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Abstract

We construct and analyze non-overlapping Schwarz methods for a preconditioned weakly over-
penalized symmetric interior penalty (WOPSIP) method for elliptic problems.

1 Introduction

The weakly over-penalized symmetric interior penalty (WOPSIP) method was introduced in [10] (and
extended to higher order elements in [11]) for the Poisson problem: find u ∈ H2(Ω)∩H1

0 (Ω) such that

−∆u = f in Ω ,

u = 0 in ∂Ω ,
(1)

were Ω ⊂ R2 is a polygonal domain and f a given source term in L2(Ω). The WOPSIP method is stable
for any positive penalty parameter and satisfies quasi-optimal error estimates in both the energy and the
L2 norms. Moreover, its simplicity renders the method particularly suitable for parallel computations
(cf. [8]). However, due to the over-penalization, the condition number of the stiffness matrix is of order
O(h−4), h being the mesh-size. A simple block preconditioner was proposed in [10] that reduces the
condition number of the preconditioned system to O(h−2). A nice feature of the preconditioner is that
by construction it is well suited for parallel computations since it retains the intrinsic parallelism of the
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WOPSIP method. The goal of this paper is to further improve the performance of the preconditioned
WOPSIP method and to develop additive Schwarz methods for the resulting preconditioned WOPSIP
approximation, without destroying the parallel properties of the final linear algebraic system. We note
that overlapping additive Schwarz preconditioners for the unpreconditioned WOPSIP method were
investigated in [6], where the condition number of the subdomain problems remain O(h−4).

An outline of the paper is as follows. In the next section, we recall the preconditioned WOPSIP
discretization for the Poisson problem. Then, we introduce the Schwarz methods for the preconditioned
WOPSIP discretization and discuss some computational issues. The convergence analysis is carried
out in Section 4 and validated through numerical experiments in Section 5. Finally, the proof of some
technical results needed in our theoretical analysis is shown in the Appendix.

Throughout the paper, we shall use standard notation for Sobolev spaces (cf. [1]), and x . y will
mean that there exists a generic constant C > 0 (that may not be the same at different occurrences but
is always mesh independent) so that x ≤ C y. Analogously, x ≈ y will mean that C−1 y ≤ x ≤ C y,
for a constant C > 0.

2 Problem setting and WOPSIP discretization

In this section, we introduce some notation, recall the WOPSIP approximation and present some of
the properties of the formulation.

Let {Th}h>0 be a family of quasi-uniform triangulations of Ω. The mesh size is defined by h :=
maxT∈Th

diam T . We denote by Vh the first order discontinuous finite element space associated with
Th, defined by

Vh := {v ∈ L2(Ω) : v|T ∈ P1(T ) ∀ T ∈ Th} ,
where P1(T ) is the space of linear polynomials in T . The set of all the edges in Th is denoted by Eh;
the set of internal edges by E◦

h and the set of boundary edges by E∂
h , so that Eh := E◦

h ∪ E∂
h . For any

e ∈ Eh, he will denote the length of the edge e.

We use standard notation for trace operators [4] to define the jumps [[v]], [[τ ]] and averages {{v}}, {{τ}}
of (sufficiently regular) scalar and vector–valued functions v and τ . For each interior edge e ∈ E◦

h such
that e = ∂T+ ∩ ∂T− we define

[[v]] := v+
e n

+
e + v−e n

−
e , [[τ ]] := τ

+
e · n+

e + τ
−
e · n−

e ,

{{v}} := (v+
e + v−e )/2, {{τ}} := (τ+

e + τ
−
e )/2,

where v+
e (respectively v−e ) denotes the trace of v on e taken within the interior of T+ (respectively

T−), and n
+
e (respectively n

−
e ) is the unit normal of e pointing towards the outside of T+ (respectively

T−). For e ∈ E∂
h , we define

{{τ}} := τ e, [[v]] := ve n.

We do not need either [[τ ]] or {{v}} on boundary edges, and we leave them undefined.

The WOPSIP approximation to the solution of (1) reads: Find uh ∈ Vh such that

Ah(uh, v) =

∫

Ω

fv dx ∀ v ∈ Vh, (2)

where Ah(·, ·) : Vh × Vh −→ R is the bilinear form defined by [10, 8]:

Ah(w, v) :=
∑

T∈Th

∫

T

∇w · ∇v dx+
∑

e∈Eh

α

h3
e

∫

e

Π0
e([[w]]) · Π0

e([[v]]) ds ∀w, v ∈ Vh , (3)
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Here, α denotes the penalty parameter which we assume to be ≥ 1 and Π0
e : L2(e) −→ P0(e) is the

L2-orthogonal projection onto the space P0(e) of constant functions on e:

Π0
e(v) :=

1

he

∫

e

v ds = v(me) ∀ e ∈ Eh ∀v ∈ Vh , (4)

where in the last step we have used the midpoint rule for integration and me is the midpoint of the
edge e ∈ Eh. For vector valued functions Π0

e(·) is defined componentwise.

By considering the energy norm:

‖v‖2
h :=

∑

T∈Th

‖∇v‖2
0,T +

∑

e∈Eh

1

h3
e

‖Π0
e([[v]])‖2

0,e ∀ v ∈ Vh ,

(observe that ‖v‖2
h = Ah(v, v) for α = 1), it can be shown that the bilinear form defining the WOPSIP

method is coercive and continuous in Vh:

Ah(v, v) ≥ ‖v‖2
h ∀v ∈ Vh,

Ah(v, w) . ‖v‖h‖w‖h ∀v, w ∈ Vh .

Also, optimal rates of convergence in the ‖ · ‖h and L2-norms can be proved for the WOPSIP approx-
imation to problem (1) (i.e., the solution of (2)). For details see [9, 10].

2.1 An efficient preconditioner for the WOPSIP method

We recall that, given a basis of Vh, any function v ∈ Vh is uniquely determined by a set of degrees of
freedom (dofs). If Ah is the stiffness matrix associated with the bilinear form Ah(·, ·) and the given
basis, problem (2) can be rewritten as the linear system of equations

Ahu = f,

with Ah symmetric and positive definite. Due to the over-penalization of the method, it can be
easily seen that the condition number of Ah is of order κ(Ah) = O(h−4). To effectively compute the
approximation with the WOPSIP method, the bilinear form

Bh(w, v) :=
∑

T∈Th

∑

e⊂∂T

wT (me)vT (me) +
∑

e∈Eh

α

h3
e

∫

e

Π0
e([[w]]) · Π0

e([[v]]) ds ∀w, v ∈ Vh,

was introduced in [10], where wT := w|T for all T ∈ Th. Denoting by Bh the matrix associated to the
above bilinear form and the given basis, the authors proved in [10] that

vT Bhv . vT Ahv . h−2vT Bhv ∀v ∈ Rn , (5)

where n := dim(Vh). From (5), it immediately follows that

κ(B−1
h Ah) = O(h−2).

The issue of the efficiency of the preconditioner Bh was further explored in [8], where the authors
showed that if a suitable ordering of the dofs is employed the resulting matrix Bh (and so its action)
turns out to be block diagonal with 1× 1 and 2× 2 blocks and therefore can be computed in parallel.

The aim of this paper is to design a Schwarz method for the efficient solution of the linear system

B−1
h Ahu = B−1

h f .
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Figure 1: Sample of elementwise (left) and edgewise (right) ordering of the degrees of freedom.

Note that, although Ah is a symmetric and positive definite (s.p.d.) matrix, B−1
h Ah is no longer

symmetric in general. Hence, to avoid the non-symmetry and the resulting difficulties, we consider the
equivalent linear system of equations

Dhy = B
−1/2
h f, (6)

where y := B
−1/2
h u and

Dh := B
−1/2
h AhB

−1/2
h ,

which is well-defined since Bh is s.p.d. and so it admits a unique s.p.d. square root B
1/2
h . From now

on, we focus on the construction of Schwarz preconditioners for s.p.d. system of equations (6). Clearly,
it still holds that

κ(B
−1/2
h AhB

−1/2
h ) = O(h−2),

since we can take v = B
−1/2
h w in (5) for any w ∈ Rn .

So far, we have not said anything about the selection of the basis or the location of the dofs of Vh. In
[8], it was shown that the use of the Crouziex-Raviart basis for P1(T ) on each T ∈ Th and the choice
of the dofs at the midpoints of the edges in each T has some advantages. More precisely, the authors
showed that by using an edgewise ordering of dofs (that is, the dofs associated to the midpoints of an
interior edge are always consecutive, cf. Figure 1 for an example), the matrix Bh, and consequently
B−1

h , turn out to be block diagonal with 1 × 1 and 2 × 2 blocks, and therefore the preconditioned
WOPSIP method has an intrinsic highly parallel structure. In the next section we show that by using

the same special ordering, also the action of B
−1/2
h retains the same highly parallel structure and can

be efficiently computed. Moreover, we shall also show that this ordering facilitates our analysis of
the Schwarz methods for the preconditioned WOPSIP discretization. Hence, throughout the rest of
the paper it is assumed that the edgewise ordering is employed (see Section 3.2 for details on the
implementation).

2.2 Construction of B
−1/2
h

As shown in [8], by ordering the dofs in an edgewise manner (cf. Figure 1 (right)) the matrix rep-
resenting Bh is block diagonal, with either 2 × 2 blocks (corresponding to an interior edge) or 1 × 1
blocks (corresponding to a boundary edge). Denoting by Be

h the block of the matrix Bh corresponding
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to the dofs associated to the edge e ∈ Eh, we have

Be
h =





1

θe

[
1 + θe −1
−1 1 + θe

]
if e ∈ E◦

h,

1

θe

[
1 + θe

]
if e ∈ E∂

h ,

where θe = h2
e/α for all edges e ∈ Eh. Observe that for any e ∈ E◦

h, since Be
h is s.p.d. it can be

diagonalized as follows:

Be
h =

1

2
QΛQT =

1

2

[
1 1
1 −1

]
·
[

1 0

0 2+θe

θe

]
·
[

1 1
1 −1

]
.

And so, we obtain an explicit expression for (Be
h)−1/2,

(Be
h)−1/2 =

1

2
QΛ−1/2QT =

1

2

[
1 1
1 −1

]
·
[

1 0

0
√

θe

2+θe

]
·
[

1 1
1 −1

]
=

1

2

[
1 + βe 1 − βe

1 − βe 1 + βe

]
, (7)

where we have set

βe :=

√
θe

2 + θe
∀e ∈ E◦

h.

For e ∈ E∂
h , we simply have

(Be
h)−1/2 =

[
β∂

e

]
, β∂

e :=

√
θe

1 + θe
∀e ∈ E∂

h .

We define β := {βe}e∈E◦

h
∪ {β∂

e }e∈E∂
h

with

β|e :=





βe :=

√
θe

2 + θe
if e ∈ E◦

h,

β∂
e :=

√
θe

1 + θe
if e ∈ E∂

h ,

θe :=
h2

e

α
∀e ∈ Eh . (8)

Observe now that

(β|e)2
α

h3
e

=





α

he

(
1

α+ h2
e

)
≤ 1

he
if e ∈ E◦

h,

α

he

(
1

2α+ h2
e

)
≤ 1

2he
if e ∈ E∂

h ,

(9)

since 2α + h2
e ≥ α + h2

e > α. Furthermore, rewriting (8) as β2
e = (θe/k)

1+ θe
k

, with k = 1 (resp. 2) if e is a

boundary (resp. an interior) edge, and assuming that θe/k ≪ 1, we have

β2
e =

θe

k

∞∑

i=0

(
−θe

k

)i

=
θe

k

(
1 +O

(
θe

k

))
,

and therefore, by using θe = h2
e/α, we obtain

βe ≈ he√
α

(1 +O(he/
√
α)),

and hence, by the quasi-uniformity of the mesh,

β ≈ h√
α

(1 +O(h)). (10)
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Having found an explicit expression for each block (Be
h)−1/2, we look at its action on the vector of

degrees of freedom associated to an edge e ∈ Eh. Let e ∈ E◦
h be an arbitrary edge shared by the

elements T+ and T−, e = T+ ∩ T−, and let ue := [u+, u−]T denote the nodal values of the trace u|e
of u at the midpoint of the edge e. It follows from (7) that

(Be
h)−1/2ue =

[
{{u}} + βe

n
+
e

2 · [[u]]
{{u}} − βe

n
+
e

2 · [[u]]

]
.

If e ∈ E∂
h is a boundary edge, we have

(Be
h)−1/2ue =

[ √
θe

1+θe

]
ue = β∂

e ue.

Next, we define the discrete operator Bh : Vh −→ V ′
h associated with the bilinear form Bh(·, ·):

< Bhw, v >:= Bh(w, v) ∀w, v ∈ Vh,

where < ·, · > is the canonical bilinear form. Since the bilinear form Bh(·, ·) is symmetric and coercive,

we can define the operator B
−1/2
h : Vh −→ Vh. According to the previous discussion, for any u ∈ Vh,

B
−1/2
h u is given by

(B
−1/2
h u)|e =





{{u}} + βe
n

+
e

2
· [[u]] on T+ ∩ e

{{u}} − βe
n

+
e

2
· [[u]] on T− ∩ e

∀ e ∈ E◦
h , (11)

(B
−1/2
h u)|e = β∂

e u|e ∀ e ∈ E∂
h . (12)

Finally, we introduce the bilinear form Dh(·, ·) : Vh × Vh −→ R defined by

Dh(u, v) := Ah(B
−1/2
h u,B

−1/2
h v) =

∑

T∈Th

∫

T

∇(B
−1/2
h u) · ∇(B

−1/2
h v) dx

+
∑

e∈Eh

α

h3
e

∫

e

Π0
e([[B

−1/2
h u]]) · Π0

e([[B
−1/2
h v]]) ds , (13)

and the norm

‖u‖2
DG :=

∑

T∈Th

‖∇u‖2
0,T +

∑

e∈Eh

1

he
‖Π0

e([[u]])‖2
0,e ∀u ∈ Vh. (14)

The next result shows that Dh(·, ·) is continuous and coercive in Vh with respect to the above DG norm,
provided h is small enough (see Remark 2.2).
Lemma 2.1. The bilinear form Dh(·, ·) defined by (13) is continuous in the DG norm (14), and it is
also coercive for all h ≤ h0 with

h0 := min

(
1√
2
,

√
2α

16C2
t − 1

)
, (15)

where Ct is the trace inequality constant. More precisely, there exist Cc, Cs > 0 such that

Continuity: Dh(u,w) ≤ Cc‖u‖DG‖w‖DG ∀u,w ∈ Vh; (16)

Coercivity: Dh(u, u) ≥ Cs‖u‖2
DG ∀u ∈ Vh. (17)
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The proof of Lemma 2.1 can be found in Appendix A.

We also define the following bilinear forms

Sh(·, ·) : Vh × Vh −→ R, Sh(w, v) :=
∑

T∈Th

∫

T

∇w · ∇v dx+
∑

e∈Eh

α

he

∫

e

[[w]] · [[v]] ds,

S∗
h(·, ·) : Vh × Vh −→ R, S∗

h(w, v) :=
∑

T∈Th

∫

T

∇w · ∇v dx+
∑

e∈Eh

α

he

∫

e

Π0
e([[w]]) · Π0

e([[v]]) ds.

(18)

Remark 2.2. The restriction on h in Lemma 2.1 is necessary for guaranteeing the coercivity in the
DG norm ‖ · ‖DG. Note however that taking into account our assumption α ≥ 1 together with the fact
that for piecewise linear polynomials on triangles C2

t ≈ 3 (see for instance [17]), the above restriction
on h is a very mild one.
Remark 2.3. Notice that since Dh(·, ·) is symmetric, Lemma 2.1 implies in particular that Dh(·, ·),
Sh(·, ·) and S∗

h(·, ·) are spectrally equivalent.

3 Schwarz methods for the preconditioned WOPSIP discretiza-

tion

In this section we introduce the Schwarz methods and provide some technical tools needed in the
analysis.

We denote by TN a partition of Ω into N non-overlapping subdomains, i.e., Ω =
⋃N

i=1 Ωi, and by
{TH}H>0 and {Th}h>0 two families of coarse and fine partitions, respectively, with mesh sizes H > 0
and h > 0. All the partitions are assumed to be regular and quasi-uniform and we shall always proceed
under the assumption that Th, TH and TN are nested:

TN ⊆ TH ⊆ Th,

i.e., each Ωi, i = 1, . . . , N , can be written as the union of some elements D ∈ TH , each of which is the
union of elements of the finer partition Th; that is

D =
⋃

Ti∈Th

Ti⊂D

Ti ∀D ∈ TH .

For each subdomain Ωi ∈ TN , i = 1, . . . , N , we define the local DG spaces V i
h as

V i
h := {u ∈ L2(Ωi) : v|T ∈ P1(T ) ∀ T ∈ Th, T ⊂ Ωi},

and denote by RT
i : V i

h −→ Vh the standard inclusion operator from V i
h to Vh, and by Ri its transpose

with respect to the canonical bilinear form. We observe that

Vh = RT
1 V

1
h ⊕ . . .⊕ RT

NV
N
h .

Finally, we define

Γ :=

N⋃

i,j=1

Γij Γij := {e ∈ Eh , such that e ⊂ ∂Ωi ∩ ∂Ωj , i 6= j} . (19)

We now introduce the local solvers, for which we consider two classes: exact local solvers (as those
proposed in [15]) and inexact local solvers (as those introduced in [2, 3]).
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(i) Exact local solvers: For each subdomain Ωi ∈ TN , i = 1, . . . , N , the local bilinear form DE
i (·, ·) :

V i
h × V i

h −→ R is defined as the restriction of the (preconditioned) WOPSIP bilinear form (13)
to the space RT

i V
i
h :

DE
i (ui, vi) := Dh(RT

i ui,R
T
i vi) = Ah(B

−1/2
h RT

i ui,B
−1/2
h RT

i vi) ∀ui, vi ∈ V i
h . (20)

(ii) Inexact local solvers: Following [2], we first consider the model problem (1) set in the subdo-
main Ωi:

−∆ui = f|Ωi
in Ωi, ui = 0 on ∂Ωi . (21)

The ith-local solver (that is associated to the subdomain Ωi) is defined as the (preconditioned)
WOPSIP approximation to (21). Hence, the local bilinear form DI

i (·, ·) : V i
h × V i

h −→ R is given
by:

DI
i (ui, vi) := Ai(B

−1/2
i ui,B

−1/2
i vi) ∀ui, vi ∈ V i

h , (22)

where Ai(·, ·) is given by:

Ai(wi, vi) :=
∑

T∈Th

T⊂Ωi

∫

T

∇wi · ∇vi dx+
∑

e∈Eh

e⊂Ωi

α

h3
e

∫

e

Π0
e([[wi]]) · Π0

e([[vi]]) ds.
(23)

and Bi : V i
h −→ (V i

h)′ refers to the operator associated to the bilinear form Bi(·, ·) defined by

Bi(wi, vi) :=
∑

T∈Th

T⊂Ωi

∑

e⊂∂T

wiT
(me)viT

(me) +
∑

e∈Eh

e⊂Ωi

α

h3
e

∫

e

Π0
e([[wi]]) · Π0

e([[vi]]) ds ∀wi, vi ∈ V i
h .

Note that, the edges e ∈ E◦
h such that e ⊂ ∂Ωi although interior edges in the global partition Th,

are however boundary edges with respect to the local partitioning induced in the subdomain Ωi.
On these edges the definition of the jump operator on boundary edges applies, i.e., [[wi]] = wi|e n.

Consequently the action of B
−1/2
i on the functions restricted to these edges is given by (12).

A key issue in the analysis of the non-overlapping Schwarz methods is the relation between the global
bilinear form Dh(·, ·) and the sum of the local solvers. To study such a relation, we need first to
introduce some additional notation. Recalling the definition (19) of the interface Γ, we define the strip
ΩΓ as

ΩΓ =

N⋃

i,j=1

ΩΓij
, ΩΓij

= {T ∈ Th | T has one edge in Γij} . (24)

Now following [15, 2] we have the following result:
Lemma 3.1. For any u ∈ Vh, let ui ∈ V i

h, i = 1, . . . , N , be the unique functions such that u =∑N
i=1 RT

i ui. Then the following identities hold:

Dh(u, u) =

N∑

i=1

DE
i (ui, ui) + IEh(u, u) , (25)

Dh(u, u) =
N∑

i=1

DI
i (ui, ui) + IIh(u, u) , (26)

where

IEh(u, u) = 2
[ ∑

T∈ΩΓ

∫

T

∇(B
−1/2
h RT

i ui) · ∇(B
−1/2
h RT

j uj) dx−
∑

e∈Γ

β2
e

α

h3
e

∫

e

Π0
e(ui)Π

0
e(uj) ds

]
, (27)
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IIh(u, u) = IEh(u, u) +GI
h(u, u), (28)

with βe defined as in (8), and

GI
h(u, u) =

N∑

i=1

[ ∑

T∈ΩΓ

∫

T

∇(B
−1/2
h RT

i ui) · ∇(B
−1/2
h RT

i ui) dx−
∑

T∈ΩΓ

T⊂Ωi

∫

T

∇(B
−1/2
i ui) · ∇(B

−1/2
i ui) dx,

]

−
∑

e∈Γ

α

h3
e

η2
e

∫

e

(
[Π0

e(ui)]
2 + [Π0

e(uj)]
2
)

ds. (29)

Here, ηe is defined as:

η2
e := −[βe]

2 + [β∂
e ]2 =

θe

(1 + θe)(2 + θe)
> 0, θe = h2

e/α . (30)

Proof. For simplicity we present the proof in the case of N = 2 subdomains, that is Ω = Ω1 ∪Ω2. The
extension to the case of N subdomains is straightforward and we omit the details. We first show (25).
Taking into account the definition (13) of Dh(·, ·), the linearity and symmetry of Dh(·, ·) and of the
exact local solvers DE

i (·, ·) (cf. (20)), it is easy to see that

IEh(u, u) = Dh(u, u) −DE
1(u1, u1) −DE

2(u2, u2) = Dh(RT
1 u1, R

T
2 u2) + Dh(RT

2 u2, R
T
1 u1)

= 2Dh(RT
1 u1,R

T
2 u2)

= 2Ah(B
−1/2
h RT

1 u1,B
−1/2
h RT

2 u2)

= 2
∑

T∈Th

∫

T

∇(B
−1/2
h RT

1 u1) · ∇(B
−1/2
h RT

2 u2) dx

+ 2
∑

e∈Eh

α

h3
e

∫

e

Π0
e([[B

−1/2
h RT

1 u1]]) · Π0
e([[B

−1/2
h RT

2 u2]]) ds .

To give a more explicit expression of the last two terms on the right hand side, we take a closer look
at the support of the terms involved. We first observe that supp(RT

1 u1) ∩ supp(RT
2 v2) ⊆ Γ, so it is

enough to consider the action of B
−1/2
h on e ∈ Γ. Fix an edge e ∈ Γ shared by the elements T1 ⊆ Ω1

and T2 ⊆ Ω2, and recall that (see Figure 2(a)),

RT
1 u1 =

{
u1 = u|Ω1

in Ω1,

0 in Ω2,
RT

2 u2 =

{
0 in Ω1,

u2 = u|Ω2
in Ω2,

Taking into account the action of B
−1/2
h on internal edges (since e ∈ Γ so e ∈ E◦

h) we have

(B
−1/2
h RT

1 u1)|e = B
−1/2
h

[
u1

0

]
=




1 + βe

2
u1

1 − βe

2
u1


 ,

(B
−1/2
h RT

2 u2)|e = B
−1/2
h

[
0
u2

]
=




1 − βe

2
u2

1 + βe

2
u2


 ,

(31)

where βe is defined as in (8). Therefore, under the action of B
−1/2
h , the support of RT

1 u1 (resp. RT
2 u2)

expands into the Ω2 (resp. Ω1) across Γ, with an additional dof at the midpoint of the edge e (see

Figure 2(b)). Next, we have to further consider the actions of the operators ∇ and [[·]] on B
−1/2
h RT

i ui.

9



(a) dofs of R
T
1

u1 (b) dofs of B
−1/2

h R
T
1

u1

(c) dofs of ∇(B
−1/2

h R
T
1

u1) (d) dofs of [[B
−1/2

h R
T
1

u1]]

Figure 2: Degrees of freedom of RT
1 u1, B

−1/2
h RT

1 u1, ∇(B
−1/2
h RT

1 u1) and [[B
−1/2
h RT

1 u1]], respectively, on
a N = 2 subdomain partition. The dofs marked with • are different from zero; those marked with ◦
are equal to zero.

For the gradient term, it is clear that the resulting support expands along the strip of elements that
touch Γ (see Figure 2(c)), that is:

supp(∇B
−1/2
h RT

1 u1) ∩ supp(∇B
−1/2
h RT

2 u2) ⊆ ΩΓ , (32)

where the set ΩΓ is defined in (24). For the penalty term, it can be seen that (cf. Figure 2(d)),

supp(Π0
e([[B

−1/2
h RT

1 u1]])) ∩ supp(Π0
e([[B

−1/2
h RT

2 u2]])) ⊆ Γ . (33)

Using the definition of the jump operator on interior edges and (31) we have

[[B
−1/2
h RT

1 u1]] = βe[[R
T
1 u1]] = βeu1n

1
e, [[B

−1/2
h RT

2 u2]] = βe[[R
T
2 u2]] = βeu2n

2
e, (34)

and taking into account the definition (4) we obtain

∑

e∈Γ

α

h3
e

∫

e

Π0
e([[B

−1/2
h RT

1 u1]]) · Π0
e([[B

−1/2
h RT

2 u2]]) ds =
∑

e∈Γ

α

h2
e

[[B
−1/2
h RT

1 u1]](me)[[B
−1/2
h RT

2 u2]](me)

=
∑

e∈Γ

α

h2
e

(β2
eu1(me)u2(me)n

+
e · n−

e ) = −
∑

e∈Γ

α

h3
e

β2
e

∫

e

Π0
e(u1) · Π0

e(u2) ds .
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Therefore, we finally have

IEh(u, u) = 2

[
∑

T∈ΩΓ

∫

T

∇(B
−1/2
h RT

1 u1) · ∇(B
−1/2
h RT

2 u2) dx−
∑

e∈Γ

β2
e

α

h3
e

∫

e

Π0
e(u1)Π

0
e(u2) ds

]
,

which establishes (27) and hence (25).

We now turn to the case of inexact local solvers and the proof of (26). We first note that, when acting
on (the restriction of the functions to) interior edges e ∈ E◦

h that do not belong to the interface Γ, we

have that B
−1/2
h ≡ B

−1/2
i . Hence, we can write:

IIh(u, u) = Dh(u, u) −DI
1(u1, u1) −DI

2(u2, u2) = W1 +W2,

where

W1 :=
∑

T∈ΩΓ

∫

T

∇(B
−1/2
h u) · ∇(B

−1/2
h u) dx−

2∑

i=1

∑

T∈ΩΓ

T⊂Ωi

∫

T

∇(B
−1/2
i ui) · ∇(B

−1/2
i ui) dx,

and

W2 :=
∑

e∈Γ

α

h3
e

∫

e

[
Π0

e([[B
−1/2
h u]]) · Π0

e([[B
−1/2
h u]]) − Π0

e([[B
−1/2
1 u1]]) · Π0

e([[B
−1/2
1 u1]])

−Π0
e([[B

−1/2
2 u2]]) · Π0

e([[B
−1/2
2 u2]])

]
ds.

We first observe that the main difference with respect to the case of exact solvers is that the action

of B
−1/2
h on a function restricted to an edge e ∈ Γ differs from the action of the local operator B

−1/2
i

entering in the definition of DI
i (·, ·). In the former case e ∈ Γ is an interior edge, while for the latter e

is a boundary edge. In fact, in view of (12) we have

(B
−1/2
1 u1)|e = B

−1/2
1

[
u1

0

]
=

[
β∂

e u1

0

]
,

(B
−1/2
2 u2)|e = B

−1/2
2

[
0
u2

]
=

[
0

β∂
e u2

]
,

(35)

and so in this case the support of B
−1/2
i ui remains in Ωi. For W1, (32) together with (35) gives

W1 = 2
∑

T∈ΩΓ

∫

T

∇(B
−1/2
h RT

1 u1) · ∇(B
−1/2
h RT

2 u2) dx

+

2∑

i=1



∑

T∈ΩΓ

∫

T

∇(B
−1/2
h RT

i ui) · ∇(B
−1/2
h RT

i ui) dx−
∑

T∈ΩΓ

T⊂Ωi

∫

T

∇(B
−1/2
i ui) · ∇(B

−1/2
i ui) dx


 . (36)

For the term W2, using (35) and (33) we have

[[B
−1/2
i ui]] = β∂

e ui,

where β∂
e is defined in (8). Hence, taking into account the above identity together with (34) and (33)

we find,

Π0
e([[B

−1/2
h u]]) · Π0

e([[B
−1/2
h u]]) = [βe]

2
([

Π0
e(u1)

]2
+
[
Π0

e(u2)
]2 − 2Π0

e(u1)Π
0
e(u2)

)
,

11



Π0
e([[B

−1/2
i ui]]) · Π0

e([[B
−1/2
i ui]]) = [β∂

e ]2
[
Π0

e(ui)
]2

i = 1, 2 .

Thus we have

W2 = − 2
∑

e∈Γ

α

h3
e

[βe]
2

∫

e

Π0
e(u1)Π

0
e(u2) ds+

∑

e∈Γ

α

h3
e

(
[βe]

2 − [β∂
e ]2
) ∫

e

(
[Π0

e(u1)]
2 + [Π0

e(u2)]
2
)

ds

= − 2
∑

e∈Γ

α

h3
e

[βe]
2

∫

e

Π0
e(u1)Π

0
e(u2) ds−

∑

e∈Γ

α

h3
e

η2
e

∫

e

(
[Π0

e(u1)]
2 + [Π0

e(u2)]
2
)

ds, (37)

where ηe is defined as in (30). Putting together (36) and (37) we finally obtain

IIh(u, u) = IEh(u, u) −
∑

e∈Γ

α

h3
e

η2
e

∫

e

(
[Π0

e(u1)]
2 + [Π0

e(u2)]
2
)

ds

+

2∑

i=1



∑

T∈ΩΓ

∫

T

∇(B
−1/2
h RT

i ui) · ∇(B
−1/2
h RT

i ui) dx−
∑

T∈ΩΓ

T⊂Ωi

∫

T

∇(B
−1/2
i ui) · ∇(B

−1/2
i ui) dx


 ,

which is (28), and concludes the proof.

The last ingredient in the construction of the Schwarz methods is the coarse solver. We consider a
coarse partition TH and we take for ℓ = 0, 1

VH ≡ V 0
h := {v ∈ L2(Ω) : v|T ∈ Pℓ(T ) ∀D ∈ TH}.

We denote by RT
0 : V 0

h −→ Vh the standard inclusion operator from V 0
h to Vh, by R0 its transpose with

respect to the canonical bilinear forms, and define the following three coarse solvers:

D0(u0, v0) := Dh(RT
0 u0,R

T
0 v0) ∀u0, v0 ∈ V 0

h , (38)

S0(u0, v0) := Sh(RT
0 u0,R

T
0 v0) ∀u0, v0 ∈ V 0

h , (39)

S∗
0 (u0, v0) := S∗

h(RT
0 u0,R

T
0 v0) ∀u0, v0 ∈ V 0

h , (40)

where Sh(·, ·),S∗
h(·, ·) : Vh × Vh −→ R are defined in (18).

Remark 3.2. As in [15, 2], the coarse solver D0(·, ·) is defined as the restriction of the original method
to the coarse finite element space V 0

h . However, it should be noted that

D0(u0, v0) := Dh(RT
0 u0,R

T
0 v0) 6= DH(u0, v0) ∀u0, v0 ∈ VH .

In particular to ensure the performance of the resulting Schwarz method it turns out to be essential to
choose the penalty parameter αH in the definition of AH(·, ·) as αH = α(H/h)3.
Remark 3.3. Since the coarse solvers (38), (39) and (40) are defined as the restriction of Dh(·, ·),
Sh(·, ·) and S∗

h(·, ·), respectively, to the coarse space V 0
h , we can immediately conclude that all the coarse

solvers are spectrally equivalent thanks to Remark 2.3.

3.1 Schwarz operators

We now define the Schwarz operators and show that they can be viewed as preconditioners for the
original (preconditioned) system of equations (6).

For the exact local solvers, let PE
i : Vh −→ RT

i V
i
h be defined as

Dh(PE
iu,R

T
i vi) := Dh(u,RT

i vi) = Ah(B
−1/2
h u,B

−1/2
h RT

i vi) ∀vi ∈ V i
h . (41)

12



For the inexact local solvers we set PI
i := RT

i P̃
I
i : Vh −→ RT

i V
i
h ⊂ Vh, where P̃ I

i : Vh −→ V i
h is defined

as

DI
i (P̃

I
i u, vi) := Dh(u,RT

i vi) = Ah(B
−1/2
h u,B

−1/2
h RT

i vi) ∀vi ∈ V i
h . (42)

We observe that the operators PE
i and PI

i are well-defined since the local bilinear forms DE
i (·, ·) and

DI
i (·, ·) are coercive. We also define the operators P0,Q0,T0 : Vh −→ RT

0 V
0
h as follows:

Dh(P0u,R
T
0 v0) := Dh(u,RT

0 v0) = Ah(B
−1/2
h u,B

−1/2
h RT

0 v0) ∀v0 ∈ V 0
h ,

Sh(Q0u,R
T
0 v0) := Dh(u,RT

0 v0) = Ah(B
−1/2
h u,B

−1/2
h RT

0 v0) ∀v0 ∈ V 0
h ,

S∗
h(T0u,R

T
0 v0) := Dh(u,RT

0 v0) = Ah(B
−1/2
h u,B

−1/2
h RT

0 v0) ∀v0 ∈ V 0
h .

(43)

Since the coarse bilinear forms Dh(·, ·), Sh(·, ·) and S∗
h(·, ·) are coercive, the operators P0, Q0 and T0

are well defined.

We are now ready to define the following additive Schwarz operators:

PE :=

N∑

i=1

PE
i + P0, QE :=

N∑

i=1

PE
i + Q0. TE :=

N∑

i=1

PE
i + T0. (44)

PI :=

N∑

i=1

PI
i + P0, QI :=

N∑

i=1

PI
i + Q0. TI :=

N∑

i=1

PI
i + T0. (45)

In the case of exact local solvers, the matrix representation of the additive Schwarz operators PE, QE

and TE is given by

PE =

(
N∑

i=1

RT
i (DE

i )−1Ri + RT
0 D−1

0 R0

)
Dh := ME

1Dh,

QE =

(
N∑

i=1

RT
i (DE

i )−1Ri + RT
0 S−1

0 R0

)
Dh := ME

2Dh,

TE =

(
N∑

i=1

RT
i (DE

i )−1Ri + RT
0 (S∗

0)
−1R0

)
Dh := ME

3Dh,

where Sh and S∗
h are the matrix representations of the bilinear forms Sh(·, ·) and S∗

h(·, ·), respectively.
We observe that the preconditioners differ by the choice of the coarse solver (cf. Table 1). ME

1 employs
as coarse solver the restriction of the preconditioned WOPSIP bilinear form to the finite element coarse
space whereas for ME

2 and ME
3 the coarse solver is defined as the restriction to the coarse space of the

bilinear form Sh(·, ·) and S∗
h(·, ·), respectively. The same kind of representation holds for inexact local

solvers. Details are given in Table 1.

3.2 Computational issues

Let v be a vector representing a finite element function v in the edgewise ordering, and let P be the
permutation matrix so that Pv becomes the vector representing v in the elementwise ordering. We
define J to be the matrix representing the jumps term

wT Jv =
∑

e∈Eh

α

h3
e

∫

e

Π0
e([[w]]) · Π0

e([[v]]) ds,

and G to be the matrix representing the volume term

wT Gv =
∑

T∈Th

∫

T

∇w · ∇v dx.
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Preconditioner Coarse Component Local Components (i = 1, . . . , N)

ME
1 :=

∑N
i=1 RT

i (DE
i )−1Ri + RT

0 D−1
0 R0 D0 := R0DhRT

0 DE
i := RiDhRT

i

ME
2 :=

∑N
i=1 RT

i (DE
i )−1Ri + RT

0 S−1
0 R0 S0 := R0ShRT

0 DE
i := RiDhRT

i

ME
3 :=

∑N
i=1 RT

i (DE
i )−1Ri + RT

0 (S∗
0)

−1R0 S∗
0 := R0S∗

hRT
0 DE

i := RiDhRT
i

MI
1 :=

∑N
i=1 RT

i (AI
i )

−1Ri + RT
0 D−1

0 R0 D0 := R0DhRT
0 see (22)

MI
2 :=

∑N
i=1 RT

i (AI
i )

−1Ri + RT
0 S−1

0 R0 S0 := R0ShRT
0 see (22)

MI
3 :=

∑N
i=1 RT

i (AI
i )

−1Ri + RT
0 (S∗

0)
−1R0 S∗

0 := R0S∗
hRT

0 see (22)

Table 1: Coarse and local components for the preconditioners ME
1 − ME

2 − ME
3 and MI

1 − MI
2 − MI

3.

We remark that in the elementwise ordering the matrix G is block diagonal with 3× 3 blocks, whereas
in the edgewise ordering the matrix J is block diagonal and therefore the preconditioner Bh = I + J is

block diagonal, with I the identity matrix. Therefore, B
−1/2
h is block diagonal as well and the 2 × 2

blocks can be computed directly with (7). Algorithm 1 computes the action of the stiffness matrix of

the WOPSIP method and the action of the preconditioner B
−1/2
h on a vector (cf. [8]).

Algorithm 1 Compute z = B
−1/2
h AhB

−1/2
h v

Solve B
1/2
h z = v

Compute x := Jz
Compute y := PT GPz

Solve B
1/2
h z = x + y

Next, we also describe the action of the additive Schwarz preconditioner ME
1 on a vector v edgewise

ordered (cf. Algorithm 2). The routines for the other preconditioners can be written exactly in the
same way with only notational changes involved. Note that, for the application of the preconditioner,
it is more convenient to employ the elementwise ordering of the dofs, and to number first the dofs
corresponding to elements in the first subdomain, then the dofs corresponding to elements in the
second subdomain and so on. With such an ordering, the local solvers turn out to be a block Jacobi
preconditioner where each block corresponds to the dofs in a subdomain.

Algorithm 2 Compute z = ME
1v

Solve z = RT
0 D−1

0 RT
0 Pv

for i = 1, . . . , N do
z ⇐ z + RT

i D−1
i RT

i z
end for
z ⇐ PT z.
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4 Convergence analysis

In this section we present the convergence analysis of the proposed Schwarz methods for the precon-
ditioned WOPSIP scheme. We start by stating the main result of this section:
Theorem 4.1. Let P be any of the Schwarz operators defined in (44) and (45). Then, the condition
number of P satisfies

κ(P) ≤ C2
0ωr(Na + 1) . 1 +

H

h
, r = E or I,

where Na is the maximum number of adjacent subdomains that a given subdomain might have and ωr
is a positive constant independent of H,h and the number of subdomains.

The rest of the section is devoted to the proof of the above theorem. We follow the classical abstract
convergence theory of Schwarz methods [14, 13] (cf. also [16, Chapter 2] and [12, Chapter 7]), and
therefore, we only have to verify the following three assumptions.
Assumption A1 (Stable decomposition). There exists C0 > 0 such that every u ∈ Vh admits a

decomposition u =
∑N

i=0 RT
i ui, with u0 ∈ V 0

h , and ui ∈ V i
h, i = 1, . . . , N , that satisfies

N∑

i=1

Dr
i (ui, ui) + γ0(u0, u0) ≤ C2

0 Dh(u, u), r = E or I ,

where γ0(·, ·) is one of the coarse bilinear forms defined in (38)–(40).
Assumption A2 (Strengthened Cauchy–Schwarz inequalities). There exist 0 ≤ εij ≤ 1, 1 ≤ i, j ≤ N ,
such that ∣∣Dh(RT

i ui,R
T
j uj)

∣∣ ≤ εijDh(RT
i ui,R

T
i ui)

1/2Dh(RT
j uj ,R

T
j uj)

1/2

for all vi ∈ V i
h, uj ∈ V j

h . Define ρ(E) to be the spectral radius of E := {εij}i,j=1,...,N .

Assumption A3 (Local stability). There exists ωr> 0 such that

Dh(RT
i ui,R

T
i ui) ≤ ωrDr

i (ui, ui) ∀ ui ∈ V i
h , r = {E, I}. (46)

We start by verifying Assumption A2. Following [15, 2], it is straightforward to see that εii = 1 for

i = 1, . . . , N . For i 6= j, we note that Dh(RT
i ui,R

T
j uj) = Ah(B

−1/2
i RT

i ui, B
−1/2
j RT

j uj) 6= 0 only if
∂Ωi ∩ ∂Ωj 6= ∅, so εij = 1 in those cases, and εij = 0 otherwise. Then, ρ(E) can be bounded by
ρ(E) ≤ maxi

∑
j |εij | ≤ 1 + Na, where Na is the maximum number of adjacent subdomains that a

given subdomain might have.

In the next sections we verify Assumptions A3 and A1.

4.1 Local stability

We now prove that the local solvers satisfy a local stability property. Observe that for the exact local
solvers defined in (20), it follows from their definition that (46) holds true with ωE ≡ 1. Before showing
that Assumption A3 holds true also for the inexact local solvers, we define the norm ‖·‖DG,Ωi

according
to (14) but at the subdomain level, i.e.,

‖ui‖2
DG,Ωi

:=
∑

T∈Th

T⊂Ωi

‖∇ui‖2
0,T +

∑

e∈Eh

e⊂Ωi

1

he
‖Π0

e([[ui]])‖2
0,e +

∑

e∈Eh

e⊂∂Ωi

1

he
‖Π0

e(uin)‖2
0,e ∀ui ∈ V i

h ,

and observe that the coercivity (17) holds also at the subdomain level for h ≤ h0 with h0 given in
(15), by the definition of DI

i (·, ·).
The next result shows that the local stability property holds also for the inexact local solvers defined
in (22).
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Lemma 4.2. For i = 1, . . . N , let DI
i : V i

h × V i
h −→ R be the bilinear form defined by (22). Then,

there exists ωI > 0 such that the following local stability property holds:

Dh(RT
i ui,R

T
i ui) ≤ ωIDI

i (ui, ui) ∀ui ∈ V i
h ∀ i = 1, . . . , N .

Proof. Observe that
‖RT

i ui‖2
DG = ‖ui‖2

DG,Ωi
.

It then follows from (16) and (17) (for DI
i (·, ·)) that

Dh(RT
i ui,R

T
i ui) ≤ Cc‖RT

i u‖2
DG ≤ Cc‖ui‖2

DG,Ωi
≤ CDI

i (ui, ui) .

4.2 Stable decomposition

In this section we finally show that the decomposition underlying the definition of the additive Schwarz
operator is indeed stable with respect to the energy norm defined by Dh(·, ·).
We first state an auxiliary result needed in the proof of Proposition 4.5. This result provides an
estimate for the interface bilinear forms IEh(·, ·) and IIh(·, ·).
Lemma 4.3. For any u ∈ Vh, it holds that

|Ir
h(u, u)| . ‖u‖2

DG + h−1
∑

D∈TH

∑

E⊂∂D

‖u‖2
0,E , r = E or I . (47)

Proof. We start by proving the bound for IEh(·, ·). From the definition (27) of IEh given in Lemma 3.1
and the standard triangle inequality, we have |IEh(u, u)| ≤ 2 |F1| + 2 |F2|, where

F1 :=
∑

T∈ΩΓ

∫

T

∇(B
−1/2
h RT

i ui) · ∇(B
−1/2
h RT

j uj) dx,

F2 :=
∑

e∈Γ

β2
e

α

h3
e

∫

e

Π0
e(ui)Π

0
e(uj) ds.

We next estimate the two terms separately, starting with F2. By recalling the definition (8) of βe

on e ∈ E◦
h and using (9), the Cauchy-Schwarz inequality, the arithmetic-geometric inequality and the

stability of the projection Π0
e(·), we find

2 |F2| ≤ 2

(
∑

e∈Γ

1

he
‖Π0

e(ui)‖2
0,e

)1/2(∑

e∈Γ

1

he
‖Π0

e(uj)‖2
0,e

)1/2

≤
∑

e∈Γ

1

he
‖Π0

e(ui)‖2
0,e +

∑

e∈Γ

1

he
‖Π0

e(uj)‖2
0,e ≤

∑

e∈Γ

(
1

he
‖ui‖2

0,e +
1

he
‖uj‖2

0,e

)
.

Observe that each subdomain Ωi is the union of some elements D ∈ TH and the mesh is quasi-uniform.
Denoting by E the edges of D, we have

2 |F2| ≤
∑

e∈Γ

(h−1
e ‖ui‖2

0,e + h−1
e ‖uj‖2

0,e) . h−1
∑

D∈TH

∑

E⊂∂D

‖u‖2
0,E . (48)
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Next, we estimate the term |F1|. Using the Cauchy-Schwarz inequality we have

|F1| =

∣∣∣∣∣

N∑

i,j=1
i 6=j

∑

T∈ΩΓij

∫

T

∇(B
−1/2
h RT

i ui) · ∇(B
−1/2
h RT

j uj) dx

∣∣∣∣∣

.

N∑

i,j=1
i 6=j

( ∑

T∈ΩΓij

‖∇B
−1/2
h RT

i ui‖0,T ‖∇B
−1/2
h RT

j uj‖0,T

)
. (49)

Observe that for any fixed j 6= i and T ∈ ΩΓij
with T ⊆ Ωi, the divergence theorem, the Cauchy-

Schwarz and the trace inequalities together with the stability of the projection Π0
e(·) give

‖∇B
−1/2
h RT

j uj‖2
0,T = −

∫

T

∆(B
−1/2
h RT

j uj) B
−1/2
h RT

j uj dx+

∫

∂T

∇(B
−1/2
h RT

j uj) · n B
−1/2
h RT

j uj ds

=

∫

∂T

∇(B
−1/2
h RT

j uj) · n Π0
e(B

−1/2
h RT

j uj) ds

≤ ‖∇(B
−1/2
h RT

j uj)‖0,∂T ‖Π0
e(B

−1/2
h RT

j uj)‖0,∂T

. ‖∇(B
−1/2
h RT

j uj)‖0,T h
−1/2
e ‖RT

j uj‖0,e (e = ∂T ∩ Γij) , (50)

where in the last step we have used the fact that Π0
e(B

−1/2
h RT

j uj) 6= 0 only on the edge e = ∂T ∩ Γij

due to (31) (see also Figure 2) and hence

‖∇B
−1/2
h RT

j uj‖0,T . h−1/2
e ‖uj‖0,e e = ∂T ∩ Γij T ⊂ Ωi ∩ ΩΓij

i 6= j.

After inserting the estimate (49) into (49) and using the continuity (16) of Dh(·, ·) given in Lemma
2.1, we finally obtain

|F1| .

N∑

i,j=1
i 6=j

( ∑

T∈ΩΓij

T⊂Ωi

‖∇B
−1/2
h RT

i ui‖0,Th
−1/2
e ‖uj‖0,e +

∑

T∈ΩΓij

T⊂Ωj

‖∇B
−1/2
h RT

i uj‖0,Th
−1/2
e ‖ui‖0,e

)

(e = ∂T ∩ Γij)

.
∑

T∈ΩΓ

(
‖∇u‖2

0,T +
∑

e⊂∂T

h−1
e ‖Π0([[u]])‖2

0,e

)
+ h−1

∑

D∈TH

∑

E⊂∂D

‖u‖2
0,E

. ‖u‖2
DG + h−1

∑

D∈TH

∑

E⊂∂D

‖u‖2
0,E .

The above estimate together with (48) concludes the proof for IEh(·, ·). To bound IIh(·, ·) we observe
that, thanks to Lemma 3.1

IIh(u, u) = IEh(u, u) +GI
h(u, u) ∀u ∈ Vh ,

and so it is enough to bound GI
h(·, ·) which we recall is defined as

GI
h(u, u) =

N∑

i=1

∑

T∈ΩΓ

∫

T

∇(B
−1/2
h RT

i ui) · ∇(B
−1/2
h RT

i ui) dx (F3)

−
N∑

i=1

∑

T∈ΩΓ

T⊂Ωi

∫

T

∇(B
−1/2
i ui) · ∇(B

−1/2
i ui) dx (F4)
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−
N∑

i=1

∑

e∈Γ

α

h3
e

η2
e

∫

e

(
[Π0

e(ui)]
2 + [Π0

e(uj)]
2
)

ds . (F5)

We start with the last term F5. Recalling the definition (30) of ηe and using the fact that α2/(α +
h2

e)(2α+ h2
e) ≤ 1, we have

α

h3
e

η2
e =

α

h3
e

θe

(1 + θe)(2 + θe)
=

1

he

α2

(α+ h2
e)(2α+ h2

e)
≤ 1

he
.

Then, taking into account the stability of the projection Π0
e(·) and arguing as we did for F2, we obtain

|F5| ≤
N∑

i=1

∑

e∈Γ

α

h3
e

η2
e

(
‖ui‖2

0,e + ‖uj‖2
0,e

)
. 2

N∑

i=1

∑

e∈Γ

1

he
‖ui‖2

0,e . h−1
∑

D∈TH

∑

E⊂∂D

‖u‖2
0,E .

We now estimate the other terms. The estimate for F3 is similar to the estimate for |F1|:

|F3| ≤
N∑

i=1

∑

T∈ΩΓ

T⊂Ωi

‖∇(B
−1/2
h RT

i ui)‖2
0,T +

N∑

i=1

∑

T∈ΩΓ

T 6⊂Ωi

‖∇(B
−1/2
h RT

i ui)‖2
0,T

.
∑

T∈ΩΓ

(
‖∇u‖2

0,T +
∑

e⊂∂T

h−1
e ‖Π0([[u]])‖2

0,e

)
+ h−1

∑

D∈TH

∑

E⊂∂D

‖u‖2
0,E

. ‖u‖2
DG + h−1

∑

D∈TH

∑

E⊂∂D

‖u‖2
0,E .

Finally, the term F4 is readily estimated by the continuity of the bilinear form DI
i (·, ·):

|F4| ≤
N∑

i=1

∑

T∈ΩΓ

T⊂Ωi

‖∇(B
−1/2
i ui)‖2

0,T .

N∑

i=1

‖ui‖2
DG,Ωi

. ‖u‖2
DG + h−1

∑

D∈TH

∑

E⊂∂D

‖u‖2
0,E .

The last preliminary result concerns the coarse solver.
Lemma 4.4. For any u ∈ Vh, let u0 ∈ V 0

h = VH be defined as

u0|D :=
1

|D|

∫

D

u dx ∀D ∈ TH . (51)

Then it holds that
γ0(u0, u0) .

(
1 +Hh−1

)
Dh(u, u), (52)

where γ0(·, ·) is one of the coarse bilinear forms defined in (38)–(40).

Proof. It is sufficient to show the bound in the case γ0(·, ·) = S∗
0 (·, ·); the other two cases follow from

the observation made in Remark 3.3. Let u ∈ Vh and let u0 be defined as in (51). Note that u0 is
piecewise constant (by definition) on TH . Then it follows from the definition of S∗

0 (·, ·), adding and
subtracting u and the stability of the projection Π0(·) that

S∗
0 (u0, u0) =

∑

e∈Eh

α

he

∫

e

∣∣Π0
e([[R

T
0 u0]])

∣∣2 ds
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.
∑

e∈Eh

1

he

∫

e

∣∣Π0
e([[R

T
0 u0 − u]])

∣∣2 ds+
∑

e∈Eh

1

he

∫

e

∣∣Π0
e([[u]])

∣∣2 ds

.
∑

e∈Eh

1

he

∫

e

∣∣[[RT
0 u0 − u]]

∣∣2 ds+ Dh(u, u) ,

where in the last step we have also used the coercivity of Dh(·, ·) (cf. (17)). We now observe that last
term can be estimated exactly following [15] and [2, Lemma 4.3]:

∑

e∈Eh

1

he

∫

e

∣∣[[RT
0 u0 − u]]

∣∣2 ds . Hh−1‖u‖2
DG . Hh−1Dh(u, u) .

We close the section with the proof of Assumption A1.
Proposition 4.5 (Stable decomposition). For any u ∈ Vh, let u =

∑N
i=0 RT

i ui, ui ∈ V i
h, i = 0, . . . , N ,

where u0 ∈ V 0
h is defined by

u0|D :=
1

|D|

∫

D

u dx ∀D ∈ TH ,

and u1, . . . , uN are (uniquely) determined by u − RT
0 u0 = RT

1 u1 + · · · + RT
NuN . Then, there exists

C2
0 = O(Hh−1) such that

N∑

i=1

Dr
i (ui, ui) + γ0(u0, u0) ≤ C2

0 Dh(u, u), r = {E, I} ,

where γ0(·, ·) is one of the coarse bilinear forms defined in (38)–(40).

Proof. The proof follows those given in [15, 2]. We set γ0(·, ·) = D0(·, ·). Given u ∈ Vh, we decompose

u− RT
0 u0 uniquely as

∑N
i=1 RT

i ui. Taking into account Lemma 3.1 we can write

D0(u0, u0) +

N∑

i=1

Dr
i (ui, ui) = D0(u0, u0) + Dh(u−RT

0u0, u−RT

0u0) − Irh(u−RT

0u0, u−RT

0u0) , (53)

then we just need to estimate each term on the right hand side.

The first term is readily estimated by using Lemma 4.4:

D0(u0, u0) .
(
1 +Hh−1

)
Dh(u, u). (54)

For the second term on the right hand side of (53), triangle inequality, the continuity of Dh(·, ·)
(cf. (16)) together with (54) and the definition of the coarse solver gives,

Dh(u−RT

0u0, u−RT

0u0) . Dh(u, u) + Dh(RT

0u0, R
T

0u0)

= Dh(u, u) + D0(u0, u0) .
(
1 +Hh−1

)
Dh(u, u). (55)

For the last term, it follows from (17), Lemma 4.3 and (55) that

∣∣Irh(u−RT

0u0, u−RT

0u0)
∣∣ . ‖u−RT

0u0‖2
DG +

∑

D∈TH

∑

E⊂∂D

h−1‖u−RT

0u0‖2
0,E

.
(
1 +Hh−1

)
Dh(u, u) + h−1

∑

D∈TH

∑

E⊂∂D

‖u−RT

0u0‖2
0,E .
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5.1 Exact local solvers

In this section we test the performance of the Schwarz preconditioners

ME
1 =

N∑

i=1

RT
i (DE

i )−1Ri + RT
0 D−1

0 R0,

ME
2 =

N∑

i=1

RT
i (DE

i )−1Ri + RT
0 S−1

0 R0,

ME
3 =

N∑

i=1

RT
i (DE

i )−1Ri + RT
0 (S∗

0)
−1R0,

applied to the original symmetric (preconditioned) systems of equations (6). In the first set of exper-
iments we have considered a coarse space constructed from piecewise linear discontinuous elements.
The condition number estimates together with the corresponding iteration counts needed to reach
convergence (between parenthesis) for all the considered preconditioners are reported in Table 2 on a
partition with 16 subdomains. For the sake of comparison, we also report (last but one row of Table 2)

the condition number estimate of the matrix B
−1/2
h AhB

−1/2
h together with the iteration counts needed

for the solution of the linear system of equations (6). The last row of Table 2 shows the condition

Preconditioner ME
1

H ↓ h→ h0 h0/2 h0/4 h0/8

H0 5.1815 (23) 5.9422 (25) 9.0724 (33) 17.1532 (45)
H0/2 - 5.2452 (23) 5.9113 (26) 8.9409 (33)
H0/4 - - 5.3608 (23) 5.9822 (26)
H0/8 - - - 5.4379 (23)

Preconditioner ME
2

H ↓ h→ h0 h0/2 h0/4 h0/8

H0 6.6250 (27) 7.6977 (30) 11.6106 (37) 21.7983 (49)
H0/2 - 7.5231 (29) 8.0398 (31) 11.9791 (39)
H0/4 - - 7.9609 (30) 8.3793 (32)
H0/8 - - - 8.2273 (31)

Preconditioner ME
3

H ↓ h→ h0 h0/2 h0/4 h0/8

H0 6.6459 (27) 7.7096 (30) 11.6134 (37) 21.7993 (49)
H0/2 - 7.5603 (29) 8.0511 (31) 11.9826 (39)
H0/4 - - 7.9947 (30) 8.3903 (32)
H0/8 - - - 8.2664 (31)

B
−1/2
h AhB

−1/2
h 1.2229e+2 ( 52) 4.7212e+2 (100) 1.8726e+3 (202) 7.4752e+3 ( 410)

Ah 2.5173e+4 (115) 3.9949e+5 (229) 6.3800e+6 (486) 1.0309e+8 (1040)

Table 2: Preconditioners ME
1, ME

2 and ME
3 (N = 16, α = 1): condition number estimates and iteration

counts. Piecewise linear discontinuous coarse space.

number and the corresponding iteration counts of the original unpreconditioned system of equations
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Ahx = f. The numerical results confirm the theoretical estimates provided in Theorem 4.1: the con-
dition number of the preconditioned system behaves asymptotically as H/h, and, consequently, the
iteration counts behaves asymptotically as

√
H/h. By a comparison with the computed condition

number of the matrix Ah it is clear that the application of all the preconditioners drastically reduce
the condition number of the system, and consequently, the iteration counts needed for convergence.

Next, we investigate the scalability of the preconditioners, i.e., the independence of the performance
on the number of subdomains. To this end we repeated the same set of experiments decreasing the
number of subdomains from N = 16 to N = 4: the results are reported in Table 3. As predicted from
our theoretical estimates, the condition number of the preconditioned system is independent of the
number of subdomains.

Preconditioner ME
1

H ↓ h→ h0 h0/2 h0/4 h0/8

H0 4.8722 (21) 5.7042 (24) 8.9088 (30) 16.5838 (40)
H0/2 - 5.0710 (22) 5.8873 (25) 9.0200 (32)
H0/4 - - 5.3561 (23) 5.9792 (26)
H0/8 - - - 5.4471 (23)

Preconditioner ME
2

H ↓ h→ h0 h0/2 h0/4 h0/8

H0 6.8843 (27) 7.7219 (29) 11.8249 (37) 21.5324 (50)
H0/2 - 7.4641 (29) 8.2226 (31) 12.1736 (38)
H0/4 - - 8.0459 (30) 8.4641 (32)
H0/8 - - - 8.2667 (31)

Preconditioner ME
3

H ↓ h→ h0 h0/2 h0/4 h0/8

H0 6.9179 (27) 7.7294 (29) 11.8275 (37) 21.5322 (50)
H0/2 - 7.5241 (29) 8.2336 (31) 12.1763 (38)
H0/4 - - 8.0865 (30) 8.4768 (32)
H0/8 - - - 8.3095 (31)

B
−1/2
h AhB

−1/2
h 1.2229e+2 ( 52) 4.7212e+2 (100) 1.8726e+3 (202) 7.4752e+3 ( 410)

Ah 2.5173e+4 (115) 3.9949e+5 (229) 6.3800e+6 (486) 1.0309e+8 (1040)

Table 3: Preconditioners ME
1, ME

2 and ME
3 (N = 4, α = 1): condition number estimates and iteration

counts. Piecewise linear discontinuous coarse space.

Next, we investigate the effect of the coarse space on the performance of our preconditioners. To this
end, we ran the same set of experiments as before (on a partition with 16 subdomains) employing a
piecewise constant coarse space. Table 4 reports the condition number estimates and the corresponding
iteration counts. Note that whenever we employ a piecewise constant coarse space the bilinear forms
Sh(·, ·) and S∗

h(·, ·) turn out to be identical, and therefore the preconditioners ME
2 and ME

3 coincide.
For this reason, in Table 4 we only report the results obtained with the preconditioners ME

1 and ME
2.

We observe that the performance of the preconditioners are consistently poorer. On the other hand
with this choice of coarse space only one degree of freedom per coarse element is required.
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Preconditioner ME
1

H ↓ h→ h0 h0/2 h0/4 h0/8

H0 9.1821 (27) 19.1929 (38) 39.5807 (50) 80.6716 (70)
H0/2 - 10.6855 (31) 22.1790 (44) 45.2087 (64)
H0/4 - - 11.8751 (36) 24.4631 (50)
H0/8 - - - 12.7832 (38)

Preconditioner ME
2

H ↓ h→ h0 h0/2 h0/4 h0/8

H0 9.4006 (29) 20.2353 (40) 42.7406 (54) 88.3442 (76)
H0/2 - 11.6003 (35) 23.9082 (48) 49.1192 (68)
H0/4 - - 13.2304 (38) 26.8473 (55)
H0/8 - - - 14.4078 (41)

B
−1/2
h AhB

−1/2
h 1.2229e+2 ( 52) 4.7212e+2 (100) 1.8726e+3 (202) 7.4752e+3 ( 410)

Ah 2.5173e+4 (115) 3.9949e+5 (229) 6.3800e+6 (486) 1.0309e+8 (1040)

Table 4: Preconditioners ME
1 and ME

2 (N = 16, α = 1): condition number estimates and iteration
counts. Piecewise constant discontinuous coarse space.

5.2 Inexact local solvers

In this section we test the performance of the Schwarz preconditioners (with inexact local solvers)

MI
1 =

N∑

i=1

RT
i (AI

i )
−1Ri + RT

0 D−1
0 R0,

MI
2 =

N∑

i=1

RT
i (AI

i )
−1Ri + RT

0 S−1
0 R0,

MI
3 =

N∑

i=1

RT
i (AI

i )
−1Ri + RT

0 (S∗
0)

−1R0,

applied to the original symmetric (preconditioned) systems of equations (6).

We ran the same set of experiments as before. More precisely, in Table 5 and Table 6 we compare
the condition number estimates and the iteration counts obtained on a subdomain partition made of
N = 16 and N = 4 subdomains, respectively, employing a piecewise linear discontinuous coarse space.
As expected, the preconditioners with inexact local solvers are also scalable, and the condition number
estimates of the preconditioned system are in agreement with Theorem 4.1: the computed condition
number seems to behave as O(H/h).

Finally, we test again the performance of the preconditioners where the coarse spaces are constructed
from piecewise constant polynomials. The computed condition number estimates and the correspond-
ing iteration counts obtained by employing the preconditioners MI

1 and MI
2 are shown in Table 7.

By comparing the results with the analogous ones presented in the previous Section 5.1 it can been
inferred that employing exact local solvers improves the performance of the preconditioner slightly.
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Preconditioner MI
1

H ↓ h→ h0 h0/2 h0/4 h0/8

H0 4.2990 (21) 7.3572 (28) 14.3928 (40) 29.5718 (57)
H0/2 - 4.7076 (22) 7.7532 (30) 14.4282 (41)
H0/4 - - 4.9095 (23) 8.1509 (30)
H0/8 - - - 5.0121 (23)

Preconditioner MI
2

H ↓ h→ h0 h0/2 h0/4 h0/8

H0 5.5549 (25) 9.4431 (32) 18.7975 (45) 38.8577 (64)
H0/2 - 6.2441 (26) 10.1556 (34) 18.7271 (47)
H0/4 - - 6.5799 (28) 10.6361 (35)
H0/8 - - - 6.6286 (29)

Preconditioner MI
3

H ↓ h→ h0 h0/2 h0/4 h0/8

H0 5.5855 (25) 9.4545 (32) 18.8013 (45) 38.8591 (64)
H0/2 - 6.2788 (27) 10.1688 (35) 18.7303 (47)
H0/4 - - 6.6139 (28) 10.6507 (35)
H0/8 - - - 6.6689 (29)

B
−1/2
h AhB

−1/2
h 1.2229e+2 ( 52) 4.7212e+2 (100) 1.8726e+3 (202) 7.4752e+3 ( 410)

Ah 2.5173e+4 (115) 3.9949e+5 (229) 6.3800e+6 (486) 1.0309e+8 (1040)

Table 5: Preconditioners MI
1, MI

2 and MI
3 (N = 16, α = 1): condition number estimates and iteration

counts. Piecewise linear discontinuous coarse space.
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Preconditioner MI
1

H ↓ h→ h0 h0/2 h0/4 h0/8

H0 4.4817 (20) 7.3013 (26) 13.8371 (36) 27.7972 (51)
H0/2 - 4.7381 (21) 7.8524 (28) 14.4631 (38)
H0/4 - - 4.7748 (22) 8.1640 (29)
H0/8 - - - 4.9653 (23)

Preconditioner MI
2

H ↓ h→ h0 h0/2 h0/4 h0/8

H0 5.9734 (24) 9.7880 (31) 18.2750 (42) 36.4445 (58)
H0/2 - 6.4031 (26) 10.4022 (34) 18.9555 (45)
H0/4 - - 6.6069 (28) 10.7379 (35)
H0/8 - - - 6.5152 (28)

Preconditioner MI
3

H ↓ h→ h0 h0/2 h0/4 h0/8

H0 6.0084 (24) 9.8017 (31) 18.2784 (42) 36.4448 (58)
H0/2 - 6.4362 (27) 10.4172 (34) 18.9593 (45)
H0/4 - - 6.6491 (28) 10.7544 (34)
H0/8 - - - 6.5739 (28)

B
−1/2
h AhB

−1/2
h 1.2229e+2 ( 52) 4.7212e+2 (100) 1.8726e+3 (202) 7.4752e+3 ( 410)

Ah 2.5173e+4 (115) 3.9949e+5 (229) 6.3800e+6 (486) 1.0309e+8 (1040)

Table 6: Preconditioners MI
1, MI

2 and MI
3 (N = 4, α = 1): condition number estimates and iteration

counts. Piecewise linear discontinuous coarse space.

Preconditioner MI
1

H ↓ h→ h0 h0/2 h0/4 h0/8

H0 10.6099 (29) 24.6977(43) 54.5351 (63) 114.8625 (91)
H0/2 - 12.2398 (34) 26.7205 (49) 56.2146 (71)
H0/4 - - 13.2809 (37) 28.0078 (51)
H0/8 - - - 14.0256 (38)

Preconditioner MI
2

H ↓ h→ h0 h0/2 h0/4 h0/8

H0 12.0117 (31) 28.4619 (46) 62.7619 (67) 132.3684 (95)
H0/2 - 14.0306 (36) 30.7275 (52) 64.7140 (74)
H0/4 - - 15.1082 (40) 31.8235 (55)
H0/8 - - - 15.8052 (42)

B
−1/2
h AhB

−1/2
h 1.2229e+2 ( 52) 4.7212e+2 (100) 1.8726e+3 (202) 7.4752e+3 ( 410)

Ah 2.5173e+4 (115) 3.9949e+5 (229) 6.3800e+6 (486) 1.0309e+8 (1040)

Table 7: Preconditioners MI
1 and MI

2 (N = 16, α = 1): condition number estimates and iteration
counts. Piecewise constant discontinuous coarse space.
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5.3 Variable penalty parameter

The aim of this section is to validate the independence on the penalty parameter α of the estimates
for the condition number of the preconditioned system proved in Theorem 4.1.

For the sake of brevity we focus only on the performance of the preconditioners ME
1 and MI

1, additionally
throughout this section we employ a piecewise constant coarse solver. In Figure 5.3 we report the
condition number estimates of the preconditioned system for different values of α. Although our theory
requires α ≥ 1 for the sake of completeness we report here the results obtained with α = 10−2, . . . , 104,
and different mesh configurations. Results obtained with exact local solvers, i.e., the preconditioner
ME

1, are shown in Figure 3(a), whereas Figure 3(b) shows the analogous results obtained with inexact
local solvers, i.e., the preconditioner MI

1. As expected, our preconditioner is fairly insensitive on the
choice of the penalization constant.
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Figure 4: Preconditioners ME
1 and MI

1 (N = 16): condition number estimates as a function of the
penalty parameter α. Piecewise constant coarse solver.
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A Appendix

The aim of this section is to show Lemma 2.1. For that purpose, we first recall a result that provides
a natural splitting of the DG linear functions.
Proposition A.1. [5, Proposition 3.1] For any u ∈ Vh there exist a unique v ∈ V CR

h and a unique
z ∈ Zh such that u = v + z. That is: Vh = V CR

h ⊕ Zh, where V CR

h is the classical Crouziex-Raviart
space defined by

V CR

h :=
{
v ∈ L2(Ω) : v|T ∈ P1(T ) ∀T ∈ Th and Π0

e([[v]]) = 0 ∀ e ∈ E◦
h

}
.

and the space Zh is defined by:

Zh :=
{
v ∈ L2(Ω) : v|T ∈ P1(T ) ∀T ∈ Th and Π0

e({{v}}) = 0 ∀ e ∈ E◦
h

}
.

A natural set of basis functions associated to midpoints of edges can be given for both spaces V CR
h

and Zh, i.e.,
V CR

h = span{ϕCR
e }e∈E◦

h
Zh = span{ψZh

e,T }e∈E◦

h
⊕ span{ψZh

e,T }e∈E∂
h
. (56)

Therefore, an edgewise ordering of the dofs of any u ∈ Vh facilitates the use of the above splitting.

For any u ∈ Vh, let v ∈ V CR
h and z ∈ Zh such that u = v + z. Now, we fix an interior edge

e = ∂T+ ∩ ∂T−, e ∈ E◦
h and, we denote by ve (resp. ze) the vector containing the degrees of freedom

of v|e∩T+ and v|e∩T− (resp. z|e∩T+ and z|e∩T−). Using the definition of the spaces V CR
h and Zh, it

follows that,

ve =

[
ve

ve

]
, ze =

[
|ze|
−|ze|

]
, ue =

[
u+

u−

]
=

[
ve + |ze|
ve − |ze|

]
= ve + ze,

Therefore, we have that

(Be
h)−1/2ue =

[
ve + βe|ze|
ve − βe|ze|

]
= ve + βeze ∀e ∈ E◦

h,

where βe is defined as in (8). Therefore, with such a decomposition the action of the operator (Be
h)−1/2

can be read as the one that, on each interior edge, leaves untouched the Crouziex-Raviart part of the
DG function and acts only on its highly oscillatory component z. Analogously, on each boundary edge
e ∈ E∂

h , we have
(Be

h)−1/2QT ue = β∂
e ze ∀e ∈ E∂

h ,

where, following [5], we have assigned the dofs corresponding to the boundary edges (of the Dirichlet
problem) in Zh (or, analogously, the Dirichlet boundary conditions with Crouzeix-Raviart elements
are imposed strongly). Summarizing, we have

(Be
h)−1/2ue =

{
ve + βeze if e ∈ E◦

h,

βeze if e ∈ E∂
h ,

(57)

where βe is defined in (8).

We also recall the following result from [5]. We report the proof for the sake of completeness.
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Lemma A.2. For any z ∈ Zh it holds that

∑

T∈Th

‖∇z‖2
0,T ≤ C2

t

∑

e∈Eh

1

he
‖Πe

0([[z]])‖2
0,e , (58)

where Ct is the constant in the trace inequality (and so depends only on the shape regularity of the
mesh).

Proof. Integrating by parts, recalling that since z ∈ Zh is piecewise linear then ∆z = 0 on each T ∈ Th,
and the definition (4) of the operator Πe

0(·) yield

∑

T∈Th

‖∇z‖2
0,T = (∇z,∇z)0,T = −

∑

T∈Th

∫

T

∆zz dx+
∑

e∈Eh

∫

e

{{∇z}} · [[z]] ds+
∑

e∈E◦

h

∫

e

[[∇z]] · {{z}} ds

=
∑

e∈Eh

∫

e

{{∇z}} · Πe
0([[z]]) ds+

∑

e∈E◦

h

∫

e

[[∇z]] · Πe
0({{z}}) ds

=
∑

e∈Eh

∫

e

{{∇z}} · Πe
0([[z]]) ds

≤
∑

e∈Eh

h1/2
e ‖ {{∇z}} ‖0,e h

−1/2
e ‖Πe

0([[z]])‖0,e.

The thesis follows by employing the standard trace inequality.

Finally, we are ready to prove Lemma 2.1.

Proof of Lemma 2.1. From the decomposition of the space Vh given in Proposition A.1, any u ∈ Vh

can be decomposed uniquely as u = ucr + uz, with ucr ∈ V CR
h and uz ∈ Zh. Recalling now that

B
−1/2
h u = ucr + βuz, with β|e = βe defined as in (8), we find

∑

e∈Eh

α

h3
e

‖Π0([[B
−1/2
h u]])‖2

0,e =
∑

e∈Eh

α

h3
e

‖Π0([[ucr + βeu
z]])‖2

0,e =
∑

e∈Eh

β2
e

α

h3
e

‖Π0([[uz]])‖2
0,e

≤
∑

e∈Eh

1

he
‖Π0([[u]])‖2

0,e,

where the last bound follows from estimate (9). We now show the continuity (16). For any u,w ∈ Vh,
we write u = ucr + uz and w = wcr + wz with ucr , wcr ∈ V CR

h and uz, wz ∈ Zh. Then, the
Cauchy-Schwarz inequality and the above inequality, gives

Dh(u,w) ≤
(
∑

T∈Th

‖∇(ucr + βuz)‖2
0,T

)1/2(∑

T∈Th

‖∇(wcr + βwz)‖2
0,T

)1/2

+

(
∑

e∈Eh

1

he
‖Π0([[u]])‖2

0,e

)1/2(∑

e∈Eh

1

he
‖Π0([[w]])‖2

0,e

)1/2

. (59)

We now estimate each term on the right hand side separately (it is enough to do this for u = ucr +
uz). The triangle inequality, the arithmetic-geometric inequality together with Lemma A.2, and the
definition (8) of β yield the estimate

∑

T∈Th

‖∇(ucr + βuz)‖2
0,T .

∑

T∈Th

(
‖∇ucr‖2

0,T + β2‖∇uz‖2
0,T

)
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=
∑

T∈Th

(
‖∇(ucr + uz − uz)‖2

0,T + β2‖∇uz‖2
0,T

)

.
∑

T∈Th

‖∇(ucr + uz)‖2
0,T +

∑

e∈Eh

(1 + β2
e )

he
‖Πe

0([[u
z]])‖2

0,e

.
∑

T∈Th

‖∇u‖2
0,T +

∑

e∈Eh

1

he
‖Πe

0([[u]])‖2
0,e. (60)

which yields (16).

We now prove the coercivity. Cauchy-Schwarz inequality, the arithmetic-geometric inequality and
estimate (58) from Lemma A.2 imply

2

∣∣∣∣
∫

Ω

β∇hu
cr · ∇hu

z dx

∣∣∣∣ ≤2‖β∇hu
cr‖0,Ω‖∇hu

z‖0,Ω

≤8C2
t β

2‖∇hu
cr‖2

0,Ω +
1

8C2
t

‖∇hu
z‖2

0,Ω ,

≤8C2
t β

2‖∇hu
cr‖2

0,Ω +
1

8

∑

e∈Eh

1

he
‖Π0([[u

z]])‖2
0,e ,

where Ct denotes the constant for the trace inequality. The above estimate together with the scaling
of βe given in (9) and the assumption α ≥ 1 yield

1

he
≥ β2

e

α

h3
e

=
α

he

(
1

kα+ h2
e

)
≥ α

he

(
1

kα+ 1

)
≥ 1

2khe
≥ 1

4he
,

with k = 1 if e ∈ E◦
h and k = 2 if e ∈ E∂

h . The above observations together with Lemma A.2 finally
give

Dh(u, u) ≥ ‖∇hu
cr‖2

0,Ω + β2‖∇hu
z‖2

0,Ω +
∑

e∈Eh

β2
e

α

h3
e

‖Π0([[uz]])‖2
0,e − 2β

∣∣∣∣
∫

Ω

∇hu
cr · ∇hu

z dx

∣∣∣∣

&
(
1 − 8C2

t β
2
)
‖∇hu

cr‖2
0,Ω + β2‖∇hu

z‖2
0,Ω +

(
1

4
− 1

8

) ∑

e∈Eh

1

he
‖Π0([[u

z]])‖2
0,e

&
(
1 − 8C2

t β
2
)
‖∇hu

cr‖2
0,Ω + β2‖∇hu

z‖2
0,Ω +

∑

e∈Eh

1

8he
‖Π0([[u]])‖2

0,e,

Hence, by taking h so that 1 − 8C2
t β

2 ≥ 1/2 > 0, we have

Dh(u, u) ≥ 1

2
‖∇hu

cr‖2
0,Ω + β2|uz|21,h +

∑

e∈Eh

1

8he
‖Π0([[u]])‖2

0,e,

and therefore, discarding the low order terms we finally obtain (because of Lemma A.2)

Dh(u, u) & ‖∇hu
cr‖2

0,Ω +
∑

e∈Eh

1

8he
‖Π0([[u]])‖2

0,e & ‖u‖2
DG

for all h ≤
√

2α
16C2

t −1
and the proof is complete.
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