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Abstract: The quality characteristics in manufacturing processes are often represented in terms 
of spatially or time ordered data, called “profiles”, which are characterized by amplitude and 
phase variability. In this context, curve registration plays a key role, as it allows separating the 
two kinds of between-profiles variability, and to reduce any undesired inflation of the natural 
phase variability. In the mainstream literature, registration warping functions are not generally 
considered in the monitoring process, even though this may cause a significant information 
loss. We propose a novel approach for profile monitoring, which combines the Functional 
Principal Component Analysis and the use of parametric warping functions. The key idea is to 
jointly monitor the stability over time of the registered profiles (i.e., the information related to 
amplitude variability) and the registration coefficients (i.e., the information related to phase 
variability). This allows improving the capability of detecting unnatural pattern modifications, 
thanks to a better characterization of the overall natural variability. The benefits of a proper 
management of functional data registration, together with the advantages over the most 
common approaches used in the literature, are demonstrated by means of Monte Carlo 
simulations. The proposed methodology is finally applied to a real industrial case study 
relying on a dataset acquired in waterjet cutting processes under different health conditions of 
the machine tool. 

Keywords: Warping Functions, Curve Registration, Functional Data Analysis, Profile 
Monitoring 

1 Introduction 
In several manufacturing applications of practical interest, the signals acquired during the 

process and/or the geometric features measured on the product may be represented by spatially or 
time ordered data known as “profiles”. In the presence of quality characteristics consisting of 
cyclically repeating patterns, the term “profile monitoring” refers to a suite of methods that provides 
the natural framework to evaluate the stability over time of process quality (Woodall et al., 2004; 
Kang and Albin, 2000). Different techniques have been proposed to deal with complex shape 
profiles acquired from sensor signals. Some contributions in this field include the studies of Jin and 
Shi (1999; 2001), Zhou et al. (2005), Ding et al. (2006), Chang and Yadama (2010) and Grasso et 
al. (2014a; 2014b). An overview of parametric and nonparametric approaches for profile 
monitoring can be found in Noorossana et al. (2012).  

The recorded profiles generally present two kinds of natural variability: a phase variability 
and an amplitude variability (Ramsay and Li, 1998; Vantini, 2012). The natural phase variability 
may be inflated by undesired misalignments caused by random durations of cyclical processes or by 
other disturbance factors. An inflated phase variability results in an inflation of the overall natural 
variability, which may mask the effects of unnatural deviations associated to assignable causes. In 
addition, a curve misalignment makes the salient features of different profiles to be shifted in phase, 
which reduces the capability of detecting local pattern modifications. 

As far as the curve registration problem is concerned, the mainstream literature devoted to 
profile monitoring (see Section 2) does not deal with registration, as it is deemed an unnecessary 
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task or simply treated as a pre-processing step to be neglected when profile monitoring is applied. 
However, registration is a very important and complex task in many application domains, and it 
plays a relevant role when monitoring is applied either to geometric profiles and surfaces (Colosimo 
and Pacella, 2007, Dryden and Mardia, 1998) or signal profiles. As a matter of fact, simple re-
sampling or triggering methods, which are sometimes used in practice for signal misalignment 
reduction, do not guarantee a proper separation of amplitude and phase variability. Second, 
monitoring only the registered curves, without keeping any explicit track of the registration 
parameters, implies a loss of information about the phase variability, which may reduce the control 
chart performances. The present study is a first contribution in the direction of integrating curve 
registration algorithms into the profile monitoring framework. We propose a novel approach to 
jointly monitor the stability over time of both the registered profiles and the warping functions used 
to align them. To this end, we propose a three-step procedure consisting of: (i) applying a 
parametric warping registration (Eilers, 2004; Ramsay and Silverman, 2005) of the acquired 
profiles to decouple the phase and the amplitude variability, (ii) performing a dimensionality 
reduction of the registered profiles through Functional Principal Component Analysis (FPCA) 
(Ramsay and Silverman, 2005), and (iii) monitoring both the phase and the amplitude variability of 
the signals through appropriate control charts. Specifically, the coefficients of the warping functions 
singled out in Step (i) are used to describe the natural phase variability of profile data. A FPCA of 
registered curves allows reducing the number of features representing the amplitude variability. 
Step (iii) finally controls the signals through both the phase and the amplitude variability (in terms 
of warping coefficients and principal components scores), together with the FPCA residuals, which 
are used to detect possible deviations involving principal directions orthogonal to those of the 
retained components. This approach avoids information losses, besides allowing a proper 
management of both kinds of shape variability. A rationale for the use of this approach, together 
with a brief state of the art on curve registration in profile monitoring applications, is discussed in 
Section 2.  

We demonstrate the benefits of the proposed approach through Monte Carlo simulations and 
by means of a real industrial test case in waterjet cutting (Kovacevic et al., 1997). Two competitor 
implementations of a FPCA-based profile monitoring approach are considered: (i) FPCA on raw 
data without registering the curves in advance, and (ii) FPCA on the registered curves, monitoring 
the FPCA scores only. The former approach is representative of what is done in practice when only 
a rough alignment (or no alignment at all) is applied before analysing the data, whereas the latter 
approach is representative of what is usually proposed in the mainstream literature.  

The paper is organized as follows: Section 2 describes the curve registration issue in profile 
monitoring applications and presents two motivating examples; Section 3 reviews the time warping 
approach for functional data registration; Section 4 describes the proposed approach; Section 5 
discusses the simulation analysis; Section 6 presents the real case study in waterjet cutting 
processes; Section 7 discusses the possible shape distortion effects caused by the time warping 
operation and some possible ways to deal with them; Section 8 concludes the paper. 
 

 2 The Curve Registration Issue and Motivating Examples 
Despite of a wide literature devoted to the registration of 2D/3D point clouds in coordinate 

metrology for shape analysis (Chen and Hung, 1999; Okello and Ristic, 2003; Guo et al., 2011; 
Senin et al., 2013; Del Castillo and Colosimo, 2011), only few authors emphasize the critical role of 
registration for profile monitoring of signal data (Woodall et al. 2004; Mosesova et al., 2007, 
Colosimo and Pacella, 2007). As a matter of fact, most of the proposed methods assume that 
profiles to be monitored are already registered or do not need registration at all. Unfortunately, this 
hypothesis is often unrealistic when signal profiles have to be monitored, because manufacturing 
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3 Functional data registration via warping functions 

Different curve registration methods have been proposed in the literature. One research 
stream in this field consists of aligning the curves by maximizing a similarity index: this approach 
is followed by Ramsay and Li (1998), Ramsay and Silverman (2005), James (2007), Kaziska and 
Srivastava (2007) and Sangalli et al. (2009a). Apart from the simplest case of shift registration, two 
popular methods are based on landmark registration (Gasser et al., 1990; Kneip and Gasser, 1992) 
and time warping (Eilers, 2004; Tang and Muller, 2008; Tucker et al., 2013; Zhou et al., 2014). 
Other approaches have been studied by different authors (Altman and Villareal, 2004; Lindstrom 
and Bates, 1990; Ke and Wang, 2001; Gervini, 2014).  

The use of a continuous monotone registration allows overcoming the limitations of 
landmark registration and involves a transformation of the time axis, ݄:Թ → Թ. Either parametric 
(Silverman, 1995), semi-parametric (Gervini and Gasser, 2004) or non-parametric (Ramsay and Li, 
1998) methods have been proposed to define the transformation ݄.  

In this study, we propose the use of parametric warping functions (i) to increase the 
computational efficiency, in order to comply with industrial implementation requirements, and (ii) 
to control the number of warping coefficients to be monitored. We remark that a quadratic or cubic 
model is usually sufficient for the transformation function, ݄, to lead to a good registration in 
practical applications. 

The formalization of the time warping problem is briefly reviewed hereafter. Let ሼݕሺݐሻ, ݅ ൌ
1,… , ݊; 	݆ ൌ 1,…  ሽ be the sample of raw profiles acquired in the measurement process. Followingܯ,
the FDA approach, each raw datum is here assumed to be a collection of points sampled from an 
underlying curve ݕሺݐሻ, ݐ ∈ ሾ0, ܶሿ. Hereafter, we assume each profile ݕ, ݆ ൌ 1,…  to be a ,ܯ,
square-integrable function. This assumption is not restrictive for the applications, since any 
bounded function on a bounded domain fulfils this requirement.  

To set the notation, we consider the following general model for the observations: 
ሻݐሺݕ ൌ 	݃൫ ෨݄

ିଵሺݐሻ൯  ,ߝ ݅ ൌ 1,… , ݊; ݆ ൌ 1,… (1) ܯ,

where, ෨݄: ሾ0, ܶሿ → ሾ0, ܶሿ, ݆ ൌ 1,…  ;are invertible functions which capture the phase variability ,ܯ,
݃, ݆ ൌ 1,…  ,ߝ ;are squared integrable functions, featured by amplitude variability only ,ܯ,
݅ ൌ 1,… , ݊, ݆ ൌ 1,…  ଶ. The latter isߪ are i.i.d. zero-mean random errors with finite variance ,ܯ,
generally assumed to be small, since FDA methods usually rely upon the assumption of a high 
signal-to-noise ratio. We note that the assumption of variance homogeneity across profiles is 
justified whenever the instrument used to acquire the profiles is the same for each observation. 

As a first step of the statistical analysis one needs to represent the acquired raw profiles in a 
functional form. In the presence of a high signal-to-noise ratio, either a smoothing or an 
interpolating basis can be used. In the following, we represent the functional profiles – denoted with 
 : for the sake of notation simplicity – via a cubic B-spline basis asݕ

ሻݐሺݕ ൌ ܿ,Φሺݐ, ࣎
ொାିଵ

ୀଵ
ሻ, ݐ ∈ ሾ0, ܶሿ; ݆ ൌ 1,2, … (2) ,ܯ,

where ܳ ൌ 4 is the order of the B-spline functions, ܮ is the number of subintervals separated by 
ܮ െ 1 interior knots, ࣎ is the knot sequence ࣎ ൌ ሼ߬, ݈ ൌ 1,2, … ,  ,ሽ, ܿ, are the B-spline coefficientsܮ
and Φ are the B-spline basis functions. Hereafter, we will use the matrix notation ࢟ሺ⋅ሻ ൌ  ,ሺ⋅ሻ

where ࢟ሺ⋅ሻ ൌ ൫ݕଵሺ⋅ሻ, … , ெሺ⋅ሻ൯ݕ
ᇱ
 is the array of functional data,  ൌ ൫ܿ,൯ ∈ Թொାିଵ,ெ is the 

coefficient matrix and  ൌ ൫Φଵ,… ,Φொାିଵ൯
ᇱ
 is the basis function array. Note that, in case of 

interpolating B-splines, one has ࣎ ൌ ሼ0,1, … , ܶሽ. 
Given a square-integrable reference profile ݕ (e.g., the sample mean of the ݃’s) and the ݆-th 

curve ݕ, the registration of ݕ to ݕ via a functional time warping approach consists of estimating a 
function ݄ within a given class of warping functions such that the similarity between the registered 
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function ݕ∗ሺݐሻ ൌ ൫ݕ ݄ሺݐሻ൯, ݐ ∈ ሾ0, ܶሿ, and the reference function ݕሺݐሻ, ݐ ∈ ሾ0, ܶሿ, is maximized. 
The parametric time warping approach (Eilers, 2004; Ramsay and Silverman, 2005) involves the 
use of parametric warping functions induced by polynomials of degree ܭ. Here, the generic 
warping function ݄ is assumed to be a monotonic increasing function such that ݄ሺ0ሻ ൌ 0 and 
݄ሺܶሻ ൌ ܶ, and is obtained as  

݄ሺݐሻ ൌ
 exp൫݄ሺݖሻ൯ሾ,௧ሿ ݖ݀

 exp൫݄ሺݖሻ൯ሾ,்ሿ ݖ݀
, ݐ ∈ ሾ0, ܶሿ, (3)

where ݄ is a polynomial function of degree ܭ: 

݄ሺݐሻ ൌ ݐ				,ݐݓ ∈ ሾ0, ܶሿ.


ୀ
 

The degree ܭ can be fixed ex-ante, or estimated, e.g., by a stepwise estimation method. The choice 
of the parameter ܭ is mostly problem dependent, and needs to represent a compromise between the 
capability of dealing with arbitrary phase shifts and the avoidance of undesired shape distortions 
induced by the registration itself (see Section 7). We propose a method for the selection of the 
degree ܭ in Appendix A. Note that even if ܭ ൌ 1, transformation (3) induces a non-linear warping 
function. Nevertheless, in case of anchored values at the boundaries of the domain (as in this case), 
the use of non-linear warping functions is a natural choice for the registration problem. In general, 
non-linear warping functions are likely to be required when the misalignment involves local effects, 
as in the real case study motivating this work.  

To determine the optimal function ݄ within a given class of warpings – which in the 
following is the class defined in (4) –, Ramsay and Silverman (2005) advocates the use of the 
continuous fitting criterion, that is based on the minimization of the following statistics: 

ሺ݄ሻܩܫܧܰܫܯ ൌ ሺ݄ሻሿ (4)܂ଶሾߣ
where 

ሺ݄ሻ܂ ൌ ൦
නሼݕሺݐሻሽଶ݀ݐ නݕሺݐሻݕሾ݄ሺݐሻሿ݀ݐ

නݕሺݐሻݕሾ݄ሺݐሻሿ݀ݐ න൛ݕሾ݄ሺݐሻሿൟ
ଶ
ݐ݀

൪ (5)

and ߣଶሾ܂ሺ݄ሻሿ is the size of the second eigenvalue of ܂ሺ݄ሻ. The size of the smallest eigenvalue of 
 ሺ݄ሻ quantifies the dissimilarity between the original curve and the aligned curve induced by a pure܂
difference in phase (Ramsay and Silverman, 2005). In order to provide an intuitive justification for 
the Ramsay and Silverman’s procedure, suppose two curves, ݕሺݐሻ and ݕଵሺݐሻ, differ only in 
amplitude but not in phase (Fig. 2, panel a). Then, if we plot their function values against each other 
(Fig. 2, panel b), we observe a straight line (i.e., a one-dimensional set of points), such that the 
magnitude of the amplitude difference is reflected in the slope of the line. If the curves differ both 
in amplitude and in phase (Fig. 2, panel c), by plotting their function values against each other we 
observe a bidimensional curve (Fig. 2, panel d), i.e., a departure from unidimensionality, where the 
slope of semi-major axis reflects the difference in amplitude. Matrix ܂ሺ݄ሻ is such that the second 
eigenvalue measures departures from unidimensionality, and hence the minimization of the size of 
 .ሺ݄ሻሿ corresponds to minimizing the dissimilarity imposed by a pure difference in phase܂ଶሾߣ
Because of this, the ܩܫܧܰܫܯሺ݄ሻ statistic is more effective than a least squares criterion, as the latter 
is intrinsically designed to minimize differences in amplitude, rather than in phase (Ramsay and 
Silverman, 2005). Other approaches different from the continuous fitting criterion proposed by 
Ramsay and Silverman are known. Indeed Sangalli et. al. (2013) and Vantini (2012) point out that 
the choice of the similarity index and the class of warping functions is problem specific and needs 
to be done in agreement to a minimal set of requirements that guarantee coherence. By coherence 
they refer particularly (a) to the invariance of the similarity between two profiles if these are 
registered via the same warping function, (b) to the invariance of similarity gained by registering a 
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4.1 Profile registration 
Let ൛ݕሺݐሻ, ݐ ∈ ሾ0, ܶሿൟ be the ݆௧ acquired profile under natural process conditions, where 

݆ ൌ 1,…  profiles represent the Phase I dataset, as they are used to design the control ܯ These .ܯ,
charts. Without loss of generality, we assume all the profiles to be sampled at ܶ  1 equispaced 
data points, within the common temporal domain ሾ0, ܶሿ, and represented via a (smoothing or 
interpolating) cubic B-spline basis with equispaced knots as in (2).  
 The proposed approach for the registration of the Phase I historical dataset consists of a 
coarse registration, followed by a fine registration, which represent the two stages of a Procrustes 
fitting criterion (Ramsay and Silverman, 2005): 

Coarse registration: Phase I profiles ݕሺݐሻ,	ݐ ∈ ሾ0, ܶሿ, ݆ ൌ 1,2, …  are registered by using ,ܯ,
the sample mean profile ݕതሺݐሻ, ݐ ∈ ሾ0, ܶሿ, as the reference pattern. To choose the degree ܭ of the 
polynomial ݄, the following two options are available: (i) ex-ante selection of a degree ܭ (e.g., as 
a rule of thumb, a cubic model is assumed to be a good compromise in most practical applications), 
or (ii) stepwise selection of the degree ܭ. In the latter case, the method proposed in Appendix A, 
based on the average ܩܫܧܰܫܯሺ݄ሻ statistics, can be used. 

Fine registration: Once all the Phase I profiles have been preliminarily registered, one can 
compute the new sample mean profile ݕ∗തതത, which is a better estimation of the reference pattern. 
Thus, a second stage registration is applied, by registering all the original profiles ݕ with respect to 
 .is applied in this stage ܭ തതത; the same degree∗ݕ

This procedure represents a Procrustes approach because it involves estimating a 
transformation by registering to an iteratively updated reference curve. In many practical 
applications, the first registration stage may be sufficient (Ramsay and Silverman, 2005). However, 
in the absence of a good reason for applying only the coarse registration stage (e.g., the need to 
reduce the computation time), we suggest to apply the two sequential stages, to guarantee a better 
estimation of the reference pattern. Indeed, an iterative refinement of this two-stage procedure 
would lead to the 1-mean alignment advocated by Sangalli et al. (2010). 

The nomenclature ݕ
∗ is used in this study to identify the final registered profiles. The 

registration of Phase II profiles simply consists of aligning each newly observed curve to the 
reference pattern ݕ∗തതത by applying the continuous fitting criterion (Section 3) to choose the optimal 
warping function within the same class (3) used to register Phase I profiles. 

4.2 Functional PCA on registered curves 
The output of the profile registration procedure consists of a collection of registered curves 

and ܭ  1 warping coefficients ݓ,, ݇ ൌ 0,1, … , ݆ ,ܭ ൌ 1,2, …  An effective approach to control .ܯ,
the stability over time of the registered patterns consists of monitoring a limited set of functional 
features representing the largest portion of data variability, as a result of a FPCA. The use of the 
Principal Component Analysis (PCA) (Jolliffe, 2002) for profile monitoring applications was 
proposed by Colosimo and Pacella (2007; 2010), and some variants were discussed by other authors 
(Kim et al., 2006; Paynabar et al., 2013). Colosimo and Pacella (2007; 2010) apply the PCA on the 
discretized profile matrix obtaining loadings (i.e., the eigenvectors of the sample covariance matrix) 
of the same length as the profiles. Instead, we propose an FPCA approach leading to functional 
loadings, i.e., the eigenfunctions of the sample covariance operator (Ramsay and Silverman, 2005). 
In the following, the terms loading, functional principal component (FPC) and eigenfunction are 
used interchangeably.  

The reader is referred to Appendix B for a brief review of the FPCA methodology for 
squared integrable profiles. The FPCs, denoted by ߦ, ݅ ൌ 1,… ,݉, play the role of the loadings in 
the classic multivariate PCA, whereas the scores, ݂,, , ݆ ൌ 1,… ,ܯ, ݅ ൌ 1,… ,݉, are obtained by 
projecting the original functions onto a functional subspace spanned by the first ݉ eigenfunctions, 
where ݉ ≪   .is chosen to capture a given portion of the original data variability ܯ
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The score vector, ࢌ ൌ ሾ ݂,ଵ, … , ݂,ሿ′, 	݆ ൌ 1, …  ,associated to the aligned curves ,ܯ,
represents a multivariate quality characteristic to assess the stability over time of the amplitude 
variability of the monitored profiles. Thus, the score vector on the one hand, and the vector of 
warping coefficients on the other hand, capture two complementary portions of information about 
the process. 

4.3 Control chart design and utilization 
The scores along the FPCs of the registered functions ݕ

∗, ݆ ൌ 1,2, …  exhibit only (or ,ܯ,
mainly) the amplitude variability. Nevertheless, it is not possible to assume, in general, a zero-
correlation between FPCs and warping functions (see Appendix C). To the best of our knowledge, 
finding classes of warping functions and associated similarities that guarantee the independence or 
zero-correlation between phase and amplitude variability is still an open problem. Because of this, 
to achieve a simultaneous monitoring of the stability over time of both the amplitude and the phase 
variability, we propose to control the ሺ݉  ܭ  1ሻ-dimensional vectors ࢠ, ݆ ൌ 1,…  obtained by	,ܯ,
concatenating the warping coefficients ݓ,, ݇ ൌ 0,1, … ,  and the principal component scores ݂, ,ܭ
݅ ൌ 1,2, … ,݉, namely, ࢠ ൌ ሾ ݂,ଵ, … , ݂,, ,,ݓ … ,  ,ሿ′ . These can be monitored by means of aݓ
Hotelling’s ܶଶ control chart. In this case, the control statistics is: 

ܶ
ଶሺ݉, ሻܭ ൌ ሺܢ െ ܢ௭ିଵሺ܁തሻܢ െ ,′തሻܢ ݆ ൌ 1,2, … (6) ܯ,

where ܢത is the Phase I sample mean of the coefficient vector, and ܁௭ is its Phase I sample variance-
covariance matrix. We remark that the block-structure of the matrix ࡿ௭ can be exploited to 
efficiently compute the ܶଶ statistics in case a high number ݉ of eigenfunctions is required to 
accurately describe the profiles: 

௭܁ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ భభߪ

ଶ 0 0
0 … 0
0 0 ߪ

ଶ

భ௪బߪ … భ௪಼ߪ
… … …

௪బߪ … ௪಼ߪ

భ௪బߪ … ௪బߪ
… … …

భ௪಼ߪ
… ௪಼ߪ

௪బబߪ
ଶ … ௪಼బߪ
… … …
௪಼బߪ

… ௪಼಼ߪ
ଶ

ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

′ (7)

where ߪ∙	∙
ଶ  is the FPC score variance, ߪ௪∙	∙

ଶ  is the warping coefficient variance, and ߪ∙௪∙ is the 
covariance between FPC scores and warping coefficients. In addition, the FPCA model residuals 
can be monitored to detect deviations along directions orthogonal to the first ݉ directions. The sum 
of prediction error (ܵܲܧ): 

ሺ݉ሻܧܲܵ ൌሺݕො
∗ሺݐ,݉ሻ െ ොݕሻሻሺݐതതതሺ∗ݕ

∗ሺݐ,݉ሻ െ ሻሻݐതതതሺ∗ݕ



ୀଵ

, ݆ ൌ 1,2, …  ܯ,
(8)

can be used for such a task.  
Two control charts are designed to monitor respectively the ܶ

ଶሺ݉,  ሺ݉ሻܧܲܵ ሻ and theܭ
statistics. The control limits may be estimated as 100ሺ1 െ  ሻ% percentiles of the empirical′ߙ
distributions of the two statistics, where ߙ is the overall Type I error, and ߙ ൌ 1 െ ሺ1 െ  ᇱሻሺଵ/ଶሻ isߙ
the Type I error associated to each chart, computed by using the Sidak correction (Montgomery, 
2008). During Phase II, i.e., the actual monitoring phase, each newly observed profile ݕሺݐሻ, 
݆ ൌ ܯ  ܯ,1  ݐ ,…,2 ൌ 0,… , ܶ, is represented in a functional form by using the same basis 
introduced in Phase I, it is registered with respect to the Phase I reference profile ݕ∗തതത, and the 
corresponding warping coefficients are estimated. The Phase I FPCA model is applied by using the 
number ݉ of principal components chosen during the control chart design phase. The result is a 
projection of the new registered profile ݕ

∗ onto the ݉-dimensional functional subspace spanned by 
the eigenfunctions estimated during the Phase I. Then, the two statistics ܶ

ଶሺ݉ሻ and ܵܲܧሺ݉ሻ are 
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computed and their values are compared with the corresponding control limits. If at least one 
statistic violates the limit, an alarm signal is issued.  

5 Simulation study 

5.1 Data generation  

The performances of the proposed approach are firstly evaluated by means of Monte Carlo 
simulations. A benchmark signal inspired by the work of Tang and Muller (2008) is used to 
simulate the patterns. Two different scenarios are considered by using the same kind of signal: (i) 
Scenario A, characterized by a natural amplitude variability that predominates over the natural 
phase variability, and (ii) Scenario B, characterized by a natural phase variability that predominates 
over the amplitude variability. Scenario A is representative of practical situations where a rough 
alignment is applied (e.g., by using triggers or a synchronous resampling), but a fine registration 
may still be required. Scenario B is representative of situations where no preliminary alignment step 
is applied on raw data. The in-control models are generated as follows: 

Scenario A: 

ሻݐሺݕ ൌ ∑ ,ߚ exp ቄߛ,൫ݐ  ߱,൯
ଶ
ቅ  ߝ

ହ
ୀଵ ݐ   , ൌ 0,1,… , 100 and ݆ ൌ 1,… (9) ,ܯ,

where: 
ࢼ ൌ ሾߚଵ,, … , ,ఉ,ࣆሾܰܯ~ହ,ሿߚ ఉ,ሿ, ࢽ ൌ ሾߛଵ,, … , ,ఊ,ࣆሾܰܯ~ହ,ሿߛ ఊ,ሿ, and ࣓ ൌ
ሾ߱ଵ,, … , ߱ହ,ሿ~ܰܯሾࣆఠ,, ఠ,ሿ, with the following parameters: 
 ࣆఉ, ൌ ሾ0.88,െ0.5, 0.6,0.6,െ0.5ሿ, ఉ, ൌ ݀݅ܽ݃ሾሺ8.8,5,6,6,5ሻ10ିଶሿ 
 ࣆఊ, ൌ ሾെ20,െ50,െ100,െ150,െ200ሿ, ఊ, ൌ ݀݅ܽ݃ሾ2,5,10,15,20ሿ 
 ࣆఠ, ൌ ሾെ0.5,െ0.45,െ0.3,0.7,െ0.45ሿ, ఠ, ൌ ݀݅ܽ݃ሾሺ5,4.5,3,2,1.5ሻ10ିଶሿ 
 ߝ	݅. ݅. ݀. ~ܰሺ0, ఌଶߪ ఌଶሻ (noise term), whereߪ ൌ 0.05 

 
Scenario B: 

ሻݐሺݕ ൌ ∑ ,ߚ exp ቄߛ,൫ݐ  ߬߱,൯
ଶ
ቅ  ߝ

ହ
ୀଵ ݐ   , ൌ 0,1,… ,100, and ݆ ൌ 1,… (10)  ,ܯ,

where: 
ࢼ ൌ ሾߚଵ,, … , ,ఉ,ࣆሾܰܯ~ହ,ሿߚ ఉ,ሿ, ࢽ ൌ ሾߛଵ,, … , ,ఊ,ࣆሾܰܯ~ହ,ሿߛ ఊ,ሿ, ࣓ ൌ
ሾ߱ଵ,, … , ߱ହ,ሿ~ܰܯሾࣆఠ,, ఠ,ሿ, and ߬~ܰሾߤఛ, σఛሿ, with the following parameters: 
 ࣆఉ, ൌ ఉ,, ఉ,ࣆ ൌ ݀ఉ, 
 ࣆఊ, ൌ ,ఊ,ࣆ ఊ, ൌ ఊ, 
 ࣆఠ, ൌ ,ఠ,ࣆ ఠ, ൌ ݀݅ܽ݃ሾሺ5,4.5,3,2,1.5ሻ10ିଷሿ 
 ߤఛ ൌ 1.2 and σఛ ൌ 0.15 
 ߝ	݅. ݅. ݀. ~ܰሺ0, ఌଶߪ ఌଶሻ (noise term), whereߪ ൌ 0.05 
 
Fig. 4 shows ܯ ൌ 50 realizations of the in-control profiles in Scenario A and Scenario B. 
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Table 3 – Out-of-control detection results in Scenario A: ARLs and 95% Confidence Intervals 

  Severity 
Scenario A ‐ ARLs and 95% Confidence Intervals 

Unreg  Reg RegWarp

In‐Control  ‐  101.17 [91.00, 111.34] 101.29 [83.45, 119.14] 100.85  [92.03, 109.67]

Shift a)  1.5  3.24  [2.91, 3.56]  4.10  [3.56, 4.64]  4.52  [4.16, 4.88] 

2.0  1.74 [1.60, 1.87] 2.53 [2.35, 2.72] 2.65  [2.45, 2.85]

2.5  1.64 [1.52, 1.77] 2.31 [2.06, 2.57] 2.29  [2.08, 2.51]

3.0  1.71 [1.56, 1.88] 1.90 [1.71, 2.09] 1.99  [1.81, 2.16]

Shift b)  1.5  7.82 [5.99, 9.64] 26.06 [18.83, 33.30] 2.01  [1.90, 2.11]

2.0  6.46 [5.31, 7.61] 15.05 [13.15, 16.94] 1.07  [1.06, 1.08]

2.5  5.65 [4.28, 7.02] 5.89 [5.28, 6.50] 1.04  [1.03, 1.05]

3.0  5.48 [4.70, 6.25] 3.46 [3.19, 3.73] 1.06  [1.05, 1.08]

Shift c)  1.5  8.13 [7.35, 8.90] 6.03 [5.45, 6.61] 5.50  [5.20, 5.80]

2.0  5.16 [4.85, 5.47] 4.09 [3.81, 4.37] 3.82  [3.68, 3.97]

2.5  2.78 [2.66, 2.89] 2.38 [2.29, 2.48] 2.20  [2.12, 2.27]

3.0  1.87 [1.80, 1.94] 1.69 [1.65, 1.73] 1.57  [1.54, 1.61]

 
package FDA (Ramsay et al., 2012). Finally, the number of FPCs to be retained is chosen according 
to an 80% cut-off of the explained data variability. 

Table 3 and Table 4 show the simulation results, in Scenario A and B respectively, in terms 
of Phase II performances for the different kinds of unnatural pattern modification. These are also 
graphically depicted in Fig. 9. For each simulated condition, a 95% confidence interval for the 
estimated ܮܴܣ values is shown.  

In Scenario A (Table 3 and Fig. 9 - left), the RegWarp and the Reg approaches provide 
statistically comparable results for shift a and shift c, where the pattern modification mainly 
involves the amplitude variability. The RegWarp outperforms the Reg approach for shift b, where 
the pattern modification largely affects the phase variability. 

In the out-of-control condition of shift a, the best detection results are achieved by the 
Unreg approach, although this is outperformed by the RegWarp approach for shift b and shift c. 
This means that the out-of-control effect on the unregistered curves may be sometimes more evident 
than the effect after the warping-based registration, especially when the original variability of the 
data is dominated by the amplitude term. This can be caused by a shape distortion introduced by the 
time warping operation, as discussed in Section 7. 

In Scenario B (Table 4 and Fig. 9 - right), where the misalignment of original profiles is 
larger, the RegWarp approach considerably outperforms the two competitor implementations of the 
FPCA for shift a, shift b and shift c. The performance enhancement produced by the RegWarp 
approach over the Reg approach is caused by the fact that the registration operation mitigates the 
effect of the fault when only the amplitude variability is considered, as it forces the current out-of-
control observations to resemble the in-control reference pattern. Such a dissimilarity reduction is 
desired when the process operates under in-control conditions, but it may have detrimental effects 
on fault detection capabilities when traditional control charting methods are applied only on 
registered curves. The performance enhancement over the Unreg approach is instead a consequence 
of the separation of the shape variability sources: the proposed approach allows reducing the 
variability inflation caused by profile misalignment, which may mask the effect of faults, without 
losing any information about the warping functions.  

A discussion about the possible shape distortion effects introduced by the time warping 
operation, together with further analysis of different time warping algorithms, is reported in Section 
7. 
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Fig. 9 – ARLs and 95% Confidence Intervals for different out-of-control shifts in Scenario A (left) and Scenario B 

(right) 
 
 

Table 4 – Out-of-control detection results in Scenario B: ARLs and 95% Confidence Intervals 

  Severity 
Scenario B ‐ ARLs and 95% Confidence Intervals 

Unreg  Reg RegWarp

In‐Control  ‐  100.43 [85.46, 115.40] 100.30 [94.32, 106.29] 100.32  [92.85, 107.78]

Shift a)  1.5  55.18 [38.86, 71.50] 9.45 [8.80, 10.11] 1.78  [1.64, 1.92]

2.0  36.80 [16.73, 56.87] 2.40 [2.32, 2.49] 1.46  [1.38, 1.55]

2.5  26.47 [15.59, 37.35] 1.63 [1.59, 1.67] 1.32  [1.26, 1.39]

3.0  23.00 [12.33, 33.67] 1.43 [1.39, 1.47] 1.22  [1.17, 1.27]

Shift b)  1.5  10.69 [7.16, 14.22] 72.98 [61.93, 84.02] 1.06  [1.00, 1.20]

2.0  8.63 [5.90, 11.36] 67.07 [54.82, 79.32] 1.00  [1.00, 1.00]

2.5  7.60 [5.49, 9.70] 23.86 [19.07, 28.65] 1.00  [1.00, 1.00]

3.0  5.96 [4.83, 7.10] 2.18 [1.96, 2.39] 1.01  [1.00, 1.01]

Shift c)  1.15  10.60 [7.76, 13.45] 10.89 [7.33, 14.45] 4.46  [3.71, 5.22]

1.2  9.95 [6.17, 13.74] 5.52 [5.09, 5.96] 1.27  [1.22, 1.33]

1.3  7.16 [5.57, 8.76] 1.14 [1.13, 1.16]  1.00  [1.00, 1.00]

1.4  5.00 [4.13, 5.87] 1.01 [1.01, 1.01] 1.00  [1.00, 1.00]
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To collect signal data, the same type of cutting process – consisting of cutting 75 x 75 x 2.5 
mm square aluminium plates – was performed under each machine health condition, both in-control 
and with faulty components installed. The fault detection percentages provided by the three 
competitor methods are shown in Table 5. The empirical control limits were estimated by using the 
KDE technique (Chou et al., 2001), with a target Type I error ߙ ൌ 0.0027 as per common industrial 
practice. Table 5 shows that the use of a regression B-spline basis not only drastically reduces the 
computational effort, but slightly improves the detection percentage yielded by the RegWarp 
approach. The Unreg and the Reg methods, instead, perform slightly better when an interpolation 
basis is used. A smoothing basis enhances the registration by removing the high frequency noise 
component: the result is an increase of the fault mitigation affecting the Reg method, and an 
improvement of the RegWarp method that is robust against such an effect. On the other hand, the 
removal of high frequency components may reduce the fault detectability when the Unreg method 
is used. 

 
Fig. 14 – First ݉ ൌ 2 FPCs of the pressure signal, for unregistered curves (top panels) and aligned curves (bottom 

panels). Each panel shows the mean curve (solid thick line), the mean curve plus the eigenfunction (solid fine line) and 
the mean curve minus the eigenfunction (dashed line) 

 
Regardless of the selected basis, Fault A is always detected by all the methods. With regard 

to fault B, C and D, the RegWarp approach is the one that provides the highest performances, i.e., a 
100% detection capability for fault B and fault D, and a slightly lower detection percentage for fault 
C, at low and medium wear levels. The Reg approach performs worse than the Unreg one in the 
presence of fault B, which mainly affect the phase variability (see Fig. 13), and in presence of fault 
C, when a barely worn salve seat in installed (also in this case the fault effect mainly involves the 
phase variability). Both the Reg and the Unreg approaches yield poor detection performances when 
the “broken 1” orifice is installed and better performances for the other two faulty orifices (this is 
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more evident when a smoothing basis is used). Globally, the Reg and the Unreg approaches allow 
detecting about the 83-84% of out-of-control profiles with a smoothing basis, and about 86-88% 
with an interpolating basis. The RegWarp approach, instead, yields a detection rate of about 98-
99%, with a slight performance improvement when smoothed profiles are monitored. 

 
Table 5 – Fault detection percentages of Unreg, Reg and RegWarp approaches, for different kinds of fault, different 
severity levels and different choices of the B-spline basis 

Fault   Fault severity 

Fault detection percentage (%) 

Interpolating basis Smoothing basis 

Unreg  Reg RegWarp Unreg Reg  RegWarp

A 

Severe   100  100 100 100 100  100

Medium   100  100 100 100 100  100

Small   100  100 100 100 100  100

B 
Medium   100  75.86 100 100 82.76  100

Small   96.55  63.64 100 89.66 81.82  100

C 

Severe   100  100 100 100 100  100

Medium   92.31  76.92 92.31 84.62 84.62  96.15

Low  69.23  30.77 88.46 53.85 3.85  92.31

D 

Broken 1  23.53  98.84 94.12 17.65 35.29  100

Broken 2  100  100 100 91.43 100  100

Broken 3  71.43  100 100 68.54 100  100

Total  88.40  86.01  97.95  83.96  83.28  98.98 

 

7 Discussion: on the distortion effect imposed by the warping operation 

The time warping operation aims at minimizing a dissimilarity measure between a reference pattern 
and any newly observed patterns. This operation improves the profile variability characterization 
when the process is in-control, but leads to a shape distortion when the process is out-of-control. 
Indeed, the out of control profiles are forced in this stage to resemble the in-control reference one, 
leading to a “fault mitigation effect”, which can be dealt with by monitoring both the registered 
profiles and the warping functions used to align them. Moreover, when the process is out-of-
control, the Phase I reference profile, ݕ∗തതതሺݐሻ, is no longer a consistent reference for the new 
observations. This may lead the registration procedure to converge to a highly distorted profile by 
inflating or denaturing the outcome of the fault itself, resulting into a “fault alteration effect”. As 
illustration of this, we here consider the same Phase I data as that in Scenario B of Section 5, and a 
fault effect consisting of a pure shift of the time reference ݐ, such that ݐ௦ ൌ ݐ െ  ௗ in equations (8)ߜ
and (9). Even though a pure shift is unlikely produced by an actual fault, it represents an event that 
may occur in practice, especially when profile monitoring is applied to signal data. Indeed, it may 
be caused by a wrong profile segmentation or by an error involving the triggering signals used to 
define the profile time window.  
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Fig. 15 – Effect of pure shift on unregistered profiles (a), aligned profiles (b) and warping functions (c) for a severity 
level equal to 0.15. Each panels shows: in-control profiles (background grey lines) and a realization of the out-of-

control profiles (red line); in-control sample mean profile is depicted with thick black lines 
 

Fig. 15 a) depicts the effect of such a kind of shift for a severity level of ߜௗ ൌ 0.15	(red 
line), compared to the 50 in-control profiles (grey line). In this case, registration based on the 
MINEIG criterion and the family of polynomial warping functions of order ܭ ൌ 3, fails to converge 
to the aligned profile, resulting into the distorted pattern shown in Fig. 15 b). We note that the 
largest the severity of the shift is, the more likely the pattern alteration, as the first peak of the out-
of-control profiles may be erroneously aligned to the second peak of the in-control profiles. The 
unnatural shape alteration, due to a local minimum entrapment, is worsened in this case by a border 
effect caused by the truncation of the out-of-control profiles within the ሾ0,1ሿ time window. 

The problem of alteration effect is well-known in the literature on functional data 
registration. To cope with such a problem, different approaches can be adopted, depending on the 
problem at hand. A possible parameter to be tuned is the order of the polynomial determining the 
warping functions. Indeed, the higher the order of the warping functions is, the most likely severe 
deformations occur. For instance, Fig. 16 shows the results of applying the registration procedure 
with the MINEIG criterion when ܭ ൌ 1,2. In this case, the use of polynomials of lower degree 
allows to solve the fault alteration effect, eventually avoiding Phase I profiles alteration for ܭ ൌ 1.  

 

 
Fig. 16 - Registration of an out-of-control profile with warping functions determined by polynomials of order ܭ ൌ 1 ( 

(a) and (b) ) and ܭ ൌ 2 ( (c) and (d) ): registered profiles ( (a) and (c) ) and warping functions ( (b) and (d) ) 
 

A different approach to cope with the alteration effect is to adopt a different registration 
criterion for the registration procedure. A relatively large body of literature has been recently 
devoted to this topic with particular focus on the characterization of the most suitable classes of 
warping functions to be used for registration, depending on the minimization criteria (Sangalli et 
al., 2013; Vantini, 2012). As a way of example, we here illustrate the results of two alternative 
methods: (a) the 1-mean alignment (Sangalli et al., 2010) and (b) the registration based on the 
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Fisher-Rao metric (Srivastava et al., 2011). We performed the 1-mean alignment with similarity 
measure determined by the Pearson metric and affine warping functions – advocated by Sangalli et 
al. (2013); results are reported in Fig. 17 a) and b). The solution obtained with the Fisher-Rao 
metric (Srivastava et al., 2011) and warping functions class of diffeomorphism is displayed in Fig. 
17 c) and d). 

 

  
Fig. 17 - Registration of an out-of-control profile based on alternative criteria. Results with 1-mean alignment based on 
the Pearson Metrics with affine functions ( (a) and (b) ) and Fisher-Rao Metrics with diffeomorphism ( (c) and (d), with 

smoothing parameter ߣ ൌ 0.5): registered profiles ( (a) and (c) ) and warping functions ( (b) and (d) ) 
 
The results appear pretty similar and in both cases the fault alteration effect seems 

overcome. From a monitoring viewpoint, the 1-mean alignment is performed with parametric 
warping functions at the expense of modifying the profile domain. Here the monitoring of the phase 
variability could be performed by monitoring the two parameters of shift and dilation determining 
the affine warping. The monitoring of the diffeomorphisms singled out when registering according 
to the Fisher-Rao metrics would instead require a phase variability dimensionality reduction. In 
both cases, an extensive study to assess the performance of both methods in profile monitoring will 
be scope of future work. 

It is worth to notice that the avoidance (or mitigation) of the shape alteration effect might be 
achieved at the expense of a worst registration (this is evident in Fig. 17 c)). Generally speaking, the 
choice of the warping approach may be problem-dependent and it involves a compromise between 
the goodness of the registration itself and the avoidance of undesired shape distortions. To this aim, 
both the flexibility of the warping function and the registration criterion play a relevant role.  

We finally remark that, from a profile monitoring viewpoint, when a shape distortion occurs 
only under out-of-control conditions, the result is likely to be an increase of the fault detectability 
when the Reg method or the RegWarp method are applied. If it occurs when the process is in-
control, outlier data will appear in the Phase I historical dataset, with a detrimental effect on the 
performances of both the Reg and the RegWarp methods. For this reason, one has to pay close 
attention to the alteration effect, particularly during Phase I, when a careful analysis – and possibly 
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a decontamination operation – may be needed to tune the monitoring parameters and choose the 
most appropriate registration criterion. 

8 Conclusions 

Functional data registration, in the frame of profile monitoring applications, is required to 
guarantee a proper decoupling of the amplitude variability from the phase variability, and to 
minimize the undesired inflation of the phase variability due to disturbance factors. Even though an 
effective method to keep under statistical control both the phase and the amplitude variability of the 
process is essential for profile monitoring, the mainstream literature typically focuses the control 
only on the amplitude variability. Moreover, some signal processing techniques commonly 
employed, including automatic triggering or synchronous re-sampling, are not completely effective, 
and do not guarantee an actual registration of the profile data.  

Our study is a first contribution aimed at investigating the integration of time warping 
algorithms into a profile monitoring framework. We proposed a novel approach to jointly monitor 
the stability over time of the registered profiles and of the warping functions used to align them.  

The simulated scenarios show that the inclusion of the warping coefficients into the 
monitored statistics improves in most cases the process monitoring performances with respect to 
monitoring only the aligned profiles. The larger the original misalignment of the acquired profiles 
is, the larger the provided improvement. Furthermore, a profile monitoring without registration is 
likely to be more reliable than a profile monitoring of aligned curves without keeping track of the 
registration parameters, as the registration itself may even mitigate the effect of the fault. The 
proposed approach is expected to be more effective in detecting small shape modifications, thanks 
to an improved shape variability characterization. The real case study concerning an actual waterjet 
cutting process confirmed the results achieved in simulated scenarios. In particular, the information 
loss is minimized by including the warping coefficients into the monitored statistics. This allows 
enhancing the fault detection capability, even when the registration procedure produces a mitigation 
of the actual fault effects. However, when the original phase variability is very large and/or in the 
presence of strong departures from the natural pattern, the registration operation may introduce 
some shape distortion that may alter the nature of the occurred events. We discussed possible ways 
to cope with the fault alteration effect, while highlighting that the determination of the most 
appropriate solution appear to be highly problem-driven. Future research streams should address the 
development of registration criteria coupled with a proper choice of warping functions to enhance 
the monitoring performances. 

In the end, time warping algorithms may be computationally expensive, and their use in 
practical applications should be driven by a trade-off analysis between the desired enhancement of 
profile characterization and the reactivity of the process monitoring tool. The computational time of 
functional warping algorithms may be influenced by the number of basis functions used to represent 
the sampled profiles as functional forms, and hence this parameter can be controlled to find the best 
compromise between monitoring performances and computational efficiency.  

Nomenclature 
   Average Run Length, Average Run Length under in-control conditionsܮܴܣ ,ܮܴܣ
    Vector of the ݆௧ eigenfunction B-spline coefficients࢈
 ൌ ൫ܿ,൯  B-spline coefficient matrix 
 ത   Vector of the sample mean B-spline coefficientsࢉ
ܭ to a degree ܭ , Relative improvement (or worsening) by passing from a degreeܦ  ݅ warping 

function 
ࢌ)    ݆௧ score vector associated to the ݉ retained FPCsࢌ ൌ ሾ ݂,ଵ, … , ݂,ሿ′) , ݆ ൌ 1,2, … 
FPC   Functional Principal Component  
FPCA   Functional Principal Component Analysis 
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݄ሺݐሻ   Warping function 
۸   ሺܳ  ܮ െ 1ሻ ൈ ሺܳ  ܮ െ 1ሻ matrix used in equation (B7) 
 Degree of the warping function   ܭ
KDE   Kernel Density Estimation 
ܮ) Number of B-spline sub-intervals ܮ െ 1 is the number of internal knots) 
݉   Number of retained FPCs 
 Number of profiles in Phase I dataset   ܯ
  ሺ݄ሻ  Similarity index used for registrationܩܫܧܰܫܯ
݊   Number of B-spline basis functions 
PC   Principal Component 
PCA   Principal Component Analysis 
ܳ   Order of the B-spline function 
Reg   Profile monitoring based on monitoring only the registered curves 
RegWarp  Proposed approach for profile monitoring 
 ሺ݉ሻ  ݆௧ realization of the sum of prediction error statisticܧܲܵ
 Sum of squared errors statistic   ܧܵܵ
 ࢠ ௭   Sample variance-covariance matrix of multivariate variable܁
ܶ+1   Number of data points of monitored profiles (ݐ, ݐ ∈ ሾ0, ܶሿ) 
ሺ݄ሻ   2܂ ൈ 2 matrix used to compute the ܩܫܧܰܫܯሺ݄ሻ statistics 

ܶ
ଶሺ݉,  ࢠ ሻ ݆௧ realization of the Hotelling’s ܶଶ statistics for the multivariate variableܭ

UHP   Ultra High Pressure 
    ݆௧ eigenvector in FPCA eigenfunction࢛
Unreg   Profile monitoring without any registration 
,ݏሺݒ  ሻ   Sample covariance functionݐ
ܸ   Sample covariance operator (with kernel ݒሺݏ,  (ሻݐ
࢝)    ݆௧ warping coefficient vector࢝ ൌ ሾݓ,ଵ, … , ݆ , (′,ሿݓ ൌ 1,2, … 
WJ/AWJ  Waterjet/Abrasive Waterjet 
 ሻ   Sample mean profile in Phase I before registrationݐതሺݕ
 ሻ   Sample mean profile in Phase I after registrationݐതതതሺ∗ݕ
ݕ
∗ሺݐሻ   ݆௧ registered profile, ݆ ൌ 1,2, … 
݆ ,ሻ   ݆௧ sampled profileݐሺݕ ൌ 1,2, …  
݆ ,ሻ   ݆௧ functional profileݐሺݕ ൌ 1,2, …  
ොݕ
∗ሺݐ,݉ሻ ݆௧ reconstructed profile by using the first ݉ FPCs 
ࢠ) monitored vector that includes the PC scores and the warping coefficients	 ݆௧ࢠ ൌ

ሾ ݂,ଵ, … , ݂,, ,,ݓ … ,  ,ሿ′ሻݓ
,ߙ  Type I error   ′ߙ
,,ߚ ,,ߛ ,,ߤ ,ߤ

௦ , ߱,, ߬ Parameters used to generate the simulate datasets, ݆ ൌ 1,2, …; ݅ ൌ 1,… ,5 
,,∙ߜ     Shift parameter used to simulated out-of-control shape modifications,∙ߜ
,ሻ~ܰሺ0ݐሺߝ) ሻ   ݆௧ error term in simulated scenariosݐሺߝ  ఌሻሻߪ
݆ ,   ݆௧ FPC (eigenfunctions)ߦ ൌ 1,2, … 

ଶ   Size of the second eigenvalue of a 2ߣ ൈ 2 matrix 
    ݆௧ eigenvalue in FPCA eigenfunctionߩ
∙	∙ߪ
ଶ    FPC score variance 

∙	∙௪ߪ
ଶ    Warping coefficient variance 

 ∙௪∙   Covariance between FPC scores and warping coefficientsߪ
߬   Knot sequence (B-spline basis) 
   B-spline basis functions array 
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Appendix A: Selection of the warping function degree, ࡷ 

An iterative procedure for the automatic selection of the most appropriate warping function 
degree, ܭ, should be based on the same statistic adopted by the warping algorithm. Thus, we 
propose the following procedure based on the average ܩܫܧܰܫܯሺ݄ሻ statistics, which can be 
computed at increasing values of ܭ: 

തതതതതതതതതതതሺ݄ሻܩܫܧܰܫܯ ൌ
1
ܯ
 ,ሺ݄ሻܩܫܧܰܫܯ

ெ

ୀଵ
, ܭ ൌ 1,2, … (A1)

The relative improvement (or worsening) produced by passing from a degree ܭ function to a 
degree ܭ  ݅ function, can be expressed as follows:  

,ܦ ൌ 100ቆ
തതതതതതതതതതതሺ݄ሻܩܫܧܰܫܯ െ തതതതതതതതതതതାሺ݄ሻܩܫܧܰܫܯ

തതതതതതതതതതതሺ݄ሻܩܫܧܰܫܯ
ቇ%, ݅ ൌ 1,2, … ; ܭ ൌ 1,2, … (A2)



27 
 

We propose to choose the degree ܭ for the warping function when: (i) the relative improvement 
,ܦ ,., is lower than a given threshold (e.gܦ ൏ 5%) for at least two consecutive steps (݅ ൌ 1,2), or 
(ii) the relative change ܦ,ଵ is negative. Notice that a negative value of ܦ,ଵ is possible. A negative 
value is likely to occur for high values of ܭ, when a too complex warping function introduces a 
detrimental curve distortion. 

Appendix B: Brief review of the FPCA methodology 

Principal Component Analysis (PCA) is a multivariate statistical technique aiming to search 
the directions of maximum variability (i.e., the main modes) of the dataset. In the context of 
statistical process control, PCA allows monitoring complex signal patterns without selecting a 
model in advance, thanks to the identification of a limited number of features (i.e., the principal 
components), which are mutually uncorrelated linear combinations of the measured profiles. In the 
presence of functional observations (e.g., profiles observed along time), the FPCA plays the same 
role as PCA for multivariate data.  

Given a (possibly registered) functional dataset ሼݕሺݐሻ, ݐ ∈ ሾ0, ܶሿሽ, ݆ ൌ 1,…  the first FPC ,ܯ,
is its direction of maximum variability.  In the following, we will assume each datum ݕ to be a 
square integrable real valued functions, and we will denote this with ݕ ∈ ,ଶሺሾ0ܮ ܶሿሻ. In this case, 

the first FPC is found by maximizing, over ߦ ∈ ଶ||ߦ|| ଶ, withܮ ൌ  ݐሻ|ଶ݀ݐሺߦ| ൌ 1
்
 : 

1
ܯ
න ݕ

்



ெ

ୀଵ

ሺݐሻߦሺݐሻ݀ݐ. (B1)

The remaining FPCs, ߦ, ݅ ൌ 2,…  capture the remaining modes of variability subject to ,ܯ,
be mutually orthogonal, and are thus obtained by solving problem (B1) with the additional 

orthogonality constraint  ݐሻ݀ݐሺߦሻݐሺߦ ൌ 0
்
 , ݇	 ൏ 	݅. 

We recall that the sample covariance function ݒሺ⋅,⋅ሻ of the functional dataset can be 
expressed as:  

,ݏሺݒ ሻݐ ൌ
1

ܯ െ 1
 ቀݕሺݏሻ െ ሻቁݏതሺݕ ቀݕሺݐሻ െ ሻቁݐതሺݕ , ,ݏ ݐ ∈ ሾ0, ܶሿ,

ெ

ୀଵ
 (B2)

where ݕതሺݐሻ, ݐ ∈ ሾ0, ܶሿ, is the sample mean. The covariance operator is then defined as the kernel 
operator ܸ: ,ଶሺሾ0ܮ ܶሿሻ → ,ଶሺሾ0ܮ ܶሿሻ, acting on ݔ ∈   :ଶ asܮ

ݔܸ ൌ නݒሺ∙, (B3) ݐሻ݀ݐሺݔሻݐ

As proved, e.g., in Horvàth and Kokoszka (2012), and analogously to the multivariate case, the 
FPCs ߦ, ݅ ൌ 1, …  are the eigenfunctions of the sample covariance operator  ܸ, which are ,ܯ,
obtained by solving the eigenequation: 

ߦܸ ൌ ,ߦߩ ݅ ൌ 1,2, … ܯ, (B4)
where ߩ is the ݅௧ eigenvalue, or, equivalently, 

නݒሺݐ, ሻݏ ݏሻ݀ݏሺߦ ൌ ,ሻݐሺߦߩ ݐ ∈ ሾ0, ܶሿ, ݅ ൌ 1,2, … (B5) ܯ,

We note that the eigenfunctions can be expressed on the same basis ሼΦሺ⋅ሻሽஹଵ as that used 
in (2) for the data: 

ሻݐሺߦ ൌ ࢈
ᇱΦሺݐሻ, ݐ ∈ ሾ0, ܶሿ, ݅ ൌ 1,2, … (B6) ,ܯ,

࢈ ∈ Թொାିଵ being the vector of coefficients corresponding to ݅th the eigenfunction. Hence, 
equation (B5) becomes: 

1
ܯ െ 1

Φᇱሺݐሻሺ۱ െ ۱തሻᇱሺ۱ െ ۱തሻනΦሺݏሻΦᇱሺݏሻ݀ݏ ࢈ ൌ ,࢈ሻݐΦᇱሺ࣋ ݅ ൌ 1,2, … (B7) ,ܯ,
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where ۱ത. ൌ 	 ݅ ത forࢉ ൌ 1,… ሻݐതሺݕ if ,ܯ, ൌ ݐ ,ሻݐത′Φሺࢉ ∈ ሾ0, ܶሿ. Expression (B7) reduces to the 
symmetric eigenequation: 

1
ܯ െ 1

۸ଵ/ଶሺ۱ െ ۱തሻᇱሺ۱ െ ۱തሻ۸ଵ/ଶ࢛ ൌ ,࢛ߩ ݅ ൌ 1,2, … (B8) ܯ,

subject to ࢛
ᇱ࢛ ൌ 1, with ۸ ൌ ሺΦሺݏሻΦ′ሺݏሻ݀ݏሻ ∈ Թொାିଵ,ொାିଵ and having defined ࢛ ൌ

۸ଵ/ଶ࢈ ∈ Թொାିଵ,			݅ ൌ 1,2,…  This allows using standard software tools to find the eigenvectors .ܯ,
  of the modified eigenequations (B8), eventually back-transforming the result to obtain the࢛
coefficients ࢈ of the target eigenfunctions ߦ, for ݅ ൌ 1,…  .ܯ,
 The dimensionality reduction task is then accomplished by retaining the first ݉ ≪  ,FPCs ܯ
where ݉ is such that ߦଵ, ,ଶߦ … ,   explain a sufficient percentage of the original data variability. Forߦ
this purpose, one may proceed analogously to the classical multivariate PCA, e.g., by associating a 
threshold to the cumulative explained variance or to the eigenvalues (e.g., the 80%). When the first 
݉ principal components are retained, each profile can be expressed as: 

ሻ݉,ݐොሺݕ ൌ ሻݐതሺݕ  ݂,ߦሺݐሻ



ୀଵ

, ݆ ൌ 1,2, … (B8) ܯ,

where ݂, ൌ  ሺݕሺݐሻ െ
்
 ݐሻ݀ݐሺߦሻሻݐതሺݕ ൌ ሺ െ ,࢈തሻ′۸ࢉ ݆ ൌ 1,… ,ܯ, ݅ ൌ 1,… ,݉, are the FPC 

scores. The scores ݂, 	can be then monitored to detect any unnatural behaviour that affects the 
amplitude variability of the observed profiles along the first ݉ principal directions.  

Appendix C: On the correlation between FPCs and warping coefficients 

Fig. C1 shows the scatterplot of the first 3 FPC scores, i.e., ൛ ݂,ଵ, ݂,ଶ, ݂,ଷ, ݆ ൌ 1,… ,50ൟ and the 3 
warping coefficients ൛ݓ,ଵ, ,,ଶݓ ,,ଷݓ ݆ ൌ 1,… ,50ൟ of 50 in-control profiles generated in Scenario B. 
Fig. C1 shows that a non-zero correlation exists between some FPCs and warping coefficients. This 
justifies the choice of jointly monitoring phase and amplitude coefficients via a Hotelling’s ܶଶ 
statistic. 
 

 
Fig. C1 – Scatterplot of first three FPCs vs warping coefficients, Scenario B, ܯ ൌ 50 
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