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Abstract

We propose an extension of the discretization approaches for mul-
tilayer shallow water models, aimed at making them more flexible and
efficient for realistic applications to coastal flows. A novel discretiza-
tion approach is proposed, in which the number of vertical layers and
their distribution are allowed to change in different regions of the com-
putational domain. Furthermore, semi-implicit schemes are employed
for the time discretization, leading to a significant efficiency improve-
ment for subcritical regimes. We show that, in the typical regimes in
which the application of multilayer shallow water models is justified,
the resulting discretization does not introduce any major spurious fea-
ture and allows again to reduce substantially the computational cost
in areas with complex bathymetry. As an example of the potential of
the proposed technique, an application to a sediment transport prob-
lem is presented, showing a remarkable improvement with respect to
standard discretization approaches.

1 Introduction

Multilayer shallow water models have been first proposed in [2] to account
for the vertical structure in the simulation of large scale geophysical flows.
They have been later extended and applied in [5], [4], [6]. This multilayer
model was applied in [3] to study movable beds by adding an Exner equation.
A different formulation, to which we will refer in this paper, was proposed
in [32], which has several peculiarities with respect to previous multilayer
models. The model proposed in [32] is derived from the weak form of the
full Navier-Stokes system, by assuming a discontinuous profile of velocity,
and the solution is obtained as a particular weak solution of the full Navier-
Stokes system. The vertical velocity is computed in a postprocessing step
based on the incompressibility condition, but accounting also for the mass
transfer terms between the internal layers. In [22], this multilayer approach
is applied to dry granular flows, for which an accurate approximation of
the vertical flow structure is essential to approximate the velocity-pressure
dependent viscosity.

Multilayer shallow water models can be seen as an alternative to more
standard approaches for vertical discretizations, such as natural height coor-
dinates, (also known as z−coordinates in the literature on numerical mod-
elling of atmospheric and oceanic flows), employed e.g. in [10], [13], [15], ter-
rain following coordinates (also known as σ−coordinates in the literature),
see e.g. [27], and isopycnal coordinates, see e.g. [8], [14]. Each technique has
its own advantages and shortcomings, as highlighted in the discussions and
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reviews in [1], [10], [11], [28]. Multilayer approaches are appealing, because
they share some of the advantages of z−coordinates, such as the absence of
metric terms in the model equations, while not requiring special treatment
of the lower boundary. On the other hand, multilayer approaches share one
of the main disadvantages of σ−coordinates, since they require, at least in
the formulations employed so far, to use the same number of layers indepen-
dently of the fluid depth. Furthermore, an implicit regularity assumption on
the lower boundary is required, in order to avoid that too steeply inclined
layers arise, which would contradict the fundamental hydrostatic assumption
underlying the model.

In this work, we propose two concurrent strategies to make multilayer
models more efficient and fully competitive with their z− and σ−coordinates
counterparts. On one hand, we propose a novel discretization approach, in
which the number of vertical layers can vary over the computational domain.
We show that, in the typical regimes in which the application of multilayer
shallow water models is justified, the resulting discretization does not intro-
duce significant errors and allows to reduce substantially the computational
cost in areas with complex bathymetry. Thus making multilayer approach
fully competitive with z−coordinate discretizations for large scale, hydro-
static flows. Furthermore, efficient semi-implicit discretizations are applied
for the first time to this kind of models, allowing to achieve the same kind of
computational gains that have been obtained for other vertical discretization
approaches. In this paper, for simplicity, we have restricted our attention
to constant density flows. An extension to variable density problems in the
Boussinesq regime will be presented in a forthcoming paper.

In section 2, the equations defining the multilayer shallow water models of
interest will be reviewed. In section 3, the spatial discretization is introduced
in a simplified framework, showing how the number of layers can be allowed
to vary over the computational domain. In section 4, some semi-implicit
time discretizations are introduced for the model with a variable number
of layers. Results of a number of numerical experiments are reported in
section 5, showing the significant efficiency gains that can be achieved by
combination of these two techniques. Some conclusions and perspectives for
future work are presented in section 6.

2 Multilayer shallow water models

We consider the multilayer shallow water model described pictorially in Fig-
ure 1. In this approach, N subdivisions Ωα, α = 1, . . . , N of the domain Ω are
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introduced in the vertical direction. We denote by hα the height of the layer
α and by h =

∑N
α=1 hα the total height. Note that Ω =

⋃N
α=1 Ωα and that

each subdomain Ωα is delimited by time dependent interfaces Γα± 1
2
(t), that

are assumed to be represented by the one valued functions z = zα± 1
2
(x, y, t).

For a function f and for α = 0, 1, ..., N , we also define, as in [32],

f−
α+ 1

2

:= (f|Ωα(t)
)|Γ

α+ 1
2

(t)
and f+

α+ 1
2

:= (f|Ωα+1(t)
)|Γ

α+ 1
2

(t)
.

Obviously, if the function f is continuous,

fα+ 1
2

:= f|Γ
α+ 1

2
(t)

= f+
α+ 1

2

= f−
α+ 1

2

.

Figure 1: Sketch of the domain and of its subdivision in a constant number
of layers.

Following [22], [32], the equations describing this multilayer approach can be
written for α = 1, . . . , N as

∂thα +∇x · (hαuα) = Gα+ 1
2
−Gα− 1

2
,

∂t (hαuα) + ∇x · (hαuα ⊗ uα) +

+ghα∇x (b+ h) =
1

ρ0

(
Kα− 1

2
−Kα+ 1

2

)
+

+
1

2
Gα+ 1

2
(uα+1 + uα) − 1

2
Gα− 1

2
(uα + uα−1) .

(1)

Here, we consider a fluid with constant density ρ0, (uα, wα) ∈ R3 is the veloc-
ity in the layer α, b = b(x, y) is a function describing the bathymetry (which
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is assumed to be constant in time, so that ∂tb = 0) and the terms Kα+ 1
2

model the shear stresses between the layers. Notice that the atmospheric
pressure has assumed to be zero. The vertical velocity profile is recovered
from the integrated incompressibility condition, obtaining for α = 1, ..., N
and z ∈ (zα− 1

2
, zα+ 1

2
),

wα(t, x, z) = w+
α− 1

2

(t, x) − (z − zα− 1
2
)∇x · uα(t, x), (2)

where
w+
α+ 1

2

= (uα+1 − uα) ∇xzα+ 1
2

+ w−
α+ 1

2

,

and
w−
α+ 1

2

= w+
α− 1

2

− hα∇x · uα with w+
1
2

= u1∇xb−G 1
2
.

Since we are focusing in this work mostly on subcritical flows, there is no
special reason to choose discharge rather than velocity as a model variable.
Therefore, we rewrite the previous system as

∂thα +∇x · (hαuα) = Gα+ 1
2
−Gα− 1

2
,

hα∂tuα + hαuα · ∇uα + ghα∇x (b+ h) =

=
1

ρ0

(
Kα− 1

2
−Kα+ 1

2

)
+
(
Gα+ 1

2
∆ũα+ 1

2
+Gα− 1

2
∆ũα− 1

2

)
,

(3)

where ∆ũα+ 1
2

= (uα+1 − uα)/2. From the derivation in [32], it follows that

Gα+ 1
2

= ∂tzα+ 1
2

+ uα+1 · ∇xzα+ 1
2
− w+

α+ 1
2

= ∂tzα+ 1
2

+ uα · ∇xzα+ 1
2
− w−

α+ 1
2

,

Kα+ 1
2

= −µα+ 1
2
UHZ α+ 1

2
, (4)

where µ denotes the dynamic viscosity and UHZ α+ 1
2

is an approximation of

∂zuα at Γα+ 1
2
. We then define the vertical partition of the domain, setting

hα = lα h where, for α = 1, · · · , N, lα are positive constants such that

N∑
α=1

lα = 1.

Note that model (1) consists of 2N equations in the unknowns

h, {uα}α=1,...,N , {Gα+ 1
2
}α=1,...,N−1.
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However, the mass transfer terms can be rewritten as

Gα+ 1
2

= ∂tzα+ 1
2
+
uα + uα+1

2
∂xzα+ 1

2
−wα+ 1

2
, where wα+ 1

2
=
w+
α+ 1

2

+ w−
α+ 1

2

2
.

As a consequence, the system has 2N unknowns, now corresponding to the
total height h, the velocity {uα}α=1,...,N in each layer and the averaged ver-
tical velocity at each internal interface {wα+ 1

2
}α=1,...,N−1. By combining the

continuity equations, the system can be rewritten with N + 1 equations and
unknowns. The unknowns of the reduced system are the total height h and
the velocity in each layer, uα, for α = 1, . . . , N. Note that Gα+ 1

2
can be

written, by summing the mass equations from 1 to α, as

Gα+ 1
2

= G 1
2

+
α∑
β=1

(∂thβ +∇x · (hβuβ)) . (5)

Moreover, for the special case α = N and G1/2 = GN+ 1
2

= 0, the above
equation leads to

∂th+∇x ·

(
h

N∑
β=1

lβuβ

)
= 0.

By introducing this in the mass equation we obtain

Gα+ 1
2

=
α∑
β=1

(
∇x · (hlβuβ)− lβ

N∑
γ=1

∇x · (lγhuγ)

)
. (6)

Assuming also ∂tb = 0, system (3)-(4) is finally re-written as

∂tη + ∇x ·

(
h

N∑
β=1

lβuβ

)
= 0,

∂tuα + uα · ∇uα + g∇xη = (7)

=
Kα− 1

2
−Kα+ 1

2

ρ0hα
+
Gα+ 1

2
∆ũα+ 1

2
+Gα− 1

2
∆ũα− 1

2

hα
,

for α = 1, · · · , N. Here, we have set as customary in the literature η =
b + h. The transport equation for a passive scalar can be coupled to the
previous continuity and momentum equation, in such a way as to guarantee
compatibility with the continuity equation in the sense of [26]. If ρα denotes
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the average density of the passive scalar in Ωα, it verifies the following tracer
equation:

∂t (ραhα) +∇x · (ραhαuα) = ρα+1/2Gα+ 1
2
− ρα−1/2Gα− 1

2
,

where

ρα+1/2 =
ρα + ρα+1

2
+

1

2
sgn(Gα+ 1

2
)(ρα+1 − ρα).

In principle, any appropriate turbulence and friction model can be con-
sidered to define the turbulent fluxes Kα+ 1

2
, α = 0, . . . , N . Here, we have

employed a parabolic turbulent viscosity profile and friction coefficients de-
rived from a logarithmic wall law:

ν =
µ

ρ0
= κu∗ (z − b)

(
1− z − b

h

)
,

where κ = 0.41 is the von Karman constant, u∗ =
√
τb/ρ is the friction veloc-

ity and τb denotes the shear stress. In order to approximate this turbulence
model we set for α = 1, . . . , N − 1:

Kα+ 1
2

= µα+ 1
2

uα+1 − uα
(hα + hα+1)/2

, with µα+ 1
2

= ρ0κu
∗
α+ 1

2

(
α∑
β=1

lβh

)(
N∑

γ=α+1

lγ

)
.

Trivially, να+ 1
2

= µα+ 1
2
/ρ0. For α = 0 and α = N , standard quadratic models

for bottom and wind stress are considered. We then set

K1/2 = −Cf‖u1‖u1, KN+1/2 = −Cw‖uw − uN‖(uw − uN),

where uw denotes the wind velocity and Cw the friction coefficient between
at the free surface. The friction coefficient Cf is defined, according to the
derivation in [19], as:

Cf = κ2

(
1− ∆zr

h

)
(

ln

(
∆zr
∆z0

))2 , (8)

where ∆z0 is the roughness length and ∆zr is the length scale for the bottom
layer. Under the assumption that ∆z0 << ∆zr it can be seen that

ut
u∗
≈ 1

κ
ln
(z − b

∆z0

)
where ut is the tangential velocity. In practice, we identify ut with u1, the
horizontal velocity of the layer closest to the bottom, in the multilayer model.
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The definition of Cf given by equation (8) is deduced by using previous
relation of the ratio between u1 and u∗ (see [19]). Then, we set

u∗
α+ 1

2
=

u1κ

ln
( α∑
β=1

lβh/∆z0
) ,

in the definition of Kα+ 1
2
.

3 Spatial discretization with variable number

of layers

The multilayer shallow water model (7) can be discretized in principle with
any spatial discretization approach. For simplicity, we present the proposed
discretization approach in the framework of simple finite volume/finite dif-
ference discretization on a staggered Cartesian mesh with C-grid staggering.
A discussion of the advantages of this approach for large scale geophysical
models can be found in [21]. The C-grid staggering also has the side benefit
of providing a more compact structure for the system of equations that is
obtained when a semi-implicit method is applied for time discretization. In
order to further simplify the presentation, we only introduce the discretiza-
tion for an x − z vertical slice, even though any of the methods presented
in the following can be easily generalized to the full three dimensional case.
Generalization to structured and unstructured meshes can be obtained e.g.
by the approaches proposed in [15] and [12], [17], [18], respectively, but higher
order methods such as those of [34], [35] could also be applied. It is to be
remarked that the choice of a staggered mesh is by no means necessary and
that the approach proposed below to handle a variable number of layers can
be easily extended to colocated meshes as well.

The solution domain will then coincide with an interval [0, L], that is
assumed to be subdivided into control volumes Vi, i = 1, . . . ,M. The step in
the mesh is defined by ∆xi = xi+ 1

2
− xi− 1

2
and ∆xi+ 1

2
= xi+1 − xi, where

xi+ 1
2

= (xi+xi+1)/2 as usual. The discrete free surface variables ηi are defined
at integer locations corresponding to the centers of the control volumes, while
the discrete velocities uα,i+ 1

2
are defined at the half-integer locations i+ 1/2.

As suggested in [26], the value of hi+ 1
2

is taken to be that of the control
volume located upwind of the volume edge.

The vertical number of layers employed, in the approach proposed in [32],
is a discretization parameter whose choice depends on the desired accuracy
in the approximation of the vertical structure of the flow. In order to make
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this type of model more flexible and more efficient, we propose to allow for
a number of vertical layers that is not constant throughout the domain. The
transition between regions with different numbers of layers is assumed to take
place at the center of a control volume Vi, so that one may have different Ni+ 1

2

for i = 0, . . . ,M and as a consequence, the discrete layer thickness coefficients
lα,i+ 1

2
are also defined at the half-integer locations i + 1/2. The number of

layers considered at the cell center for the purpose of the discretization of
the tracer equation are defined as Ni = max {Ni− 1

2
, Ni+ 1

2
} and the discrete

layer thickness coefficients at integer locations lα,i are taken to be equal to
those at the neighbouring half-integer location with larger number of layers.
We will also assume that, whenever for some i + 1

2
one has, without loss of

generality, Ni− 1
2
> Ni+ 1

2
, then for any β = 1, . . . , Ni+ 1

2
there exist

1 ≤ α−
i− 1

2

(β) ≤ α+
i− 1

2

(β) ≤ Ni− 1
2

such that lβ,i+ 1
2

=

α+

i− 1
2

(β)∑
α=α−

i− 1
2

(β)

lα,i− 1
2
. (9)

This allows a more straightforward implementation of the numerical approx-
imation of horizontal advection in the velocity and in the tracer equation,
which are the only ones involving a horizontal stencil. Finally, again for
simplicity of the implementation and without great loss of generality, it is
assumed that if Ni− 1

2
6= Ni+ 1

2
one has Ni− 3

2
= Ni− 1

2
as well as Ni+ 3

2
= Ni+ 1

2
.

Figure 2: Sketch of the domain and of its subdivision in a variable number
of layers.

A sample configuration of this kind is depicted in figure 2. Notice that
a dependence of the number of layers on time could also be introduced, in
order to adapt the global maximum number of layers to the flow conditions,
but this has not been done in the present implementation.
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4 Semi-implicit time discretizations

The previous definitions yield a space discretization that can be easily
coupled to any time discretization that yields a stable fully discrete space time
scheme. For example, a time discretization by a third order Runge Kutta
scheme has been employed as a reference in the numerical tests presented in
section 5. However, we will focus here on semi-implicit time discretization
approaches aimed at reducing the computational cost in subcritical regime
simulations.

With this goal, it is immediate to notice that the formal structure of
system (7) is entirely analogous to that of the three dimensional hydrostatic
system considered in [15], [16], so that we can build semi-implicit time dis-
cretizations along the same lines, i.e. by treating implicitly the velocity in
the continuity equation and the free surface gradient in the momentum equa-
tion. In the following, we present first a more conventional time discretization
based on the off-centered trapezoidal rule (or θ-method, see e.g. [31]) and
then a more advanced Implicit-Explicit Additive Runge Kutta second order
method (IMEX-ARK2).

4.1 A θ-method time discretization

Following [15], we first consider a semi-implicit discretization based on the
θ-method, which can be defined for a generic ODE system y′ = f(y, t) as

yn+1 = yn + ∆t [θf(yn+1, tn+1) + (1− θ)f(yn, tn)] ,

where ∆t denotes the time step and θ ∈ [0, 1] is a implicitness parameter.
If θ ≥ 1/2 the method is unconditionally stable and the numerical diffusion
introduced by the method increases when increasing θ. For θ = 1/2 the
second order Crank-Nicolson method is obtained. In practical applications,
θ is usually chosen just slightly larger than 1/2, in order to allow for some
damping of the fastest linear modes and nonlinear effects. We then proceed
to describe the time discretization of system (7) based on the θ-method.

For control volume i, the continuity equation in (7) is then discretized as

∆xiη
n+1
i + θ∆t

N
i+ 1

2∑
β=1

lβ,i+ 1
2
hn
i+ 1

2
un+1
β,i+ 1

2

−
N
i− 1

2∑
β=1

lβ,i− 1
2
hn
i− 1

2
un+1
β,i− 1

2

 (10)

= ∆xiη
n
i − (1− θ) ∆t

N
i+ 1

2∑
β=1

lβ,i+ 1
2
hn
i+ 1

2
un
β,i+ 1

2
−

N
i− 1

2∑
β=1

lβ,i− 1
2
hn
i− 1

2
un
β,i− 1

2

 .
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It can be noticed that the dependency on h has been frozen at time level
n in order to avoid solving a nonlinear system at each timestep. As shown
in [15], [34], this does not degrade the accuracy of the method, even in the
case of a full second order discretization is employed. For nodes i + 1

2
, the

momentum equations for α = 2, ..., Ni+ 1
2
− 1 in (7) are then discretized as

un+1
α,i+ 1

2

+ gθ
∆t

∆xi+ 1
2

(ηn+1
i+1 − ηn+1

i ) (11)

− ∆tθ

lα,i+ 1
2
hn
i+ 1

2

(
νn
α+ 1

2
,i+ 1

2

un+1
α+1,i+ 1

2

− un+1
α,i+ 1

2

lα+ 1
2
,i+ 1

2
hn
i+ 1

2

− νn
α− 1

2
,i+ 1

2

un+1
α,i+ 1

2

− un+1
α−1,i+ 1

2

lα− 1
2
,i+ 1

2
hn
i+ 1

2

)

= un
α,i+ 1

2
+ ∆tAu,n

α,i+ 1
2

− g(1− θ) ∆t

∆xi+ 1
2

(
ηni+1 − ηni

)
+

∆t(1− θ)
lα,i+ 1

2
hn
i+ 1

2

(
νn
α+ 1

2
,i+ 1

2

un
α+1,i+ 1

2

− un
α,i+ 1

2

lα+ 1
2
,i+ 1

2
hn
i+ 1

2

− νn
α− 1

2
,i+ 1

2

un
α,i+ 1

2

− un
α−1,i+ 1

2

lα− 1
2
,i+ 1

2
hn
i+ 1

2

)

+
∆t

∆xi+ 1
2
lα,i+ 1

2
hn
i+ 1

2

(
∆ũn

α+ 1
2
,i+ 1

2
Gn
α+ 1

2
,i+ 1

2
+ ∆ũn

α− 1
2
,i+ 1

2
Gn
α− 1

2
,i+ 1

2

)
,

where ∆ũn
α+ 1

2
,i+ 1

2

= (un
α+1,i+ 1

2

−un
α,i+ 1

2

)/2, Gn
α+ 1

2
,i+ 1

2

denotes a discretization of

the mass transfer term and Au,n
α,i+ 1

2

denotes some spatial discretization of the

velocity advection term. In the present implementation, an upstream based
second order scheme is employed for this term. Notice that, to define this
advection term, velocity values from different layers may have to be employed,
if some of the neighbouring volumes has a number of layers different from that
at i+ 1

2
. For example, assuming again without loss of generality Ni− 1

2
> Ni+ 1

2

and un
β,i+ 1

2

> 0 and using the notation in (9), values

u∗
β,i− 1

2
=

1

lβ,i+ 1
2

α+

i− 1
2

(β)∑
α=α−

i− 1
2

(β)

lα,i− 1
2
un
α,i− 1

2

will be used to compute the approximation of the velocity gradient at i+ 1
2
.

Clearly, this may result in a local loss of accuracy, but the numerical results
reported show that this has limited impact on the overall accuracy of the
proposed method.
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The discretization of the mass transfer term is defined as

Gn
α+ 1

2
,i+ 1

2
=

α∑
β=1

lβ,i+ 1
2

(huβ − N∑
γ=1

lγhuγ

)n

i+1

−

(
huβ −

N∑
γ=1

lγhuγ

)n

i

 ,

where

(
huβ −

N∑
γ=1

lγhuγ

)
i

is the upwind value depending on the averaged

velocity uβ,i = (uβ,i− 1
2
+uβ,i+ 1

2
)/2. For the tracer equation, this term appears

at the center of the control volume, so that we set instead

Gn
α+ 1

2
,i

=
1

∆xi

α∑
β=1

(
lβ,i+ 1

2
hn
i+ 1

2
un
β,i+ 1

2
− lβ,i− 1

2
hn
i− 1

2
un
β,i− 1

2

− lβ,i

Ni∑
γ=1

(
lγ,i+ 1

2
hn
i+ 1

2
un
γ,i+ 1

2
− lγ,i− 1

2
hn
i− 1

2
un
γ,i− 1

2

))
. (12)

The above formulas are to be modified appropriately for cells in whichNi− 1
2
6=

Ni+ 1
2
, by summing all the contributions on the cell boundary with more layers

that correspond to a given term lβ,i± 1
2
hn
i± 1

2

un
β,i± 1

2

on the cell boundary with

less layers, according to the definitions in the previous section.

Remark 4.1 The time discretization of the mass transfer terms could be
easily turned into an implicit one, by taking instead

un+1
α,i+ 1

2

+ gθ
∆t

∆xi+ 1
2

(ηn+1
i+1 − ηn+1

i ) (13)

− ∆tθ

lα,i+ 1
2
hn
i+ 1

2

(
γn
α+ 1

2
,i+ 1

2

(
un+1
α+1,i+ 1

2

− un+1
α,i+ 1

2

)
− δn

α− 1
2
,i+ 1

2

(
un+1
α,i+ 1

2

− un+1
α−1,i+ 1

2

))
= un

α,i+ 1
2

+ ∆tAu,n
α,i+ 1

2

− g(1− θ) ∆t

∆xi+ 1
2

(
ηni+1 − ηni

)
+

∆t(1− θ)
lα,i+ 1

2
hn
i+ 1

2

(
γn
α+ 1

2
,i+ 1

2

(
un
α+1,i+ 1

2
− un

α,i+ 1
2

)
− δn

α− 1
2
,i+ 1

2

(
un
α,i+ 1

2
− un

α−1,i+ 1
2

))
,

where now

γn
α+ 1

2
,i+ 1

2
=

νn
α+ 1

2
,i+ 1

2

lα+ 1
2
,i+ 1

2
hn
i+ 1

2

+
Gn
α+ 1

2
,i+ 1

2

2∆xi+ 1
2

δn
α− 1

2
,i+ 1

2
=

νn
α− 1

2
,i+ 1

2

lα− 1
2
,i+ 1

2
hn
i+ 1

2

−
Gn
α− 1

2
,i+ 1

2

2∆xi+ 1
2

.

This approach might be helpful to relax stability restrictions if large values
of Gn

α+ 1
2
,i+ 1

2

arise. In the implementation employed to obtain the numerical

results of section 5, however, only the discretization (11) was applied so far.
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At the bottom (α = 1) and at the free surface (α = Ni+ 1
2
) layers, the vis-

cous terms are modified by the friction and drag terms at Γ1/2 and ΓN
i+ 1

2
+1/2,

respectively. We have then

un+1
1,i+ 1

2

+ gθ
∆t

∆xi+ 1
2

(ηn+1
i+1 − ηn+1

i ) (14)

− ∆tθ

l1,i+ 1
2
hn
i+ 1

2

(
νn
1+ 1

2
,i+ 1

2

un+1
2,i+ 1

2

− un+1
1,i+ 1

2

l1+ 1
2
,i+ 1

2
hn
i+ 1

2

− Cn
f,i+ 1

2

∣∣∣un1,i+ 1
2

∣∣∣un+1
1,i+ 1

2

)

= un
1,i+ 1

2
+ ∆tAu,n

1,i+ 1
2

+
∆t

∆xi+ 1
2
l1,i+ 1

2
hn
i+ 1

2

∆ũn3
2
,i+ 1

2
Gn3

2
,i+ 1

2
− g(1− θ) ∆t

∆xi+ 1
2

(
ηni+1 − ηni

)
+

∆t(1− θ)
l1,i+ 1

2
hn
i+ 1

2

(
νn
1+ 1

2
,i+ 1

2

un
2,i+ 1

2

− un
1,i+ 1

2

l1+ 1
2
,i+ 1

2
hn
i+ 1

2

− Cn
f,i+ 1

2

∣∣∣un1,i+ 1
2

∣∣∣un1,i+ 1
2

)
,

un+1
N
i+ 1

2
,i+ 1

2

+ gθ
∆t

∆xi+ 1
2

(ηn+1
i+1 − ηn+1

i ) (15)

+
∆tθ

lN
i+ 1

2
,i+ 1

2
hn
i+ 1

2

νn
N
i+ 1

2
− 1

2
,i+ 1

2

un+1
N
i+ 1

2
,i+ 1

2

− un+1
N
i+ 1

2
−1,i+ 1

2

lN
i+ 1

2
− 1

2
,i+ 1

2
hn
i+ 1

2

+ C̃w
n

,i+ 1
2
un+1
N
i+ 1

2


= un

N
i+ 1

2
,i+ 1

2
+ ∆tAu,n

N
i+ 1

2
,i+ 1

2

+
∆tC̃w

n

,i+ 1
2

lN
i+ 1

2
,i+ 1

2
hn
i+ 1

2

(
θun+1

w,i+ 1
2

+ (1− θ)
(
un
w,i+ 1

2
− un

N
i+ 1

2
,i+ 1

2

))

− (1− θ)∆t
lN

i+ 1
2
,i+ 1

2
hn
i+ 1

2

νn
N
i+ 1

2
− 1

2
,i+ 1

2

un
N
i+ 1

2
,i+ 1

2

− un
N
i+ 1

2
−1,i+ 1

2

lN
i+ 1

2
− 1

2
,i+ 1

2
hn
i+ 1

2

+
∆t

∆xi+ 1
2
lN

i+ 1
2
,i+ 1

2
hn
i+ 1

2

∆ũn
N
i+ 1

2
− 1

2
,i+ 1

2
Gn
N
i+ 1

2
− 1

2
,i+ 1

2
− g (1− θ) ∆t

∆xi+ 1
2

(ηni+1 − ηni ).

Notice that, in previous equation, we define C̃w
n

= Cw|unw,i+ 1
2

− un
N
i+ 1

2
,i+ 1

2

|.
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Replacing the expressions for the velocities at time step n + 1 into the
continuity equation yields a linear system whose unknowns are the values of
the free surface ηn+1

i . This can be done rewriting the discrete momentum
equations in matrix notation as in [15], after rescaling both sides of the
equations by lα,i+ 1

2
hn
i+ 1

2

. We denote by Fn
i+ 1

2

collects all the explicit terms and

by An
i+ 1

2

the matrix resulting from the discretization of the vertical diffusion

terms. Since it is a tridiagonal, positive definite, diagonally dominant matrix,
it is invertible and its inverse also has the same properties. We also define

Ui+ 1
2

=


u1,i+ 1

2

:
uα,i+ 1

2

:
uN

i+ 1
2
,i+ 1

2
,

 ; Hi+ 1
2

=


l1,i+ 1

2
hi+ 1

2

:
lα,i+ 1

2
hi+ 1

2

:
lN

i+ 1
2
,i+ 1

2
hi+ 1

2
,

 .

As a result, one can write

An
i+ 1

2
Un+1
i+ 1

2

= Fn
i+ 1

2
− g θ ∆t

∆xi+ 1
2

(
ηn+1
i+1 − ηn+1

i

)
Hn
i+ 1

2

Un+1
i+ 1

2

=
(
An
i+ 1

2

)−1
Fn
i+ 1

2

− g θ
∆t

∆xi+ 1
2

(
ηn+1
i+1 − ηn+1

i

) (
An
i+ 1

2

)−1
Hn
i+ 1

2
. (16)

The discrete continuity equation is rewritten in this matrix notation as

∆xiη
n+1
i = ∆xiη

n
i − θ∆t

(
(Hn

i+ 1
2

)T Un+1
i+ 1

2

− (Hn
i− 1

2

)T Un+1
i− 1

2

)
− (1− θ)∆t

(
(Hn

i+ 1
2

)T Un
i+ 1

2

− (Hn
i− 1

2

)T Un
i− 1

2

)
.

Substituting formally equation (16) in the continuity equation yields the
tridiagonal system

∆xiη
n+1
i − g θ2∆t2

([
HTA−1H

]n
i+ 1

2

ηn+1
i+1 − ηn+1

i

∆xi+ 1
2

(17)

−
[
HTA−1H

]n
i− 1

2

ηn+1
i − ηn+1

i−1

∆xi− 1
2

)
= ∆xiη

n
i − θ∆t

([
HTA−1G

]n
i+ 1

2

−
[
HTA−1G

]n
i− 1

2

)
− (1− θ)∆t

(
(Hn

i+ 1
2
)T Un

i+ 1
2
− (Hn

i− 1
2
)T Un

i− 1
2

)
.

14



The new values of the free surface ηn+1
i are computed by solving this system.

The updated values ηn+1
i are then replaced in (16) to obtain un+1

α,i+ 1
2

.

Finally, the evolution equation for ρα is discretized as

∆xilα,ih
n+1
i ρn+1

α,i = ∆xilα,ih
n
i ρ

n
α,i (18)

− ∆t
(
lα,i+ 1

2
hn
i+ 1

2
ρn
α,i+ 1

2
un+θ
α,i+ 1

2

− lα,i− 1
2
hn
i− 1

2
ρn
α,i− 1

2
un+θ
α,i− 1

2

)
+ ∆xi∆t

(
ρn
α+ 1

2
,i
Gn
α+ 1

2
,i
− ρn

α− 1
2
,i
Gn
α− 1

2
,i

)
,

where un+θα = θun+1
α + (1− θ)unα. The values ρn

α,i± 1
2

, ρn
α± 1

2
,i

can be defined by

appropriate numerical fluxes. Also the discretization of the tracer equation
could be easily turned into an implicit one in the vertical if required for
stability reasons, by setting

∆xilα,ih
n+1
i ρn+1

α,i − θ∆xi∆t
(
ρn+1
α+ 1

2
,i
Gn
α+ 1

2
,i
− ρn+1

α− 1
2
,i
Gn
α− 1

2
,i

)
= ∆xilα,ih

n
i ρ

n
α,i

− ∆t
(
lα,i+ 1

2
hn
i+ 1

2
ρn
α,i+ 1

2
un+θ
α,i+ 1

2

− lα,i− 1
2
hn
i− 1

2
ρn
α,i− 1

2
un+θ
α,i− 1

2

)
+ (1− θ)∆xi∆t

(
ρn
α+ 1

2
,i
Gn
α+ 1

2
,i
− ρn

α− 1
2
,i
Gn
α− 1

2
,i

)
. (19)

Notice that, as in formula (12), the previous definitions are to be modified
appropriately for cells in which Ni− 1

2
6= Ni+ 1

2
, by summing all the contribu-

tions on the cell boundary with more layers that correspond to a given term
lα,i± 1

2
hn
i+± 1

2

ρn
α,i± 1

2

un+θ
α,i± 1

2

on the cell boundary with less layers, according to

the definitions in the previous sections.
It is also important to remark that, if ρn+1

α,i = ρnα,i = 1 is assumed in
either (18), (19), as long as a consistent flux is employed for the definition of
ρn
α,i± 1

2

, ρn
α± 1

2
,i
, discretizations of the first equation in (1) are obtained, which

then summed over the whole set of layers α = 1, ..., Ni yield exactly for-
mula (10). This implies that complete consistency with the discretization
of the continuity equation is guaranteed. The importance of this property
for the numerical approximation of free surface problems has been discussed
extensively in [26].

4.2 Second order IMEX-ARK2 method

A more accurate time discretization can be achieved employing an IMplicit
EXplicit (IMEX) Additive Runge Kutta method (ARK) [30]. These tech-
niques address the discretization of ODE systems that can be written as
y′ = fs(y, t) + fns(y, t), where the s and ns subscripts denote the stiff and
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non stiff components of the system, respectively. In the case of system (7),
the non stiff term would include the momentum advection and mass exchange
terms, while the stiff term would include free surface gradients and vertical
viscosity terms. A generic s−stage IMEX-ARK method can be defined as
follows. If lmax is the number of intermediate states of the method, then for
l = 1, . . . , lmax:

u(l) = un + ∆t
l−1∑
m=1

(
almfns(u

(m), t+ cm∆t) + ãlmfs(u
(m), t+ cm∆t)

)
+

+ ∆t ãll fs(u
(l), t+ ci∆t), (20)

Finally, un+1 is computed:

un+1 = un + ∆t
lmax∑
l=1

bl(fns(u
(l), t+ cl∆t) + fs(u

(l), t+ cl∆t)).

Coefficients alm, ãlm, cl and bl are determined so that the method is consistent
of a given order. In addition to the order conditions specific to each sub-
method, the coefficients should respect coupling conditions. Here, we will
use a specific second order method, whose coefficients are presented in the
Butcher tableaux. See tables 1 and 2 for the explicit and implicit method,
respectively. The coefficients of the explicit method were proposed in [25],
while the implicit method, also employed in the same paper, coincides indeed
with the TR-BDF2 method proposed in [7], [29] and applied to the shallow
water and Euler equations in [34].

0 0

2∓
√

2 2∓
√

2 0

1 1− (3 + 2
√

2)/6 (3 + 2
√

2)/6 0
± 1

2
√
2

± 1
2
√
2

1∓ 1√
2

Table 1: Butcher tableaux of the explicit ARK2 method

While a straightforward application of (20) is certainly possible, we will
outline here a more efficient way to implement this method to the discretiza-
tion of equations (7), that mimics what done above for the simpler θ−method.
For the first stage, we define ηn,1i = ηni , u

n,1

α,i+ 1
2

= un
α,i+ 1

2

, and ρn,1α,i = ρnα,i, re-
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0 0

2∓
√

2 1∓ 1√
2

1∓ 1√
2

1 ± 1
2
√
2

± 1
2
√
2

1 ∓ 1
2
√
2

± 1
2
√
2

± 1
2
√
2

1∓ 1√
2

Table 2: Butcher tableaux of the implicit-ARK2 method

spectively. For the second stage, we get for the continuity equation

∆xiη
n,2
i + ã22∆t

N
i+ 1

2∑
β=1

lβ,i+ 1
2
hn
i+ 1

2
un,2
β,i+ 1

2

−
N
i− 1

2∑
β=1

lβ,i− 1
2
hn
i− 1

2
un,2
β,i− 1

2


= ∆xiη

n
i − ã21∆t

N
i+ 1

2∑
β=1

lβ,i+ 1
2
hn
i+ 1

2
un,1
β,i+ 1

2

−
N
i− 1

2∑
β=1

lβ,i− 1
2
hn
i− 1

2
un,1
β,i− 1

2


and for the momentum equations

un,2
α,i+ 1

2

+ gã22
∆t

∆xi+ 1
2

(ηn,2i+1 − η
n,2
i )

− ∆tã22
lα,i+ 1

2
hn
i+ 1

2

νn
α+ 1

2
,i+ 1

2

un,2
α+1,i+ 1

2

− un,2
α,i+ 1

2

lα+ 1
2
hn
i+ 1

2

− νn
α− 1

2
,i+ 1

2

un,2
α,i+ 1

2

− un,2
α−1,i+ 1

2

lα− 1
2
hn
i+ 1

2


= un

α,i+ 1
2

+ ∆ta21F n,1

α,i+ 1
2

+ ∆tã21I n,1α,i+ 1
2

(21)

for α = 1, ..., N, with the appropriate corrections for the top and bottom
layers, respectively. Here we define

F n,j

α,i+ 1
2

= Au,n,j
α,i+ 1

2

+
1

∆xi+ 1
2
lα,i+ 1

2
hn
i+ 1

2

(
∆ũn,j

α+ 1
2
,i+ 1

2

Gn,j
α+ 1

2
,i+ 1

2

+ ∆ũn,j
α− 1

2
,i+ 1

2

Gn,j
α− 1

2
,i+ 1

2

)
and

I n,j
α,i+ 1

2

= − g

∆xi+ 1
2

(
ηn,ji+1 − η

n,j
i

)
+

1

lα,i+ 1
2
hn
i+ 1

2

νn
α+ 1

2
,i+ 1

2

un,j
α+1,i+ 1

2

− un,j
α,i+ 1

2

lα+ 1
2
hn
i+ 1

2

− νn
α− 1

2
,i+ 1

2

un,j
α,i+ 1

2

− un,j
α−1,i+ 1

2

lα− 1
2
hn
i+ 1

2

 ,

and all the other symbols have the same interpretation as in the presentation
of the θ− method. It can be noticed that, again, the dependency on h has
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been frozen at time level n in order to avoid solving a nonlinear system at
each timestep. As shown in [9], [15], [34], this does not degrade the accuracy
of the method. Also the dependency on time of the vertical viscosity is frozen
at time level n. The same will be done for both kinds of coefficients also in the
third stage of the method. As in the previous discussion, the above discrete
equations can be rewritten in vector notation as

Un,2

i+ 1
2

=
(
An
i+ 1

2

)−1
Fn,1

i+ 1
2

− g ã22
∆t

∆xi+ 1
2

(
ηn,2i+1 − η

n,2
i

) (
An
i+ 1

2

)−1
Hn
i+ 1

2
, (22)

where now F1
i+ 1

2

has components given by

lα,i+ 1
2
hn
i+ 1

2

(
un
α,i+ 1

2
+ ∆ta21F n,1

α,i+ 1
2

+ ∆tã21I n,1α,i+ 1
2

)
.

The discrete continuity equation is rewritten in this matrix notation as

∆xiη
n,2
i = ∆xiη

n,2
i − ã22∆t

(
(Hn

i+ 1
2

)T Un,2

i+ 1
2

− (Hn
i− 1

2

)T Un,2

i− 1
2

)
− ã21∆t

(
(Hn

i+ 1
2

)T Un
i+ 1

2

− (Hn
i− 1

2

)T Un
i− 1

2

)
.

Substituting formally equation (22) in the momentum equation yields the
tridiagonal system

∆xiη
n,2
i − g ã222∆t

2

([
HTA−1H

]n
i+ 1

2

ηn,2i+1 − η
n,2
i

∆xi+ 1
2

−
[
HTA−1H

]n
i− 1

2

ηn,2i − η
n,2
i−1

∆xi− 1
2

)
= ∆xiη

n
i − ã22∆t

([
HTA−1F1

]n
i+ 1

2

−
[
HTA−1F1

]n
i− 1

2

)
− ã21∆t

(
(Hn

i+ 1
2

)T Un
i+ 1

2

− (Hn
i− 1

2

)T Un
i− 1

2

)
.

The new values of the free surface ηn,2i are computed by solving this system
and they are replaced in (22) to find un,2

α,i+ 1
2

. The evolution equation for ρα is

then discretized as

∆xilα,ih
n,2
i ρn,2α,i = ∆xilα,ih

n
i ρ

n,1
α,i (23)

− a21∆t
(
lα,i+ 1

2
hn
i+ 1

2
ρn,1
α,i+ 1

2

u∗,2
α,i+ 1

2

− lα,i− 1
2
hn
i− 1

2
ρn,1
α,i− 1

2

u∗,2
α,i− 1

2

)
+ a21∆xi∆t

(
ρn,1
α+ 1

2
,i
Gn,1

α+ 1
2
,i
− ρn,1

α− 1
2
,i
Gn,1

α− 1
2
,i

)
,

where now u∗,2α = ã22u
n,2
α + ã21u

n,1
α .
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The last stage of the IMEX-ARK2 method can then be written in vector
notation as

Un,3

i+ 1
2

=
(
An
i+ 1

2

)−1
Fn,2

i+ 1
2

− g ã33
∆t

∆xi+ 1
2

(
ηn,3i+1 − η

n,3
i

) (
An
i+ 1

2

)−1
Hn
i+ 1

2
, (24)

where now Fn,2

i+ 1
2

has components given by

lα,i+ 1
2
hn
i+ 1

2

(
un
α,i+ 1

2
+ ∆ta31F n,1

α,i+ 1
2

+∆ta32F n,2

α,i+ 1
2

+ ∆tã31I n,1α,i+ 1
2

+ ∆tã32I n,2α,i+ 1
2

)
.

The discrete continuity equation is rewritten in this matrix notation as

∆xiη
n,3
i = ∆xiη

n,3
i − ã33∆t

(
(Hn

i+ 1
2

)T Un,3

i+ 1
2

− (Hn
i− 1

2

)t Un,3

i− 1
2

)
− ã31∆t

(
(Hn

i+ 1
2

)T U1
i+ 1

2

− (Hn
i− 1

2

)T U1
i− 1

2

)
− ã32∆t

(
(Hn

i+ 1
2

)T U2
i+ 1

2

− (Hn
i− 1

2

)T U2
i− 1

2

)
.

As a result, substitution of (24) into the third stage of the continuity equation
yields the tridiagonal system

∆xiη
n,3
i −g ã233∆t2

([
HTA−1H

]n
i+ 1

2

ηn,3i+1 − η
n,3
i

∆xi+ 1
2

−
[
HTA−1H

]n
i− 1

2

ηn,3i − η
n,3
i−1

∆xi− 1
2

)
= Ei,

where now all the explicit terms have been collected in Ei. The new values
of the free surface ηn,3i are computed by solving this system and they are
replaced in (24) to find un,3

α,i+ 1
2

. The tracer density is then updated as

∆xilα,ih
n,3
i ρn,3α,i = ∆xilα,ih

n,2
i ρn,2α,i (25)

− a32∆t
(
lα,i+ 1

2
hn
i+ 1

2
ρn
α,i+ 1

2
u∗,3
α,i+ 1

2

− lα,i− 1
2
hn
i− 1

2
ρn,2
α,i− 1

2

u∗,3
α,i− 1

2

)
+ a32∆xi∆t

(
ρn,2
α+ 1

2
,i
Gn,2

α+ 1
2
,i
− ρn,1

α− 1
2
,i
Gn,2

α− 1
2
,i

)
− a31∆t

(
lα,i+ 1

2
hn
i+ 1

2
ρn,1
α,i+ 1

2

u∗,2
α,i+ 1

2

− lα,i− 1
2
hn
i− 1

2
ρn,1
α,i− 1

2

u∗,2
α,i− 1

2

)
+ a31∆xi∆t

(
ρn,1
α+ 1

2
,i
Gn,1

α+ 1
2
,i
− ρn,1

α− 1
2
,i
Gn,1

α− 1
2
,i

)
,

where now u∗,3α = ã32u
n,3
α + ã31u

n,2
α .
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The final assembly of the solution at time level n+ 1 has then the form

∆xiη
n+1
i = ∆xiη

n
i (26)

− ∆t
3∑
j=1

b̃j

N
i+ 1

2∑
β=1

lβ,i+ 1
2
hn
i+ 1

2
un,j
β,i+ 1

2

−
N
i− 1

2∑
β=1

lβ,i− 1
2
hn
i− 1

2
un,j
β,i− 1

2


for the continuity equation,

un+1
α,i+ 1

2

= un
α,i+ 1

2
+ ∆t

3∑
j=1

(
b̃jIn,jα,i+ 1

2

+ bjFn,jα,i+ 1
2

)
(27)

for the momentum equations for α = 1, ..., Ni+ 1
2
, with the appropriate cor-

rections for the top and bottom layers, respectively, and

∆xilα,ih
n+1
i ρn+1

α,i = ∆xilα,ih
n
i ρ

n
α,i −∆t

3∑
j=1

bj

(
lα,i+ 1

2
hn
i+ 1

2
ρn,j
α,i+ 1

2

un,j
α,i+ 1

2

− lα,i− 1
2
hn
i− 1

2
ρn,j
α,i− 1

2

un,j
α,i− 1

2

)
(28)

+ ∆xi∆t
3∑
j=1

bj

(
ρn,j
α+ 1

2
,i
Gn,j

α+ 1
2
,i
− ρn,j

α− 1
2
,i
Gn,j

α− 1
2
,i

)
.

Notice that, also in this case, consistency with the discrete continuity
equation in the sense of [26] is guaranteed and an implicit treatment of the
vertical advection term would be feasible with the same procedure outlined
above for the θ−method. Furthermore, the two linear systems that must
be solved for each time step have identical structure and matrices that only
differ by a constant factor, thanks to the freezing of their coefficients at time
level n. This implies that, recomputing their entries does not entail a major
overhead. It was shown in [34] that, while apparently more costly than the
simpler θ−method, this procedure leads indeed to an increase in efficiency
by significantly increasing the accuracy that can be achieved with a given
time step.

5 Numerical results

In this section, we describe the results of several numerical experiments that
were performed in order to investigate the accuracy and efficiency of the
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proposed methods. In particular, the potential loss of accuracy when reduc-
ing the number of vertical layers is investigated in each test, as well as the
reduction of the number of degrees of freedom of the system achieved by
simplifying the vertical discretization in certain areas of the domain.

We define the maximum Courant number associated to the velocity Cvel
and to the celerity Ccel as

Cvel = max
1≤i≤M

max
1≤α≤N

∣∣∣uα,i+ 1
2

∣∣∣ ∆t

∆xi
;

Ccel = max
1≤i≤M

max
1≤α≤N

(∣∣∣uα,i+ 1
2

∣∣∣+
√
g hi

) ∆t

∆xi
. (29)

In order to evaluate the accuracy of the semi-implicit schemes, we compute
the relative errors between the computed solution and a reference solution.
We denote by Errη [ l2 ] and Errη [l∞ ] the relative error for the free surface
when considering the usual l2 and l∞ norm, respectively. For the velocity we
define

Err2u =


∑N

α=1

∑M
i=1

∣∣∣uα,i+ 1
2
− uref

α,i+ 1
2

∣∣∣2 ∆xihα,i∑N
α=1

∑M
i=1

∣∣∣uref
α,i+ 1

2

∣∣∣2 ∆xihα,i


1/2

;

Err∞u =
maxα maxi

∣∣∣uα,i+ 1
2
− uref

α,i+ 1
2

∣∣∣
maxα maxi

∣∣∣uref
α,i+ 1

2

∣∣∣ ,

(30)

where uref denotes the reference solution. We consider as a reference solution
the one computed by using an explicit third order Runge Kutta method with
a maximum value for the celerity Courant number of 0.1. Therefore, for the
explicit scheme the Courant number is fixed and we consider an adaptive
time step.

5.1 Free oscillations in a closed basin

We consider here a subcritical flow in a closed domain of length L = 10 km.
The bottom topography is given by the Gaussian function

b(x) = 4 e−(x−x0)2/σ2

,

where x0 = 5000 m and σ = 0.1L. At the initial time the flow is at rest and
we take as initial free surface profile η0(x) = 10 + ax, where a is chosen so
that the water height is h = 10 m at x = 0 and h = 11 m at x = 10 km. We
simulate the resulting oscillations until t = 10800 s (3 h). All the simulations
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are performed by using 10 layers in the multilayer code and a uniform space
discretization step ∆x = 50 m. The friction coefficient Cf is defined by (8)
with ∆zr = h1 (h1 = l1h), ∆z0 = 3.3× 10−5 and κ = 0.41. The wind drag is
defined by the coefficient value Cw = 1.2× 10−6 and we set a constant wind
velocity uw = −1 m/s.

In figure 3 we show free surface profiles at different times until the final
time, as computed with the semi implicit methods described in section 4.
The θ-method and the IMEX-ARK2 are very close to the reference solution.
However, the IMEX-ARK2 captures the shape of the free surface slightly
better that the θ-method when considering the same time step. By using
the implicitness parameter θ = 0.55 and the IMEX-ARK2 with ∆t = 12.5
or 25 s, we get a difference in the free surface of approximately 3 cm at the
final time. In table 3 we report the corresponding relative errors and the
maximum Courant number achieved by (29)-(30), at time t = 10000 s. We
see that the IMEX-ARK2 method slightly improves the results with respect
to the θ-method.

Even though it is hard to make a rigorous efficiency comparison in the
framework of our preliminary implementation, for the subcritical regime the
semi-implicit methods are much turn out to be more efficient than the explicit
one. Actually, the computing time required to get the 3 hours of simulation
(on a Mac Mini with Intel R©CoreTM i7-4578U and 16 GB of RAM) is approx-
imately 12 s for the explicit scheme using the Courant number Ccel = 0.9
(103 s for the reference solution), while it is approximately 1.64 s (3.83 s) for
the θ-method (IMEX-ARK2) with ∆t = 12.5 s. This time is 0.82 s (1.92 s)
with ∆t = 25s and 0.4 s (0.97 s) when considering the time step ∆t = 50 s.

We then compare results obtained with a fixed and variable number of
vertical layers. Figure 4 shows the absolute error for the free surface by using
the θ-method with θ = 0.55 and ∆t = 25 s, as computed using either N = 10
layers throughout the domain or considering

N =

{
10 if x ≤ 5000,
1 otherwise.

(31)

Similar results are obtained if the time step is ∆t = 12.5 s. We see
that usually the difference between the constant and variable layer cases
computed by the semi-implicit method is of the order of 0.1% of the solution
values (absolute error 1 cm), while the number of degrees of freedom of the
multilayer system is significantly reduced (from 2210 to 1310). Moreover,
figure 5 shows the vertical profiles of horizontal velocity at the point x = 2475
m, as computed by the semi-implicit method with a constant and variable
number of layers (see (31)).
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SI-method ∆t (s) Cvel Ccel Errη [l2/l∞] Erru [l2/l∞]
(×10−3) (×10−1)

θ = 0.55 12.5 0.18 2.62 1.6/3.2 0.9/1.5
IMEX-ARK2 12.5 0.18 2.62 0.6/2.0 0.4/0.6
θ = 0.55 25 0.34 5.24 2.6/5.4 1.3/1.7

IMEX-ARK2 25 0.34 5.24 0.9/2.2 1.2/1.7
θ = 0.52 50 0.7 10.48 3.1/6.3 1.6/1.5
θ = 0.55 50 0.68 10.47 3.9/7.7 2.2/2.0

IMEX-ARK2 50 0.69 10.48 2.4/5.2 1.4/1.7

Table 3: Relative errors and Courant numbers achieved by using semi-implicit methods
in the free oscillations test at t = 10000 s.
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Figure 3: Free surface profile at different times by using the semi-implicit methods (color
lines) and the reference solution (black circles) computed with the explicit scheme in the
free oscillations test.
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Figure 4: Absolute errors for the free surface at different times in the free oscillations
test, obtained with the θ-method (θ = 0.55 and ∆t = 25 s) and either 10 layers in the whole
domain (solid black line) or a single layer in the first half of the domain only (dashed yellow
line).
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Figure 5: Vertical profiles of horizontal velocity in the free oscillations test, obtained with
the θ-method (θ = 0.55 and ∆t = 25 s) and either 10 layers in the whole domain (solid
black line) or a single layer in the first half of the domain only (dashed yellow line). Profiles
are taken at the point x = 2475 m and times t = 500, 1000, 2000, 3000, 6500, 10800 s.
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5.2 Steady subcritical flow over a peak with friction

In this test, a steady flow in the subcritical regime is considered, as done for
example in [33]. The length of the domain is L = 50 m, and the bottom
bathymetry is given by the function

b(x) = 0.05− 0.001x+

2 cos2
(πx

10

)
, |x| < 5;

0 otherwise.
(32)

The initial conditions are given by η0(x) = 5 m and q0(x) = 4.42 m2 s−1

and subcritical boundary conditions are considered. The same values of
discharge and free surface are used for the upstream condition q(−25, t), and
the downstream one η(L, t). We take a uniform space discretization step
∆x = 0.25 m and the same values for the turbulent viscosity and bottom
friction as in the previous test, while the wind stress is not taken into account
in this case.

−25 −20 −15 −10 −5 0 5 10 15 20 25
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Figure 6: Free surface profile at steady state, as computed in the steady subcritical flow
test by the semi-implicit methods (solid red line) and reference solution (black circles)
computed with the explicit scheme. The inset figure is a zoom of the free surface profile.

In figure 6 we see the free surface at the steady state, as computed with the
semi-implicit θ-method and IMEX-ARK2, along with the reference solution.
In table 4 we show the relative errors and the maximum Courant numbers
achieved. The results computed with the semi-implicit methods are identical
in this steady state case. Figure 7 shows the absolute difference on the free
surface by using a semi-implicit method with either a constant number of
layers or considering

N =

{
10 x > −10,
1 otherwise.

(33)
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SI-method ∆t (s) Cvel Ccel Errη [l2/l∞] Erru [l2/l∞]
(×10−6) (×10−5)

θ = 0.55 0.11 0.71 3.58 1.58/1.8 1.84/7.11
θ = 0.7 0.11 0.70 3.58 1.58/1.8 1.84/7.11

IMEX-ARK2 0.11 0.72 3.5 1.58/1.8 1.84/7.11

Table 4: Relative errors and Courant numbers achieved by using semi-implicit methods
in the steady subcritical flow test.
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Figure 7: Vertical profiles of horizontal velocity in the steady subcritical flow test, obtained
with the θ-method (θ = 0.55) and either 10 layers in the whole domain (solid black line) or
a single layer in the first half of the domain only (dashed yellow line). Profiles are taken
at steady state at the points x = −5, 0, 15 m. The solid black line denotes the absolute
difference between the free surface computed with 10 layers in the whole domain or a single
layer in the first half of the domain only.

The order of this difference is 10−4, with larger values where only one layer
is employed. We also show the vertical profiles of horizontal velocity at three
different points x = −5, 0, 15 m. These results show that we can reduce the
number of degrees of freedom of our system from 2210 to 1661, without a
significant loss of accuracy where the multilayer configuration is kept.
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5.3 Tidal forcing over variable bathymetry

Figure 8: Sketch of the bottom topography.

In this test we try to simulate a more realistic situation for coastal flow
simulations. We consider a domain of length L = 25 km. The bottom
bathymetry is taken as in Figure 8, such that the bathymetry is much shal-
lower in one part of the computational domain than in the other. We define

b(x) = z0 − z1 tanh(λ (x− x0)) + 70 e−(x−x1)2/σ2

,

with z0 = −z1 = 44, x0 = 7500, x1 = 16000, λ = −1/3000 and σ = 2000.
We consider water at rest and constant free surface η0(x) = 100 m at initial
time. Subcritical boundary condition are imposed. The upstream condition
is q(−5000, t) = 1 m2 s−1, and the tidal downstream condition is η(L, t) =
100 + 3 sin(ωt) m, where ω = 2π/43200. We simulate three 12-hours periods
of tide, i.e., 36 hours. The friction parameters are taken as in previous tests
with the exception of ∆z0 = 3.3× 10−3, which increases the bottom friction
in order to obtain a more complex velocity field. In this case, a wind stress
is included with a wind velocity of 1 ms−1. As in previous tests, we use 10
vertical layers in the multilayer system and a uniform space discretization
step ∆x = 50 m.

Figure 9 shows the obtained velocity field, where we can see some recir-
culations. Moreover, regarding the deepest area we realise that the upper
and lower velocities has opposite direction.

Figure 10 shows the free surface position at different times. We see that
both the θ-method and the IMEX-ARK2 method are close of the reference
solution. As in the free oscillation test, the IMEX-ARK2 approximates better
the shape of the free surface. In particular, looking at table 5, where we
report the relative errors at final time (t = 36 h), we see that the second
order method notably improves the results of the θ-method. Note also that,
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Figure 9: Vector map of the whole velocity field u = (u,w) at time t = 33 h. Colors
represent the magnitude of the velocity.
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Figure 10: Free surface profile at different times by using the semi-implicit methods
(color lines) and the reference solution (black circles) computed with the explicit scheme
in the tidal forcing test.

in this typical coastal subcritical regime, large values of the Courant number
can be achieved, the maximum value being Ccel = 34.8, without sensibly
degrading the accuracy of the results.
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SI-method ∆t (s) Cvel Ccel Errη [l2/l∞] Erru [l2/l∞]
(×10−5) (×10−2)

θ = 0.55 2.5 0.03 1.6 0.77/2.08 0.55/1.01
IMEX-ARK2 2.5 0.03 1.6 0.10/0.26 0.05/0.06
θ = 0.55 5 0.05 3.2 1.32/2.95 0.89/1.35

IMEX-ARK2 5 0.05 3.2 0.24/0.75 0.16/0.19
θ = 0.55 10 0.1 6.3 2.41/4.45 1.51/1.86

IMEX-ARK2 10 0.1 6.3 0.69/1.42 0.32/0.65
θ = 0.55 25 0.24 15.8 5.34/8.36 3.08/3.53

IMEX-ARK2 25 0.25 15.8 1.02/2.31 0.44/0.90
θ = 0.55 55 0.52 34.8 10.2/14.7 5.26/5.81

IMEX-ARK2 55 0.55 34.8 1.43/3.29 0.67/0.89

Table 5: Relative errors and Courant numbers achieved by using semi-implicit methods
at t = 36 h in the tidal forcing test.

In table 6 we report the computational times and speed-up achieved.
With the explicit code about 16 minutes of computation are required (2.5
hours for the reference solution), while the semi-implicit methods can re-
duce this time to seconds. Note also that the IMEX-ARK2 is sensibly more
efficient than the θ-method in this case, since it is about 2.3 times more
expensive than the θ-method, whereas the errors decrease by a much bigger
factor.

We also investigate the influence of simplifying the vertical discretization
in the shallowest part of the domain (see figure 8). We consider three different
configurations, which we denote hereinafter as (NVAR1)-(NVAR3). Firstly,
we totally remove the vertical discretization by considering a single layer in
the first part of the domain:

N =

{
10, li = 1/10, i = 1, ..., N, if x ≤ 4000;
1, l1 = 1, otherwise.

(NVAR1)

Secondly, we keep a thin layer close to the bottom in order to improve
the approximation of the friction term:

N =

{
10, li = 1/10, i = 1, ..., N, if x ≤ 4000;
2, l1 = 0.1, l2 = 0.9 otherwise.

(NVAR2)

Finally, we improve again the vertical discretization close to the bottom by
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Method ∆t (s) Ccel Comput. time (s) Speed−up

Runge-Kutta 3 - 0.1 (ref. sol.) 9040 (150.6 m) -
Runge-Kutta 3 - 0.88 1014 (16.9 m) 1

θ = 0.55 2.5 1.6 230 (3.8 m) 4.4
IMEX-ARK2 2.5 1.6 544 (9.1 m) 1.9
θ = 0.55 5 3.2 116 (1.9 m) 8.7

IMEX-ARK2 5 3.2 271 (4.5 m) 3.74
θ = 0.55 10 6.3 58 17.5

IMEX-ARK2 10 6.3 136 (2.3 m) 7.5
θ = 0.55 25 15.8 23 44.1

IMEX-ARK2 25 15.8 54 18,7
θ = 0.55 55 34.8 10 101.4

IMEX-ARK2 55 34.8 24 42.3

Table 6: Computational times and speed-up in the tidal forcing test case for the simulation
up to t = 36 h.

adding another thin layer:

N =

{
10, li = 1/10, i = 1, ..., N, if x ≤ 4000;
3, l1 = l2 = 0.1, l3 = 0.8, otherwise.

(NVAR3)

In this way, the number of degrees of freedom of the multilayer system
is reduced from 5510 to 3890 (NVAR1), 4070 (NVAR2), or 4250 (NVAR3).
Note that configurations (NVAR2) and (NVAR3) employ a non-uniform dis-
tribution of the vertical layers. Figure 11 shows the absolute errors with
the θ-method with ∆t = 5 s (Ccel = 3.2) using 10 layers in the whole do-
main and with configurations (NVAR1)-(NVAR3). We see that the simplest
configuration (NVAR1) leads to the largest error. However, by using config-
urations (NVAR2) and (NVAR3) these errors are much more similar to the
case in which a constant number of layer is employed in the whole domain.
As expected, the smallest error is achieved with the configuration (NVAR3).
Figure 12 shows the vertical profile of horizontal velocity at point x = 16025
m (the top of the peak) at different times. The conclusions are similar, i.e.,
the differences are larger with configuration (NVAR1), whereas (NVAR2)
and (NVAR3) give accurate approximations of the vertical profile obtained
with a constant number of layers.
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Figure 11: Absolute errors for the free surface at different times obtained in the tidal
forcing test with the θ-method (θ = 0.55 and ∆t = 5 s) and either 10 layers in the whole
domain (solid black line) or configurations (NVAR1)-(NVAR3) in the first part of the
domain.
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Figure 12: Vertical profiles of horizontal velocity obtained in the tidal forcing test with
the θ-method (θ = 0.55 and ∆t = 5 s) and either 10 layers in the whole domain (solid
black line) or configurations (NVAR1)-(NVAR3) in the first part of the domain. Profiles
are taken at the point x = 16025 m and times t = 12, 15, 20, 24, 30, 36 h.
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5.4 An application to sediment transport problems

In order to emphasize the usefulness of the proposed method and the po-
tential advantages of its application to more realistic problems, we consider
the extension of equations (7) to the movable bed case. For simplicity, we
work with a decoupled, essentially monophase model, according to the clas-
sification in [23], [24], which is appropriate in the limit of small sediment
concentration. Quantity b in (7) is then assumed to be dependent on time
and an Exner equation for the bed evolution is also considered

∂b

∂t
+
∂Qb

∂t
= 0, (34)

where ξ = 1/(1− ρ0) with ρ0 the porosity of the sediment bed, and the solid
transport discharge is defined by an appropriate formula, see e.g. [20]. Here
we consider a simple definition of the solid transport discharge given by the
Grass equation

Qb = Agu
3,

where Ag ∈ (0, 1) is an experimental constant depending on the grain di-
ameter and the kinematic viscosity. For control volume i, equation (34) is
easy discretized along the lines of section 4. For the θ-method, the discrete
equation reads

zn+1
b,i = znb,i + θ ξ Ag

∆t

∆x

(
|un+1

1,i− 1
2

|2 un+1
1,i− 1

2

− |un+1
1,i+ 1

2

|2 un+1
1,i+ 1

2

)
(35)

+ (1− θ) ξ Ag
∆t

∆x

(
|un

1,i− 1
2
|2 un

1,i− 1
2
− |un

1,i+ 1
2
|2 un

1,i+ 1
2

)
.

On the other hand, the IMEX-ARK2 discretization of equation (34) con-
sists of a simple updating of the values of the movable bed, since the values
un,jα are known when zn,jb is computed. For the first stage we have zn,1b,i = znb,i.

Next, zn,2b,i and zn,3b.i are computed by the formula

zn,jb,i = znb,i + ξ Ag
∆t

∆x

j∑
k=1

ãjk

(
|un,k

1,i− 1
2

|2 un,k
1,i− 1

2

− |un,k
1,i+ 1

2

|2 un,k
1,i+ 1

2

)
.

Finally, the solution at time n+ 1 is

zn+1
b,i = znb,i + ξ Ag

∆t

∆x

3∑
j=1

b̃j

(
|un,j

1,i− 1
2

|2 un,j
1,i− 1

2

− |un,j
1,i+ 1

2

|2 un,j
1,i+ 1

2

)
.

We consider a simple test in which a parabolic dune is displaced by the
flow (see [20]). The computational domain has length 1000 m and 150 nodes
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are used in the spatial discretization. We set the constant Ag in the Grass
formula to 0.001 and we take the porosity value ρ0 = 0.4. We consider vis-
cosity effects with the same parameters as in the previous tests, disregarding
wind stress. Subcritical boundary condition are imposed. The upstream
condition is q(0, t) = q0(x) and the downstream one is η(L, t) = 15 m. The
initial condition for the bottom profile is given by

zb,0(x) =

 0.1 + sin2

(
π(x− 300)

200

)
if 300 ≤ x ≤ 500;

0.1 otherwise,
(36)

and the initial height is h0(x) = 15 − zb,0(x). For the discharge, we take
into account the vertical structure of the flow in order to have a single dune
moving along the domain. With this purpose, we run a first simulation of
the movement of the dune (36), where the initial discharge is qi = 15 m2 s−1,
for i = 1, . . . , N , until it reaches a steady structure at the outlet. These
values of the discharge are used as initial and upstream boundary condition
in the final simulation. If a constant discharge were used, this would sweep
along the sediment in the initial part of the domain and create another dune
within the computational domain. While this is physically correct, we prefer
in this test to study a simpler configuration.

We use 10 layers in the multilayer code and simulate until t = 691200 s (8
days). Figure 13 shows the evolution of the dune and figure 14 shows zooms
of evolution of the free surface and of the movable bed, as computed with
either the explicit third order Runge-Kutta or the semi-implicit (θ-method
and IMEX-ARK2). The results are essentially indistinguishable. This is
confirmed looking at table 7, where we report the relative errors and the
Courant number achieved. We see that there are not significant differences
between the semi-implicit methods, due to the fact that the flow is essentially
a steady one and the bed evolution is very slow.
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t = 0, 1, 3, 6, 8 days

Figure 13: Profile of the dune at different times in the sediment transport test case,
including the initial condition and the final position.

As remarked before, a rigorous comparison of the efficiency of the pro-
posed methods is not possible in our preliminary implementation. However,
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Figure 14: Free surface and bottom profile at different times in the sediment transport
test case, as computed by the semi-implicit methods (solid red line) and by the reference
explicit scheme (black circles).

SI-method ∆t (s) Cvel Ccel Errη [l2/l∞] Erru [l2/l∞] Errb [l2/l∞]
(×10−7) (×10−6) (×10−5)

θ = 0.55 1 0.17 1.98 1.4/5.35 0.29/1.41 1.09/1.52
IMEX-ARK2 1 0.16 1.97 1.29/5.39 0.27/1.41 1.03/1.40
θ = 0.55 2 0.34 3.94 1.69/6.13 0.55/2.90 2.25/3.13
θ = 0.6 2 0.34 3.94 1.69/6.13 0.55/2.90 2.25/3.13

IMEX-ARK2 2 0.33 3.93 1.68/6.47 0.50/2.33 2.11/2.87

Table 7: Relative errors and Courant numbers achieved in the sediment transport test
case by semi-implicit methods at t = 192 hours (eight days).

a preliminary assessment is reported in Table 8, showing the computational
time and the speed-up obtained for the simulation of 192 hours (8 days). For
the reference solution with the explicit scheme approximately 13 hours are
necessary (78 minutes with maximum Ccel), whereas 8 minutes (respectively,
19 minutes) are needed with the θ-method and IMEX-ARK2 method when
considering a time step ∆t = 2 s. This gives a speed up of 9 (4 for the
IMEX-ARK2). Even taking a small time step (∆t = 1 s) the computational
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Method ∆t (s) Ccel Comput. time (s) Speed−up

Runge-Kutta 3 - 0.1 (ref. sol.) 45978 (12.7 h) -
Runge-Kutta 3 - 0.99 4700 (78.33 m) 1
θ-method 1 1.98 1048 (17.5 m) 4.5

IMEX-ARK2 1 1.97 2368 (39.4 m) 1.99
θ-method 2 3.94 509 (8.5 m) 9.2

IMEX-ARK2 2 3.93 1164 (19.4 m) 4.04

Table 8: Computational times and speed-up in the sediment transport test case for the
simulation up to t = 192 h (eight days).

time required is notably reduced to 17 min (39 min for the IMEX).
Finally, we can further reduce the computational time by reducing locally

the number of layers employed. In this test, the vertical structure cannot
be completely removed without causing a major loss of accuracy, since the
dynamics of the movable bed depends on the velocity of the layer closest to
the bottom. For this reason, we consider the following configuration (see also
figure 15):

N =

{
10, li = 1/10, i = 1, ..., N, if 200 ≤ x ≤ 700;
6, li = 1/10, i = 1, ..., 5; l6 = 0.5, otherwise.

(37)

Figure 15: Sketch of the multilayer configuration with the variable number of layers for
the sediment transport test case.

Note that, in this way, both a variable number of vertical layers and
a non-uniform distribution of these layers are tested. Figure 16 shows the
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absolute differences on the free surface and on the movable bed profiles at
different times when we use wither a constant number of layers (N = 10) or
the configuration (37). The difference between both configurations for the
bottom is lower than the 2% of its thickness, whereas the number of degrees
of freedom of the problem is reduced from 1660 to 1352.
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θ = 0.55 − ∆t = 2s - N constant

θ = 0.55 − ∆t = 2s − N variable

(a) Free surface η

(b) Bottom zb

Figure 16: Absolute differences for the free surface (η) and bottom (zb) at different
times in the sediment transport test case, by using the θ-method (θ = 0.55 and ∆t = 2 s).
We compare the results with 10 layers in the whole domain (solid black line) with those
obtained with the variable number of layers (see (37), dashed yellow line).

6 Conclusions

We have proposed two concurrent strategies to make multilayer models
more efficient and fully competitive with their z− and σ−coordinates coun-
terparts. On one hand, we have shown how the number of vertical layers that
are employed can be allowed to vary over the computational domain. Numer-
ical experiments show that, in the typical regimes in which the application of
multilayer shallow water models is justified, the resulting discretization does
not introduce any major spurious feature and allows to reduce substantially
the computational cost in areas with complex bathymetry. Furthermore, effi-
cient semi-implicit discretizations have been applied for the first time to this
kind of models, allowing to achieve significant computational gains in sub-
critical regimes. This makes multilayer discretizations fully competitive with
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z−coordinate discretizations for large scale, hydrostatic flows. In addition,
a more efficient way to implement the IMEX-ARK method to discretize the
multilayer system, which mimics what done for simpler θ-method, has been
proposed. In particular, in the applications to tidally forced flow and to the
sediment transport problem, we have shown that the computational time re-
quired is significantly reduced and that the vertical number of layers, as well
as their distribution, can be adapted to the local features of the problem.

In future work, we will be interested in applying this approach to more
realistic simulations. In particular, we will extend the proposed approach
to variable density flows in the Boussinesq regime. Furthermore, we plan
to couple multilayer vertical discretizations to the adaptive, high order hor-
izontal discretizations proposed in [34], [35], in order to achieve maximum
accuracy for the envisaged application regimes.
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