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Abstract

This work presents a statistical model for operational risk management.
We distinguish different types of operational Event, we model the probabil-
ity of event occurrence (the frequency distribution) and the economic im-
pact of the single event (the severity distribution), and then the aggregated
distribution is obtained through convolution of frequency and severity, for
each event type. The main problem is the parameters estimation of the
severity distribution above a suitable threshold, that we consider as an un-
known parameter to be estimated as well. An application to a case study
is also presented.

1 Introduction

This work presents a statistical model for operational risk management. Such
risk includes losses deriving from natural disasters, system failures, human er-
rors or frauds. All financial institutions have to set a provision up, in order to
face such losses. This statistical model is based on the analysis of operational
losses time series. First of all, seven operational ETs (Event Types) can be
distinguished, according to the different causes. The idea of the model is to
fit each risk class separately and then aggregate them to obtain a single dis-
tribution. Hence, the provision can be computed through the VaR (Value at
Risk) indicator, defined as the 99.9% quantile of the aggregated distribution.
The approach proposed is an actuarial one: the probability of event occurrence
(the frequency distribution) and the economic impact of the single event (the
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severity distribution) are treated separately, and then an aggregated distribution
is obtained through convolution of frequency and severity, for each ET. A first
problem arises since losses with a small economical impact are often neglected,
hence they can rarely be trusted. Thus, the severity distribution is fitted with
truncated distribution, above a threshold, which is fixed by the bank. Moreover,
due to the sensibility of the capital at risk with respect to high level quantiles,
the right tail of the severity distribution, which includes losses above a certain
threshold, which has to be estimated, is fitted with the GPD (Generalized Pareto
Distribution), which is the most appropriate in extreme values theory. On the
other hand, the frequency distribution is modeled with Poisson distribution,
considering only losses above the lower threshold for the estimation. Thus, ac-
cording to the actuarial approach, each ET aggregated annual loss distribution is
obtained through convolution, via Monte Carlo simulation, under the appropri-
ate independence hypothesis. Finally, the ETs multivariate distribution, which
the VaR is computed on, is obtained exploiting copulas, which allows to aggre-
gate marginal distributions maintaining the desired dependence structure. In
Section 2 operational risk management is introduced and the considered ETs
are detailed. In Section 3 the model for severity is presented while Section 4 is
devoted to the the threshold selection and the estimation of GPD parameters.
Section 5 contains an application to a case study.

2 Operational risk management

Operational risk is defined as “the risk of loss resulting from inadequate or failed
internal processes, people and systems or from external events” [1]. The main
characteristic of such risks is that, apart from the introduction of mitigation and
prevention procedures, they derive from the regular operations of the bank, and
therefore cannot be avoided.

The operational events are divided into seven Event Types (ETs), according
to the specific cause:

1. Internal Fraud: misappropriation of assets, tax evasion, intentional miss
marking of positions, bribery.

2. External Fraud: theft of information, hacking damage, third-party theft
and forgery.

3. Employment Practices andWorkplace Safety: discrimination, workers com-
pensation, employee health and safety.

4. Clients, Products, & Business Practice: market manipulation, antitrust,
improper trade, product defects, fiduciary breaches, account churning.

5. Damage to Physical Assets: natural disasters, terrorism, vandalism.

6. Business Disruption & Systems Failures: utility disruptions, software fail-
ures, hardware failures.

7. Execution, Delivery, & Process Management: data entry errors, accounting
errors, failed mandatory reporting, negligent loss of client assets.
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There are different methods that can be used to define the amount of capital to
be set aside in order to face the losses deriving from operational risk the follow-
ing year [1]. These methods are characterized by an increasing complexity and
a decreasing amount of capital at risk. The most interesting from a statistical
point of view are the so-called AMA (Advanced Measurement Approach) mod-
els, where the capital requirement is computed using internal models based on
operational loss data.

Different data sources have to be used in the internal model development, in
order to reach a more accurate determination of the capital at risk:

- Internal losses, deriving from operational events occurred in the bank.

- External losses, taken from public databases, usually available only above
a certain threshold.

- Perspective losses, derived from scenario analysis, only for extreme losses.

The model used for the capital allocation firstly considers each risk class sep-
arately and then aggregates through copulas, which are particular multivariate
distributions allowing to combine marginals maintaining the desired correlation
structure (see [6] and [12]). Hence, the prevision can be computed through the
VaR (Value at Risk) indicator, defined as the 99.9% quantile of the aggregated
distribution [1].

The approach proposed for the single ET modeling is an actuarial one: the
probability of event occurrence (i.e., the frequency distribution) and the eco-
nomic impact of the single event (i.e., the severity distribution) are considered
separately, and then an aggregated distribution is obtained through convolution
of frequency and severity [11].

In the following, the attention will be set on the severity distribution, focusing
on the main statistical techniques used to estimate it (see [14]).

3 The severity distribution

As mentioned before, the severity of a single operational event represents the
probability distribution of the economical losses deriving from it.

The usual approach in operational risk management consists in the division
of the severity distribution in two parts: the body is modeled with internal
losses, while the right tail, composed by extreme losses, is modeled exploiting
also external and scenario data, with a conservative approach. This technique
is typical in risk management, since the distributions used to fit the body often
underestimate the tail, thus obtaining an underestimation of the capital at risk
([13] and [10]).

The threshold u, above which events are considered extremes, is usually set
by the bank management, equal to the lowest loss of external and scenario data.
However, in the following, we present a new statistical method to choose this
parameter in order to have the best fit of the right tail.
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The resulting severity distribution is therefore composed as a mixture of two
different distributions. Let Xbody represent the random variable describing the
severity distribution limited to the body, with relative density function fbody,
and Xtail the random variable describing the severity distribution of the tail,
with density ftail. Thus, being X the random variable representing the economic
impact of a single operational event, its density is obtained through combination
of the two conditioned distributions:

• f∗
body(x) = fbody(x)/Fbody(u) is the body severity distribution conditioned
to X ≤ u;

• f∗
tail(x) = ftail(x)/ [1− Ftail(u)] is the tail severity distribution conditioned
to X > u.

Thus, we obtain the severity distribution, as follows:

f(x) =

{
ω · f∗

body(x) if x ≤ u

(1− ω) · f∗
tail(x) if x > u

(1)

where ω = Fbody(u) represents the weight of the body.

3.1 Estimation of body distribution

As far as the body is concerned, internal loss data are usually unreliable for
small amounts. Therefore, losses above a fixed threshold H cannot be used in
the fit of the severity distribution, implying the need for truncated distributions.

In details, if X ∼ F , then its truncated distribution is the law of X|X ≥ H
with the following cumulative distribution function G(x):

G(x) =

{
0 if x < H
F (x)−F (H)
1−F (H) if x ≥ H

(2)

In operational risk management, the most common theoretical distribution
used for the modeling of the body are the Lognormal and the Weibull distribu-
tions, whose densities expressions are given below:

gLN (x;µ, σ2) =
1

Φ
(
µ−logH√

σ2

) 1

x
√
2πσ2

e−
1

2σ2
(log x−µ)2

1[H,∞)(x) (3)

gW (x; θ, k) =
k

θ
xk−1e−

1

θ (x
k−Hk)

1[H,∞)(x) (4)

(5)

The relative parameters are computed via Maximum Likelihood Estimators,
using numerical optimization, since no explicit expression of the estimators can
be obtained (see [2] and [3]).
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3.2 Estimation of tail distribution

Considering the tail of the severity distribution (i.e., extreme losses) Extreme
Value Theory can be used. The idea is to use the Peaks Over Threshold method,
which allows to model the right tail of the distribution using only data above a
certain threshold (see [4] and [5]).

In particular, exploiting the properties of the block maxima approach, it is
possible to assume that the loss severity above the threshold u is distributed as
the Generalized Pareto Distribution. The cumulative distribution function of
X|X ≥ u is given by the following expression [8]:

FGDP (u, β, ξ)(x) = 1−
(
1 + ξ

x− u

β

)−1/ξ

(6)

with relative density function:

fGDP (u, β, ξ)(x) =
1

β

(
1 + ξ

x− u

β

)−1/ξ−1

(7)

The parameters of the GDP are the location parameter u (i.e., the threshold),
the scale parameter β, and the shape parameter ξ. As far as scale and shape
estimation is concerned, the most common methods used are Maximum Likeli-
hood Estimation (MLE) or Probability Weighted Moments (PWM). As far as
the MLE method is concerned, the GPD likelihood expression is the following:

L(β, ξ) =

k∏

j=1

f(yi;β, ξ) =

k∏

j=1

1

β

(
1 + ξ

yj
β

)−1/ξ−1

1[0,∞)(yj) (8)

It is straightforward to notice that no analytical solutions can be found deriving
this expression (or the relative log-likelihood) with respect to β o a ξ. Thus,
numerical optimization methods are required, in order to find the maximum of
the log-likelihood. For this reason, PWM method is usually preferred. This is
a generalization of the method of moments, introduced in [7]. Given a random
variable X with cumulative distribution F , the probability weighted moments
are defined as:

Mp,r,s = E [Xp{F (X)}r{1− F (X)}s] (9)

con p, r, s ∈ R. The method consists in equalizing these expressions with the
empirical weighted moments ωp,r,s, for particular values of p, r e s. In [8] the
authors showed how the estimators can be found using p = 1 e r = 0, obtaining
the following expressions:

β̂ =
2ω1,0,0ω1,0,1

ω1,0,0 − 2ω1,0,1
(10)

ξ̂ = 2− ω1,0,0

ω1,0,0 − 2ω1,0,1
(11)
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We refer to [9] for the determination of the expression of the empirical weighted
moments. If yj are i.i.d. from a GPD(u, β, ξ), and y(j) are the ordered values,
for j = 1, . . . , k, the expressions are the following:

ω1,0,0 =
1

k

k∑

j=1

yjω1,0,1 =
1

k

k∑

j=1

k − j

k − 1
y(j) (12)

A final consideration on the usage of the extreme value theory arises since
the additional data used (external and scenario losses) might cause a distortion
of the estimation, thus extreme losses have to be scaled considering the bank.
In particular, the scale parameter would be affected by scaling, while the shape
parameter is invariant to it, as will be shown in the following. Thus, the only tail
parameters estimated with external and scenario data is ξ, while β is obtained
through a continuity condition between body and tail at u:

ω · f∗
body(u) = (1− ω) · f∗

tail(u) (13)

which leads to:

β =
1− ω

ω · f∗
body(u)

=
1− Fbody(u)

fbody(u)
(14)

4 Threshold selection

As mentioned above, the main problem in the use of the GPD for extreme value
modeling is the determination of the appropriate threshold, above which losses
can be considered extreme. This is a critical choice, since using an excessively low
threshold would lead to a distortion in the estimation of the other parameters,
while overestimating u causes the exclusion of a high number of data, thus a
greater variability in estimation. The proposed approach exploits the behavior of
the theoretical mean and the parameters with the variation of the threshold. In
particular, we will show a possible way to choose the most appropriate threshold
v. Let us define the mean of the excesses of a random variable X over a certain
threshold v as E [X − v|X > v]. Then, if X is a random variable that can be
approximated with a GPD (u, β, ξ), then it can be proved that the mean of the
excesses over v ≥ u is:

E [X − v|X > v] =
β + ξ(v − u)

1− ξ
. (15)

In order to prove the expression (15), we can consider the expression of the
conditional mean:

E [X − v|X > v] =
1

1− FX(v)

∫ ∞

v
(X − v)fX(x)dx
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Since we are considering only values of X above u we have FX = FGPD and
fX = fGPD as in (6) and (7) respectively, thus:

E [X − v|X > v] = 1
(

1+ξ v−u
β

)

−1/ξ

∫∞
v (x− v) 1β

(
1 + ξ x−u

β

)−1/ξ−1
dx

= 1
(

1+ξ v−u
β

)

−1/ξ

[
ξ(v−u)+β+v−x

ξ−1

(
1 + ξ x−u

β

)−1/ξ
]∞

v

= β+ξ(v−u)
1−ξ

The most important property in this case is that the mean of excesses is linear
with respect to the considered threshold. The idea is therefore to identify the
correct threshold u′ such that, for every v above it, the mean of excesses has a
linear trend.

In particular, let us suppose to have a sample x1, . . . , xn fromX1, . . . , Xn i.i.d.
We will denote with x∗1, . . . , x

∗
nv

the elements of {x : x ≥ v}, being v a generical
v ≥ u′. The qualitative method here proposed consists of the identification of
the value v such that the plot of



v,

1

nv

nv∑

j=1

(
x∗j − v

)




has a linear trend. If such a behavior is observed, we can infer that we are above
the threshold such that X can be approximated with a GPD.

Of course, such considerations do not hold for high values of the threshold:
the less is the amount of extreme data available, the poorer is the estimate of
the mean, since the variability grows up.

In practical terms, the proposed approach considers the variation of the
threshold above u0, which is the minimum loss for external and scenario data
collection by the bank. For each selected u′ ≥ u0, a linear regression between
the mean of excesses and the variable threshold v ≥ u′ is carried on, considering
in particular the relative values of the R2. The candidate for the identification
of the “real” EVT threshold is chosen as the u′ with the highest value of R2.
Once this threshold has been chosen, a deeper analysis of goodness of fit of the
linear model has to be carried out. Moving to the parameters variation with
respect to the selected threshold, similar properties for β and ξ can be exploited
in the determination of the correct threshold for EVT. In particular, if X can
be approximated with a GPD (u, β, ξ), then, for every v ≥ u, X|X ≥ v can be
approximated with a GPD with the following parameters:

β′ = β + ξ(v − u) (16)

ξ′ = ξ (17)
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Considering the cdf of X|X ≥ v we obtain:

F (x|X ≥ v) =
FGPD(x)− FGPD(v)

1− FGPD(v)

=

1−
(
1 + ξ x−u

β

)−1/ξ
−
[
1−

(
1 + ξ v−u

β

)−1/ξ
]

(
1 + ξ v−u

β

)−1/ξ

= 1−
[
β + ξ(x− u)

β + ξ(v − u)

]−1/ξ

= 1−
[
1 + ξ

x− v

β + ξ(v − u)

]−1/ξ

which is the expression of the cdf of X ∼ GPD(v, β′, ξ′). Thus, expressions (16)
and (17) show that the scale parameter β is linear with respect to the variation
of v ≥ u, while ξ is constant.

The approach we are proposing exploits these two properties as a further
consolidation of the threshold identified through the analysis of the mean of
excesses. In particular, different parameters estimation with different thresholds
are carried on. Thus, the relative trends above the selected threshold are studied,
in order to confirm the choice (if linear trend for β and constant for ξ are
observed) or suggesting a review of the choice if such behaviors are not detected.

In the following section, we show how the previous techniques can be applied
to a real database, considering in particular the selection of the EVT threshold.

5 Application

The data we considered are provided by one of the major Italian banks, and
they have been scaled in order to maintain the privacy constraints. As far as
the tail is concerned, we take into account internal, external and scenario data,
which are available only above the threshold u0, fixed by the bank. The main
task is therefore, for each Event Type, to identify a threshold u′ ≥ u0 which
corresponds to the best fit of the GPD, as previously discussed. We show this
behavior for one selected ET. The same discussions can be carried out for the
others.

We firstly considered the properties introduced through the expression (15),
trying to detect which threshold would correspond to the best linear regression
between the different thresholds and relative empirical means of excesses. Figure
1, shows the different values of R2 obtained through the regressions. It results
that the highest value is at u1 = 2798.
We provide in Figure 2 the graph of the empirical means with respect to the
different thresholds, showing the accurateness of the linear regression. We can
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Figure 1: Identification of the most appropriate threshold u∗, obtained as the u
value corresponding to the regression model between the means of the excesses
and the different thresholds with the highest R2.

observe how the linear trend is not obtained for all the values greater than u0,
whereas such behavior is present above the identified threshold u1.
As before-mentioned, the same considerations can be done considering parame-
ters estimation. In particular, we considered the two described methods (MLE
and PWM) in order to further assess the threshold choice. We estimated ξ e β
for different thresholds, obtaining as a result the confirmation of the necessity
to choose a different value for u.

In Figure 3 we report the trend of the scale parameter β estimations with
respect to different thresholds, using the two methods. The graph clearly shows
how a linear trend is obtained only above the chosen threshold u1, as expected
from the expression (16). This is confirmed by the fact that the R2 values of the
two linear regressions are close to 1.

As far as the shape parameter ξ is concerned, the expression (16) proves that
this parameter is constant with respect to the threshold variation. For instance,
Figure 4 reports the estimations for different threshold, and it can be observed
how MLE method shows that the most appropriate threshold is u1, while the
same conclusions cannot be obtained considering PWM method.
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Figure 2: Graph of the empirical means of the excesses with respect to the
variation of the threshold above u0, considering the linear trends starting the
regression respectively from u0 and from u1.
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Figure 3: Graphs with the estimated values of β with methods MLE and PWM
resulting from the variation of the threshold.

6 Conclusions

In this paper we propose a statistical approach to the operational risk manage-
ment. In particular we focus our attention in modeling severity distribution and
choosing the right threshold for the excesses, in order to have the best fit of
the right tail. According to the actuarial approach each aggregated annual loss
distribution is then obtained via Monte Carlo simulation. In general the right
threshold, above which events are considered extremes, is usually set by the
bank management equal to the lowest loss of external and scenario data. The
main novelty of this work is the data-driven statistical approach to the threshold
estimation.

Acknowledgements This work has been done within a collaboration between
authors and Deloitte Consulting.

References

[1] Banca d’Italia (2006) ”Nuove Disposizioni di Vigilanza Prudenziale per le

Banche“, Circolare n. 263 del 27 dicembre 2006.

11



Figure 4: Graphs with the estimated values of ξ with methods MLE and PWM
resulting from the variation of the threshold.

[2] Bee, M. (2005) ”On Maximum Likelihood Estimation of Operational Loss

Distributions“. Discussion Paper No. 3, Dipartimento di Economia, Univer-
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