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Abstract

We propose a Bayesian semiparametric regression model to represent mixed-type

multiple outcomes concerning patients affected by Acute Myocardial Infarction. Our

approach is motivated by data coming from the ST-Elevation Myocardial Infarction

(STEMI) Archive, a multi-center observational prospective clinical study planned as

part of the Strategic Program of Lombardy, Italy. We specifically consider a joint model

for a variable measuring treatment time and in-hospital and 60-day survival indicators.

One of our motivations is to understand how the various hospitals differ in terms of

the variety of information collected as part of the study. We are particularly interested

in using the available data to detect differences across hospitals. In order to do so
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we postulate a semiparametric random effects model that incorporates dependence

on a location indicator that is used to explicitly differentiate among hospitals in or

outside the city of Milano. The model is based on the two parameter Poisson-Dirichlet

prior, also known as the Pitman-Yor process prior. We discuss the resulting posterior

inference, including sensitivity analysis, and a comparison with the particular sub-

model arising when a Dirichlet process prior is assumed.

Keywords: Bayesian clustering; Bayesian nonparametrics; two parameter Poisson-Dirichlet

process prior; Random-effects models; Random Partition Models; Unbalanced binary out-

comes.

1 Introduction

Studies with multiple outcomes that are used to properly characterize an effect of interest are

becoming increasingly more common nowadays. In particular, in a clinical context, multiple

outcomes are often used to characterize the patient’s status or the performances of health

care service with respect to patients’ management (see, for example Normand, 2008; Parekh

et al., 2011; AHRQ, 2015).

This paper is concerned with the analysis of data collected in a clinical registry named

STEMI Archive (Lombardia, 2009; Ieva, 2013), which is a result of a wider comprehensive

project, namely The Strategic Program “Exploitation, integration and study of current and

future health databases in Lombardy for Acute Myocardial Infarction”; for additional infor-

mation, visit http://ima.metid.polimi.it This project is funded by the Italian Ministry

of Health. Its main goal is to enhance the integration of different sources of health informa-

tion so as to automate and streamline clinicians’ work flow, and that all the data collected

can be generally used. We specifically consider outcomes of patients with ST segment eleva-

tion myocardial infarction (STEMI) diagnosis admitted to a hospital. STEMI is caused by

an occlusion of a coronary artery which causes an ischemia that, if untreated, can damage

heart cells and make them die (infarction). It is fundamental for the patient’s recovery to

do a reperfusion therapy (i.e. restoration of the blood flow to the ischemic tissue) as quickly

as possible, since its benefits decrease highly non-linearly with treatment delay. All patients

in the study were treated with Percutaneous Transluminal Coronary Angioplasty (PTCA).
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Data were recorded in a registry collecting clinical outcomes, process and time indicators

measuring the way the health care structures manage the patients, and personal information

on patients with STEMI diagnosis admitted to hospitals of Lombardy. These data were com-

bined with information coming from the standard administrative database, so as to obtain

out of hospital mortality (i.e., mortality for any reason). Data in the survey are grouped by

hospital of admission. This automatically induces a policy issue about the effect that such

grouping may have on patients’ outcome, which is the main motivation for this work.

We propose a Bayesian nonparametric hierarchical model that includes a cluster analysis,

aimed at identifying profiles or hospital behaviors that may affect the outcome at patient

level. In particular, we introduce a multivariate regression model, where the response has

three mixed-type components. The components are, respectively: (i) the door to balloon

time (DB), i.e. the time between the admission to the hospital and the PTCA; (ii) the

in-hospital survival; and (iii) the survival after 60 days from admission. The first response

(continuous) is essential in quantifying the efficiency of health providers, since it plays a key

role in the success of the therapy; the second is the basic treatment success indicator, while

the third concerns a 60-days period, during which the treatment effectiveness, in terms of

survival and quality of life, can be truly evaluated. Note that the last two responses are

binary, so that, as a whole, the multivariate response is of mixed type.

The modeling of multiple outcomes from data collected in STEMI Archive was previously

discussed in Ieva et al. (2013), under a semiparametric frequentist bivariate probit model.

Their aim was analyzing the relationship among in-hospital mortality and a treatment ef-

fectiveness outcome in presence of endogeneity, a problem which poses serious limitations

to covariate adjustment since the use of classical techniques may yield biased and incon-

sistent estimates. In contrast, we focus on a joint model for the grouped outcomes. In

particular, as discussed below, our focus is on finding relevant groups of hospitals in terms

of patient-specific characteristics, which may assist in further planning and policy making.

In recent years, there has been a considerable interest on developing models that over-

come the challenges posed by the the mixed nature of outcomes. Sammel et al. (1997) discuss

a model for mixed discrete and continuous outcomes where the multiple outcomes correlate

through subject-specific latent variables. The observed outcomes are thus manifestations
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of unobserved latent variables, and conditionally on these, the outcome components are as-

sumed independently distributed according to the exponential family, whose parameters are

allowed to be a function of the latent variables as well as other component-specific covariates.

Dunson and Herring (2005) proposed a Bayesian latent variable model for clustered mixed

outcomes that allows nonlinear relationships between covariates and latent variables, and

uses multiple latent variables for different types of outcome as well as covariate-dependent

modifications of these relationships. In contrast, a single linear combination of the covariates

is used to predict multiple outcomes simultaneously in the Bayesian multivariate model by

Weiss et al. (2011), where correlations among outcomes are modeled by latent variables.

Bello et al. (2012) present a hierarchical Bayesian extension of bivariate generalized linear

models whereby functions of the variance-covariance matrices are specified as different linear

combinations of fixed and random effects.

A somewhat different approach for bivariate outcomes of mixed type arises by factorizing

the joint distribution of outcomes and introducing latent variables to model the correlation

among the multiple outcomes. The main idea of this method is to write the likelihood as

the product of the marginal distribution of one outcome and the conditional distribution

of the second given the previous one. In particular Cox and Wermuth (1992) discuss two

factorization models for a continuous and a binary outcome as functions of covariates. In

Catalano and Ryan (1992) and Fitzmaurice and Laird (1995) the factorization approach is

extended to clustered data.

Our approach is based on factorizations. In particular, we factorize the likelihood factor

for the three responses for each patient as the product of (i) the marginal likelihood of the

continuous response (DB time); (ii) the distribution of the in-hospital survival given DB

time; and of (iii) the 60-days survival, given the previous two. All these conditional distribu-

tions lie within the class of univariate generalized linear mixed models, with random-effects

given by hospital intercepts. Covariates corresponding to the other regression parameters

include those related to hospital admission, patient’s clinical status at hospital admission,

and patient’s general health status. A full description of available covariates is given in Sec-

tion 2. To deal with differences across hospitals, we adopt a nonparametric random effects

approach, with a random distribution function that is allowed to vary with an indicator
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that explicitly differentiates among hospitals in or outside the city of Milano. We adopt an

ANOVA-Dependent Pitman-Yor process prior for hospital effects, that is, a family of dis-

tribution of dependent random probability measures with (marginal) almost surely discrete

trajectories that generalize the Dirichlet process (DP). Such priors induce a random partition

of the hospital labels. As we discuss later, the Pitman-Yor process (PY) process includes

two parameters that allow for increased flexibility in the prior clustering structure compared

to the DP. This is particularly useful to achieve one of our main goals, that is, to estimate

a latent clustering among hospitals from the dataset, identifying groups of care providers

affecting outcomes at patient level in a similar way. In this context, a cluster analysis of the

hospitals is straightforward, based on posterior estimates of the induced random partition

parameter itself. Besides marginal posterior inference on all relevant parameters, we discuss

predictive inference for new hospitals, and hospitals clustering. Moreover, some competitor

models are considered and compared to the proposed one through predictive goodness-of-fit

tools.

The rest of this paper is organized as follows. Section 2 states the main inference ques-

tions that drive the analysis, also giving a complete description of the responses and available

covariates. Section 3 describes the adopted model in detail, and posterior inference, imple-

mentation details and comparison among different models are discussed in Section 4. Final

comments are given in Section 5.

2 Motivation and Data Description

We consider a dataset coming from the integration of a clinical registry named STEMI

Archive (Lombardia, 2009; Ieva, 2013), with data from the administrative health database.

Our focus is on data from patients in any of the hospitals in Lombardy, and the analysis of

their time to treatment, their in-hospital and 60-days survival outcomes. Our goals are (i)

to understand the effect of other factors on the selected outcome variables; (ii) to compare

marginal posterior distributions of the different nonparametric components; (iii) to compare

hospital performances by means of a cluster analysis; and (iv) to make predictions for new

hospitals entering the study (e.g., hospitals outside the region, but in districts gravitating

towards Lombardy).
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A similar problem, with a related dataset, was already considered in Guglielmi et al.

(2014). However, there are differences in the two statistical problems tackled, and in the

two datasets analyzed. In particular, in Guglielmi et al. (2014), the interest was on building

a model for predicting only the in-hospital survival after STEMI at patients’ level, and to

provide model-based clustering of the providers. This goal was achieved via a univariate

regression model having patient’s in-hospital survival as the response. On the other hand, it

is known that one of the crucial factors influencing in-hospital survival for STEMI patients

is treatment time (see for example De Luca et al., 2004; Antoniucci et al., 2002), which was

considered as a fixed covariate in the latter paper. Here we focus not only on the causal

relationship among in-hospital survival and treatment time, but we also aim at uncovering

determinants (both logistic and environmental) affecting times to treatment, jointly with the

two survival outcomes. What strongly motivates the different dataset we analyze here is the

statistical interest in survival beyond discharge time, which would be of great help to better

understand the disease progression and health recovery of STEMI patients.

The dataset at hand includes information about n = 697 patients treated with PTCA

in J = 33 hospitals of Lombardy, 12 of these located in Milan. The number of patients per

hospital ranges from a minimum of 5 to a maximum of 60, with mean 21. The available

information about each patient are then the hospital of admission, the mode of admission (a

binary variable indicating whether the patient was delivered by rescue units of 118, which is

the Italian toll-free emergency number), demographic features such as age and gender, the

severity of infarction, risk factors (such as diabetes, smoking and high cholesterol), times to

treatment or intervention, and process indicators within the pre- and in-hospital phase. We

resumed all the information content of the dataset through the following list:

• DB (Y1): the time between the admission to the hospital (Door) and primary angio-

plasty (Balloon);

• ALIVEIN (Y2): the in-hospital survival;

• ALIVE60 (Y3): the survival after 60 days from admission.

These three variables represent the outcome. Observe that the dataset is strongly unbal-

anced: 96.84% of patients are alive after the discharge and 98.37% of them are alive after
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60 days. The sample mean and standard deviation ofDB in the log-scale are 4.452 and 0.551.

The available covariates are listed here:

• ACCESS: 0 if the patient came to hospital by any rescue unit, 1 otherwise (by own

means). The sample mean is 0.597;

• ECG: time of the first electrocardiogram (minutes). The sample mean is 9.671 (std.

dev. 18.296);

• WE: 1 if the admission was on holiday, weekend or between 6pm-8am, 0 otherwise.

The sample mean is 0.469;

• AGE: age of the patient (years). The sample mean is 64.651 (std. dev. 13.122);

• GENDER: gender of the patient; 1 when male, 0 female. The sample mean is 0.776;

• RISK: 1 if patient had at least four among the following risk factors: diabetes, smok-

ing, hypertension, cholesterol, vasculopathy, previous infarction, chronic kidney dis-

ease, 0 otherwise. The sample mean is 0.105;

• KILLIP: 1 if the infarction was severe (Killip class 3 or 4), 0 otherwise (Killip class 1

or 2). The sample mean is 0.060;

• EF: ejection fraction at admission to hospital, i.e. the volumetric fraction of blood

pumped out of the ventricle with each heart beat (%). The sample mean is 47.858

(std. dev. 9.663);

• COMP: 1 if there were complications after the primary angioplasty, 0 otherwise. The

sample mean is 0.386;

• CKD: 1 if the patient had chronic kidney disease, 0 otherwise. The sample mean is

0.080;

• STres: 1 if the treatment was not effective, 0 otherwise; this covariate is quantified by

physicians as equal to 0 if there was a reduction of at least 70% in the ST-elevation

within one hour later angioplasty. The sample mean is 0.198;
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• HOSPITAL: hospital of admission of the patient;

• MILAN: 1 if the hospital is located in Milano, 0 otherwise; the sample mean is 0.445.

Treatment times (DB and ECG) are computed with respect to time of admission at the

hospital.

In Figure 1 we report the boxplots of the DB time (in logarithmic scale) stratified by

hospitals. The large variability and overdispersion due to the grouped nature of the data

suggests that it is reasonable to assume a random effect on the grouping factor.

1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 24 26 28 30 32

3
4

5

Figure 1: Boxplots of the DB time (in the log scale) stratified by hospitals. The red line is

the global median of all DB times.

Figure 2 (left panel) shows the sample survival proportions (at discharge and after 60 days

after discharge from hospital) per hospital. The right panel shows the difference between the

two survivals. Observe that for most cases, the in-hospital and 60-days survivals are very

similar. The two hospitals where this difference is the largest are 8 and 22.
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Figure 2: Sample survival proportions (at discharge and after 60 days) per hospital (left)

and their difference (right).

3 A multi-response Bayesian semiparametric model with

Pitman-Yor process prior

To achieve the goals described in Section 2, we propose a trivariate regression model of

mixed types, according to the three outcome variables described before. We use a Bayesian

semiparametric approach with a discrete random probability measure prior. This choice is

also due to the flexibility they provide in modeling data, as well as the implied robustness

against incorrect model specifications. See Müller and Quintana (2004) and Müller and

Mitra (2013) for a thorough discussion on Bayesian Nonparametrics. Moreover, the discrete

random measure model that we adopt as a prior for the hospital random-effects allows us to

infer on a partition of the hospital labels. The prior we set here is the Pitman-Yor process

(Pitman and Yor, 1997), which includes the (regular) DP chosen in Guglielmi et al. (2014)

as a special case. Model details will be given below and in the next section.

In particular, we consider a generalized linear model for the response of patient i treated in

hospital j, Yji := (Yji1, Yji2, Yji3) = (log(DBji),ALIVEINji,ALIVE60ji), with i = 1, . . . , nj ,
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j = 1, . . . , J . Since patients are admitted to hospitals, and one of the aims is to compare

the hospitals themselves, it is natural and straightforward to consider generalized linear

models with random intercepts to account for hospital variability. As usual, we assume

that observations, given parameters and covariates, are independent. To facilitate model

specification, we consider a conditional specification of the joint sampling model, conditional

on parameters and covariates, as

L(Yji1|par, cov)×L(Yji2|Yji2, par, cov)× L(Yji3|Yji2, Yji1, par, cov). (1)

Our assumptions in this case are the following: L(Yji1|par, cov) is a Gaussian linear regres-

sion, L(Yji2|Yji1, par, cov) and L(Yji3|Yji2, Yji1, par, cov) are logistic regression models.

Before detailing the covariates at the three levels, we point out that we have made an ex-

tensive and thoughtful choice of covariates. First we consulted with our experts (cardiologists

and health managers from different hospitals in Lombardy) to gain a better understanding

of the covariates to include in a parametric regression model where Yji is the response, as

in (1). The binary indicator MILAN of the geographical location of hospitals was included

among the covariates to select, unlike the hospital label. Then, we adopted two priors for

selecting the variables, i.e. the Normal Mixture of Inverse Gamma (NMIG) distributions

and the SSVS spike-and-slab prior in Rockova et al. (2012); see notation and details of the

priors there. In particular, under both priors, we fixed the variance of the spike and of the

slab components equal to 0.001 and 10, respectively; here we report the selection considering

all the covariates selected by the four highest posterior models under the NMIG prior. The

other prior gives consistent results.

If xjiℓ denotes the covariate vector for the sampling model at level ℓ = 1, 2, 3 of patient

i in hospital j, after covariates selection we got xji1 := (ACCESSji,ECGji,WEji,CKDji),

xji2 := (EFji,COMPji, Yji1, KILLIPji), and xji3 := (EFji,GENDERji, STresji,KILLIPji).

Note that with a slight abuse of notation, we added Yji1 to the set of covariates xji2.

It is interesting to note that, at first level, all the covariates (xji1) related to logistic and

organizational issues are retained: the way a patient is delivered to the emergency room, the

time at which she/he receives the first ECG, and the time at which she/he arrives (recall

this is coded as on/off hours), which are clearly related to the efficiency and the promptness

of the treatment received. Finally, the presence/absence of chronic kidney disease (CKD)
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is also meaningful, because this condition may influence the time to intervention, as it is

likely that more complex procedures will be required before undergoing surgery, since the

radiocontrast agent may harm kidneys. On the other hand, in-hospital survival in STEMI

patients undergoing angioplasty in this dataset will be modeled as depending on the initial

patient’s heart condition (EF), treatment time DB, severity of infarction (as indicated by

KILLIP) and the presence of complications after PTCA (COMP). Finally, our model for

mid-term survival (here ALIVE60) includes the initial heart condition (EF) and the severity

of infarction (KILLIP) as well, and, of course, whether the treatment had been effective

(STres); moreover, it results to be significantly influenced also by the gender of the patient

(GENDER). Note that the age of the patient was never selected, even under different

variances of the prior, or under the SSVS spike-and-slab prior. However, gender is usually

highly correlated to age in STEMI patients (Trappolini et al., 2001; Vakili et al., 2001).

Finally, it is worth mentioning that the selection included the binary indicator MILAN for

explaining the first and the third responses, but we decided to include this information in

the non-parametric component; see details below.

Now, once that the covariates have been selected, let us introduce the model. Recall that

i = 1, . . . , nj indexes patients treated in hospital j, for j = 1, . . . , J . We assume that the

conditional distributions in (1) are:

Yji1|µji, σj ∼ N (µji, σ
2
j ), µji = β1

Txji1 + b1φjj
(2)

Yji2|pji, Yji1 ∼ Be(pji), logit(pji) = β2
Txji2 + b2φjj

(3)

Yji3|qji, Yji1, Yji2 ∼











Be(qji) if Yji2 = 1

δ0 if Yji2 = 0
, logit(qji) = β3

Txji3 + b3φjj
. (4)

Here, as usual, δ0 denotes the degenerate distribution in 0.

Observe that in (2)-(4), parameters b1φjj
, b2φjj

, b3φjj
, σj represent hospital-specific random

effects; the former three are random intercepts, while the latter is the standard deviation of

the first response. Notation φj is a dummy variable indicating if the hospital is in Milano,

or outside the city. In fact, the management of emergencies is pretty different in or outside

the city, due to the different concentration of providers on the territory and to the related
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accessibility. These are expected to affect times to intervention and, through them, patients’

outcomes. On the other hand, Milano can be considered as a hub, resulting more attractive to

patients and then characterized by a wider spectrum of cases. Therefore, it seems reasonable

to establish an explicit difference in the random effects, according to whether the hospital

is in (b11) or outside of (b10) Milano. In fact, a feature of our model is that we allow the

entire shape of the random effects distributions to change according to this geographical

characteristic. This is exactly the reason why we consider a dependent nonparametric prior

specification; see details below.

Consequently, our inference will mainly focus on parameter

θ = (β1,β2,β3, (b
1
0j , b

1
1j , b

2
0j , b

2
1j , b

3
0j , b

3
1j , σj, j = 1, . . . , J)),

where J is the number of hospitals in the dataset. We assume a priori independence of all

components of θ and:

β1 ∼ N4(0, 100I4), β2 ∼ N4(0, 100I4), β3 ∼ N4(0, 100I4), (5)

and for j = 1 . . . , J ,

σj
iid
∼ U(0, 10), (6)

(b10j , b
1
1j , b

2
0j , b

2
1j , b

3
0j , b

3
1j)|P

iid
∼ P, P ∼ PY (a, g, P0). (7)

By P ∼ PY (a, g, P0) we mean that P is a Pitman-Yor process (Pitman and Yor, 1997),

sometimes known as the two-parameter Poisson-Dirichlet process, with parameters 0 ≤ a < 1

and g > −a, while P0 is a probability measure on R
6. When a = 0, the DP case is recovered.

Observe that the nonparametric part specification (7) together with the sampling model (2)

– (4) results in a generalization of the ANOVA-DDP prior in De Iorio et al. (2004).

For ease of computation it is useful to introduce the stick-breaking representation for P

(Pitman, 1995):

P =
∞
∑

i=1

Viδτi , where {Vi} ⊥ {τi}, (8)

and τis are iid according to some distribution and {Vi} are stick-breaking weights, i.e.

V1 = Z1, Vj = Zj

j−1
∏

i=1

(1− Zi) j ≥ 2, Zi
ind
∼ Beta(1− a, g + ia), i = 1, 2, . . . . (9)
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It is well-know that a random sample from a distribution F that is assigned a discrete random

prior probability measure such as (7) induces a random partition ρ of corresponding labels.

In this case, the partition is induced on the hospitals labels {1, 2, . . . , J} by (7). Thus,

hospitals would be grouped by identifying those with identical random intercept, according

to (2)–(4). In this way, we will be allowed to carry out model-based clustering by computing

a summary estimate of the posterior distribution of the random partition ρ. The induced

partition structure is more general than that coming from the particular DP case.

Next, we assume for the locations τi ∈ R
3 the parameterization usually adopted for the

ANOVA-DDP prior, i.e.

τi = τ0i + τ1iηi,

where ηi is 1 if the patient i was admitted to an hospital in Milano, and 0 otherwise. On the

whole, the location parameters are identified by (τ01i, τ11i, τ02i, τ12i, τ03i, τ13i), and we assume

they are iid from the base probability measure P0 on R
6 given by the product measure of six

independent Gaussian distributions with random means and variances:

P0 = N (m1, λ
2
1)×N (m2, λ

2
2)×N (m3, λ

2
3)×N (m4, λ

2
4)×N (m5, λ

2
5)×N (m6, λ

2
6)

(m1, . . . , m6, λ1, . . . , λ6) ∼ πm × πλ.
(10)

The prior clustering is controlled by hyperparameters a and g in (7). For fixed a, the

number of clusters is stochastically increasing with g. This can be seen as a “rich gets richer”

property of the PY that is also shared by the DP. This effect is attenuated by the parameter

a, which can be thought of as a discount parameter.

The model specification is completed by assuming

mi
ind
∼ N (mi0, σ

2
i0), λi

iid
∼ U(0, λ0) i = 1, . . . , 6, (11)

but other weakly informative choices could be considered as well.

Before discussing specific results, we point out that we tried extensive posterior simulation

experiments under several types of priors for the PY parameters a and b. These experiments

found a number of posterior simulation problems, such as poor mixing of certain parameters,

but also, none of the models we tried produced a better fitting to the data than what we

will describe in Section 4.
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4 Posterior inference

4.1 Model details

It is quite common in practice to consider a truncated version of the stick-breaking represen-

tation (8)–(9) so as to work with a finite mixture model (see Ishwaran and Zarepour, 2002).

This is achieved by considering a number of components, say H , and setting ZH = 1 in (9).

Posterior inference can then be implemented through a standard Gibbs sampler algorithm,

which we coded in JAGS (Plummer, 2003) with the aid of R (R Development Core Team,

2012). In what follows, we always use the first 50,000 iterations as burn-in, and saving

every 75-th iteration after that, to complete a Monte Carlo posterior sample of size 5,000.

Standard convergence diagnostics criteria such as those available in the R package CODA

(Plummer et al., 2006) were applied to all parameters, indicating that convergence had been

achieved.

To fit the model, we selected hyperparameter values that reflect lack of prior information,

in other words, a vague yet proper prior distribution. Specifically, we chose

mi0 = 0, σ2
i0 = 25, i = 1, . . . , 6, λ0 = 5.

The prior for the Pitman-Yor process was specified as follows. We fixed a = 0.3 and b = 0.5

so that the prior mean and variance of KJ are equal to 5.285 and 6.113, respectively.

4.2 Posterior Summaries

Table 1 reports the 95% posterior credible intervals, as well as the posterior marginal proba-

bility on the negative reals, for the fixed-effects parameters at all the three levels. From the

reported inference, it is clear that patients who were not delivered by the 118 service and/or

arrived at weekends or nights are penalized in terms of DB time. Furthermore, as expected,

an increase of ECG time yields an increase of DB, testifying the importance of executing

promptly ECG to the patients when infarction diagnoses are suspected. Also the presence

of CKD results significant: as we said before, this makes sense since complications may arise

when treating a patient whose kidneys do not work properly.

For the in-hospital survival probability (level 2), patients with a more severe infarction
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Level 1 Level 2 Level 3

Parameter 2.5% 97.5% p− Parameter 2.5% 97.5% p− Parameter 2.5% 97.5% p−

ACCESS -0.015 0.133 0.059 EF 0.692 1.732 0 EF 0.708 1.578 0

ECG 0.106 0.161 0 COMP -5.543 -1.229 1 GENDER -1.120 0.851 0.604

WE 0.012 0.141 0.013 Y1 -1.288 0.588 0.764 STres -1.520 0.284 0.912

CKD 0.032 0.318 0.007 KILLIP -2.382 0.151 0.963 KILLIP -2.491 -0.301 0.994

Table 1: Posterior 95% credibility intervals for the fixed-effects parameters; p− is the posterior

probability that the parameter is negative.

and/or with complications after PTCA are penalized. Also an elevated DB time (Y1) de-

creases significantly the survival probability. On the other hand, the ejection fraction at

admission (EF) has a positive effect on in-hospital survival.

Similarly, EF and KILLIP have positive and negative effect, respectively, on 60-days

survival, while the negative results of PTCA, quantified by the STres, plays a negative role

as expected. Even if it is clear that gender has a negative effect, this is rather moderate.

In Figures 3 and 4 we provide posterior 95% CIs of the hospital random intercepts; in all

these figures, as before, the hospitals are ordered from left to right by increasing number of

patients available in the sample. The last two intervals in each panel represent predictions for

random intercepts corresponding to two hypothetical new hospitals, located in (continuous

red) and outside (dashed blue) Milano. It is clear that there is a hospital effect in the first

DB times (see the variability of the estimates in Figure 3). In particular, hospitals located in

Milano show a lower variability than those located outside. On the other hand, there is much

more homogeneity in the random intercepts at the second and third level. This behavior can

be explained because all the coronary units treat patients according to general standards,

which yields rather uniform hospital performances in terms of in-hospital survival.
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Figure 3: Posterior CI of b1j , the random effect parameters at the first level of the likelihood.

Hospitals located in Milano are depicted in dashed (blue) lines, those outside Milano in solid

(red) lines, and bullets are the posterior medians. The last two intervals represent predictions

(medians are marked by crosses) for random intercepts corresponding to two hypothetical

new hospitals, located in (red) and outside (blue) Milano. For reference, the horizontal line

represent the mean of all displayed means.

We have also computed posterior predictive estimates of the different nonparametric

component of the mixing measure. Figure 5 displays posterior estimates of the components

of P =
∑H

i=1
Viδτi . In particular, the first row shows the first (left) and second (right)

predicted components (level one in the likelihood, i.e. the posterior of
∑H

1
Viδτ01i and of

∑H

1
Viδτ01i+τ11i), and similarly for the third and fourth (level two in the likelihood) and fifth

and sixth (third level in the likelihood) components. Dashed (blue) lines correspond to
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Figure 4: Posterior 95% CIs of the random intercepts b2 (left) and b3 (right): hospitals

located in Milano are depicted in dashed (blue) lines, those outside Milano in solid (red)

lines, and bullets are the posterior medians. The last two intervals represent new random

intercepts for a hospital in and outside Milano, with crosses representing posterior medians.

0.025 and 0.925 quantiles, while the solid central lines represent the respective means (i.e.

the Bayesian estimates). The last 50 iterations are superimposed (in red). The picture

shows a difference in the variability of the sampled trajectories, at least at the second and

third level. The results in Figure 5 are in agreement with the information conveyed by the

marginal posterior distributions of m2, m4 and m6 (not reported here), which represent the

average difference in the random effect parameters between hospitals in or out of Milano.

In fact, the marginal posterior distribution of m2 is concentrated around 0 (posterior mean

and variance are -0.152 and 0.152, respectively), denoting that on average there is no Milano

effect on the logDB response. The marginal posterior distributions of m4 and m6 are much

more spread out.

4.3 Posterior inference on clustering

As pointed out earlier, the discrete trajectories of the nonparametric prior assumption imply

a clustering of the hospitals. We found that the posterior mean and variance of KJ , the

number of groups among hospitals, are 5.602 and 3.795, respectively, with a posterior mode
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of 4 (but 5 has a posterior probability very close to that of 4). Figure 6 displays the whole

estimated posterior distribution.
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Figure 6: Posterior distribution of the number of groups among the hospitals.

The Bayesian cluster estimate was here computed as the random partition of the hospital

labels {1, 2, . . . , 33} that minimizes the posterior expectation of Binder’s loss function, as

proposed in Lau and Green (2007); this function assigns cost w when two elements are

wrongly clustered together and cost u when two elements are erroneously assigned to different

clusters. For equal misclassification costs w and u, we obtained 9 clusters in total, but only 4

with sizes larger that 1. Table 2 reports the four non-singleton groups in the cluster estimate.

We underline that this estimate agrees with the least squares estimate of Dahl (2006).

Cluster APY : {1, 3, 4, 6, 8, 11, 13, 15, 17, 18, 19, 20, 25, 27, 28, 30, 31, 33}

Cluster BPY : {12, 16, 24, 29}

Cluster CPY : {9, 22, 26}

Cluster DPY : {5, 7, 10}

Table 2: Hospital clusters with sizes larger than 1 from the proposed model under the

Pitman-Yor process prior when a = 0.3 and b = 0.5.

We have computed sample means of responses and covariates per hospital clusters in Table 2,
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averaging over all patients of all hospitals in each group. Table 3 reports those values. Cluster

APY (the most populated) could be characterized as grouping patients with the highest DB

times and the lowest survival rates. This suggests that the hospitals in this group may

have procedures that could be improved to achieve a better performance. Note also that

the KILLIP rate in cluster APY is the highest among the groups, and higher than the

sample grand mean (0.06). In contrast, clusters BPY and DPY group hospitals with patients

having less severe infarction. In addition, clusters BPY and DPY differ in the associated

complications exhibited by patients and in the way patients accessed the hospitals. Finally,

cluster CPY contains only hospitals outside Milano and the corresponding patients have on

average the lowest ECG values in the sample.

groups APY BPY CPY DPY

No. hospitals 18 4 3 3

No. patients 398 106 72 29

Y1 (DB) 115.455 87.953 83.514 80.966

Y2 (ALIVEIN) 0.955 1.000 0.986 0.966

Y3 (ALIVE60) 0.940 1.000 0.944 0.966

MILANO 0.475 0.387 0.000 0.276

ACCESS 0.555 0.642 0.597 0.414

ECG 10.487 10.708 6.764 8.448

WE 0.440 0.481 0.417 0.448

CKD 0.090 0.028 0.111 0.103

EF 47.621 49.519 49.208 47.310

COMP 0.465 0.236 0.333 0.586

KILLIP 0.083 0.000 0.056 0.000

AGE 64.500 65.104 64.931 68.276

GENDER 0.802 0.708 0.819 0.724

STres 0.176 0.226 0.250 0.069

Table 3: Responses and covariates summaries by clusters in Table 2, for a = 0.3, b = 0.5.
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4.4 Predictive goodness-of-fit

We consider now predictive checks for the proposed model. We first computed the log

pseudo-marginal likelihood (LPML) statistic (Geisser and Eddy, 1979) for this model. This

corresponds to the product, in the log scale, of the conditional predictive density of the

responses, i.e.

LPML =

n
∑

i=1

log(CPOi),

where CPOi represents the conditional density (evaluated at yji), of Yji, given all the other

observations. We also computed the mean squared error MSE of the prediction errors, i.e.

the mean of SEi over hospitals given by

SEi = (Yji1 − µ̂ji)
2 + (Yji2 − p̂ji)

2 + (Yji3 − q̂ji)
2,

where the hat denotes the posterior expectation of the corresponding parameters. Following

Gelman et al. (2014), we also considered the Watanabe-Akaike information criterion (WAIC),

computed as the log pointwise predictive density, incorporating bias corrections. Specifically,

we computed

WAIC1 = lppd− pWAIC1
and WAIC2 = lppd− pWAIC2

,

where lppd is the log pointwise predictive density, i.e. the product (in the log scale) of the

conditional densities (evaluated at yji), of Yji, given all the data, and then adding the two

alternative corrections pWAIC1
and pWAIC2

for effective number of parameters to adjust for

overfitting. The bias correction pWAIC1
is similar to the bias correction in the definition of

the DIC, while pWAIC2
is the sum of the posterior variances of the conditional density of the

data. For further details, see Section 3 of Gelman et al. (2014). The computed predictive

goodness-of-fit measures are in Table 4.

4.5 Comparison with competitor models

When introducying the proposed model (2)-(7), we aimed at justifying all the choices we

made. However it is natural to wonder whether simpler models could give similar inference.

While we are pretty satisfied about the conditional distribution of data, given parameters
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random effects prior PY (a = 0.3, b = 0.5) PY (a = 0, b = 1.53) Parametric

LPML -594.40 -593.037 -596.053

MSE 0.282 0.282 0.280

WAIC1 -581.847 -581.082 -582.096

WAIC2 -589.613 -588.974 -591.105

Table 4: Predictive goodness-of-fit measures when the prior of the random effects is the

Pitman-Yor process with parameters a = 0.3, b = 0.5, or a = 0, b = 0.5 (i.e. the Dirichlet

process with parameter b = 1.53), or parametric.

(see (2)-(4)), we acknowledge that other simpler priors could be considered here. We examine

some alternatives next.

First, let us consider the same prior as before, but now setting a = 0, which reduces

nonparametric prior to a Dirichlet process (DP). In this case we fixed b = 1.53 to match

the prior mean under the Pitman-Yor process prior component. In particular we now have

E(Kj) = 5.302 and Var(KJ) = 3.130. The estimated fixed effects under the DP prior are

very similar to those in Table 1 (data not shown).

We have also computed the posterior predictive estimates of the different nonparametric

components in the mixing measure. Comparing Figures 5 and 7 we find that the means are

almost identical, but the quantile curves in the DP case are a bit more separated from the

mean, suggesting a slightly increased posterior uncertainty in the corresponding posterior

distributions.

The cluster estimate we obtained in this case contains 8 groups, but only 5 have sizes

larger that 1. Table 5 describes the largest groups in the cluster estimate. Again, this

results agrees with what is obtained when using the least squares method of Dahl (2006).

The partitions are now a bit different, with the big cluster containing less points than the

PY case.

Table 6 reports sample means of responses and covariates per hospital clusters, averaging

over the entire set of patients in all hospitals forming each group in Table 5. The largest

cluster here is similar to that in Table 3, but with two less members. However the other
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Cluster ADP : {1, 3, 6, 8, 11, 13, 15, 18, 19, 20, 25, 27, 28, 30, 31, 33}

Cluster BDP : {4, 7, 17, 21, 29}

Cluster CDP : {9, 14, 16, 24}

Cluster DDP : {10, 23, 26}

Cluster EDP : {5, 22}

Table 5: Hospital clusters with size larger than 1 from the proposed model under the Pitman-

Yor process prior when a = 0 and b = 1.53; this corresponds to assuming a Dirichlet process

prior with parameter b = 1.53.

groups cannot be as clearly interpreted in terms of responses as in the case of the proposed

PY process model. For instance, the mean values of DB are ordered in Table 3, unlike in

Table 6. Under the previous case, the hospitals with highest averages of both in-hospital

and 60-days survival were in the second largest cluster. In contrast, here the best hospitals

in terms of in-hospital survival are split in the third and fifth largest clusters, while those

with highest average 60-days survival are in the largest third and second groups.

As a final remark on comparison between these competitors, we should underline that,

according to Table 4, the DP prior is slightly superior. The differences in values between

the several criteria reported there are minimal though, and we still prefer the Pitman-Yor

model because of a clearer interpretation of the selected partition, as discussed earlier.

We also considered a non-dependent version of the proposed Pitman-Yor model, which

eliminates the in/out of Milano indicator in the random effects. Specifically, we change bℓφjj

to bℓj for ℓ = 1, 2, 3 and j = 1, . . . , J in (2) – (4). Doing so we obtained predictive check

values comparable to those already reported in Table 4, but miss the subtle yet relevant

differences in the predictive curves (left versus right panels) in Figures 5 or 7.

Another natural comparison involves a model with a parametric prior for random effects.

Under this alternative model, the likelihood is the same as in (2) – (4), but now the random

effects are assumed to be i.i.d. draws from the baseline distribution (10). Fitting this

model produced fixed effects estimates quite similar to those in Table 1. Regarding random

effects, the CIs for the b1 parameters are similar to those in Figure 3, but differences arise

for the b2 and b3 terms (data not shown). The predictive check measures for this model
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groups ADP BDP CDP DDP EDP

No. hospitals 16 5 4 3 2

No. patients 375 99 73 72 37

DB 115.648 101.374 86.521 74.625 85.351

ALIVEIN 0.952 0.980 1.000 0.958 1.000

ALIVE60 0.936 0.980 1.000 0.958 0.919

MILANO 0.504 0.081 0.753 0.000 0.000

ACCESS 0.544 0.697 0.534 0.583 0.595

ECG 9.899 13.818 12.356 5.556 5.108

WE 0.445 0.434 0.466 0.514 0.486

CKD 0.093 0.091 0.027 0.056 0.189

EF 47.211 49.869 51.068 47.181 48.946

COMP 0.469 0.313 0.329 0.417 0.108

KILLIP 0.083 0.061 0.014 0.056 0.000

AGE 64.485 66.293 64.178 63.181 66.541

GENDER 0.795 0.687 0.753 0.819 0.865

STres 0.176 0.232 0.288 0.208 0.270

Table 6: Responses and covariates summaries by clusters in Table 5, when a = 0, b = 1.53;

this corresponds to a Dirichlet process prior for the random effect parameters.

are also presented in Table 4. Note that, except for the mean squared error (MSE), the

non-parametric alternatives produce better fits to the data.

5 Conclusions

We have presented a framework for semiparametric Bayesian modeling of mixed-type multi-

ple outcomes for Acute Myocardial Infarction patients admitted to hospitals in Lombardy;

we considered patients with STEMI diagnosis and treated with PTCA. Specifically, we have

proposed a Bayesian nonparametric hierarchical model for cluster analysis, aimed at identi-

fying hospital behaviour that may affect the outcome at patient level. We have considered
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a conditional specification of the joint model for three responses: the door to balloon time

(DB), the in-hospital survival and the survival after 60 days from admission. Each condi-

tional is a generalized linear model with random intercepts to account for hospital variability.

We postulated a nonparametric prior for the random effects that incorporates dependence

on a location indicator, which is used to explicitly differentiate among hospitals in or out-

side the city of Milano. The random effects are a sample from the Pitman-Yor process,

more flexible than Dirichlet process prior, however encompassing the DP. We have provided

Bayesian estimates of the random effect parameters, predictive inference for the nonpara-

metric components of the prior, as well as cluster estimates for the grouping of the hospitals.

Finally, we have considered a number of competitor models, either purely parametric, or

with a nonparametric component. Though all the models provide similar results in terms of

the fixed effects estimates, the most flexible model (where the random effects are modeled

from the Pitman-Yor process) seems the one able to explain better the underlying clustering

structure. Code of the proposed model is available from authors upon request.
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Figure 5: Posterior predictive 95% CIs of the components of P . See the text for an explana-

tion. Dashed (blue) lines correspond to quantiles, the solid central is the mean (the Bayesian

estimates). The last 50 iterations are superimposed (in red). The left (right) column displays

trajectories of the three random components related to hospitals outside (in) Milano.
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Figure 7: Posterior predictive 95% CIs of the components of P when a = 0, b = 1.53. Dashed

(blue) lines correspond to quantiles, the solid central is the mean (the Bayesian estimates).

The last 50 iterations are superimposed (in red). The left (right) column displays trajectories

of the three random components related to hospitals outside (in) Milano.
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