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Abstract. The information about pavement surface type is rarely avail-
able in road network databases of developing countries although it rep-
resents a cornerstone of the design of efficient mobility systems. This re-
search develops an automatic classification algorithm for road pavement
which makes use of satellite images to recognize road segment as paved
or unpaved. The proposed methodology is based on an object-oriented
approach, so that each road is classified by looking at the distribution
of its pixels in the RGB space. The proposed approach is proven to be
accurate, inexpensive, and readily replicable in other cities.

Keywords: Classification, K-NN, Maputo, Object-oriented,
Road pavement, Satellite images

1. Introduction

Road infrastructure conditions have a profound effect on transport op-
erations (Iles, 2005), and route planning and maintenance could be ef-
ficiently managed given a proper classification of road pavement types
(Riid et al., 2020). Nevertheless, information on the road pavement type
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is rarely available in developing countries. The OpenStreetMap (OSM)
road network of the Greater Maputo Area in Mozambique, for instance,
comprises of approximately 12.9 thousand km of roads, but just for 5%
of the road network the pavement type is known. The study fits in this
context with the goal of developing an automatic classification method
for road pavement surface.

This work develops within the Safari Njema project of Politecnico di
Milano, winner of Polisocial Award in 2018 and consequently launched
in March 2019. The project uses analytical tools to propose strategic
solutions for paratransit mobility in African cities. Today, public tran-
sit of Sub-Saharan cities is supported by informal transportation ser-
vices, which account for between 50-98% of passenger trips (Jennings
and Behrens, 2017) and hence are a resource to be integrated in the
mobility system. Safari Njema project aims at rationalizing paratransit
mobility in Sub-Saharan developing countries and providing efficient so-
lutions for redesigning the current mobility offer in more effective and
safer plans (Safari Njema, 2018).

In this paper, we propose an innovative method for automatic road
pavement classification from road satellite images. By means of new
algorithms developed in the realm of Object-Oriented Data Analysis
(OODA), and using open-source software and data, roads of unknown
surface are labeled as paved or otherwise unpaved. The analysis is con-
ducted in view of low costs and high scalability and could be easily ex-
tended from the single case study of Maputo to have a meaningful impact
on the (re)design of mobility systems in Sub-Saharan cities.

Related research mostly focuses on pavement distress detection (e.g.
Ragnoli et al., 2018), rather than pavement type classification, and just a
low number of studies have addressed this task (Riid et al., 2020). Works
in this domain make use of data from vibration and acoustic sensors to
classify the terrain type (e.g. Li et al., 2019; Paulo et al., 2010). Other
studies exploit image-based classification for road surfaces. In Riid et al.
(2020), panoramic images of roads are recorded, and their type is pre-
dicted by a convolutional neural network. Slavkovikj et al. (2014) make
use of Google Street View images for unsupervised feature extraction and
SVM classification. Starting from Google Street View imagery, Marian-
ingsih et al. (2019) propose to use GLCM to describe texture features
and a combination of k-NN and Näıve Bayes to characterize road sur-
faces. So far, Google Street View imagery lacks for most cities of African
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developing countries (Google, 2021). In these cases, satellite images are
a valid alternative to Street View since are always available and, once
cropped with OSM buffer, show road pavement images which are equally
valuable for image analysis.

The proposed method works with Google Earth satellite images of the
Greater Maputo Area and map features exported from the OSM road
network. Their information is the input of an object-oriented supervised
classification algorithm which, starting from known surface roads, pre-
dicts pavement surface of the remaining 95% of roads. The statistical
unit for classification is the set of pixels representing the street surface
in the image. For each cloud of street pixels of unknown road pavement,
the classification is made by considering the pavement type of the most
similar clouds of street pixels, namely the ones with smaller distance in
the embending colour space.

This paper is organized as follows. Section 2 presents the dataset,
describing methods from data extraction and pre-processing for pixel se-
lection. In section 3, the classification algorithm is introduced. Firstly,
the focus is on the choice of the best mathematical embedding for the
object-oriented approach. Then, the algorithm is trained and tuned to
minimize the cost of its application in real world situations. Finally, con-
clusions are discussed in section 4, together with suggestions for further
developments.

2. From Satellite Images to Data Points

Two main data sources were used in the analysis: the OSM road network
and its information, and Google Earth satellite images.

The OSM road network (OpenStreetMap contributors, 2020) was split
in 53 240 segments, one for each stretch of the road, with a length of be-
tween 50m and 550m. Shorter paths were not considered, and larger
ones were split into sub-parts. Each street segment is described by its
OSM map features, some available for each segment, like GPS coordi-
nates and street type, while some present for just a minority of segments
and unknown for the others. It is the case of the road surface type. The
pavement type indicates whether a road is paved or unpaved. More spe-
cific tags such as asphalt (see OpenStreetMap Wiki, 2021), were merged
with the main two classes. Among all, only less than 5% of roads have
a known pavement composition. Specifically, 732 streets are paved and
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Figure 1. Image processing pipeline: from raw satellite images to data points
for the object-oriented classification.

1 826 unpaved.

High resolution satellite images were collected from Google Earth in
April 2020 (Google Earth, 2020). They cover all the Greater Maputo
Area, including both the city of Maputo and the neighbouring districts
of Marracuene, Matola and Boane, with a total surface of 1 568 km2.
Satellite data were clipped by means of QGIS software (QGIS 3.16.3,
2021) using the OSM road network with a 7m wide buffer around the
road polyline. The buffer ensures that the actual road is captured in
the image despite of possible spatial inaccuracies of OSM polyline posi-
tioning. 53 240 raster images were hence obtained, one for each segment
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of the OSM road network, with three colour bands (RGB) and pixel
resolution of 1.1x1.1m2.

Both due to the 7m buffer with which the images were extracted,
and the natural covering elements of the streets, image data not only
represent roads, but also vehicles, vegetation and buildings. For this
reason, a pre-processing phase was needed to remove uninformative pixels
from each image.

The pixel filtering was in two steps. In the first step, pixels associated
to canopy were removed simply using a threshold on their darkness, i.e.,
all pixels whose Euclidean norm in the RGB space was less than or equal
a certain threshold (t = 90) were not considered. This simple rule was
proven to be effective and outperforming more sophisticated methods.

Street pixels were subsequently identified with a data-driven filtering
approach by means of DBSCAN. Each image shows the main road path,
whose pixels have almost the same colour and are distributed around the
diagonal of the RGB cube. Pixels of buildings, vehicles and additional
objects, when present, form small disjoint clusters connected to the main
pixel cloud by some background noise. Based on these observations,
density-based method DBSCAN was chosen among other clustering al-
gorithms to identify street pixels. Firstly proposed by Ester et al. (1996),
DBSCAN (Density Based Spatial Clustering of Application with Noise)
is a widely used algorithm in image segmentation because it can discover
clusters of any arbitrary shape and size in databases containing noise and
outliers by integrating spatial connectivity and colour similarity (Dhua
et al., 2015). DBSCAN works with two user-specified input parameters:
ε, as the neighbourhood radius, and MinPts, as the minimum number
of points in the neighbourhood. Parameter tuning is one of the limita-
tions of the methodology and some parameter-free implementations of
DBSCAN were proposed (see, for instance, Kurumalla and Rao, 2016;
Ester et al., 1996; Hou et al., 2016). However, in this instance, visual
inspection of data and cluster shape was preferred to define a suitable
criterion for parameter choice.

A common feature among all images is the distribution of street pixels
around the diagonal of the RGB cube, as previously mentioned. Never-
theless, they differ by the density of points in the space. The number of
pixels per image ranges from 200 to 5 000, generating clouds of different
size and density in the RGB space. Thus, to get a proper street pixel
extraction, ε and MinPts should differ for each image.
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• Tuning of the parameter ε. The choice of ε considers the colour vari-
ability of the image, i.e., the Euclidean distance of points from the di-
agonal of the RGB cube. Specifically, ε was chosen as the 0.75 quantile
of such a distance. The definition of ε as the 0.75 quantile of distances
was preferred to the maximum distance to exclude highly saturated
outliers from the cluster of street pixels. One can observe that, given
the shape of pixel distributions, the diagonal is the maximum variance
direction in the data. Hence, for each image, the first principal com-
ponent of PCA almost coincides with the diagonal. This fact allowed
to approximate the actual distance between point and diagonal in the
3-dimensional RGB space, as the distance between point and origin
in the 2-dimensional space of second and third principal components
(PC2 and PC3). Accordingly, ε was chosen as the 0.75 quantile of Eu-
clidean norm of the projection of points in the plane whose axis are
PC2 and PC3.

Figure 2. Cloud of points in the RGB space and its projection in the plane
of second and third principal components. ε is chosen as the 0.75 quantile of
distances between origin and points projected in this space.

• Tuning of the parameter MinPts. The selection criterion for MinPts
exploits the relationship between the density of the whole cloud of
points, dcyl, and the minimum density in the ε-neighbourhood of each
core point, dneig. We claim that the ε-neighbourhood of a core point
is always denser than the cloud of street pixels. The statement is
supported by the intuition that street cluster is expected to have a
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higher concentration of points than the whole cloud with uniformly
distributed points. To compute dcyl the cloud of points is approximated
as a cylinder of height h and radius ε where 75% of the pixels are
uniformly distributed. Since dark vegetation pixels had already been
removed, h = diagRGB − t.

dcyl = dcyl(ε) = 0.75 npts/(h πε2)

dneig is the minimum density of the ε-neighbourhood of a point required
to be considered a core point:

dneig = dneig(ε,MinPts) = MinPts/(43πε
3)

Given a fixed k > 1,

dneig(ε,MinPts) = k dcyl(ε) (1)

Solving the equality in (1), the definition of MinPts is easily found:

MinPts = MinPts(ε) = k npts ε/h (2)

Note that MinPts depends on ε, so MinPts must be computed after
ε is found. There is no indication in literature about the choice of k,
since this whole parameter tuning procedure is inspired by the data
under examination. Therefore, the constant k was chosen empirically
to be 4

3 since better results were obtained.

Using ε and MinPts as above, DBSCAN was performed for each im-
age to detect the cluster of significant street pixels. If more than one
cluster were found, the most numerous one was selected. All computa-
tions were implemented in R and made use of pre-implemented functions
of R libraries: fpc::dbscan for DBSCAN clustering, stats::princomp
for PCA and raster::brick for dealing with RGB raster images.

In conclusion, starting from the cropped satellite images. by means
of a two-step filtering process, we were provided with the set of pixels
related to the road surface for each image. Those street pixels in the
RGB space were the data points for subsequent analysis.
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Figure 3. Cloud of points in the RGB space related to a specific road satellite
image. The figure on the left shows all the points of the satellite image, while
the figure on the right represents the points related to the road surface (in blue),
dark pixels (in black) and other pixels (in grey).

3. Data Analysis

3.1. Object-oriented Classification
Once that street pixels were extracted from each image, an algorithm for
road pavement classification was built. 2 558 street segments of known
pavement surface were used to train a k-NN classification algorithm and
subsequently label unknown pavement roadways as paved or unpaved.

Two of the major image classification approaches are the traditional
pixel-based approach and the object-oriented one (Lu and Weng, 2007).
Pixel-based classification methods assign individual pixels to a certain
class, independently from other pixels, while object-based algorithms
classify aggregations of homogeneous image pixels resulting from an im-
age segmentation algorithm (Liu and Xia, 2010). Numerous studies have
proven the latter to be more accurate and high-performing than the for-
mer (see, for instance, Matinfar et al., 2007; Tehrany et al., 2014). The
object-based approach was hence chosen as a classification method for
this research. “Objects” to be considered are clouds of street pixels de-
tected by DBSCAN, taking into account both spectral information of
each pixel and features of pixel distribution, such as shape and size.

The study takes an innovative object-oriented approach to this task
within the domain of OODA (Marron and Alonso, 2014; Marron and
Dryden, 2021). Groups of pixels are modeled mathematically as clouds
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of points in the colour space. Then, classification is achieved by means
of k-nearest neighbours method with clouds of street pixels as input
instances. The main rationale is that streets whose pixels are similarly
distributed in the colour space have also the same type of road surface.
So, given a cloud of street pixels, k-NN assigns a specific label, either
paved or unpaved, depending on the labels of the k most similar clouds
of street pixels. More precisely, each street pixel cloud was treated as
a random sample from a multivariate distribution. Given a similarity
measure among probability distributions, the k closest distributions were
found and used for classification.

To speed up further computations, n = 150 points were randomly
sampled from the street pixels set of each image to represent pixel distri-
butions (see appendix A for additional details on the choice of n). Four
metrics between multivariate distributions were compared by evaluating
misclassification error rate (MER) and computational time of k-NN: Eu-
clidean distance between cloud Tukey medians (Tukey, 1974; Rousseeuw
and Ruts, 1998), Hausdorff distance between clouds (Huttenlocher et al.,
1993), Energy distance between clouds (Székely et al., 2004), and Wasser-
stein distance between clouds (Panaretos and Zemel, 2019). Energy dis-
tance was preferred to all the others both for lowMER and computational
time, as shown in table 1, and for its simple implementation. It is defined
as follows:

de(A,B) = nanb

na+nb

 2
nanb

∑
a∈A,b∈B

d(a, b)− 1
n2
a

∑
a,a′∈A

d(a, a′)− 1
n2
b

∑
b,b′∈B

d(b, b′)


where A,B are finite subsets of a metric space (M,d) (i.e., the two

clouds of pixels), |A| = na, |B| = nb (i.e., the two cloud sizes). The
ground distance d was chosen to be the Euclidean distance in the RGB
space: d(a, b) =

√
(Ra −Rb)2 + (Ga −Gb)2 + (Ba −Bb)2. Further in-

formation about metrics is contained in appendix B.
It was then investigated whether the RGB colour space was convenient

for this analysis. The RGB space is commonly considered as the base
colour model and widely used in many fields, but also other colour spaces
are defined and might overcome the limitations of RGB. For instance, the
R’G’B’ space is introduced to model the non-linearity of human colour
perception, and the HSV space is able to describe the amount of phys-
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Table 1. MER and computational time when different metrics for distri-
butions are used in the object-oriented k-NN.
Distance MER Computational time
Euclidean dist between Tukey medians 0.1943 1.66 s
Hausdorff 0.1369 8.11 s
Energy 0.1082 5.67 s
Wasserstein 0.1108 21.40 s

ical quantities through its components hue, saturation and brightness.
Moreover, histogram equalization techniques could be easily applied in
the HSV space, rather than in the RGB space, due to the low correlation
between components. Therefore, in this analysis, data were transformed
in alternative colour spaces to test which one was the most suitable for
this application. As shown in table 2, misclassification error rates are
comparable for k-NN with Energy distance in RGB, R’G’B’ and HSV
spaces. The latter minimizes MER, but its computation is the most
time consuming. Therefore, RGB space was preferred. More details on
colour spaces are contained in Plataniotis and Venetsanopoulos (2013)
and appendix C.

Table 2. MER of k-NN classifica-
tion in different colour spaces.
Colour space MER
RGB 0.1082
R’G’B’ 0.1108
HSV 0.1056
HSV equalized 0.1551

Finally, an object-oriented k-NN classification algorithm was built.
Street pixel distributions in the RGB space were used as input and their
relative distances were measured with the Energy metric. The number of
neighbours, k, was set equal to 5 to minimize the misclassification error
of 10-folds Cross-Validation over the training set of 70% of the known
pavement roads.

3.2. Threshold Choice by Cost Minimization
The k-NN classifier measures the frequency of paved and unpaved roads
among the k nearest street pixel clouds in the RGB space to choose the
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output class label. Threshold fup ∈ [0, 1] refers to the minimum frequency
of paved roads among the k nearest so that a street segment is classified
as paved by the algorithm: when the paved road frequency f is greater
or equal to fup, the road is classified as paved, otherwise as unpaved.

The choice of the classification frequency threshold is typically related
to the minimization of MER. The application of this traditional criterion
to our problem would have picked a frequency threshold fup = 0.6, ending
up in a model with an accuracy of 89.2% on the test set.

Nevertheless, the real-world context of application of the classification
algorithm is not considered by this criterion. It is instead a standard ap-
proach, which does not consider the actual cost of application of the
algorithm to real-world situations. The frequency threshold choice was
hence inspired by a deeper and more practical reasoning, both introduc-
ing the realistic scenario of uncertain output of the algorithm, and then
quantifying the estimated impact of misclassification errors and uncer-
tainties.

First of all, the classification algorithm was allowed to retain uncertain
decisions. It is a widely used approach in pattern recognition applications
(see, for instance, Chow, 1970; Pillai et al., 2013). Especially when the
accuracy is not satisfactory and misclassification costs can be overcome
with the use of much cheaper manual labelling, the option to avoid un-
reliable classification is introduced to prevent excessive misclassification
and to leave the decision to human operators.

The approach is applied through the introduction of two distinct
thresholds: fp, as the minimum paved frequency so that the street is
classified as paved, and fu, indicating the maximum paved frequency to
identify an unpaved road, with 0 ≤ fu ≤ fp ≤ 1. Under this circum-
stance, the classifier is allowed to be uncertain about a particular road
which has “neither enough paved neighbours nor unpaved neighbours”
in the RGB space (i.e., fu ≤ f ≤ fp), and so is classified as uncertain.

The definition of both classification rules follows, showing both cases
of single threshold fup, when uncertainty is not permitted, and pair of
thresholds {fu, fp}:

{
if f ≥ fup ⇒ paved

if f < fup ⇒ unpaved


if f > fp ⇒ paved

if f < fu ⇒ unpaved

if fu ≤ f ≤ fp ⇒ uncertain
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Furthermore, account was taken of the expected impact of the classi-
fication outcomes. Every output of the algorithm has different practical
consequences when employed to improve the mobility system. Coher-
ently, classification costs were assigned to each misclassification or un-
certain scenario.

The choice of cost values focuses on the practical impact of the clas-
sification output on single users, in terms of traffic delays, wear and tear
of vehicles, and road accidents (Tsunokawa and Changyu, 2002). Firstly,
it should be noted that the misclassification cost is not symmetric. Mis-
classifying unpaved roads as paved could trouble travellers with severe
car damages and travel delays, whereas the opposite misclassification er-
ror would give a pejorative picture of reality, discouraging rides along
alternative routes and increasing traffic congestion. Since the impact is
different, there are defined different cost values according to the type
of road pavement wrongly classified. The misclassification cost cup mea-
sures the effect of wrongly classifying actual unpaved roads as paved and,
conversely, cpu represents the impact of misclassifying paved streets as
unpaved. An additional cost is associated to the uncertainty of the algo-
rithm when classifying road surfaces. Indeed, doubtful situations would
result in the labour-intensive and time-consuming intervention of em-
ployees who manually classify uncertain road surfaces, taking over the
goal of road classification from the algorithm. The uncertainty cost cd
was then defined to quantify how much should be paid in case of doubtful
situations.

With the help of domain experts, there were assigned the following
unit costs: cup = 2.5, cpu = 2 and cd = 1. The proposed cost values are
not to be intended as absolute costs, but properly represent the magni-
tude of each doubtful or mistaken situation in relation with the others.
Regarding the cost of uncertainty, cd, it should be smaller than error
costs. It is better for a user to be aware of the uncertainty rather than
to find unexpected and undesired road conditions. Moreover, both sit-
uations would need human inspections to be solved, but while mistakes
need to be both discovered and adjusted, doubts just need a correction.
Then, cup is said to be greater than cpu. The damage caused by the first
type of misclassification is considered to be more relevant than that of
the second type. More than half of unpaved road in Sub-Saharan coun-
tries are not passable (JICA, 2010), and wrongly detouring on unpaved
roads could slow down and hence delay the travel, or cause severe dam-
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ages to vehicles. This situation in considered to be more serious than
the usual traffic delay on main paved roads, which might be enhanced
by the opposite mistake. For these reasons, cd ≤ cpu ≤ cup.

The application of the algorithm has an expected total cost equal to
the sum of unit costs weighted by the amount of mistakes and doubts
of classification. The proposed classification algorithm was hence refined
in such a way that, if applied, it would have the expected total cost
as low as possible. The k-NN classification algorithm with k = 5 and
Energy distance between RGB street pixel clouds was trained and then
applied to the remaining test set. Different thresholds were used and
brought to different misclassification and uncertainty proportions, and so
to different total costs. Then, among all possibilities, the best algorithm
was chosen as the one minimizing the total cost. Tested values of the
single threshold span between 0 and 1: fup = i/k for i = 0, ..., k, with
k = 5. Similarly, all values for pair of thresholds {fu, fp} were tried:
fp = i/k for i = 0, ..., k, and fu = j/k for j ≤ i, with k = 5. Table
3 summarizes the estimated total cost of each classifier when using the
proposed unit costs. The minimum total cost ctot = 189.0 is reached by
the algorithm with the following classification rule: if f ∈ {0; 0.2} the
road is classified as unpaved, if f = 0.4 the road is classified as uncertain,
if f ∈ {0.6; 0.8; 1} the road is classified as paved.

Table 3. Errors, uncertainty and cost using different classification rules.
single j=0 j=0.2 j=0.4 j=0.6 j=0.8 j=1

i=0

Nup = 553 Nup = 149 Nup = 61 Nup = 30 Nup = 10 Nup = 2 Nup = 0
Npu = 0 Npu = 0 Npu = 0 Npu = 0 Npu = 0 Npu = 0 Npu = 0
Nd = 0 Nd = 420 Nd = 522 Nd = 576 Nd = 632 Nd = 675 Nd = 767

c = 1106.0 c = 718.0 c = 644.0 c = 636.0 c = 652.0 c = 679.0 c = 767.0

i=0.2

Nup = 149 Nup = 61 Nup = 30 Nup = 10 Nup = 2 Nup = 0
Npu = 16 Npu = 16 Npu = 16 Npu = 16 Npu = 16 Npu = 16
Nd = 0 Nd = 102 Nd = 156 Nd = 212 Nd = 255 Nd = 347

c = 338.0 c = 264.0 c = 256.0 c = 272.0 c = 299.0 c = 387.0

i=0.4

Nup = 61 Nup = 30 Nup = 10 Nup = 2 Nup = 0
Npu = 30 Npu = 30 Npu = 30 Npu = 30 Npu = 30
Nd = 0 Nd = 54 Nd = 110 Nd = 153 Nd = 245

c = 197.0 c = 189.0 c = 205.0 c = 232.0 c = 320.0

i=0.6

Nup = 30 Nup = 10 Nup = 2 Nup = 0
Npu = 53 Npu = 53 Npu = 53 Npu = 53
Nd = 0 Nd = 56 Nd = 99 Nd = 191

c = 192.5 c = 208.5 c = 235.5 c = 323.5

i=0.8

Nup = 10 Nup = 2 Nup = 0
Npu = 89 Npu = 89 Npu = 89
Nd = 0 Nd = 43 Nd = 135

c = 242.5 c = 269.5 c = 357.5

i=1

Nup = 2 Nup = 0
Npu = 124 Npu = 124

Nd = 0 Nd = 92
c = 314.0 c = 402.0

The optimal k-NN classifier correctly classifies 85.1% of the road sur-
faces and predicts as uncertain 7.0% of the street segments of the test
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set. Confusion table 4 shows that uncertainty and mistakes are almost
equally distributed between paved and unpaved segments.

Table 4. Confusion table of the optimal k-NN classifier
from satellite images over the test set, with k=5 and pair
of thresholds fp=fu=0.4.

Predicted
paved unpaved uncertain

True paved 161 30 23
unpaved 30 492 31

3.3. Classification with Images and Street Type
OSM provides an internal classification of roads according to their func-
tion and relevance in the road network. Most roads in Maputo serve
as access to properties (residential, 84.6%) and low-level connection of
the grid network (unclassified, 8.6%). Just a small portion of roads are
employed as urban and interurban connections: primary (1.8%), sec-
ondary (1.1%), and tertiary (2.6%). Finally, footways (1.3%) map minor
pathways, mainly used by pedestrian. For a detailed description of type
categories, see OpenStreetMap Wiki (2021).

Streets of the same type are theoretically characterized by more sim-
ilar infrastructure condition and pavement typology. Type information
was hence exploited to improve the classification of road pavement sur-
face. This extra information was included in the method with a slight
modification of the neighbour research. Instead of looking for the most
similar street images in general, the extended algorithm was imposed
to consider only the k nearest streets of the same typology in the RGB
space. Appendix D explains formal details about this study, from param-
eter choice to additional investigation on road types. The classification
accuracy improves reaching 94.5% of correctly classified road surfaces.
Over 767 streets of the test set, only 28 are misclassified paved and 14
are misclassified unpaved, resulting in a MER of 0.0548 and no uncertain
roads.

The mixed approach which combines colour pixels data and street
type information was applied to predict unknown road pavements. With
the described colour space, distance and parameters, k-NN algorithm
was trained with 2 558 street data of known pavement and gave a highly
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Figure 4. Maputo road network coloured by known pavement type (top images)
and predicted pavement type (bottom images). The road network of the whole
Greater Maputo Area is represented by the figures on the left, and a zoom on
the city of Maputo is shown on the right.

accurate picture of the predicted road network pavement in Maputo, as
shown in figure 4.
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4. Conclusion

In this paper, a new method for the classification of road pavement sur-
face is proposed. An object-oriented k-NN classification algorithm uses
Google Earth satellite images and, when available, OSM street type infor-
mation, to obtain an accurate prediction of road pavement. By means of
street pixels colour exclusively, the classification accuracy reaches 85.1%,
while including the street type attribute decreases misclassification errors
and uncertainty leading to an overall accuracy of 94.5%.

Despite the high accuracy of the obtained classifier, classification ac-
curacy could be probably further improved relying on the spatial in-
formation related to the geographical position of each road and/or its
topological connectivity with adjacent roads. Road positioning is indeed
an available information from OpenStreetMap which was not exploited
in this study. Hence, further developments should include it as input
of the classification algorithm together with satellite images and street
types.

The method was trained and tested on data from the Greater Maputo
Area in Mozambique, but it is straightforward to predict road surfaces of
all Sub-Saharan cities. Indeed, the analysis was conducted using open-
source software and free dataset, and both data pre-processing and algo-
rithm implementation phases developed advanced and scalable data sci-
ence algorithms to automate the classification procedure. Future studies
should replicate the proposed procedure with other case studies beyond
Maputo. As a result, accurate mappings of predicted road pavement sur-
faces would be available in developing countries and, coherently with the
mission of Safari Njema project, efficient solutions would be developed
from them for redesigning current mobility systems.
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Appendices

A. Cluster size reduction
Fundamental for k-NN classification is the computation of distances be-
tween street pixel clusters. The proposed measures are all based on the
ground Euclidean distance between single pixels (see appendix B), whose
computation is highly time consuming due to the large number of dense
pixel clusters. Given a new image to be classified, the computation of
distances has a time complexity of O(Nn2p), where p is the dimension
of the space and N the number of training pixel clusters of size n. Since
p = 3 is fixed by the shape of the colour space, and N = 2 558 repre-
sents the number of roads of known pavement, the reduction of the time
complexity of the method must involve n, the size of pixel clusters.

n differs for each image and ranges between 150 and over 5 500 pixels.
If we suppose n to be equal to the mean, n = 2 000, an extremely high
time complexity is obtained, namely the classification of a new observa-
tion would use 34.48 minutes just to compute distances, and thus is not
feasible in practical applications. Note that mean computational times
of label prediction are referred to the k-NN classification algorithm with
Energy distance in the RGB space implemented in R.

The value of n should be chosen not to modify the geometric structure
of pixel distributions, and so not to affect the object-oriented classifica-
tion. By graphical inspection, n≥ 100 was proven to adequately repre-
sent the full clouds of pixels in the RGB space. Furthermore, distances
between pixel distributions are properly approximated when n ≥ 150.
With the choice of n = 150, the computational time of classification sig-
nificantly improves, with 13.50 seconds for each new observation to be
classified.

B. Distances between distributions
The object-oriented approach requires the definition of the distance be-
tween street pixel objects. They can be studied as random samples from
multivariate distributions in the RGB colour space and, thus, the mea-
sure of their distance is done through the computation of distances be-
tween probability measures.

Next paragraphs provide a brief formal description of the four dis-
tances considered.
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• Euclidean distance between Tukey medians: This approach is inspired
by the centroid linkage criterion in agglomerative hierarchical cluster-
ing. Each street cluster was represented by its single deepest point,
the Tukey median (see Tukey, 1974; Rousseeuw and Ruts, 1998). The
distance between Tukey medians was then measured with Euclidean
distance in the RGB space. Medians were computed by means of the
R package DepthProc.

• Hausdorff distance: It is defined as the supremum of the infimum
distance between two convex sets of a metric space.

dh(A,B) = max

{
sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)

}
where A,B are subsets of a metric space (M,d). The Hausdorff dis-
tance measures the extent to which each point of a set lies near some
point of another set and vice-versa (see Huttenlocher et al., 1993).

• Energy distance: Energy distance was introduced by Székely et al.
(2004) as a metric for testing the equality of multivariate distributions.
It is defined as follows:

de(A,B) = nanb

na+nb

 2
nanb

∑
a∈A,b∈B

d(a, b)− 1
n2
a

∑
a,a′∈A

d(a, a′)− 1
n2
b

∑
b,b′∈B

d(b, b′)


where A,B are finite subsets of a metric space (M,d), |A| = na, |B| =
nb. Roughly speaking, it compares the distance of points from different
distributions with the one within the same distribution. The R package
energy was used to compute such distance in an optimized way.

• Wasserstein distance: It measures the minimal amount of work that
must be performed to transform one distribution into another by mov-
ing “distribution mass” around. Its computation is strictly related to
the resolution of a transport problem; indeed, the R package transport
was used to compute Wasserstein distances.

Let µ, ν be two probability distributions in a metric space (M,d), de-
note with Γ(µ, ν) the space of measures with marginals µ and ν, and



Object-oriented Classification of Road Pavement Type 23

let c(·, ·) be any cost, such as d(·, ·). Then, the Wasserstein distance is
defined as follows:

dw(µ, ν) = inf
γ∈Γ(µ,ν)

∫
M×M

c(x, y) dγ(x, y)

For a detailed description, see Panaretos and Zemel (2019).

In previous formulas, d represents the ground distance and was chosen
to be the Euclidean distance in RGB space:
d(a, b) =

√
(Ra −Rb)2 + (Ga −Gb)2 + (Ba −Bb)2.

When using Tukey median distance, the information of the whole
cloud of points is summarized into one of its pixels with which the classifi-
cation is performed. The method is hence a borderline approach between
object-oriented classification (extreme case of distance between clouds)
and pixel-based classification (single pixels are the input of classifica-
tion). We decided to take it into consideration for two reasons. Firstly,
the distribution of Tukey medians in the RGB space suggested the exis-
tence of two separate clusters. The group of points on the diagonal was
mostly composed by medians of paved roads, while medians of unpaved
roads were distributed below the diagonal. Then, although the compu-
tation of Tukey medians of training data is highly time consuming, the
classification of new instances is faster than the one with other distances.
However, eventually the k-NN classifier with other distances is more ac-
curate, making almost half of mistakes, and has a still acceptable time
complexity (see table 1), so was preferred.

C. Colour Spaces
Colour models are systems which provide a rational method for measur-
ing colours. The selection of a colour space should consider the appli-
cation field of the analysis since different models are suitable to address
different problems. For this reason, k-NN algorithm was trained to clas-
sify data from three different colour spaces, namely RGB, R’G’B’ and
HSV. This study refers to the works of Plataniotis and Venetsanopoulos
(2013) and of Ibraheem et al. (2012), which collect valuable and detailed
descriptions of colour spaces. Here we give an overview of their definition,
advantages and disadvantages.
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• RGB space: It is a 3-dimensional space whose components represent
the three colour bands of red, green and blue. Values of each compo-
nent ranges from 0 to 255, shaping the whole space as a cube. The
RGB system is additive and computationally practical and is consid-
ered as the base colour model for most image applications. However,
the interpretation of its components is hard because far from human
perception mechanisms. Humans interpret colours based on lightness,
saturation, and hue, rather than as a sum of red, green and blue ele-
ments. So, the RGB space is not suitable for the analysis of perceptual
attributes.

• R’G’B’ space: It is a non-linear transformation of the RGB space, for-
mally described in the formula below. RGB values must be rescaled in
the range [0, 1] before applying the transformation to each component
C ∈{R,G,B}, and values C ′∈{R′, G′, B′} should be readjusted back
in the range [0, 255].

C ′ =

{
4.5 C, if C ≤ 0.018

1.099 C−γ − 0.099, otherwise

The gamma correction parameter γ assumes different values depending
on the application system. Acceptable values for γ range between 2.2
and 2.6. For this study, γ = 2.2. R’G’B’ introduces non-linearity
to mimic the human visual system, non-linear with respect to colour
intensity perception. R’G’B’ values are less perceptually non-uniform
than linear RGB, but still not adequately uniform and accurate for
perceptual computations.

• HSV space: HSV components collect information on hue H, saturation
S and value of brightness V. This colour system uses approximately
cylindrical coordinates: H ∈ [0, 2π] is proportional to the angle,
S ∈ [0, 1] to the radial distance, and V ∈ [0, 1] to the height along
the axis. The transformation between RGB and HSV is highly non-
linear and can be found in Plataniotis and Venetsanopoulos (2013).
Just to have an idea on the relationship between RGB and HSV, one
can imagine that the RGB diagonal coincides with the HSV height.
Consequently, saturation is related to the distance from the diagonal,
hue to the angle of the projection on the diagonal, and value quantifies
the distance from the black vertex in both cases.
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Street pixel transformation from RGB to HSV was performed by means
of the function grDevices::rgb2hsv in R. Data analysis was then per-
formed in the hexcone model which uses chroma rather than saturation
(chroma = SV is the saturation relative to a certain value). It is in-
deed more suitable for the intuitive notion of colour purity. The HSV
model was built to comply with the human perception of colours and
therefore is intuitive and easily interpretable. A relevant issue of the
HSV system is the instability of hue for low saturated points which
often occurred for street pixels in this study.

The k-NN classification method was performed in different colour
spaces using Energy distance between distributions. The Cartesian dis-
tance was used as ground distance of Energy metric in each of them,
specifically L2 distance in the RGB and R’G’B’ cubic spaces, while
d(a, b) =

√
∆(SV sinH)2 +∆(SV cosH)2 +∆V 2 in the HSV hexcone

space. Distances in RGB and R’G’B’ were computed in R, while dis-
tances in HSV were implemented in C++ to speed up computations.

D. Classification with images and street type
The type of a street and its pavement surface are expected to be related
attributes. The intuition is supported by the distribution of paved and
unpaved roads within different street types. Primary and secondary road-
ways of known pavement are always paved, unlike footway paths which
are almost always unpaved (see figure 5). Moreover, the street type at-
tribute is very informative for road surface classification. The simple
road surface classification rule which only depends on type, namely as-
signs a pavement class as the most frequent one within the group of a
road type, has a MER of 0.087 over the test set.

In view of the above, the proposed classification algorithm was ex-
panded to consider not only satellite image data, but also the street type
attribute, when available. The main scheme of the classification algo-
rithm remains essentially the same. The difference is in the research of
neighbours, where only instances of the same type are considered. It
might be said that six classifiers, one for each street type, work in par-
allel to predict the road pavement surface and only cooperate during
the parameter tuning phase. Indeed, k = 5 was set to minimize the to-
tal misclassification error rate of 10-fold cross validation, and fup = 0.6
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Figure 5. Distribution of paved and unpaved labels among street types.

minimizes the total cost of the method, summing errors and costs of each
classifier. The classification algorithm results in a MER of 0.0548 and
confusion matrix reported in table 5.

Table 5. Confusion matrix of k-NN classifier
from satellite images and street type attribute
over the test set, with k = 5 and fup = 0.6.

Predicted
paved unpaved

True paved 186 28
unpaved 14 539

An attempt was made to build six fully independent classifiers with
different optimal parameters k and f. Results are collected in table 6. The
global performance slightly improves (MER = 0.0521) with respect to
the most general method. Since the difference is small, it can be asserted
that the more general classification method with common parameters is
a good approximation of type-specific case and, as simpler, is preferred.

OSM streets type are more than 40, each one with different impor-
tance and purpose in the road network (OpenStreetMap Wiki, 2021).
Uncommon types were merged with the principal 6 tags, asserting that
there was no need for highly specific type description for pavement sur-
face classification. For the same reason, other super-categories of street
type were considered. The easiest and most relevant categorization uni-
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Table 6. Optimal number of neighbours k and threshold f for
independent classifiers of different street types, resulting in dif-
ferent numbers of mistakes Npu and Nup, and uncertainty Nd.
Symbol ”-” is used when each plausible value of the parameter
is optimal.
Type k f Nup Npu Nd

Primary - - 0 0 0
Secondary - - 0 0 0
Tertiary 7 fup = 0.57 10 5 0
Unclassified 7 fup = 0.57 1 8 0
Residential 5 fup = 0.4 5 10 0
Footways - - 0 0 0

fies primary with secondary roads, as well as tertiary with unclassified,
and finally residential with footways. Combinations were chosen due to
image similarity shown during graphical inspection, and to the impor-
tance level and functioning of such roads. Applying the extended k-NN
classifier with super-categories of street types results in a MER of 0.059,
very similar to the performance of the algorithm which uses 6 actual
street types. The result suggests that the division between types is not
strict for the purpose of pavement analysis and supports type reduction
to 6 types.
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