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Abstract

Networks are a natural way of representing the human brain for study-
ing its structure and function and, as such, have been extensively used. In
this view, case-control studies for understanding autism pertain to com-
paring samples of healthy and autistic brain networks. In order to un-
derstand the biological mechanisms involved in the pathology, it is key to
localize the differences on the brain network. Motivated by this question,
we hereby propose a general non-parametric finite-sample exact statistical
framework that allows to test for differences in connectivity within and be-
tween pre-specified areas inside the brain network, with strong control of
the family-wise error rate. We demonstrate unprecedented ability to differ-
entiate children with non-syndromic autism from children with both autism
and tuberous sclerosis complex using EEG data. The implementation of
the method is available in the R package nevada.
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1 Introduction

Understanding the human brain is a scientific objective that has received a lot
of attention over the past decades. Non-invasive imaging techniques have been
devised such as electroencephalography (EEG) or magnetic resonance imaging
(MRI), which make it possible to study the brain in-vivo in a non-invasive fash-
ion. The brain is naturally organized into functional centers [Fox et al., 2005]
interconnected by a wiring of axons. As a result, it is increasingly represented
as a network, as shown by the tremendous amount of review articles on the
topic [Sporns et al., 2005, Bassett and Bullmore, 2006, Bullmore and Sporns,
2009, Rubinov and Sporns, 2010, Van Den Heuvel and Pol, 2010, Bassett and
Gazzaniga, 2011, Bullmore and Sporns, 2012, Smith et al., 2013, Preti et al.,
2017] and of publications endorsed by the National Academy of Sciences [Gre-
icius et al., 2003, Mantini et al., 2007]. A network is a combinatorial object
defined by means of a set V of vertices (or nodes) and a set E of edges (or
links). An existing interaction between two vertices can be expressed either by
a weighted edge (strength or distance between two vertices) or an unweighted
binary edge (presence or absence). One important application is improved di-
agnosis, understanding and follow-up of neurodegenerative disorders, which can
be achieved through case-control studies of brain networks. In this context, the
goal is to assess whether the disease process has affected the connections/edges
by statistically comparing a sample of networks from healthy subjects against a
sample of networks from patients. In statistical terms, this is often referred to
as the local two-sample testing problem, applied to network-valued data (NVD),
which includes two main difficulties.

First, the statistical unit is not a number nor a vector as in traditional multi-
variate data analysis but a network. While there is a huge body of existing works
in the literature that focus on representing, describing and modelling a single
network in order to analyze the relationships (edges) between a set of entities
(vertices) [Newman, 2003], little attention has been put towards network-valued
two-sample testing. To the best of our knowledge, there are only three recent pa-
pers that tackle this issue. Ginestet et al. [2017] use asymptotic inference theory
to provide a suitable test statistic along with its distribution for large samples.
The other two works alternatively propose non-parametric testing procedures:
either via a flexible generative probabilistic model for the data with subsequent
Bayesian inference [Durante et al., 2017] or via model-free permutation infer-
ence [Lovato et al., 2018]. The interested reader can find a thorough review of
statistical inference for network-valued data in this latter work.

The second difficulty for case-control studies pertains to making local infer-
ence, i.e. to identifying the specific edges responsible for a globally detected
difference in distributions between the two samples. This is of critical impor-
tance from a clinical perspective since the diagnosis, understanding and treat-
ments of a neurological condition are radically different when the whole brain
network is affected rather than when only a subnetwork is, which is an informa-
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tion that only local inferential procedures can provide. On the one hand, if local
inference reveals that many edges are altered, it may suggest that the disease
process involves a global disruption in the neurogenesis (i.e., the building up
of connections) or pruning (i.e., the elimination of connections) processes. For
instance, recent evidence have suggested that schizophrenia is caused by a dis-
rupted pruning process [Sekar et al., 2016] which may explain the high number
of local differences in brain networks observed in patients [Lynall et al., 2010].
On the other hand, if local inference reveals that only a few edges are altered, it
may suggest that only a part of the brain is involved in the disease process and
may therefore elicit which neuronal subsystem is responsible for the emergence
of symptoms. For example, in bipolar disorder, alterations in a subnetwork
connecting the amygdala and the prefrontal cortex have been found which may
explain the impaired emotional regulation in these patients [Phillips and Swartz,
2014].

Local inference for NVD is an unsolved problem that poses great challenges,
both methodologically and computationally. An edge-by-edge analysis leads to
too many comparisons and applying traditional p-value correction schemes that
aim at controlling either the family-wise error rate (FWER) or the false dis-
covery rate (FDR) may substantially decrease the overall statistical power of
the underlying test. Besides, any other form of summary statistic at the local
level (e.g. degree centrality of the vertices) necessarily truncates the informa-
tion contained in the original networks. Pioneering in this direction, Zalesky
et al. [2010] propose Network-Based Statistics (NBS). This is a comprehensive
statistical framework for identifying differences in brain networks by controlling
the FWER over a data-driven partition. This partition is defined as the set of
connected components of a brain network in which the strength of a connection
is measured by the value of a relevant test statistic that compares the two sam-
ples at this edge and connections with strength below a user-specified threshold
are considered inexistant. Later, Ginestet et al. [2017] exploit the fact that the
test statistic they propose to make global inference for NVD is actually a linear
combination of contributions from each single edge and they identify, through
asymptotic inference, which contributions are statistically relevant to the test
statistic. Differently, Durante and Dunson [2018] integrate multiple local tests
in their analysis, where the differences are explored in terms of a Bayesian non-
parametric approach on each edge, while controlling for multiple comparisons.
These works suffer from a number of drawbacks. NBS is computationally very
demanding, only provides a weak control of the FWER and is not able to detect
differences that would lie outside the connected components as acknowledged
by the authors themselves (e.g. on isolated edges). The control is actually only
guaranteed on a data-driven partition obtained from a surrogate network that
may therefore not have any biological meaning with respect to the original net-
works that one wants to compare. In particular, no control of the FWER is
provided for any connection between vertices that belong to two distinct con-
nected components of the surrogate network, although they might very well

3



be connected in the original networks. Overall, NBS therefore provides weak
control of the FWER conditionally to the data at hand, which makes power
analysis difficult since the partition would change at every simulation run and
raises concerns about the adequacy of the method in terms of reproducibility of
results (e.g. test-retest studies). Asymptotic inference as used by Ginestet et al.
[2017] is out of the question for case-control studies of neurological disorders
in which the sample size of the patient population is always rather small and
the Bayesian approach proposed by Durante and Dunson [2018] is limited to
unweighted binary networks only.

In response to these limitations, we propose a fully non-parametric approach
to locally compare two samples of networks (both in the weighted and in the
unweighted case). In details, we start with defining a partition of the vertex
set into regions of interest (usually provided by experts in each specific applied
field). Each element of the partition therefore consists of a subset of vertices
from which an intra-subnetwork can naturally be extracted by keeping only
edges connecting those vertices. Similarly, every pair of elements in the partition
naturally gives rise to an inter -subnetwork by keeping only edges that connect
vertices between the two elements. The major contribution of the present paper
is a hypothesis testing framework that enables local inference at the granular-
ity of these subnetworks, with finite-sample strong control of the family-wise
error rate (FWER) and in a fully non-parametric setting that can accommo-
date complex non-trivial data generating processes. The paper is organized as
follows. In Section 2, we mathematically formalize the problem that we pro-
pose to address in this work. In particular, we give proper definitions of intra–
and inter–subnetworks and we formally define the concept of local inference for
network-valued data. The mathematical apparatus required to achieve finite-
sample strong control of the FWER is next described in Section 3, together with
two procedures that effectively achieve this control. The first generates prop-
erly adjusted p-values at the cost of lengthier computations while the second
one cuts down computation time by only adjusting the p-values that are below
a predefined significance level. Section 4 is dedicated to simulations, in which
specific simulated scenarios are described in order to highlight the benefits of
our approach with respect to more conventional practices. Finally, we study the
EEG data set in Section 5 in the light of our flexible local inferential procedure
for network-valued data. We demonstrate the usefulness of our methodology in
providing an unprecedented characterization of the neurobiological mechanisms
driving non-syndromic autism with respect to autism combined with tuberous
sclerosis complex.

2 Local inference for network-valued data

Let us consider two samples of independent and identically distributed network-
valued random variables G1 = {G11, . . . , G1n1} and G2 = {G21, . . . , G2n1} of sizes
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n1 and n2 respectively. Each statistical unit is therefore a network G that we
shall define by means of its vertex set V and edge set E. We therefore use the
notation G := (V,E). We assume that all the networks in both samples have
the same set V of N vertices. Our aim is to identify which parts of the network
structure (i.e., which vertices and/or edges) are responsible for a statistically
significant difference between the data generating processes that led to the two
observed samples. The key ingredient for a proper definition of a part of a
network is a partition of its vertices. In details, let V = {Vi}i∈I be a partition
of the common vertex set V of networks in both samples, that is a collection of
subsets of V such that:

1. V =
⋃
i∈I Vi,

2. Vi ∩ Vj = Ø ∀i 6= j.

The elements of the partition will be the ones over which local inference is per-
formed. Hence, the partition characterizes the regions of the network which are
of interest for the study. Such a partition will in general be provided by experts
in every applied discipline where a network-valued data analysis approach could
be relevant and provide insights into the scientific hypotheses under query. The
granularity (i.e. richness or coarseness) of the partition can be arbitrarily cho-
sen. Assuming the availability of such a partition, two classes of subnetworks
can be defined as follows:

Definition 2.1. Each element Vi of the partition is a subset of the vertex set
V and thus, in turn, a vertex set itself that can be used to define an intra–
subnetwork Gintra

Vi
=
(
Vi, E

intra
Vi

)
, by keeping in the edge set Eintra

Vi
only those

edges with both endpoints in the same element Vi of the partition. We have in
total m intra–subnetworks, where m := |I| is the cardinality of the partition of
the initial common vertex set.

The union Vi ∪ Vj of each pair of elements of the partition is a subset of
the vertex set V and thus, in turn, a vertex set itself that can be used to de-

fine an inter–subnetwork Ginter
Vi∪Vj =

(
Vi ∪ Vj , Einter

Vi∪Vj

)
, by keeping in the edge

set Einter
Vi∪Vj only those edges with one endpoint in the element Vi and the other

endpoint in the element Vj. We have in total
(
m
2

)
inter–subnetworks.

Figure 1 provides an example of a partition of the vertex set of a network into
m = 4 elements. Two out of the four possible intra–subnetworks and two out of
the six possible inter–subnetworks are represented for an easier understanding
of the above definitions.

We propose to search for local differences in the network structure between
the two samples by comparing the intra– and inter–subnetworks induced by the
partition of the common vertex set. Consequently, the partition is critical in our
analysis as it determines how deep we are willing to go into the network struc-
ture in order to localize those differences. An analysis that follows this approach
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Figure 1: Example of partition of the vertex set of a network into 4 elements (left), with
corresponding Gintra

Vi
for i = 2, 4 (middle) and Ginter

Vi∪Vj
for (i, j) = (1, 2) and (3, 4) (right).
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provides a very rich output. In effect, not only it is able to identify which sub-
networks are responsible for a global statistically significant difference between
the two samples, it also provides insights into the nature of the difference, which
can be within one (or more) elements of the partition or between elements of the
partition. This is a valuable information for interpretation, especially in medical
applications. Accordingly with this aim, we shall formally state the two families
of hypothesis tests for intra– and inter–subnetworks as follows:

Definition 2.2. Let Vi be an element of the partition V of the common vertex
set V . The intra–subnetworks induced by Vi in each sample are governed by two

distributions that we denote F
GVi
1 and F

GVi
2 respectively. The associated intra

hypothesis test is defined as:

H intra,i
0 : F

GVi
1 = F

GVi
2 against H intra,i

1 : F
GVi
1 6= F

GVi
2 . (2.1)

There is thus a total of m intra hypothesis tests to perform.
Let Vi∪Vj be the union of a pair of elements of the partition V of the common

vertex set V . The inter–subnetworks induced by Vi ∪ Vj in each sample are

governed by two distributions that we denote F
GVi∪Vj
1 and F

GVi∪Vj
2 respectively.

The associated inter hypothesis test is defined as:

H inter,ij
0 : F

GVi∪Vj
1 = F

GVi∪Vj
2 against H inter,ij

1 : F
GVi∪Vj
1 6= F

GVi∪Vj
2 . (2.2)

There is thus a total of
(
m
2

)
= m(m−1)

2 inter hypothesis tests to perform.

We aim at defining a statistical methodology that provides a finite-sample
strong control of the FWER on the joint family of intra– and inter– hypothesis
tests. There are two main challenges to achieve this goal. The first issue is that
each single hypothesis involves distributions of networks and, thus, testing these
hypotheses requires unconventional statistical methods that are able to deal
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with such complex data. In particular, in this work, we will use the flexible non-
parametric permutation framework for two-sample testing with populations of
networks proposed by Lovato et al. [2018]. The second issue lies in the complexity
of any procedure for controlling the FWER. This is because (i) the number of
intra– and inter–hypothesis tests to be performed simultaneously can be very
large and (ii) the FWER control requires the introduction of auxiliary hypothesis
tests, which represents both a methodological (how to properly define them) and
a practical (how to handle the computational burden generated by so many tests)
problem. Section 3 proposes an answer to this second challenge.

3 Control of the family-wise error rate

3.1 Auxiliary hypothesis tests

Providing a strong control of the FWER over a family of hypothesis tests pertains
to ensuring that the probability of making at least one type I error – over all tests
that were performed and irrespectively of whether the underlying null hypotheses
are true – remains upper-bounded by some predefined significance level α. Many
procedures for controlling the FWER have been devised in the literature [see
Keppel and Wickens, 2004, for a review on this topic.]. Among the many existing
approaches, the closed testing procedure proposed by Marcus et al. [1976] is
particularly appealing due to its great flexibility and easy extension to any kind
of complex data. Starting from the family of individual null hypotheses to be
tested with strong control of the FWER at level α, the key idea is to build up
all possible combinations of composite null hypotheses by intersections of the
individual ones and subsequently reject an individual null hypothesis if and only
if all composite null hypotheses in which it appears can be rejected at significance
level α. This procedure guarantees that the probability of making no type I error
over the original individual hypothesis tests is at least 1−α. The closed testing
procedure can therefore be viewed as a hierarchy of auxiliary hypothesis tests at
the bottom of which the hypothesis tests of interest lie.

In our framework for NVD, recall that we defined a partition of the common
vertex set and that the objective is to perform simultaneously all intra– and
inter–hypothesis tests induced by this partition as defined in eqs. (2.1) and (2.2).
At the bottom of the hierarchy, there are therefore the m intra– and the

(
m
2

)
inter–hypothesis tests. Moving up in the hierarchy, we must properly define
composite null hypotheses, i.e. null hypotheses that are intersections of intra–
and inter–hypothesis tests. For this purpose, we resort to the concept of σ-
algebra over some non-empty set S, which is a collection of subsets of S that (i)
includes the empty set, (ii) is closed under complement and (iii) is closed under
countable unions and countable intersections. Furthermore, if P(V ) denotes the
power set of some set V and K ⊆ P(V ), we call σ-algebra generated by K the
smallest σ-algebra that contains K, i.e. the intersection of all the σ-algebras that
contain K. In particular, the σ-algebra generated by the partition V = {Vi}i∈I
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of the common vertex set is σ(V) = {
⋃
j∈J Vj , J ⊆ I}, since Vi∩Vj = ∅ whenever

i 6= j by definition of a partition. When a σ-algebra is generated by a partition, it
is possible to define a concept of dimensionality for any of its elements. In effect,
we say that A ∈ σ(V) – which is the union of some elements of the partition V
– has dimension d when it is the union of exactly d elements Vi of the partition
V. We will, from now on, use the notation dim(A) = d.

Definition 3.1. Each element A of the σ-algebra generated by the partition V of
the vertex set is a subset of the vertex set V and thus, in turn, a vertex set itself
that can be used to define three classes of subnetworks, which therefore share the
same vertex set.

The full subnetwork induced by A is defined as Gfull
A =

(
A,Efull

A

)
, in which

the edge set contains edges that have their endpoints in any partition elements
contained in A. A network in this class is the subgraph of G induced by A [see
Diestel, 2018, chapt. 1]. An example of such a network is shown in Figure 2,
2nd column.

The intra subnetwork induced by A is defined as Gintra
A =

(
A,Eintra

A

)
, in

which the edge set contains only edges that have both endpoints within a same
partition element contained in A. A network in this class features edges that do
not exit each single partition element Vi ⊆ A. An example of such a network is
shown in Figure 2, 3rd column.

The inter subnetwork induced by A is defined as Ginter
A =

(
A,Einter

A

)
, in

which the edge set contains only edges that have endpoints in two distinct parti-
tion elements contained in A. A network in this class features edges that connect
vertices in two different partition elements Vi 6= Vj, Vi, Vj ⊆ A. An example of
such a network is shown in Figure 2, 4th column.

Figure 2: Example of partition of the vertex set of a network into 4 elements (1st column),
along with the full–subnetwork Gfull

A (2nd column), the intra–subnetwork Gintra
A (3rd column)

and the inter–subnetwork Ginter
A (4th column) induced by an element A of dimension 3 (dark

gray areas) of the σ-algebra generated by the partition. In each panel, vertices and edges that
define the corresponding subnetworks are displayed in black.
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Remark 3.1. If A is an element of the partition, i.e. A ≡ Vi, then Ginter
A is not

defined and, by convention, we write Ginter
A = ∅ and Gintra

A ≡ Gfull
A .
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Remark 3.2. In some applications, vertices might be divided into groups in
such a way that a single vertex belongs to more than one group. Our framework
also covers these cases. In effect, for any subdivision of the vertices into groups,
it is always possible to define a partition by isolating overlapping vertices into
elements of the partition itself.

Remark 3.3. There are two extreme choices for the partition of the vertex set.
On the one hand, one could use a partition made of a unique element, i.e. the
common vertex set itself. In this case, the σ-algebra generated by the partition
coincides with the partition itself and the local testing procedure boils down to
performing a global test as in Lovato et al. [2018]. On the other hand, one could
think of assigning each vertex to its own element of the partition. In this case, the
intra–subnetworks are not defined and the procedure boils down to testing inter–
differences on every single edge, which is the most commonly adopted strategy.

Similarly to what we did for the two classes of subnetworks induced by the
elements of the partition V, we can define auxiliary hypothesis tests for the
three classes of subnetworks induced by a generic element of the σ-algebra σ(V)
generated by the partition V. In details, we introduce the following three families
of auxiliary hypothesis tests:

Definition 3.2. Let A be an element of the σ-algebra σ(V) generated by the
partition V of the common vertex set V .

The full–subnetworks induced by A in each sample are governed by two dis-

tributions that we denote F
Gfull

A
1 and F

Gfull
A

2 respectively. The associated full hy-
pothesis test pertains to testing the following hypotheses:

H0 : F
Gfull

A
1 = F

Gfull
A

2 against H1 : F
Gfull

A
1 6= F

Gfull
A

2 . (3.1)

Let us denote by pfullA the p-value of the resulting test.
The intra–subnetworks induced by A in each sample are governed by two

distributions that we denote F
Gintra

A
1 and F

Gintra
A

2 respectively. The associated intra
hypothesis test pertains to testing the following hypotheses:

H0 : F
Gintra

A
1 = F

Gintra
A

2 against H1 : F
Gintra

A
1 6= F

Gintra
A

2 . (3.2)

Let us denote by pintraA the p-value of the resulting test. This test is a general-
ization of Equation (2.1) to a generic element of the σ–algebra σ(V) instead of
only an element of the partition V that generated the σ-algebra.

The inter–subnetworks induced by A in each sample are governed by two

distributions F
Ginter

A
1 and F

Ginter
A

2 respectively. The associated inter hypothesis
test pertains to testing the following hypotheses:

H0 : F
Ginter

A
1 = F

Ginter
A

2 against H1 : F
Ginter

A
1 6= F

Ginter
A

2 . (3.3)
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Let us denote by pinterA the p-value of the resulting test. This test is a general-
ization of Equation (2.2) to a generic element of the σ–algebra σ(V) instead of
only an element of the partition V that generated the σ-algebra.

In the next two sections, we will describe two procedures that show how
to take advantage of these auxiliary hypothesis tests for providing a finite-
sample strong control of the FWER when simultaneously testing intra– and
inter–hypothesis tests defined by a given partition. For an easier description of
these procedures, we introduce the following families of subnetworks:

Gfull :=
{
Gfull
A : A ∈ σ(V)

}
(3.4)

Gintra :=
{
Gintra
A : A ∈ σ(V)

}
(3.5)

Ginter :=
{
Ginter
A : A ∈ σ(V), dim(A) > 1

}
. (3.6)

3.2 Complete multiscale testing procedure

For the sake of clarity, recall that we aim at finding relevant differences between
two samples G1 and G2 of networks of size n1 and n2 respectively. Networks
share the same vertex set V of cardinality N . Let V = {Vi}i∈I be a partition of
the vertex set of cardinality m and σ(V) be the σ–algebra generated by V.

In this section, we describe a first procedure for providing finite-sample strong
control of the FWER over the family of tests induced by intra– and inter–
subnetworks generated by the partition. We refer to this procedure as the com-
plete multiscale testing procedure (CMTP). This procedure is built on top of the
close testing procedure, which can be applied, in the context of network-valued
data, on the hierarchy of auxiliary hypothesis tests defined in eqs. (3.1) to (3.3).
In details, we perform all three auxiliary hypothesis tests defined in eqs. (3.1)
to (3.3) on all subnetworks induced by every single element of the σ–algebra
σ(V). Each of these tests is a two-sample test for network-valued data. For this
purpose, we use the approach proposed in Lovato et al. [2018]. In summary,
it is a model-free two-sample test for network-valued data based on a flexible
permutation framework that achieves consistency and finite-sample exactness
without making any distributional assumption on the compared probability dis-
tributions. The user chooses a matrix representation for the networks as well as
an appropriate distance. Subsequently, two test statistics based on inter-point
distances are computed and combined through the non-parametric combination
methodology [Pesarin and Salmaso, 2010, chap. 4] in order to provide a per-
mutation p-value computed according to Phipson and Smyth [2010]. Further
details can be found in Lovato et al. [2018]. Finally, we define adjusted p-values
for the intra– and inter–hypothesis tests given by eqs. (2.1) and (2.2) as follows:

pVi := max
A∈σ(V):Vi∈A

pintraA , pfullA pVi∪Vj := max
A∈σ(V):Vi,Vj∈A

pinterA , pfullA . (3.7)
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The CMTP is summarized by Algorithm 1 in Appendix B. Finite-sample strong
control of the FWER is guaranteed in the following way:

Lemma 3.1. The complete multiscale testing procedure (CMTP) guarantees
strong control of the FWER over the entire family of tests performed on the
union set of networks Gfull ∪ Gintra ∪ Ginter, where Gfull, Gintra and Ginter are de-
fined in eqs. (3.4) to (3.6). This means that, if G ∈ Gfull ∪ Gintra ∪ Ginter is the
largest subnetwork where H0 is true, then we have that:

P

[(
∃Gintra

Vi ⊆ G : pVi ≤ α
)
∨
(
∃Ginter

Vi∪Vj ⊆ G : pVi∪Vj ≤ α
)]
≤ α.

Proof. Let G be the largest subnetwork where H0 is true and A be the vertex
set of G. Without loss of generality, assume that G is a subnetwork of type
intra. Hence we know that P[pintraA ≤ α] = α because a single test performed
according to Lovato et al. [2018] features finite-sample exactness. Now, since
A is an element of the σ-algebra generated by the partition {Vi} and G is an
intra–subnetwork, there exists at least one index i0 such that Vi0 ⊆ A. Given
the definition of adjusted intra p-value in eq. (3.7), we have that pVi0 ≥ pintraA .

As a result, we have that {pVi0 ≤ α} ⊆ {pintraA ≤ α} and thus P{pVi0 ≤ α} ≤
P{pintraA ≤ α} = α. The proof follows exactly the same lines if G is a subnetwork
of type inter or full.

Remark 3.4. Lemma 3.1 guarantees the control of the FWER on the largest
subnetwork G in Gfull ∪ Gintra ∪ Ginter where H0 is true. It immediately follows
from the proof that this type of control is also provided for any other subnetwork
in Gfull ∪ Gintra ∪ Ginter where H0 is true.

Remark 3.5. The finite-sample control of the FWER is guaranteed over the
family of tests performed on the union set of networks Gfull∪Gintra∪Ginter but does
not extend to tests involving subnetworks that are not induced by the partition.
In a sense, this makes the control of the FWER dependent upon the choice of
the initial partition of the common vertex set.

3.3 Truncated multiscale testing procedure

The complete multiscale testing procedure guarantees finite-sample control of
the FWER over the family of tests performed on the union set of networks
Gfull∪Gintra∪Ginter by performing a total of 2m−1 tests, where m is the number
of elements in the chosen partition. Hence, for moderate to large partitions,
the CMTP becomes impractical. This is an issue inherent to the closed testing
procedure that provides properly adjusted p-values only when all auxiliary p-
values are computed. A number of solutions have been devised in the literature
to alleviate this problem. For instance, iterative adjustments of the p-values such
as Holm’s correction [Holm, 1979] or Hommel’s correction [Hommel, 1988] are
very popular for their simplicity. More complex procedures including approaches
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that rely upon logical restrictions on the hypotheses [e.g. Shaffer, 1986, Royen,
1989] have been proposed as well. The interested reader can refer to Westfall
and Tobias [2007] for an extensive review on these topics.

In this paper, we propose a simple strategy by truncation for reducing the
computational burden when the ultimate goal after p-value adjustment is to
take a binary decision at a pre-specified significance level α. In the closed test-
ing philosophy, given a set of null hypotheses to be tested simultaneously, the
p-value associated with a specific null hypothesis is adjusted by taking the max-
imum among p-values associated with all composite hypotheses involving that
hypothesis. The order in which the auxiliary p-values are computed is in gen-
eral irrelevant because all of them have to be computed for properly adjusting
the p-values of the original hypotheses. However, if these p-values are to be
confronted to a pre-specified significance level α for rejecting the associated null
hypothesis whenever the p-value exceeds α, there is a clear benefit in testing first
composite hypotheses that include the largest number of original hypotheses. In
effect, if, during the adjustment process, a p-value exceeds α for some composite
hypothesis (defined as union of some original hypotheses), then there is no need
for computing auxiliary p-values associated with any composite hypothesis in-
cluded in that one, because the resulting adjusted p-value would only be higher.
Figure 8 in Appendix B illustrates the differences between the complete and
truncated closed testing procedures on an example in which four hypotheses are
tested simultaneously at a significance level α = 5%. In the truncated approach,
starting from the top, the first p-value that exceeds α occurs when H1

0 , H2
0 and

H4
0 are tested simultaneously in H1,2,4

0 . At this point, all subsequent auxiliary

p-values associated with sub-hypotheses of H1,2,4
0 , that is H1,2

0 , H1,4
0 , H2,4

0 , H1
0 ,

H2
0 and H4

0 , become unnecessary. This clearly reduces the computational burden
at the cost of possibly underestimating the adjusted p-values for H1

0 , H2
0 and

H4
0 which are greater than the significance level.

This truncation principle naturally extends to our framework for local in-
ference for populations of networks because the definitions of adjusted p-values
provided in eq. (3.7) have been borrowed to the CTP. Truncation can be sepa-
rately applied for adjusting p-values associated with null hypotheses involving
intra-subnetworks or inter-subnetworks, resulting in two separate sets of ad-
justed p-values: one of size m for investigating differences in the distributions
of each intra-subnetwork induced by the partition elements and another one of
size m(m − 1)/2 for investigating differences in the distributions of each inter-
subnetwork induced by any pair of partition elements. We coin this procedure
the α-truncated multiscale testing procedure (α-TMTP). It is summarized by Al-
gorithm 2 in Appendix B. In the following, we will denote by p̃ any adjusted
p-value provided by the α-TMTP in contrast with the notation p for adjusted
p-values coming from the CMTP.

Remark 3.6. The CMTP and the α-TMTP both identify the same set of sig-
nificantly different sub-networks when using α as significance level. More specif-
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ically, if a sub-network is statistically different between the two samples, the
p-values found with the CMTP and with the α-TMTP are exactly the same,
i.e., p̃Vi = pVi and p̃Vi∪Vj = pVi∪Vj . Conversely, if a sub-network is not statis-
tically different between the two samples, the p-value found with the CMTP is
always larger or equal than the one found with the α-TMTP, i.e., p̃Vi ≤ pVi and
p̃Vi∪Vj ≤ pVi∪Vj .

More generally, once the α-TMTP has been run, the corresponding adjusted
p-values that are smaller or equal to α coincide with those obtained with the
CMTP. Hence, it is possible to rely on adjusted p-values from the α-TMTP
also in cases where we are interested in significant sub-networks at a level α<
smaller than α. The inverse is however not true. In effect, adjusted p-values
obtained with the α-TMTP that are greater than α are underestimated w.r.t.
those obtained with the CMTP. It is thus not recommended to use them for
discussing significance at levels α> larger than α.

Lemma 3.2. The truncated multiscale testing procedure run at a level α that
matches the FWER guarantees strong control of the FWER over the entire family
of tests performed on the union set of networks Gfull ∪ Gintra ∪ Ginter, where
Gfull, Gintra and Ginter are defined in eqs. (3.4) to (3.6). This means that, if
G ∈ Gfull∪Gintra∪Ginter is the largest subnetwork where H0 is true, then we have
that:

P

[(
∃Gintra

Vi ⊆ G : p̃Vi ≤ α
)
∨
(
∃Ginter

Vi∪Vj ⊆ G : p̃Vi∪Vj ≤ α
)]
≤ α.

Proof. From Remark 3.6, it follows that, if α is the level at which the α-TMTP
has been run, then p̃Vi ≤ α if and only if pVi ≤ α and p̃Vi∪Vj ≤ α if and only
if pVi∪Vj ≤ α. Hence, if α is equal to the family-wise error rate, the proof is a
trivial consequence of Lemma 3.1.

3.4 Computation times

In this section, we compare the computational costs of the CMTP and α-TMTP
in terms of number of tests required to achieve the p-value adjustment. These
costs depends on two parameters: (i) the number m of elements in the chosen
vertex partition and (ii) the number k of (intra or inter) sub-networks induced by
partition elements that exhibit significant differences between the two samples.
We derive analytic expression of the costs separately for the intra– and inter–
sub-networks.

3.4.1 Cost of intra–hypothesis tests

In the α-TMTP, we progressively test on sub-networks induced by elements of
σ(V) of decreasing dimension from m to 1. All tests are performed for elements
of dimension m to m − k (number of non-significant partition elements). On
the contrary, for elements of dimension i in between m− k − 1 to 1, some tests
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become unnecessary. Specifically, all tests on sub-networks induced by elements
of dimension i composed exclusively of non-significant partition elements can be
discarded which spares a total of

(
m−k
i

)
tests. Provided that m > k, the total of

spared tests thus amounts to

m−k−1∑
i=1

(
m− k
i

)
= 2m−k − 2.

The CMTP performs instead 2m− 1 tests. The relative computational saving of
the α-TMTP w.r.t. the CMTP is thus:

Rintra =

{
2m−k−2
2m−1 if m > k

0 otherwise.

3.4.2 Cost of inter–hypothesis tests

The argumentation is the same for inter–subnetworks except that elements of
σ(V) of dimension 1 are not considered at all. Hence, provided that m > k + 1,
the total number of spared tests amounts to

m−k−1∑
i=2

(
m− k
i

)
= 2m−k −m+ k − 2,

whereas the CMTP performs 2m − m − 1 tests. The relative computational
saving of the α-TMTP w.r.t. the CMTP is thus:

Rinter =

{
2m−k−m+k−2

2m−m−1 if m > k + 1

0 otherwise.

Figure 9 in Appendix B illustrates the computation savings for a small value
of m = 5 and a large value of m = 10. Observe that both relative computational
savings, in the large m regime, are independent from m and tend to 2−k (the red
curve). Actually, already for m ≥ 10, there is practically no difference between
the actual saving and the 2−k approximation. In general, we can observe that
we save the most in cases where there are few partition elements that induce
subnetworks exhibiting differences between the two samples. Specifically, looking
at the m = 10 case, we read, for large m, that the saving is of 100% if k = 0,
50% if k = 1 and 25% for k = 3.

4 Simulation studies

The aim of this section is to explore the potential of our methodology on sim-
ulated data sets where different levels and kinds of differences are present. In
detail, the goal of this section is twofold. First of all we focus on the identification

14



of local differences, showing that our procedure is able to detect in which regions
of interest (RoI) inside the network there are difference between the two popu-
lations, while controlling the family wise error rate; we also show that a naive
approach that does not control for multiple testing fail in controlling the family
wise error rate. Second, we generate a particular data set in order to highlight
how important it is to consider the entire network approach also in the case
of local inference instead of other summary objects that somehow summarize
the entire structure of the network and we show how this latter approach loses
power. Inspired by atlases commonly used in the clinical practise, we generate
samples of networks with 68 vertices. We use a partition with four elements and
the sample sizes are n1 = n2 = 10. We used a total of 1000 replicates and an α
level equal to 0.05.

4.1 Identification of local differences

4.1.1 Simulated scenarios

In this first simulation study, we simulate four different scenarios, all charac-
terized by the presence of specific subnetworks with different edge strength dis-
tributions; what distinguishes the scenarios is which subnetworks are different
between the two populations. We rely on the stochastic block model [Holland
et al., 1983], often abbreviated SBM, for generating the samples. This is a pop-
ular and useful model that allows to choose the probability of existence of an
edge within and between pre-specified RoIs inside the network. The parameters
of an SBM are the partition of the vertex set into disjoint subsets C1, . . . , Cm
and an edge probability matrix P with dimension m × m whose element pij
stores the probability of existence of an edge between vertices belonging to RoI
Ci and vertices belonging to RoI Cj . Therefore, the SBM allows to specify the
probabilities both of edges connecting vertices within blocks (i = j) and of edges
connecting vertices between blocks (i 6= j). Selecting C1, . . . , Cm = V1, . . . , Vm,
we are able, through this model, to generate samples that have intra–differences
or inter–differences in different RoIs. Table 1 summarizes the 4 scenarios as
4× 4 matrices. The diagonal informs about intra–differences while off-diagonal
elements inform about inter–differences. A cross (×) stands for significant dif-
ference (null hypothesis is false) while a checkmark (X) stands for no difference
(null hypothesis is true).

In details, we start with the case where differences are present in all 4 intra–
subnetworks and all 6 inter–subnetworks defined by the partition (see Table 1a).
The 2nd and 3rd scenarios explore separately intra– and inter–differences. The
2nd scenario (see Table 1b) includes all the intra–differences only while the
3rd scenario (see Table 1c) includes all the inter–differences only. Finally, we
explore a more realistic scenario in Table 1d, where the differences between the
two populations are located in some intra– and some inter–subnetworks. The
four elements of the vertex partition contain 17 vertices each. Edge probability
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matrices for each specific scenario are reported in appendix A.1.

Table 1: Summary tables of intra– and inter–differences in the first simulation study.

RoI 1 RoI 2 RoI 3 RoI 4

RoI 1 × × × ×
RoI 2 × × ×
RoI 3 × ×
RoI 4 ×

RoI 1 RoI 2 RoI 3 RoI 4

RoI 1 × X X X
RoI 2 × X X
RoI 3 × X
RoI 4 ×

(a) First scenario (b) Second scenario

RoI 1 RoI 2 RoI 3 RoI 4

RoI 1 X × × ×
RoI 2 X × ×
RoI 3 X ×
RoI 4 X

RoI 1 RoI 2 RoI 3 RoI 4

RoI 1 X X × X
RoI 2 X × X
RoI 3 × ×
RoI 4 X

(c) Third scenario (d) Fourth scenario

4.1.2 Estimation of probability of rejection

Table 2 reports the estimated probability of rejection of the test on the four sim-
ulated scenarios described in the previous section. In correspondence to table 1,
for each simulation, we report a 4 × 4 table with the estimated probability of
rejection for each tested hypothesis. The entry (i, j) refers to the comparison
of the subnetwork identified by the RoIs i and j. When i = j, the result-
ing subnetwork is seen as an intra–subnetwork, while when i 6= j, the resulting
subnetwork is seen as an inter–subnetwork. The results show that in all the gen-
erated scenarios the α-TMTP is sensitive to the violation of the null hypothesis,
independently from the type of difference (intra or inter).

We also compared the two samples in these same four scenarios by means
of a naive approach that simply tests all the null hypotheses separately without
applying any correction for multiple comparisons. In this case, a total of 10
null hypotheses is tested (4 intra–hypotheses and 6 inter–hypotheses). Table 3
reports the estimated power for each tested hypothesis. We observe that in-
tra– and inter–differences are all correctly detected and that, whenever the null
hypothesis is true, the power of the individual tests is at the nominal level as
expected.

What dramatically changes between the naive approach and the α-TMTP is
the control of the FWER. Table 4 summarizes the estimated FWER obtained
from both approaches for the scenarios 2, 3 and 4. Scenario 1 is not included
because the null hypothesis is false everywhere, preventing us from getting an
estimate of the FWER in that case. The results show that the α-TMTP conser-
vatively controls the FWER at level α = 5% while the naive approach does not
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Table 2: Estimated probabilities of rejection obtained with the α-TMTP applied to the gener-
ated data sets of the first simulation.

RoI 1 RoI 2 RoI 3 RoI 4

RoI 1 1.000 1.000 1.000 1.000
RoI 2 1.000 1.000 1.000
RoI 3 1.000 1.000
RoI 4 1.000

RoI 1 RoI 2 RoI 3 RoI 4

RoI 1 1.000 0.004 0.005 0.002
RoI 2 1.000 0.000 0.001
RoI 3 1.000 0.001
RoI 4 1.000

(a) First scenario. (b) Second scenario.
Global power: 1.000 (intra), 1.000 (inter) Global power: 1.000 (intra), 0.050 (inter)

RoI 1 RoI 2 RoI 3 RoI 4

RoI 1 0.002 1.000 1.000 1.000
RoI 2 0.002 1.000 1.000
RoI 3 0.006 1.000
RoI 4 0.003

RoI 1 RoI 2 RoI 3 RoI 4

RoI 1 0.000 0.000 1.000 0.002
RoI 2 0.000 1.000 0.002
RoI 3 1.000 1.000
RoI 4 0.001

(c) Third scenario. (d) Fourth scenario.
Global power: 0.069 (intra), 1.000 (inter) Global power: 1.000 (intra), 1.000 (inter)

Table 3: Estimated probabilities of rejection obtained with the naive approach applied to the
generated data sets of the first simulation.

RoI 1 RoI 2 RoI 3 RoI 4

RoI 1 1.000 1.000 1.000 1.000
RoI 2 1.000 1.000 1.000
RoI 3 1.000 1.000
RoI 4 1.000

RoI 1 RoI 2 RoI 3 RoI 4

RoI 1 1.000 0.042 0.048 0.065
RoI 2 1.000 0.049 0.054
RoI 3 1.000 0.049
RoI 4 1.000

(a) First scenario. (b) Second scenario.
Global power: NA (intra), NA (inter) Global power: NA (intra), NA (inter)

RoI 1 RoI 2 RoI 3 RoI 4

RoI 1 0.045 1.000 1.000 1.000
RoI 2 0.045 1.000 1.000
RoI 3 0.042 1.000
RoI 4 0.058

RoI 1 RoI 2 RoI 3 RoI 4

RoI 1 0.058 0.039 1.000 0.051
RoI 2 0.050 1.000 0.055
RoI 3 1.000 1.000
RoI 4 0.044

(c) Third scenario. (d) Fourth scenario.
Global power: NA (intra), NA (inter) Global power: NA (intra), NA (inter)
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and exhibits estimated FWER around four times the pre-specified significance
level α.

Table 4: Estimated FWER for scenarios 2, 3 and 4 of the first simulation study.

Scenario 2 Scenario 3 Scenario 4

α-TMTP 0.012 0.013 0.005
Naive approach 0.255 0.180 0.260

4.2 Usefulness of exploiting the whole network structure

4.2.1 Simulated scenarios

Most of the time, when one defines a partition of the vertex set of a network,
the interest is put on inter–differences, i.e. differences between the two samples
on the inter–subnetwork induced by a pair of partition elements. A classic
approach pertains to considering the aggregated network, in which vertices in a
same partition element are collapsed into a single one and edge weights between
partition elements (now single vertices) are aggregated most often by mean or
sum of the weights in the original network. Figure 3 illustrates the principle of
aggregation.

Figure 3: Schematic illustration of the process of network aggregation.

This second simulation aims at comparing the resulting inference of the α-
TMTP applied to the original complex network and to the aggregated network
in the search for differences in the subnetworks induced between pairs of par-
tition elements. For this purpose, we generated two samples of networks with
the same vertex set of size 68. We chose a partition of four elements (with 10,
20, 17 and 21 vertices in each element). We generated fully connected random
networks by sampling the edge weights from a Poisson distribution with param-
eter 8. We introduced an inter–difference between the first two elements of the
partition. Specifically, we introduced the difference in 24 edge weights out of
the 100 existing ones. Table 5 summarizes where the difference lies. In the first
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sample, we modified 12 edge weights over 24 by using a Poisson distribution with
parameter 5 and the other 12 edge weights by using a Poisson distribution with
parameter 11. In the second sample, we modified the exact same edge weights
but we switched the two Poisson distributions. We report the details on edge
weight modifications in appendix A.2. We finally ran the α-TMTP with α = 5%
on the two samples obtained from both the original and aggregated forms.

Table 5: Summary tables of intra– and inter–differences in the second simulation study.

RoI 1 RoI 2 RoI 3 RoI 4

RoI 1 X × X X
RoI 2 X X X
RoI 3 X X
RoI 4 X

4.2.2 Estimated probabilities of rejection

Table 6 reports the Monte-Carlo estimates of the probabilities of the rejection
obtained from the original networks (Table 6a) and from the aggregated ones
(Table 6b). There are two important aspects to discuss. First, the aggregation of
the edge weights between partition elements makes the testing procedure insen-
sitive to the kind of inter–difference we introduced, while the testing procedure
ran on the original complex networks nicely captures that difference. This trans-
lates into the near-to-zero statistical power of the test between RoI 1 and RoI 2
when testing samples of aggregated networks and into a global statistical power
reaching the significance level α. Second, one can observe that there are no
values on the diagonal in table 6b. This is because the principle of aggregation
completely discards the information on the structure of the intra–subnetworks,
preventing the discovery of any possible intra–difference.

Table 6: Estimated probabilities of rejection obtained from whole (a) and aggregated (b)
networks.

RoI 1 RoI 2 RoI 3 RoI 4

RoI 1 0 1 0.001 0.004
RoI 2 0.001 0.004 0.005
RoI 3 0 0.002
RoI 4 0

RoI 1 RoI 2 RoI 3 RoI 4

RoI 1 0.001 0.008 0.004
RoI 2 0 0
RoI 3 0.002
RoI 4

(a) Using whole networks (b) Using aggregated networks
Global power: 0.049 (intra), 1.000 (inter) Global power: NA (intra), 0.042 (inter)
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5 Application to the study of Autism Spectrum Dis-
order

5.1 Description of the data set

We applied our methodology to brain functional networks of electroencephalo-
graphic (EEG) connectivity data of children with tuberous sclerosis complex
(TSC) and autism spectrum disorder (ASD) as previously studied in Peters et al.
[2013]. TSC is a multi-system, autosomal dominant disorder affecting children
and adults and it results from mutations in one of two genes, TSC1 or TSC2
[Crino et al., 2006]. Approximately 40% of patients affected by TSC develop ASD
[Jeste et al., 2008]. However, it remains unclear whether the symptoms usually
associated with autism are caused by the same neurobiological mechanism in pa-
tients with TSC or without TSC (the latter is often called non-syndromic ASD).
The data has been collected from patients with TSC without ASD (n = 29), pa-
tients with TSC and ASD (n = 14), patients with non-syndromic ASD (n = 16)
and healthy controls (n = 13). See Peters et al. [2013] for the details on the
process of identification and diagnosis of the patients included in the study.
Each network has 19 vertices identified by the electrode locations from the in-
ternational 10-20 system of electrode placement while the edges are given by the
coherence measure (see Peters et al. [2013] for the detail on this measure and the
validity of this approach) between the EEG signals of two electrodes. Coherence
has a value between 0 and 1 and networks are therefore weighted with weight
between 0 and 1.

Figure 4: Brain network representations for a patient with non-syndromic ASD (a), a patient
with syndromic ASD (b), a patient with only TSC (c) and a healthy subject (d).
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5.2 Choice of the partitions

We explored 3 partitions to investigate whether local differences are present be-
tween children with ASD and controls and between syndromic and non-syndromic
ASD. The 1st partition, indicated with PLR, separates the two hemispheres and
it practically translates into a partition of 3 elements (see fig. 5a). The 2nd
partition, indicated with PFT , is composed of 3 elements: frontal/anterior area,
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intermediate area and posterior area (see fig. 5b). For the last partition, we
considered the union of the first two. This is not an actual partition but, as
stated in Remark 3.2, we can still construct the σ–algebra generated by it. It
boils down to considering a partition PLR−FT of 9 elements (see fig. 5c). For
the analysis, we used the α-TMTP with α = 1%. We carried out the tests using
the adjacency matrix representation and the Frobenius distance.

Figure 5: The 3 partitions of the vertex set considered for the EEG data set. Partition PLR of
the brain in left hemisphere, intermediate area and right hemisphere (a); partition PFT of the
brain in frontal lobe, intermediate area and posterior lobe (b); Partition PLR−FT induced by
the σ-algebra from partitions PLR and PFT (c).
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5.3 Results

When comparing syndromic against non-syndromic ASD (see fig. 6), local differ-
ences are found to be widespread when using partitions PLR and PFT with the
exception of fronto-posterior and intermediate-intermediate connections. When
using the more granular partition PLR−FT , more specificity emerges. Differ-
ences in frontal area are mostly confined to fronto-lateral regions (i.e. within
F.L. and F.R. and between F.L. and F.R. but not those involving F.C.). In the
intermediate and posterior areas, connections between homologous regions (i.e.
between I.L. and I.R. and between P.L. and P.R.) are spared while connections
within the same hemispheres (i.e. within P.L., between I.L. and P.L. and be-
tween P.R. and I.R.) are affected. Taken together, this findings suggest that the
neural mechanism underpinning autism is locally different between syndromic
and non-syndromic ASD with differences in connectivity involving the fronto-
lateral regions (both inter- and intra-hemispheric) and the intermedio-posterior
regions (confined to single hemispheres).

When comparing non-syndromic ASD and controls (see fig. 7, a remarkably
similar distribution of differences is observed. In the frontal area, differences are
mostly noticeable within and between fronto-leteral regions (i.e. within F.L. and
F.R. and between F.L. and F.R.), while differences within the same hemispheres
of the intermedio-posterior regions are also identified (i.e. within P.L., within
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Figure 6: Locations of the differences between patients with syndromic or non-syndromic ASD.
Light blue areas locate intra–differences, while dark blue arrows locate inter–differences.
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P.R., between I.L. and P.L. and between P.R. and I.R.). The overlap of sub-
networks that are significantly different in the comparisons between ASD and
controls and between syndromic and non-syndromic ASD suggests that what
differs between syndromic and non-syndromic ASD is the degree to which sub-
networks are affected (rather than their nature). This parallels the findings based
on the comparison of specific white matter tracts between TSC with and with-
out ASD [Lewis et al., 2012, Peters et al., 2012]. There are however additional
differences observed when comparing ASD and controls which are not observed
in the comparison between syndromic and non-syndromic ASD. Anatomically
speaking, the most striking ones are significant differences between F.L. and
P.L. and between F.R. and both P.L. and P.R. This suggests that such long-
distance connections are a common basis in the mechanism of autism regarless
of the presence or absence of TSC. Such long-distance connections between the
frontal and posterior areas have been repeatedly demonstrated to be altered in
ASD [Kana et al., 2009, Tan et al., 2010, Barttfeld et al., 2011].

Figure 7: Locations of the differences between patients with non-syndromic ASD and controls.
Light blue areas locate intra–differences, while dark blue arrows locate inter–differences.
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Tables 7 and 8, Appendix C detail the p-values for these two comparisons.
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6 Discussion

In this paper, we addressed the important problem of discriminating different
form of autism at an early age. Specifically, we looked at the brain and mod-
eled it as a network. We subsequently proposed an appropriate methodology for
properly localizing significant differences on the brain network structure while
providing a finite-sample strong control of the family-wise error rate. Thanks
to this methodology, we managed to be very specific in the location of the dif-
ferences between syndromic ASD (i.e. autism combined with tuberous sclerosis
complex) and non-syndromic ASD (i.e. autism without TSC), which shed lights
onto the underlying biomechanisms underpinning each form of autism.

The finite-sample aspect is key in this application since it is difficult to
gather a large number of children diagnosed with autism and, at the same time,
compliant enough for an EEG. Our proposed framework is fully non-parametric
and relies on the theory of permutation tests. As such, very few assumptions
are required on the data (only exchangeability under the null hypothesis and
stochastic dominance of the test statistic under the alternative w.r.t. the null).
We thus believe that it can easily be extended for studying object data in general,
be it networks or other complex data. Although not yet available on CRAN, the
R package providing the full implementation of the proposed method is available
on Github under the name nevada (in a branch named local).
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A Appendix: Data generation for the simulations

A.1 Details about the first simulated data set

We report here the edge probability matrices used to generate the simulated
scenarios in the first simulation study in Section 4.1.

Scenario p1 p2

1


0.4 0.1 0.4 0.1
0.1 0.1 0.1 0.4
0.4 0.1 0.1 0.4
0.1 0.4 0.4 0.1




0.1 0.4 0.1 0.4
0.4 0.4 0.4 0.1
0.1 0.4 0.4 0.1
0.4 0.1 0.1 0.4


2


0.1 0.4 0.4 0.1
0.4 0.4 0.1 0.1
0.4 0.1 0.4 0.4
0.1 0.1 0.4 0.1




0.4 0.4 0.4 0.1
0.4 0.1 0.1 0.1
0.4 0.1 0.1 0.4
0.1 0.1 0.4 0.4


3


0.1 0.4 0.1 0.1
0.4 0.1 0.4 0.4
0.1 0.4 0.4 0.1
0.1 0.4 0.1 0.4




0.1 0.1 0.4 0.4
0.1 0.1 0.1 0.1
0.4 0.1 0.4 0.4
0.4 0.1 0.4 0.4


4


0.1 0.4 0.1 0.4
0.4 0.4 0.1 0.4
0.1 0.1 0.4 0.4
0.4 0.4 0.4 0.4




0.1 0.4 0.4 0.4
0.4 0.4 0.4 0.4
0.4 0.4 0.1 0.1
0.4 0.4 0.1 0.4


A.2 Details about the second simulated data set

Here, we provide details about the edge weight modification process used for
introducing a difference between the two samples in the second simulation study.
Recall that, first, all edge weights were drawn from a Poisson distribution with
parameter 8 – P(8) – for both samples. Then, half of the edges that connect
vertices within the first two elements of the partition were modified by drawing
their weight from P(5) in sample 1 and P(11) in sample 2 and the other half had
their weight drawn from P(11) for sample 1 and P(5) for sample 2. The following
table details precisely which weights were drawn from which distribution.

New distribu-
tion

Sample 1 Sample 2

P(5) 1-11, 1-13, 2-12, 2-17, 2-18,
3-14, 3-19, 4-12, 4-16, 5-11,
5-15, 5-17

6-20, 7-20, 7-23, 7-27, 8-24,
8-26, 8-28, 9-21, 9-22, 9-29,
10-24, 10-25

P(11) 6-20, 7-20, 7-23, 7-27, 8-24,
8-26, 8-28, 9-21, 9-22, 9-29,
10-24, 10-25

1-11, 1-13, 2-12, 2-17, 2-18,
3-14, 3-19, 4-12, 4-16, 5-11,
5-15, 5-17
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B Appendix: Details on the closed testing proce-
dures

B.1 Toy Example

In this section, we report a toy example that shows the differences between the
complete multiscale testing procedure (CMTP) and the α-truncated multiscale
testing procedure (α-TMTP). For that purpose, we used a partition of 4 elements
and report in the following figure the output of each procedure for controlling
the FWER on on the set of tests performed on intra-subnetworks.

B.2 Algorithms

In this section, we provide the detailed algorithms for running the two proposed
multiscale testing procedures as they are implemented in our R package nevada.
First, Algorithm 1 provides the implementation details for the CMTP:
Next, Algorithm 2 provides the implementation details for the α-TMTP:

B.3 Computational burden

In this section, we compare the computational times required to perform the
CMTP and the α-TMTP. Specifically here, we plot the computation times for
both procedures based on the equations established in Section 3.4. We use two
partition sizes: m = 5 which can be considered as a small size and m = 10 which
is a large size.

C Appendix: P-values for the analysis of the EEG
data

The following table reports the adjusted p-values obtained from the α-TMTP
with α = 10% for the comparison between non-syndromic and syndromic ASD:

The following table reports the adjusted p-values obtained from the α-TMTP
with α = 10% for the comparison between non-syndromic ASD and controls:
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Figure 8: An example of closed testing procedure (top) and its truncated version (bottom).
Hypotheses of interest are at the bottom of the pyramid.

Complete Closed Testing Procedure

Truncated Closed Testing Procedure

30



Algorithm 1 Complete Multiscale Testing Procedure

1: procedure CMTP(G1,G2,V)
2: # Initializations
3: N ← length(V);
4: for (i = 1; i ≤ N ; ++i) do
5: pintraVi

← 0;
6: for (j = i+ 1; j ≤ N ; ++j) do
7: pinterVi∪Vj ← 0;

8: # Main loop
9: for A ∈ σ(V) do

10: # P-value associated with full hypothesis
11: pfullA ← permutation p-value investigating G1 vs G2 on Gfull

A

as in eq. (3.1);
12: # P-value associated with intra hypothesis
13: pintraA ← permutation p-value investigating G1 vs G2 on

Gintra
A as in eq. (3.2);

14: # P-value associated with inter hypothesis
15: pinterA ← permutation p-value investigating G1 vs G2 on

Ginter
A as in eq. (3.3);

16: # P-value adjustment
17: for (i = 1; i ≤ N ; ++i) do
18: if Vi ⊆ A then
19: pintraVi

= max(pintraVi
, pfullA , pintraA )

20: for (j = i+ 1; j ≤ N ; ++j) do
21: if Vi ∪ Vj ⊆ A then
22: pinterVi∪Vj = max(pinterVi∪Vj , p

full
A , pinterA );

23: return {pintraVi
: i = 1, . . . , N} and {pinterVi∪Vj : i, j = 1, . . . , N s.t. i < j}.
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Algorithm 2 Truncated Multiscale Testing Procedure
1: procedure TMTP(G1,G2,V, α)
2: # Initializations
3: N ← length(V);
4: skipIntraTests ← skipInterTests ← ∅;
5: for (i = 1; i ≤ N ; ++i) do
6: pintraVi

← 0;
7: for (j = i+ 1; j ≤ N ; ++j) do
8: pinterVi∪Vj

← 0;

9: # Main loop
10: for (k = N ; k ≥ 1; ++k) do
11: for A ∈ σ(V) : dim(A) = k do
12: if (A ∈ skipIntraTests) ∩ (A ∈ skipInterTests) then
13: continue;

14: # P-value associated with full hypothesis
15: pfullA ← permutation p-value investigating G1 vs G2 on Gfull

A as
in eq. (3.1);

16: for (i = 1; i ≤ N ; ++i) do
17: if Vi ⊆ A then
18: pintraVi

= max(pintraVi
, pfullA );

19: for (j = i+ 1; j ≤ N ; ++j) do
20: if Vi ∪ Vj ⊆ A then
21: pinterVi∪Vj

= max(pinterVi∪Vj
, pfullA );

22: if pfullA > α then
23: for B ∈ σ(V) : B ⊆ A do
24: skipIntraTests← skipIntraTests ∪B;
25: skipInterTests← skipInterTests ∪B;

26: if A /∈ skipIntraTests then
27: # P-value associated with intra hypothesis
28: pintraA ← permutation p-value investigating G1 vs G2 on Ginra

A as
in eq. (3.2);

29: for (i = 1; i ≤ N ; ++i) do
30: if Vi ⊆ A then
31: pintraVi

= max(pintraVi
, pintraA );

32: if pintraA > α then
33: for B ∈ σ(V) : B ⊆ A do
34: skipIntraTests← skipIntraTests ∪B;

35: if A /∈ skipInterTests then
36: # P-value associated with inter hypothesis
37: pinterA ← permutation p-value investigating G1 vs G2 on Ginter

A as
in eq. (3.3);

38: for (i = 1; i ≤ N ; ++i) do
39: if Vi ⊆ A then
40: for (j = i+ 1; j ≤ N ; ++j) do
41: if Vi ∪ Vj ⊆ A then
42: pinterVi∪Vj

= max(pinterVi∪Vj
, pinterA );

43: if pinterA > α then
44: for B ∈ σ(V) : B ⊆ A do
45: skipInterTests← skipInterTests ∪B;

46: return {pintraVi
: i = 1, . . . , N} and {pinterVi∪Vj

: i, j = 1, . . . , N s.t. i < j}.
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Figure 9: Relative computational savings of the α-TMTP w.r.t. the CMTP. Black
solid line for the intra–subetwork case, black dashed line for the inter–subnetwork case and red
solid line for the 2−k approximation.
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Table 7: Non-Syndromic vs Syndromic ASD. Intra- and inter- p-values adjusted with the 10%-
TMTP.

Left Central Right

Left < 0.001 0.002 0.002
Central 0.016 0.002
Right 0.004

Front. Interm. Temp.

Front. 0.002 < 0.001 ≥ 0.231
Interm. ≥ 0.169 < 0.001
Temp. 0.002

Left and right hemisphere. Frontal and posterior lobe.
pintra = 0.0002 – pinter = 0.0006 pintra = 0.0002 – pinter = 0.0004

F.L. F.C. F.R. I.L. I.C. I.R. T.L. T.C. T.R.

F.L. 0.031 ≥0.269 0.023 ≥0.181 ≥0.269 0.093 ≥0.197 ≥0.193 ≥0.269
F.C. ≥0.296 ≥0.181 ≥0.287 0.093 ≥0.296 ≥0.208 ≥0.287
F.R. 0.094 ≥0.112 0.067 ≥0.152 ≥0.206 ≥0.208 ≥0.112
I.L. ≥0.309 ≥0.169 ≥0.169 0.050 0.095 ≥0.181
I.C. ≥0.169 ≥0.140 0.022 ≥0.287
I.R. ≥0.510 ≥0.152 ≥0.510 0.060
T.L. 0.037 0.072 ≥0.187
T.C. 0.060
T.R. ≥0.309

Right and left hemisphere, frontal and posterior lobe.
pintra = 0.0004 – pinter = 0.0004
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Table 8: Non-Syndromic ASD vs Controls. Intra- and inter- p-values adjusted with the 10%-
TMTP.

Left Central Right

Left < 0.001 0.003 0.001
Central 0.026 0.002
Right < 0.001

Front. Interm. Temp.

Front. < 0.001 ≥ 0.146 0.021
Interm. 0.010 0.003
Temp. < 0.001

Left and right hemisphere. Frontal and posterior lobe.
pintra = 0.0002 – pinter = 0.0010 pintra = 0.0002 – pinter = 0.0034

F.L. F.C. F.R. I.L. I.C. I.R. T.L. T.C. T.R.

F.L. 0.003 ≥0.172 0.005 ≥0.163 ≥0.172 ≥0.172 0.033 ≥0.110 ≥0.163
F.C. 0.038 ≥0.163 ≥0.172 ≥0.172 ≥0.151 ≥0.110 ≥0.163
F.R. 0.001 ≥0.209 ≥0.171 ≥0.209 0.032 ≥0.209 0.095
I.L. ≥0.155 0.077 ≥0.209 0.006 ≥0.209 ≥0.163
I.C. ≥0.172 ≥0.639 ≥0.171 ≥0.151
I.R. ≥0.187 0.032 ≥0.219 0.085
T.L. 0.002 0.008 0.029
T.C. 0.038
T.R. 0.006

Right and left hemisphere, frontal and posterior lobe.
pintra = 0.0002 – pinter = 0.0006
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