)

where f is the excitation frequency of the structure and Φ is the so-called stroke
parameter. Thus, the pair (f,Φ) defines the operating point of the wave mem-
brane. In all our simulations, we have set f = 120 Hz, and Φ = 1.06 mm, which
are values of interest for real applications of the pump device [69].
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Figure 6: Prospective visualization and section of the fluid mesh T fh (gray), the

membrane T s,1h (yellow) and magnet mesh T s,2h (red).

The unfitted fluid and the solid meshes used for the simulations have been
shown in Figure 6. The background mesh Th has 1.2M elements, while the
membrane mesh T sh,1 and the magnet ring mesh T sh,2 have 280k and 50k elements,
respectively. These meshes showed positive convergence results with respect to
solutions computed on finer meshes. Notice that we have removed from the
membrane computational domain the step before the membrane frame (i.e., we
take s = 0 with respect to Figure 3, right) in order to obtain a smooth membrane
surface. Concerning the temporal discretization of the simulation interval (0, T ),
we need to choose a timestep that is sufficiently small to capture the effect of
membrane wave propagation on the flow dynamics. Therefore, given the high
frequency of membrane vibration, we took ∆t = 0.2 ms, corresponding to less
than 1/40 of the period of oscillation, which is τ = 8.33 ms. The values of
the physical parameters of the pump system have been reported in Table 1.
We remind that the Lamé’s parameters used in Section 3 can be derived as
λsi = Es

i ν
s
i/(1+νsi )(1−2νsi ) and µsi = Es

i/2(1+νsi ), for i = 1, 2.

Physical parameter Value Unit

ρf : Blood mass density 1 [g/cm3]
µf : Blood dynamic viscosity 0.035 [(dyne/cm2) · s]
ρs1 : Membrane mass density 1.125 [g/cm3]
Es1 : Membrane Young’s modulus 1.686 · 107 [dyne/cm2]
νs1 : Membrane Poisson’s ratio 0.49
ρs2 : Magnet mass density 7.85 [g/cm3]
Es2 : Magnet Young’s modulus 2.05 · 1012 [dyne/cm2]
νs2 : Magnet Poisson’s ratio 0.28

Table 1: Values of the physical parameters of the main components of the pump
system used in the numerical experiments.
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The linear system obtained at each timestep after the XFEM-based dis-
cretization has been solved with a monolythic approach with a GMRES solver
preconditioned by a block Gauss-Seidel preconditioner. The problem has been
solved in the C++ finite element LIFEV library (www.lifev.org) in a multi-
thread parallel environment.

4.2 Flow analysis and membrane deformation

We simulated the pump system in continuous conditions with T = 25 ms (that
is equivalent to 3 complete oscillations of magnet ring and membrane frame)
with pressure gradient ∆P = 50 mmHg. The penalty parameters used for this
simulation were: γΣ = 106, γdg = 103, γv1 = 5 ·10−2, γv2 = 5 ·10−1, γp = 5 ·10−2

and γg = 1.
The numerical results of the simulation have been represented in Figure 7,

where the vertical displacement of the flexible membrane, the fluid velocity (left
panel) and pressure (right panel) fields are shown in a cross-sectional view of the
pump domain at time t = 18.8 ms, corresponding to the maximum point of the
membrane frame displacement during the third oscillation. Such results confirm
that the propelling action of the wave membrane succeeds in generating positive
outflow, despite the adverse pressure difference existing between the endings
of the pump domain. In particular, referring to the right panel of Figure 7,
we can identify three sub-regions in the pressure field: i) a low-pressure area
(region A), extending from the inlet down to the membrane frame; ii) a high-
pressure area (region B), in proximity to the outlet channel; and the so-called
fluid pocket (region C), consisting of the fluid portion enclosed between the wave
membrane and the pump head flange. The propagation of the fluid pockets in the
pump head is at the core of wave pumping mechanism: indeed, by means of the
progressive wave, the membrane actively transports the fluid pocket from region
A to region B, going against the pressure gradient. In addition, by looking at the
pressure field in the remaining part of the pump domain, outside the pump head
region, we can see that the pressure gradient favors blood propulsion through the
pump: specifically, in region A, blood flows from the inlet (green) down to the
membrane frame (blue); while, in region B, it is propelled from the membrane
tip (red) to the outlet channel (orange).

The success of the wave membrane pumping technology is also confirmed by
the analysis of the volume balance reported in Figure 8, left, where we showed
the evolution in time of the volumes Vin and Vout, representing the volumes
of blood entering in and exiting from the pump domain, respectively. These
volume quantities were computed integrating the corresponding volumetric flow
rate using the trapezoidal rule. Hence, we have V n

β = ∆t
2 (Qnβ + Qn−1

β ), β =
{in, out}, where Qin and Qout are the computed pump inflow and outflow rates,
respectively. Notice that, after a short interval of adaptation, the two curves
Vin and Vout start oscillating with the same period of the membrane vibrations.
Since the values of the divergence of the velocity are very small (‖∇ · u‖ <
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Figure 7: Vertical slice visualization of the three-dimensional flexible membrane
vertical displacement, fluid velocity (left) and pressure (right) fields in the full
pump domain at time t = 18.8 ms.

Figure 8: Left: Volume conservation through time. Middle: Vertical displace-
ment of three points of the membrane through time. Right: The three points
of the membrane section: the leading edge (blue), the trailing edge (red) and a
midpoint in between (green).

3 · 10−4 1/s), the small discrepancy between Vin and Vout is due to the slight
incremental variation of the membrane volume ∆V n

s = |Ωs,n
h,1| − |Ω

s,n−1
h,1 |, with

Ωs
h,1 the discretized membrane domain. Indeed, we have V n

out − V n
in ' ∆V n

s for
all n. Since the magnet ring is a rigid structure, it was not considered in the
volume balance. Notice that the observed variation of the membrane volume
corresponds to a relative change of less than 2� of the membrane volume.
This small variation is explained by the not completely incompressibility of the
membrane (νs1 = 0.49) and by the numerical approximation. Anyway, we verified
that such volume variation decreases when the mesh size h is reduced.

We also studied the displacement in time of three key points of the mem-
brane section (see Figure 8, middle): the leading edge (blue), extracted from
the membrane frame, the trailing edge (red), in correspondence to the mem-
brane tip, and a third point in-between in the membrane section (green), see
Figure 8, right. Since the motion of the membrane frame is governed by (5),
the leading edge oscillates between −0.53 mm and 0.53 mm with an excitation
frequency equal to 120 Hz. The displacement curves of the midpoint and the
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trailing edge also become periodic, with the same frequency of the leading edge.
In particular, we can notice that the midpoint shows an oscillation amplitude
that is smaller than the one of the leading edge, that is likely due to the damping
effect of the surrounding viscous fluid on the membrane motion. However, the
trailing edge actually is the point that undergoes to the highest displacement,
because the most internal portion of the membrane is thinner and therefore it
offers less inertial resistance to the wave elastic motion. In fact, the cross-section
of the membrane is designed to make the membrane tip reach the quasi-contact
configuration with the pump head flanges, allowing for the isolation of the fluid
pockets and for the blockage of possible backflows. Nonetheless, the trailing
edge never reaches the collision point with the pump flanges in our simulations,
in agreement with the theoretical results reported in [70, 71].

Next, we studied more in detail the effect of the wave propagation on the flow
dynamics during the whole cycle of membrane oscillation. To this aim, in Figure
9, we analyzed the dynamics in the pump head region for four different time
instants in the third period of oscillation of the membrane frame, showing for
each time point the radial velocity of the flexible membrane, the blood velocity
(left) and pressure (right) fields.

� In Figure 9a, the membrane frame has returned back to its initial position
coming from below. During this upwards vertical displacement, part of the
blood coming from the inlet flows above the membrane wave, leading to the
formation of an upper fluid pocket (Pocket A), while the remaining part is
gathered in the low pressure area below the membrane frame. Meanwhile,
in the most internal part of the pump head, another fluid pocket (Pocket
B) below the membrane is transported towards the outlet channel thanks
to the progressive propagation of the membrane wave. Notice that the
simultaneous propagation of two fluid pockets is made possible by the high
frequency of oscillation that introduces a second mode of deformation in
the elastic membrane. We can also notice some recirculation areas nearby
the membrane frame and in proximity to the membrane tip, caused by the
flapping motion of the membrane [79].

� When the membrane frame reaches the maximum point of the oscillation
(time t = 18.8 ms), the formation of the upper fluid pocket (Pocket A) is
completed and the blood below the membrane frame reaches its maximum
point of accumulation (see Figure 9b). While the membrane tip is rais-
ing to reduce potential backflows, we can observe a local increase of the
pressure in that area that contributes to the blood propulsion towards the
outlet. Nonetheless, the ongoing vortex dynamics below the trailing edge
of the membrane seems to hamper the full release of the lower fluid pocket
(Pocket B) in the outlet channel, penalizing the overall outflow.

� As the membrane frame moves downwards (Figure 9c), it compresses the
fluid accumulated in the area below during the ascending phase. This
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Figure 9: Visualization of the velocity field (left) and of the pressure field (right)
in a vertical section of the pump head region for four different time istants: a)
t = 16.6 ms, b) t = 18.8 ms, c) t = 20.8 ms, and d) t = 22.8 ms. Capital letters
A, B and C indicate the fluid pockets, getting formed and transported by wave
propagation.
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causes a drastic increase of the pressure below the membrane, that strongly
propels the blood in the outlet direction, contributing to the formation of a
new lower fluid pocket (Pocket C). Above the flexible membrane, the upper
fluid pocket (Pocket A) proceeds in its radial propagation and the tip of
the membrane has reached its quasi-contact configuration with the superior
pump flange. We can observe that the velocity values around the quasi-
contact region are very low, indicating that potential backflows are blocked
or minimized. Moreover, the upper quasi-contact configuration allows to
achieve the point of maximum delivery of the fluid pocket below (Pocket
B). The combination of these phenomena results in successful pumping
dynamics and in rapid increase of the blood outflow.

� Then, the membrane frame reaches the minimum point of its oscillation,
completing the formation of the new fluid pocket (Pocket C) below the
flexible membrane, see Figure 9d. Furthermore, blood from the upper
pocket (Pocket A) is delivered into the outlet channel, and the cycle can
restart.

We conclude our analysis of the flow patterns in the blood pump by noticing
recirculation regions around the magnet ring (see Figure 7, left) and nearby the
outlet section (see Figure 9b, left). This is of utmost importance in view of a
clinical analysis of the pump. Indeed, on the one hand, it is well known that
recirculation regions may lead to thrombus formation [80, 81]; but, on the other
hand, other studies [82, 83] showed that alternating vortices can create a jet
effect that may increase pump outflow. Therefore, it is not clear which is the
best scenario and these issues need a specific investigation. However, we remark
that alternative designs of the CorWave LVAD are in development with the aim
to reduce the risk of recirculations and improve hemocompatibility.

4.3 Parametric analysis

In this section we compare the pump performance for different pressure condi-
tions, varying the value of ∆P . In particular we considered ∆P ∈ {50, 55, 60}
mmHg, being these values close to the real applications of the blood pump for
partial left ventricle support, where ∆P varies from 0 mmHg during systole (aor-
tic valve open) to 70 mmHg during diastole (aortic valve closed). For this set of
simulations, we used T = 20 ms. Table 2 reports the values of the penalty pa-
rameters used for this set of simulations to ensure stability for each flow regime.

As the pressure difference ∆P acting over the pump between outlet and
inlet increases, the hydraulic resistance inside the pump gets higher and as a
consequence, for a fixed operating point of the membrane, the pump outflow
gets smaller. This is confirmed by the results reported in the left plot of Figure
10, where we see that the amplitude of the outflow volume rate curves is lower
when the pressure difference ∆P is larger. Notice that, although in all the cases
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∆P = 50 mmHg ∆P = 55 mmHg ∆P = 60 mmHg

γΣ 106 106 106

γdg 103 103 103

γg 1 1 1
γv1 0.05 0.05 0.5
γv2 0.5 0.5 5
γp 0.05 0.1 0.1

Table 2: Penalty stability parameters for different pressure conditions.

Figure 10: Left: Time profile of the outflow volume rate for three different
pressure head conditions ∆P . Right: Vertical displacement of the trailing edge
(solid line) for each ∆P value, in relation with the outflow volume rate membrane
volume (dashed line).

there are time intervals with negative outflow, the average in time of the outflow
rate is always positive, as required by the correct functioning of the pump.

Furthermore, in the right panel of Figure 10, we displayed in the same fig-
ure the pump outflow rate and the vertical displacement of the trailing edge
(corresponding to the membrane tip, as in Figure 8, right). Even though the
displacement curve is not significantly affected by the different pressure condi-
tions, we can notice that the trailing edge precedes the outflow curve in all the
three cases. Indeed, as discussed in Section 4.2, the trailing edge is strictly re-
lated to the isolation and the release of the fluid pockets into the outlet channel.
Therefore, its displacement drives the time evolution of the outflow volume rate
with a small delay due to the time needed for the propagation of the blood from
the fluid pocket throughout the outlet channel.

4.4 Validation against experimental measures

As a conclusion, we report results about the validation of the proposed numeri-
cal model. To this aim, we compared our simulation results with experimental
measurements obtained when testings the blood pump in the same operating
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conditions. In particular, the hydraulic performance of the blood pump is as-
sessed by means of in vitro testings perfomed in a pump characterization bench,
consisting of a reservoir and tubing in which the hydraulic resistance can be set
by adding centrifugal pumps in a series circuit with the CorWave LVAD. This
system is equipped with a Wheatstone bridge pressure sensor, to measure the
pressure head arisen between the outlet and the inlet of the pump, and with
an ultrasonic flowmeter clamped adjacent to the LVAD outlet, to measure the
pump outflow volume rate. Therefore, for any given operating point of the wave
membrane, we can use such measurements to determine the hydraulic perfor-
mance of the pump when it is exposed to different pressure conditions depending
on the action of the centrifugal pumps.

Specifically, we have at our disposal several measures when the operating
membrane point is given by f = 120 Hz and Φ = 1.06 mm. Such quantities are
given by the average in time of the pressure head P data and the corresponding
ouflow rate Qdata. The data points are represented in the experimental curve in
Figure 11, together with the numerical outflow flow rate Qsim corresponding to
the pressure differences ∆P ∈ {50, 55, 60} mmHg. From this figure, we observe
a very good agreement between numerical results and experimental findings.

Figure 11: Validation of the model results (red crosses) against the experimental
data (black dots).

To quantify the discrepancy, in Table 3 we reported the comparison between
the estimated flow rate Qsim with the experimental data Qdata, where the latter
corresponds to the measurement associated to the data point that minimizes
|P data −∆P |.

These results highlight a very good quantitative agreement with the exper-
imental findings, meaning that the numerical model is able to quantitatively
reproduce the pump dynamics with good confidentiality for the analyzed pres-
sure conditions. Indeed, the prediction errors are small for all considered ∆P ; in
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∆P = 50 mmHg ∆P = 55 mmHg ∆P = 60 mmHg

Qdata 1.834 l
min 1.091 l

min 0.352 l
min

Qsim 1.792 l
min 1.039 l

min 0.400 l
min

|Qdata −Qsim| 0.042 l
min 0.052 l

min 0.048 l
min

Table 3: Experimental and simulation data for the model validation against
experimental mesures.

particular, the relative error is lower than 5% for ∆P = 50, 55 mmHg, that are
the working conditions corresponding to higher pump flow support. However,
we note that the operating conditions of the pump considered for the model
validation do not correspond with those required for the final application of the
pump.

5 Conclusions

In this work we numerically studied the novel wave membrane technology em-
ployed in progressive wave blood pumps, in view of the optimization of the device
performance. To this aim, we simulated the fluid-structure interaction between
the membrane and the blood flow in a realistic 3D pump domain using the
unfitted XFEM-DG approach. We discussed the effect of the progressive prop-
agation of the membrane on the blood dynamics, highlighting the mechanisms
that allow the pump to propel blood against a negative pressure gradient. We
also validated our numerical model against experimental measures at different
pressure conditions.

We can conclude that our computational model is able to capture with excel-
lent accuracy the behavior of the pump, despite the simplifications underneath
its modeling. Therefore, we believe that this and future computational studies
represent reliable tools for the prediction of the hydraulic performance of the
pump under different working conditions and to support the device design.

The pump and membrane have recently undergone some revisions and im-
provements, thus, in our future studies, we will use the proposed model to eval-
uate and optimize the new pump design, examining the performance across
a wider range of clinical conditions, including generation of physiologic pulse
hemodynamics.
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