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Abstract: Cardiocirculatory mathematical models serve as valuable tools for investigat-
ing physiological and pathological conditions of the circulatory system. To investigate
the clinical condition of an individual, cardiocirculatory models need to be personalized
by means of calibration methods. In this study we propose a new calibration method for
a lumped-parameter cardiocirculatory model. This calibration method utilizes the cor-
relation matrix between parameters and model outputs to calibrate the latter according
to data. We test this calibration method and its combination with L-BFGS-B (Limited
memory Broyden – Fletcher – Goldfarb – Shanno with Bound constraints) comparing
them with the performances of L-BFGS-B alone. We show that the correlation matrix
calibration method and the combined one effectively reduce the loss function of the as-
sociated optimization problem. In the case of in silico generated data, we show that
the two new calibration methods are robust with respect to the initial guess of parame-
ters and to the presence of noise in the data. Notably, the correlation matrix calibration
method achieves the best results in estimating the parameters in the case of noisy data
and it is faster than the combined calibration method and L-BFGS-B. Finally, we present
real test case where the two new calibration methods yield results comparable to those
obtained using L-BFGS-B in terms of minimizing the loss function and estimating the
clinical data. This highlights the effectiveness of the new calibration methods for clini-
cal applications.

Keywords: Cardiocirculatory models, optimization, parameter estimation, global sen-
sitivity analysis.

Abbreviations: ODE: ordinary differential equations; CMC: correlation matrix cali-
bration method; L-BFGS-B: Limited memory Broyden – Fletcher – Goldfarb – Shanno
with Bound constraints; CMC-L-BFGS-B: hybrid calibration method between the cor-
relation matrix calibration method and L-BFGS-B; HR: heart rate; BSA: body sur-
face area; LAVmax: maximal left atrial volume; LVEDV: left ventricular end diastolic
volume; LVESV: left ventricular end systolic volume; LVEF: left ventricular ejection
fraction; max∇PrAV: maximal right atrioventricular pressure gradient; SAPmax: sys-
tolic systemic arterial pressure; SAPmin: diastolic systemic arterial pressure; PAPmax:
systolic pulmonary arterial pressure; LAPmax: maximal left atrial pressure; LAPmin:
minimal left atrial pressure; LAPmean: mean left atrial pressure; LVSV: left ventricular
stroke volume; CO: cardiac output; CI: cardiac index; LVPmax: maximal left ventric-
ular pressure; LVPmin: minimal left ventricular pressure; RAVmax: maximal right atrial
volume; RAPmax: maximal right atrial pressure; RAPmin: minimal right atrial pressure;
RAPmean: mean right atrial pressure; RVEDV: right ventricular end diastolic volume;
RVESV: right ventricular end systolic volume; RVEF: right ventricular ejection frac-
tion; RVPmax: maximal right ventricular pressure; RVPmin: minimal right ventricular
pressure; PAPmin: diastolic pulmonary arterial pressure; PAPmean: mean pulmonary
arterial pressure; PWPmin: minimal pulmonary wedge pressure; PWPmean: mean

3



pulmonary wedge pressure; SVR: systemic vascular resistance; PVR: pulmonary
vascular resistance

1 Introduction

Cardiocirculatory mathematical models have been developed to reproduce physiological
and pathological conditions of the human body.1–8 Lumped-parameter models (named
also 0D models) are set on a partition of the cardiovascular system into different reduced
compartments (e.g., systemic arteries or left atrium), where only the average flow rates
and pressures are computed at each time. Each compartment is characterized by a set of
parameters (e.g., resistances of the vessels or elastances of the cardiac chambers) that
typically refer to average, physiological conditions. 0D models

Given a set of either in silico generated or clinical data, a calibration method modi-
fies the parameters of the lumped-parameter model to minimize the distance between
data and model outputs thus making the model patient-specific.3, 9 Previous works
studied the advantages of calibration methods for cardiocirculatory lumped-parameter
models where synthetically generated data are used in the minimization process. For
example, Laubscher et al.10 used a combination of Adam optimizer and L-BFGS-B
(Limited memory Broyden – Fletcher – Goldfarb – Shanno with Bound constraints) to
estimate different parameters that significantly influence the left ventricular pressure-
volume loop; Bjørdalsbakke et al.11 employed a trust region reflective algorithm in
ten different estimation scenarios following a sensitivity analysis. These works used
gradient-based calibration methods. Saxton et al.12 used an Unscented Kalman filter to
estimate the parameters of a cardiocirculatory model that accounts for the left ventricle
and for the systemic circulation with a time varying heartbeat period.

In this work, we propose a new gradient-free method with the aim of providing an ef-
ficient calibration procedure in the context of lumped-parameter cardiocirculatory mod-
els. This method uses of the correlation matrix between parameters and model outputs
to surrogate the gradient of the loss function. We refer to this method as Correlation
Matrix Calibration (CMC) method. We identify the parameters that significantly affect
a set of model outputs corresponding to a set of available data (such as the maximal left
atrial volume or the systemic systolic arterial pressure) by means of a global sensitivity
analysis13, 14 and we perform the calibration procedure of the identified parameters.

We compare the proposed CMC method to the L-BFGS-B method15, 16 on a dataset of
in silico generated data. Moreover, we also propose a combination of the two calibration
methods (CMC-L-BFGS-B) in order to achieve better results in terms of accuracy with
respect to CMC alone. Specifically, we first apply CMC and then L-BFGS-B, because
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the first one acts as a global method, whereas the latter as a local method that can
improve the accuracy of the former. Although the proposed new methods could be
applied to models different from the cardiocirculatory ones, we restric ourselves only to
the latter case.

To further validate CMC and CMC-L-BFGS-B, we apply them to patient-specific
data related to COVID-19 pneumonia provided by Centro Cardiologico Monzino and
L. Sacco Hospital in Milan, Italy. In severe COVID-19-related pneumonia, right ventri-
cle involvement seems to mainly drive cardiac function damages, while consequences
on the left ventricle appear to be less common.17 Right ventricle dilation, diminished
right ventricular function and elevated pulmonary arterial systolic pressure are asso-
ciated with mortality in severe COVID-19.18, 19 Moreover, endothelial damages with
diffuse micro-thrombosis has been widely described in histological studies in COVID-
19 pneumonia patients causing an increase in pulmonary resistances and a reduction in
pulmonary compliances.20, 21 We choose the ranges where the parameters vary during
the calibration procedure according to these observations.

The outline of this paper is as follows. In Section 2, we describe the lumped-
parameter cardiocirculatory model together with its parameters and the computable
model outputs. In Section 3, we present the global sensitivity analysis and the consid-
ered calibration methods. In Section 4, we test the robustness of the calibration methods
both on in silico generated data and on patient-specific data. In Section 5, we draw the
conclusions of this work.

2 Lumped-parameter cardiocirculatory model

In this section we introduce the lumped-parameter cardiocirculatory model togheter
with its parameters and its outputs.

A lumped-parameter cardiocirculatory model describes the human cardiovascular
system as an electrical circuit: the current represents the blood flow through vessels
and valves, the electric potential corresponds to the blood pressure, the electric resis-
tance plays the role of the resistance to blood flow, the capacitance represents the vessel
compliance and the inductance corresponds to the blood inertia.

A lumped-parameter cardiocirculatory model partitions the cardiovascular system
into distinct compartments (e.g. right atrium, systemic arteries/veins). For each of
them, a system of ordinary differential equations (ODE)1–3 describes the time evolution
of the unknowns of the model (pressures, flow rates and cardiac volumes).

The proposed lumped-parameter model is a modification of the one proposed by
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Regazzoni et al.,22 that we improved by adding further compartments representing the
systemic and pulmonary micro-vasculature (Figure 1). The model consists in the four
cardiac chambers, the systemic and pulmonary circulation, split into arterial, capillary
and venous compartments. We describe the pulmonary microcirculation by making
use of two compartments accounting for the oxygenated and non-oxygenated capillar-
ies, respectively, because some pulmonary capillaries do not oxygenate due to hypoxic
vasoconstriction in regions with a low oxygen concentration in the alveoli, even if blood
perfusion of lungs is normal. The fraction of blood that does not oxygenate is called pul-
monary shunt. In healthy conditions pulmonary shunt is lower than 5%,23 whereas in
presence of acute respiratory distress sindromes, as COVID-19, it can increases up to
60%.24, 25 The hemodynamic of the cardiovascular system is described by means of a
dynamical system:{

ẋ(t;x0,p) = f(t,x(t;x0,p);p) t ∈ (0, T ]

x(0;x0,p) = x0

(1)

where x, x0, p, f and T represent the state variables, the initial conditions, the parame-
ters, the system right hand side (rhs) and the final time, respectively. Moreover, we can
calculate some additional quantities y, that we call model outputs, as functions (e.g. the
maximum or the mean) of the state variables x and the parameters p:

y = g(x(t;x0,p);p).

The state variables x of our model are the volumes of the left atrium (VLA) and ventri-
cle (VLV) and of the right atrium (VRA) and ventricle (VRV), the circulatory pressures of
the systemic arteries (pSYS

AR ), capillaries (pSYS
C ) and veins (pSYS

VEN) and of the pulmonary
arteries (pPUL

AR ), capillaries (pPUL
C ) and veins (pPUL

VEN), the circulatory fluxes of the sys-
temic arteries (QSYS

AR ) and veins (QSYS
VEN) and of the pulmonary arteries (QPUL

AR ) and veins
(QPUL

VEN).

The lumped-parameter cardiocirculatory model depends on the heart rate (HR), that
determines the heartbeat period THB= 60/HR, and on the parameters p reported in
Table 1. We fix the final time T = 25THB to reach the limit cycle of the dynamical
system.

The dynamics of cardiac blood volumes accounts for the inward and outward fluxes:

V̇RA(t) = QSYS
VEN(t)−QTV(t), V̇LA(t) = QPUL

VEN(t)−QMV(t), (2)

V̇RV(t) = QTV(t)−QPV(t), V̇LV(t) = QMV(t)−QAV(t), (3)

where QMV, QAV, QTV and QPV are the blood flows through the mitral, aortic, tricuspid
and pulmonary valves, respectively. These flows depend on the pressure jump from the
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upstream to the downstream compartment:

QTV(t) = Qvalve(pRA(t)− pRV(t)), QMV(t) = Qvalve(pLA(t)− pLV(t)), (4)

QPV(t) = Qvalve(pRV(t)− pPUL
AR (t)), QAV(t) = Qvalve(pLV(t)− pSYS

AR (t)), (5)

where pLA, pLV, pRA and pRV are the unknown pressures inside the left atrium, the left
ventricle, the right atrium and the right ventricle, respectively. Qvalve is the blood flow
across a valve that depends on the pressure jump across the valve:

Qvalve(∆p) =
∆p

Rvalve(∆p)
. (6)

The resistance of the leaflets of each valve is

Rvalve(∆p) =
√
RminRmax

(
Rmax

Rmin

) atan(−100π∆p)
π

. (7)

Rvalve ranges from Rmin (with ∆p → +∞) to Rmax (with ∆p → −∞), where Rmin and
Rmax are the minimal (open valve) and maximal (closed valve) resistances given by the
leaflets of the valves.

We model each cardiac chamber as a pressure generator. The pressure generated
pc(t) by the myocardium of the cardiac chamber c (c ∈ {LA,LV,RA,RV }) depends
on the blood volume contained in the chamber itself Vc(t), the unloaded volume VU,c

(i.e. volume at zero pressure) and the time varying elastance Ec(t), that represents the
cardiac chamber contractility.

pc(t) = Ec(t)(Vc(t)− VU,c). (8)

The time varying elastance depends on the passive elastance EBc (i.e. the inverse
of the cardiac chamber compliance), the maximum active elastance EAc and a periodic
function ec(t) that accounts for cardiac activation phases.3, 26

Ec(t) = EBc + EAcec(t), (9)

ec(t) =


1
2

[
1− cos

(
π

TCc
mod (t− tCc, THB)

)]
if 0 ≤ mod (t− tCc, THB) < TCc,

1
2

[
1 + cos

(
π

TRc
mod (t− tRc, THB)

)]
if 0 ≤ mod (t− tRc, THB) < TRc,

0 otherwise,

(10)

where TCc, TRc, tCc and tRc are the durations of the contraction and relaxation phases
and the times of the contraction and relaxation phases of the cardiac chamber, respec-
tively (Table 1). The first and the second equations of (10) account for the contraction
and relaxation phases of the cardiac chamber, respectively.
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Each circulatory compartment (e.g. systemic arterial circulation) is modeled as a
Windkessel circuit (Figure 2) describing the circulation by means of the Kirchhoff’s
circuit laws. For example, for the systemic arterial circulation we have:

CSYS
AR ṗSYS

AR (t) = QAV(t)−QSYS
AR (t), (11)

LSYS
AR Q̇SYS

AR (t) = −QSYS
AR (t)RSYS

AR + pSYS
AR (t)− pSYS

C (t), (12)

where RSY S
AR , CSY S

AR and LSY S
AR are the systemic arterial resistance, compliance and iner-

tia, respectively (Table 1). Analogous equations hold for the systemic venous circulation
and for the pulmonary arterial and venous circulation. Notice that for the capillary cir-
culation the blood inertia is negligible,27 so we set it to 0. Summarizing, the whole
dynamical system is:

V̇LA(t) = QPUL
VEN(t)−QMV(t)

V̇LV(t) = QMV(t)−QAV(t)

CSYS
AR ṗSYS

AR (t) = QAV(t)−QSYS
AR (t)

LSYS
AR Q̇SYS

AR (t) = −RSYS
AR QSYS

AR (t) + pSYS
AR (t)− pSYS

C (t)

CSYS
C ṗSYS

C (t) = QSYS
AR (t)−QSYS

C (t)

CSYS
VENṗ

SYS
VEN(t) = QSYS

C (t)−QSYS
VEN(t)

LSYS
VENQ̇

SYS
VEN(t) = −RSYS

VENQ
SYS
VEN(t) + pSYS

VEN(t)− pRA(t)

V̇RA(t) = QSYS
VEN(t)−QTV(t)

V̇RV(t) = QTV(t)−QPV(t)

CPUL
AR ṗPUL

AR (t) = QPV(t)−QPUL
AR (t)

LPUL
AR Q̇PUL

AR (t) = −RPUL
AR QPUL

AR (t) + pPUL
AR (t)− pPUL

C (t)

(CSH + CPUL
C )ṗPUL

C (t) = QPUL
AR (t)−QSH(t)−QPUL

C (t)

CPUL
VENṗ

PUL
VEN(t) = QSH(t) +QPUL

C (t)−QPUL
VEN(t)

LPUL
VENQ̇

PUL
VEN(t) = −RPUL

VENQ
PUL
VEN(t) + pPUL

VEN(t)− pLA(t)

coupled with suitable initial conditions.

Once we solve the discretized dynamical system, finding an approximation of the
state variables, we compute the model outputs y. We define the model outputs in Table
2, where a subscript “I-” refers to the indexed volumes, i.e. normalized by the body
surface area (BSA). The calibration procedure will be performed over specific model
outputs, in particular those reported in the top part of Table 2.

We determine the reference setting of parameters pR to reproduce an ideal healthy
individual (see Table 1). Specifically, we fix HR= 80 bpm28 and we find the values
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of the other parameters as a modification of literature values,3, 27 in such a way that the
model outputs y lie in echocardiographic ranges related to a healthy individual (Table
2).

3 Novel calibration methods

In this section, we first describe the global sensitivity analysis toghether with the general
aim of the calibrations (Section 3.1). This procedure is common to all the calibration
methods presented in what follows and allows to restrict the calibration procedure to a
lower number of parameters. Then, we describe the new calibration method in Section
3.2 and an hybrid method that combine CMC and L-BFGS-B in Section 3.3 (CMC-L-
BFGS-B).

3.1 Global sensitivity analysis and aim of the calibration

We perform a global sensitivity analysis to determine which parameters affect signif-
icantly the model outputs related to the data (Table 2). Letting the parameters vary
randomly in a hyperbox, we estimate total Sobol indices,14 that evaluate the impact of
a parameter pk on a certain model output yj, accounting also for high-order interactions
among parameters:

Sj,T
k = 1− V arp∼k

[Epk [yj|p∼k]]

V ar[yj]

where p∼k indicates the set of all parameters excluding the kth one. E and V ar are the
expected value and the variance, respectively, and the subscripts indicate the random
variable measure to use for the integration. When the subscript is absent, the integration
is performed with respect to all the random variables. Epk [yj|p∼k] is the expected value
of the model output yj conditioned with respect to the parameters p∼k.

We estimate total Sobol indices by sampling the parameters in a hyperbox employ-
ing the Saltelli’s method13 and we compute the corresponding model outputs by means
of the lumped-parameter cardiocirculatory model. We build the hyperbox around the
ideal healthy reference setting of parameters pR (Appendix A). We do not compute the
sensitivity to the HR, as this parameter is easily measured from patients, so we are
not interested in its calibration from indirect measures. The Saltelli’s method allows
for a linear increase in the number of samples with respect to the number of varying
parameters Np = 32: the number of samples is 2N(Np + 1) where N is a user defined
variable. We choose N = 1024 that corresponds to 67584 samples and allows for small
confidence intervals of the total Sobol indices.
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We stress that the shape and the position of the hyperbox where we sample the pa-
rameters affect the Sobol indices. In particular, the wider the interval for a parameter
is, the higher the Sobol indices for that parameter will be, because it can potentially
generate higher variability in the model outputs. Therefore, the Sobol indices computed
here are specific for the chosen ranges of the parameters.

According to the values of the total Sobol indices we select the parameters to cali-
brate.

During the calibration procedure (based on data generated in silico or measured from
specific patients), the parameters eligible for the calibration procedure can vary in the
ranges described in Appendix A. Even if we fixed the ranges of the parameters, they are
large enough to cover a wide range of possible conditions.

The goal of the calibration methods is to minimize the loss function (mean squared
error):

MSE(p) =
1

Nd

Nd∑
i=1

(
di − yj(i)(p)

di

)2

(13)

where Nd is the number of data di, for 1 ≤ i ≤ Nd, at disposal. Each data is represented
by a model output. We indicate with j(i) the index of the entry of the model outputs
vector y approximating the i-th data. p is the set of parameters.

3.2 Correlation matrix calibration method

CMC uses a surrogate of the gradient of the loss function. The Pearson correlation
coefficient measures the linear relationship between two variables.29 If f : R → R is a
(non constant) function such that f(x) ≤ f(y) for almost every x < y with x, y ∈ R
and x, y are sampled from an absolute continuous distribution X ∼ g then the Pearson’s
correlation coefficient is non-negative:

ρX,f(X) =
E[(X − E[X])(f(X)− E[f(X)])]√

E[(X − E[X])2] E[(f(X)− E[f(X)])2]
≥ 0
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Indeed, the numerator determines the sign of the correlation coefficient:

E[(X − E[X])(f(X)− E[f(X)])]

= E[(X − E[X])(f(X)− f(E[X]) + f(E[X])− E[f(X)])]

= E[(X − E[X])(f(X)− f(E[X]))] + (f(E[X])− E[f(X)])E[X − E[X]]

= E[(X − E[X])(f(X)− f(E[X]))]

=

∫ +∞

−∞
(x− E[X])(f(x)− f(E[X]))g(x)dx

Using the monotonicity of f almost everywhere, the signs of x − E[X] and f(x) −
f(E[X]) are concordant and so ρX,f(X) ≥ 0. The converse holds if f is monotone non-
increasing. Given n paired data points {(xi, f(xi))}ni=1 with f(x) = 1

n

∑n
i=1 f(xi), a

similar argument applies to the sample Pearson’s correlation coefficient29

rX,f(X) =

∑n
i=1(xi − x̄)(f(xi)− f(x))√

(
∑n

i=1(xi − x̄)2)
(∑n

i=1(f(xi)− f(x))2
)

with the assumption of f being monotone everywhere. Therefore, we use the sample
correlation coefficient between parameters and model outputs to get information about
the monotonicity of the loss function and its gradient with respect to the parameters.

To compute the correlation matrix M (where Ml,j = rpl,yj), we perform 3200 tests
(100Np where Np = 32 in our case). We sample the parameters from a uniform distri-
bution in the previously mentioned hyperbox and we compute the corresponding model
outputs. The correlation coefficients are local information of the linear relationships
between parameters and model outputs around the mean of the parameters, that coin-
cides with the centre of the hyperbox because we sample the parameters from a uniform
distibution. Therefore, CMC could lose in accuracy when the setting of parameters is
far from the centre of the hyperbox during the calibration procedure. Nonetheless, it
achieves good results for the cardiocirculatory model, as we show in Section 4.

CMC for the cardiovascular system relies on Algorithm 1 described in what follows:

1. Initialize the variables used troughout the calibration procedure (lines 1-3);

2. Run a model simulation and compute the loss function (lines 5-6);

3. If the loss function is greater than a threshold compute the relative errors between
data and the related model outptus. Check if there exists a model output that dur-
ing the current iteration of the calibration procedure has not yet been considered
to calibrate the parameters (lines 7-11);
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4. Focus on the model output associated to the largest error (line 12);

5. Consider the parameter associated to the largest correlation coefficient in absolute
value related to this model output (line 13-14);

6. Avoid considering always the same parameter for the calibration procedure at
each iteration (lines 15-18);

7. If a parameter satisfying the condition at step 5 and associated to a correlation
coefficient greater than 0.05 in absolute value does not exist, go on to the next
model output associated to the highest error (lines 19-28) and repeat from step
5. If not, surrogate the derivative of the loss function with respect to the chosen
parameter using the correlation coefficients between the parameter and all the
model outputs related to data (lines 29-40);

8. If the surrogate gradient of the loss function is less than 0, perform a calibration
step and repeat the whole procedure from step 2. If not, go on to the next data
(lines 41-50).

ALGORITHM 1
CMC algorithm

1: Initialize: d, tol, itmax, it = 0, m = ∅
▷ Data, tolerance, max number of iterations, current iteration, set of calibrated parameters

2: Load M ▷ Load the correlation matrix
3: Choose the initial guess of parameters p ▷ p lies in the hyperbox used to build M
4: do
5: Run a model simulation
6: Compute L(p)
7: if L(p) ≥ tol then
8: ei =

di−yj(i)(p)

di
for i = 1, . . . , Nd

9: a = e ▷ Auxiliary vector
10: parcon = 0 ▷ Number of considered parameters for a specific data
11: while ∥a∥ > 0 do
12: ı̄ = argmaxi=1,...,Nd

|ai|
13: b = M:,j(ı̄) ▷ Correlation coefficients between yj(ı̄) and parameters
14: l̄ = argmaxl=1,...,Np

|bl|
15: while p̄l ∈ m & |b̄l > 0.05| do ▷ Avoid to calibrate the same parameter
16: b̄l = 0
17: l̄ = argmaxl=1,...,Np

|bl|
18: end while
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19: if |b̄l| ≤ 0.05 then ▷ Avoid to consider a parameter not significant for L
20: if |m| = parcon then ▷ All parameters were used to calibrate only yj(ı̄)
21: aı̄ = 0 ▷ Change error component to decrease
22: else ▷ Some parameters were used to calibrate yj(i) with i ̸= ı̄
23: b = M:,j(ı̄)

24: end if
25: parcon = 0
26: m = ∅
27: Go to step 11
28: end if
29: m = m ∪ {l̄}
30: parcon = parcon + 1
31: ∇̂L = 0 ▷ Surrogate (∇L(p))̄l
32: for k = 1, . . . , Nd do
33: if eı̄Ml̄,j(ı̄)ekMl̄,j(k) > 0 then
34: if |ek| > 0.01 then ▷ Small errors can increase modifying the parameter
35: ∇̂L = ∇̂L − |Ml̄,j(k)|
36: end if
37: else
38: ∇̂L = ∇̂L+ |Ml̄,j(k)|
39: end if
40: end for
41: if ∇̂L < 0 then
42: p̄l = calibrate(l̄, p̄l, p

R
l̄
, eı̄,Ml̄,j(ı̄)) ▷ Modify p̄l

43: it = it+ 1
44: Break
45: else ▷ eı̄ can not lower
46: aı̄ = 0
47: end if
48: end while
49: end if
50: while it ≤ itmax & L(p) ≥ tol

Observe that if the sign of ekMl̄,j(k) is positive or negative, then p̄l has to be increased
or decreased, respectively, to reduce the error on data dk. Therefore, if the sign of
ekMl̄,j(k) is concordant to the sign of eı̄Ml̄,j(ı̄), modifying p̄l affects the errors ek and eı̄
in the same way.

The calibrate function modifies the parameter p̄l sampling from a uniform distribu-
tion between the value of p̄l and its maximal or minimal bound (Appendix A) if eı̄Ml̄,j(ı̄)

is positive or negative, respectively. The bounds of the parameter depend on pR
l̄

and the
type of parameter considered (e.g., l̄ can refer to an active elastance). The randomness
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of the step is due to the lack of the knowledge of an optimal step and the convergence
of this calibration method can depend on it.

CMC offers an advantageous trade-off between accuracy and complexity. Its gradient-
free nature allows to not compute the gradient at each iteration of the calibration pro-
cedure, thus reducing the computational cost. Nonetheless, performing a random step
between two consecutive iterations, CMC could ignore local information worsening the
convergence.

3.3 Hybrid CMC-L-BFGS-B method

The hybryd method CMC-L-BFGS-B, firstly, applies CMC to avoid local minima re-
lated to high values of the loss function and to get close to a better minimum; secondly,
it applies L-BFGS-B to improve the estimate of this better minimum.

4 Results

In this section we report the results of the following tests for CMC, L-BFGS-B and
CMC-L-BFGS-B:

1. robustness with respect to in silico generated data (Section 4.1);

2. robustness with respect to the initial guess of parameters (Section 4.2);

3. robustness with respect to noisy data (Section 4.3);

4. calibration based on patient-specific data (Section 4.4).

We run the first three tests on datasets of in silico generated data. We generate the data
sampling the parameters in the associated ranges for the calibration procedure from a
uniform distribution (Appendix A) and computing the related model outputs.

According to the data at disposal, we select for the calibration procedures the pa-
rameters related at least to one total Sobol index equal to or greater than 0.1 (Figure 3),
namely: EBLA, EALV, EBLV, EARV, RSYS

AR , CSY S
AR and RSYS

VEN for a calibration proce-
dure with a full set of data.

We implement CMC and L-BFGS-B in Matlab and in Python, respectively. We com-
pute the numerical solution of the lumped-parameter cardiocirculatory model, in Mat-
lab, by means of ode15s solver which is a variable step, variable order solver, whereas,
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in Python, by means of Dormand-Prince method, which is an adaptive stepsize Runge-
Kutta method. For each setting of the parameters here considered, we run the model
for 25 cycles until convergence to the regime solution of the dynamical system and we
consider only the last heartbeat. To apply L-BFGS-B, we compute the exact gradient
of the loss function by means of automatic differentiation. Since we are considering a
loss function L : RNp → R where Np ≥ 1, it is always more convenient to use reverse
(rather than forward) automatic differentiation, as it allows to compute the gradient in
only one iteration instead of Np. To compute the reverse mode gradient, we use the
Python library Jax.30, 31 Once the gradient is at our disposal, we apply the quasi-Newton
method L-BFGS-B to minimize the loss function.

We consider a calibration procedure successful if the root mean squared error

RMSE(p) =
√
MSE(p) (14)

gets to a value lower than 10−1. Even if this condition is satisfied, the calibration method
does not stop to possibly obtain a better estimate of the parameters. CMC-L-BFGS-B
performs some steps of CMC to obtain a MSE lower than 2.5 · 10−2 and then it applies
L-BFGS-B.

4.1 Robustness and accuracy on silico generated data

In this section, we test the robustness of the calibration methods in estimating the pa-
rameters on a dataset of 20 different in silico generated data. The initial setting of
parameters for the calibration procedures is displayed in Table 1.

CMC is successful for 19 samples, whereas L-BFGS-B is successful for 12 samples
and CMC-L-BFGS-B for 17 samples (Figure 4.a), assuming an intermediate behaviour
between the two original calibration methods. Therefore, the CMC step increases the
number of successful calibration procedures. Despite this advantage, L-BFGS-B esti-
mates the parameters more precisely than the other two calibration methods obtaining
on average an error that is lower than the ones returned by the other two calibration
methods (Figure 4.b). CMC returns an RMSE on the parameters that is higher than the
one returned by L-BFGS-B, highlighting that CMC is charachterized by a higher num-
ber of successful calibration procedures at the cost of a worse parameter estimation.

Finally, we measured the computational times of the three calibration methods on a
standard laptop (AMD Ryzen 7 2700U, 2.20GHz, 16GB RAM):

• the computation of the correlation matrix takes 2.2h and CMC takes on average
7.5min for sample, for a total time of 4.7h;
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• L-BFGS-B takes on average 57min for sample, for a total time of 19h;

• CMC-L-BFGS-B takes on average 65min for sample, for a total time, considering
the correlation matrix computation, of 24h split in the following way: 2.2h for the
computation of the correlation matrix; 9 min for the CMC step; 22h for the L-
BFGS-B step.

CMC performs 4 times better than L-BFGS-B in terms of computational time. More-
over, not considering the computation of the correlation matrix of CMC, it performs 7.5
times better than L-BFGS-B.

4.2 Robustness with respect to the initial guess of parameters

In this section, we test the robustness of the calibration methods on sample 7 of the
previous Section with respect to the initial guess of parameters. We start the calibration
procedures from 19 different randomly selected initial settings of parameters lying in
the associated ranges for the calibration procedure. Sample 7 was associated with a
successful calibration procedure for each calibration method in the previous Section.
We want to observe if the three calibration methods converge to the same setting of
parameters or to different ones.

As preliminary results, the calibration procedure of the model with CMC is success-
ful for 19 settings, whereas L-BFGS-B is successful for 17 settings and CMC-L-BFGS-
B for 19 settings (Figure 5.a). With respect to the previous section, the differences in
the parameter errors between each calibration method are smaller (Figure 5.b).

We compute for each parameter the relative standard deviation of the estimated pa-
rameters with respect to the real value of the parameter (Figure 5.c) to determine the
robustness of the calibration methods with respect to the initial guess. Each calibration
method achieves a relative standard deviation lower than 4% for the estimated parame-
ters different from EARV. For what concerns EARV:

• CMC achieves a relative standard deviation of 27%;

• L-BFGS-B achieves a relative standard deviation of 23%;

• CMC-L-BFGS-B achieves a relative standard deviation of 18%.

The relative standard deviation of the estimate of EARV is larger than the ones of the
other parameters because EARV affects significantly only max∇prAV (total Sobol index
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greater than 0.1 in Figure 3) and the related Sobol index is small (0.11), limiting the in-
formation to determine it accurately. CMC-L-BFGS-B achieves the best results in terms
of relative standard deviations, even if the RMSE on the parameters are mostly higher
than the ones returned by L-BFGS-B (Figure 5.b). Nonetheless, except for EARV, all
the three calibration methods are robust with respect to the initial guess of parameters.

4.3 Robustness with respect to noisy data

In this section we apply syntethic noise to the sample 7 of Section 4.1, building a dataset
of 20 samples. Noisy data represent a realistic setting and the capacity to correctly es-
timate the parameters in this situation is crucial for calibration methods. We repeat the
calibration procedure for each sample to test the robustness of the calibration methods
with respect to noisy data. We sample the noise of each data from a normal distribution
with zero mean and standard deviation equal to the expected measurement error associ-
ated to the data (Table 3). The initial setting of parameters for the calibration procedures
is the same of Section 4.1.

For each of the three calibration methods, all the 20 calibration procedures are suc-
cessful. Computing the RMSE between model outputs and actual data (unaffected by
noise), we obtain, for almost all the samples, higher errors than the RMSE computed
with respect to noisy data. Nevertheless, the RMSE with respect to actual data is less
than 10−1, i.e. the threshold for a successful calibration procedure (Figure 6.a in the
case of CMC).

The relative standard deviations (Figure 6.b) of each parameter with respect to its
value are lower than 20% except for the one related to EARV and CMC. The relative
standard deviations are, in general, higher with respect to the ones in Figure 5.c because
in this case the calibration procedures aim to converge to noisy data and not to the real
ones. So, the parameters that achieve the minimum of the noisy loss function are not the
real ones. Therefore, a calibration method less accurate than another one in estimating
the parameters returns a worse estimate of noisy parameters, but it could achieve a better
result on the actual ones. Indeed, CMC achieves the best results in terms of relative
standard deviations for 5 out of 7 parameters despite being the least accurate calibration
method in estimating the noisy parameters among the three calibration methods, as seen
in Section 4.1.
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4.4 Calibrations on clinical data

In this section, we perform the calibration procedures of the model on clinical data of
two patients affected by COVID-19 related pneumonia (Table 4). Centro Cardiologico
Monzino in Milan and L. Sacco Hospital provided the data. The patient from Monzino
has a restricted number of clinical data, so we choose the parameters to calibrate ac-
cordingly to the global sensitivity analysis (as described at the beginning of Section 4):
namely, EALV, EARV, RSYS

AR , CSYS
AR and RSYS

VEN. We compare the estimated parameters
and the ventricular PV (Pressure-Volume) loops that give clinical insight of the cardiac
condition of a patient.

All the loss functions are less than 10−1 (Table 5), so each calibration procedure is
successful. For both patients CMC-L-BFGS-B and L-BFGS-B obtain the best results in
terms of loss function.

In the case of the patient from Monzino hospital, the relative standard deviations
between the three calibration methods of the estimated parameters are less than 10%
(Table 6), indicating similar results for the three calibration methods. L-BFGS-B and
CMC-L-BFGS-B estimate the same values of parameters except for EARV. Therefore,
the left ventricular PV loops are nearly the same for these two calibration methods,
whereas for the right ventricular PV loops the differences are bigger (Figures 7.a and
7.b). CMC returns different estimates of the parameters related to the blood vessels
with respect to the other two calibration methods. As a consequence, the PV loops
returned from the former calibration method are slightly different from the other two.
Nonetheless, from a clinical point of view, these differences are negligible. In particular,
even if we only know the value of max ∇PrAV that is related to the right ventricle, the
three calibration methods return the same condition: the RVPmax values (all greater than
30 mmHg) are higher than the associated healthy range.32 This indicates an increased
workload of the right ventricle. Instead, the values of RVPmin (all less than 8 mmHg) are
in healthy ranges (Table 2). For what concerns the left ventricular PV loops, the values
of LVESV (all greater than 52 mL), LVPmax (all greater than 140 mmHg) and LVPmax (all
greater than 9 mmHg) are higher than the associated healthy range (Table 2), indicating
an impaired left ventricular function. We do not compare the values of RVEDV, RVESV

and LVEDV with their indexed healthy ranges (Table 2) because we do not know the
BSA of the patient at hand.

In the case of the patient from L. Sacco Hospital, the relative standard deviations
of the estimated parameters are less than 12% (Table 6). The discrepancies among the
PV loops are diminished with respect to the previous case (Figure 7.c and 7.d), because
more clinical data are available. The three right and left ventricular PV loops indicate
that the patient, even if it is affected by COVID-19 related pneumonia, is in healthy
conditions.
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5 Conclusions

This study introduces a new gradient-free calibration method for a cardiocirculatory
mathematical model based on the correlation matrix between parameters and model
outputs.

We showed that the new method (named CMC) outperforms L-BFGS-B in terms of
the number of successful calibrations (Section 4.1). Thanks to its random step proce-
dure, CMC avoids getting stuck in local minima and explores better than L-BFGS-B
the hyperbox where the parameters can vary. This property echoes on the combined
CMC-L-BFGS-B that also outperforms L-BFGS-B in terms of the number of success-
ful calibrations. Because of its gradient-free nature, CMC returns a worse estimate of
the parameters (Figure 4.b). Nonetheless, we showed that, even if there are differences
in the estimated parameters with the three calibration methods, the PV loops obtained
for real patients indicate the same cardiac condition (Section 4.4).

Moreover, we showed that CMC outperforms both L-BFGS-B and CMC-L-BFGS-B
in terms of computational time, offering a good trade-off between accuracy in estimating
clinical data and computational cost (Section 4.1). CMC-L-BFGS-B is the most robust
method among the three with respect to the initial guess of parameters (Section 4.2),
even if it is the slowest due to the L-BFGS-B step.

Finally, CMC is the most robust of the three methods with respect to noisy data (Sec-
tion 4.3). Due to the less accurate estimate of the parameters (Section 4.1), CMC returns
parameters related to the noisy data worse than the other two calibration methods. This
enhances the estimate of the real parameters and makes CMC an effective choice in
presence of noisy data, a typical situation that arises with clinical data.

We now discuss the limitations of CMC. First, the correlation coefficient could over-
look strong non linear relationships between parameters and model outputs, thus ne-
glecting some dependencies. We faced this problem, implementing CMC-L-BFGS-B
to account for non linear relationships with L-BFGS-B. Nonetheless, we showed that
CMC-L-BFGS-B features a lower convergence rate with respect to the other two cal-
ibration methods. Tuning the threshold of the MSE (set to 2.5 · 10−2 in this work)
employed to switch CMC with L-BFGS-B could improve the performances of CMC-L-
BFGS-B.

Secondly, the random step of CMC can both improve and worsen the value of the loss
function avoiding not only local minima, but also minima associated with successful cal-
ibrations. An enhanced choice of the random step, for example reducing its maximum
value according to the value of the loss function in the current parameter setting, could
improve the convergence of CMC.
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A Bounds on the parameters

In this Section we describe the bounds of the hyperbox used to perform the global sensi-
tivity analysis and the calibration procedures of the lumped-parameter cardiocirculatory
model.

For what concerns the global sensitivity analysis, we have previously chosen a ref-
erence setting of parameters pR to model an ideal heatlhy individual (Section 2) that
differs from a generic healthy one. Therefore, the parameters can vary in a hyperbox
to account for different healthy conditions: given the reference setting of parameters
pR and fixing the times of the cardiac cycle according to the input HR, we sample the
parameter pl (1 ≤ l ≤ Np = 32) in

[(
1− 2

3

)
pRl ,

(
1 + 2

3

)
pRl

]
.

For what concerns the calibration methods, we fixed to the reference value the pa-
rameters related to total Sobol indices all less than 0.1. The other parameters are free
to vary in the same ranges as for the global sensitivity analysis. Moreover, if we sup-
pose that the severe COVID-19-related pneumonia is ongoing, we will consider three
additional changes:
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• The active elastances of the four cardiac chambers can be further halved according
to the impairment of the cardiac function due to the infection.17

• The pulmonary resistances can further triple according to the registered increase
in pulmonary resistances reported in clinical literature.20, 21

• The pulmonary compliances can be further divided by 3 according to the conse-
quences of the endothelial damage of the pulmonary blood vessels.20
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Tables

Parameter Unit Reference value Description
EALA mmHg/mL 0.38 Left atrial active elastance
EBLA mmHg/mL 0.27 Left atrial passive elastance
VU,LA mL 2.31 Left atrial unloaded volume
EALV mmHg/mL 2.7 Left ventricular active elastance
EBLV mmHg/mL 0.069 Left ventricular passive elastance
VU,LV mL 3.54 Left ventricular unloaded volume
EARA mmHg/mL 0.13 Right atrial active elastance
EBRA mmHg/mL 0.20 Right atrial passive elastance
VU,RA mL 3.54 Right atrial unloaded volume
EARV mmHg/mL 0.43 Right ventricular active elastance
EBRV mmHg/mL 0.041 Right ventricular passive elastance
VU,RV mL 8.41 Right ventricular unloaded volume
Rmin mmHg· s/mL 0.0063 Minimal valve resistance
Rmax mmHg· s/mL 94168 Maximal valve resistance
RSYS

AR mmHg· s/mL 0.59 Systemic arterial resistance
CSYS

AR mL/mmHg 1.33 Systemic arterial compliance
LSYS
AR mmHg· s2/mL 0.00021 Systemic arterial inertia

RSYS
C mmHg· s/mL 0.022 Systemic capillary resistance

CSYS
C mL/mmHg 0.28 Systemic capillary compliance

RSYS
VEN mmHg· s/mL 0.36 Systemic venous resistance

CSYS
VEN mL/mmHg 75 Systemic venous compliance

LSYS
VEN mmHg· s2/mL 0.000021 Systemic venous inertia

RPUL
AR mmHg· s/mL 0.071 Pulmonary arterial resistance

CPUL
AR mL/mmHg 6.0 Pulmonary arterial compliance

LPUL
AR mmHg· s2/mL 0.000021 Pulmonary arterial inertia

RPUL
C mmHg· s/mL 0.018 Oxygenated pulmonary capillary resistance

CPUL
C mL/mmHg 5.78 Oxigenated pulmonary capillary compliance
RSH mmHg· s/mL 0.35 Non-oxygenated pulmonary capillary resistance
CSH mL/mmHg 0.049 Non-oxygenated pulmonary capillary compliance
RPUL

VEN mmHg· s/mL 0.038 Pulmonary venous resistance
CPUL

VEN mL/mmHg 13.18 Pulmonary venous compliance
LPUL
VEN mmHg· s2/mL 0.000021 Pulmonary venous inertia
HR s 80 Heart rate
tCLA s 0.75THB Time of left atrial contraction
TCLA s 0.1THB Duration of left atrial contraction
tRLA s tCLA + TCLA Time of left atrial relaxation
TRLA s 0.8THB Duration of left atrial relaxation
tCLV s 0.0 Time of left ventricular contraction
TCLV s 0.265THB Duration of left ventricular contraction
tRLV s tCLV + TCLV Time of left ventricular relaxation
TRLV s 0.4TTHB Duration of left ventricular relaxation
tCRA s 0.8THB Time of right atrial contraction
TCRA s 0.1THB Duration of right atrial contraction
tRRA s tCRA + TCRA Time of left atrial relaxation
TRRA s 0.7THB Duration of left atrial relaxation
tCRV s 0.0 Time of right ventricular contraction
TCRV s 0.3THB Duration of left ventricular contraction
tRRV s tCRV + TCRV Time of right ventricular relaxation
TRRV s 0.4THB Duration of left ventricular relaxation

Table 1: List of parameters and their reference values for an ideal healthy individual



Model output Unit Range Model value Description

Model outputs
used for calibration

LAI−Vmax mL/m2 [16,34]33 22.2 Indexed maximal left atrial volume
LVI−EDV mL/m2 [50,90]32 59.7 Indexed left ventricular end diastolic volume
LVESV mL [18,52]33 42.7 Left ventricular end systolic volume
LVEF % [53,73]33 60.0 Left ventricular ejection fraction

max ∇PrAV mmHg - 17.4 Maximal right atrioventricular pressure gradient
SAPmax mmHg [-,140]33 109.6 Systolic systemic arterial pressure
SAPmin mmHg [-,80]33 71.3 Diastolic systemic arterial pressure
PAPmax mmHg [15,28]32 23.6 Systolic pulmonary arterial pressure

Additional model
outputs

LAPmax mmHg [6,20]32 10.3 Maximal left atrial pressure
LAPmin mmHg [-2,9]32 5.7 Minimal left atrial pressure
LAPmean mmHg [4,12]32 8.8 Mean left atrial pressure
LVSV mL [30,80]33 64.1 Left ventricular stroke volume
CI L/min/m2 [2.8,4.2]32 2.9 Cardiac index

LVPmax mmHg [90,140]32 110.5 Maximal left ventricular pressure
LVPmin mmHg [4,12]32 4.0 Minimal left ventricular pressure

RAI−Vmax mL/m2 [10,36]33 29.3 Indexed maximal right atrial volume
RAPmax mmHg [2,14]32 9.6 Maximal right atrial pressure
RAPmin mmHg [-2,6]32 4.4 Minimal right atrial pressure
RAPmean mmHg [-1,8]32 6.9 Mean right atrial pressure
RVI−EDV mL/m2 [44,80]34 68.2 Indexed right ventricular end diastolic volume
RVI−ESV mL/m2 [19,46]34 32.6 Indexed right ventricular end systolic volume
RVEF % [44,71]34 52.2 Right ventricular ejection fraction

RVPmax mmHg [15,28]32 25.2 Maximal right ventricular pressure
RVPmin mmHg [0,8]32 3.4 Minimal right ventricular pressure
PAPmin mmHg [5,16]32 15.9 Diastolic pulmonary arterial pressure
PAPmean mmHg [10,22]32 19.5 Mean pulmonary arterial pressure
PWPmin mmHg [1,12]32 11.5 Minimal pulmonary wedge pressure
PWPmean mmHg [6,15]32 12.0 Mean pulmonary wedge pressure

SVR mmHg· min/L [11.3,17.5]32 16.2 Systemic vascular resistance
PVR mmHg· min/L [1.9,3.1]32 2.09 Pulmonary vascular resistance

Shunt Fraction % [0,5]23 4.73 Shunt fraction

Table 2: List of model outputs, the units of measure, the echocardiographic ranges for a healthy
individual and the values returned by the numerical model with the reference setting of parame-
ters.

LAVmax LVEDV LVESV LVEF max ∇PrAV SAPmax SAPmin PAPmax

5% 5% 5% 4% 4% 4% 5% 5%

Table 3: Measurement errors on the model outputs used as standard deviations for generating
the noisy data.



Patient HR LAVmax LVEDV LVESV LVEF max ∇PrAV SAPmax SAPmin PAPmax

Monzino 70 - 233 130 42 25 140 55 -
Sacco 60 50 110 33 70 20 135 70 25

Table 4: Clinical data of two patients, provided by Centro Cardiologico Monzino and L. Sacco
Hospital in Milan.

Patient RMSE CMC RMSE L-BFGS-B RMSE CMC-L-BFGS-B
Monzino 5.4 · 10−2 4.0 · 10−2 3.8 · 10−2

Sacco 4.0 · 10−2 1.2 · 10−2 1.2 · 10−2

Table 5: Final value of the RMSE for the three patient-specific calibration methods.

Patient Calibration method EBLA EALV EBLV EARV RSYS
AR CSYS

AR RSYS
VEN

Monzino
CMC - 1.04 - 0.66 0.62 0.65 0.27

L-BFGS-B - 1.02 - 0.66 0.55 0.75 0.24

CMC-L-BFGS-B - 1.02 - 0.60 0.55 0.75 0.23

Relative standard deviation - 1% - 5% 7% 8% 8%

Sacco
CMC 0.21 4.18 0.067 0.62 0.63 1.08 0.301

L-BFGS-B 0.18 4.38 0.061 0.72 0.60 0.89 0.299

CMC-L-BFGS-B 0.19 4.35 0.061 0.72 0.60 0.90 0.297

Relative standard deviation 7% 2% 6% 8% 3% 11% 1%

Table 6: Estimated parameters by the patient-specific calibrations and their relative standard
deviations. For the Monzino patient, we do not calibrate EBLA and EBLV according to the
global sensitivity analysis.



Figures

Figure 1: Lumped-parameter model. We depict pressures and flow rates in red and blue, respec-
tively, and parameters in black.

(a) (b)

Figure 2: RLC Windkessel circuit used for the arterial and venous compartments (a) and RC
Windkessel circuit used for capillary compartments (b).



Figure 3: Total-effect Sobol indices between parameters and model outputs related to data. A
detailed definition of parameters and model outputs is provided in Table 1 and Table 2.



(a) (b)

Figure 4: Test 1. Number of successful calibration procedures for each calibration method
(a) and RMSE between estimated and real parameters for each sample (b). Only succesful
calibrations are reported in the figure.



(a) (b)

(c)

Figure 5: Test 2. Number of successful calibration procedures for each calibration method
(a), RMSE between estimated and real parameters for each initial guess of parameters (b) and
relative standard deviations of the estimated parameters (c). Only succesful calibrations are
reported in the figure.



(a) (b)

Figure 6: Test 3. RMSE on noisy and actual in silico generated data for CMC (a) and relative
standard deviations of the estimated parameters for the 20 samples (b).



(a) (b)

(c) (d)

Figure 7: Test 4. Estimated right ventricular (a) and left ventricular (b) PV loops of the Monzino
patient and right ventricular (c) and left ventricular (d) PV loops of the Sacco patient.
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