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Abstract

Independent Component Analysis (ICA) is a widespread data-driven
methodology used to solve Blind Source Separation problems. A lot of al-
gorithms have been proposed to perform ICA, but few of them take into
account the dependence within the mixtures and not only the dependence
between the mixtures. Some algorithms deal with the temporal ICA (tICA)
approach exploiting the temporal autocorrelation of the mixtures (and the
sources). In particular, colored ICA (cICA), that works in the spectral do-
main, is an effective method to perform ICA through a Whittle likelihood
procedure assuming the sources to be temporal stochastic process. How-
ever spatial ICA (sICA) approach is becoming dominant in several field, like
fMRI analysis or geo-referred imaging. In this paper we present an exten-
sion of cICA algorithm, called spatial colored ICA (scICA), where sources
are assumed to be spatial stochastic processes on a lattice. We exploit the
Whittle likelihood and a kernel based nonparametric algorithm to estimate
the spectral density of a spatial process on a lattice. We illustrate the per-
formance of the proposed method through different simulation studies and
a real application using a geo-referred dataset about mobile-phone traffic on
the urban area of Milan, Italy. Simulations and the real application showed
the improvements provided by scICA method due to take into account the
spatial autocorrelation of the mixtures and the sources.
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1 Introduction

Independent Component Analysis (ICA) is a data-driven methodology widely
used to solve Blind Source Separation problems [6]. It can be expressed in
terms of a latent variable linear model

Xj = cj1S1 + ...+ cjKSK =
K∑

k=1

cjkSk, for j = 1, ..., p, (1)

where random variables X1, ..., Xp are observed linear combinations of K
unknown (latent) random independent sources S1, ..., SK . Consider the
case K = p. Using a vector-matrix notation equation (1) becomes:

X = CS, (2)

where X and S are random vectors in R
p, and C is a (p, p) matrix of real

numbers named mixing matrix. In applications, we observe x1, ...,xn ∈ R
p,

realizations of the random vector X, while the corresponding realizations
of S are unknown as well as the mixing matrix C. Let X be the (n, p) data
matrix whose rows are the n observations in the sample, then we can write:

X = SC ′, (3)

where S is a (n, p) matrix containing the n unknown realizations of the
p sources. A BSS problem consists in estimating the unmixing matrix
W = C−1, given X, and then recover S through;

S = XW ′. (4)

Being ICA a widespread approach for BSS problems, a lot of methods have
been developed to approach it. Two widely used algorithms are infomax
[5] and fastICA [15], where the unmixing matrix is estimated minimizing
the mutual information (a measure of dependence) between the sources.
This is equivalent to maximize the negentropy, a particular non-Gaussianity
measure (indeed it is possible to show that the sources should not to be
Gaussian distributed in order for the mixing matrix to be identifiable).
These two algorithms rely only on the independence between the sources
and try to estimate the marginal densities of the sources without any further
assumption on the form of such densities.

Other methods, instead, make assumptions on the source densities. For
example Independent Factor Analysis (IFA) [4, 21] models the indepen-
dent components as mixtures of Gaussians, while Log-ICA and Lap-ICA
[2] assume that the sources follow a Logistic and a Laplacian distribution,
respectively.

All the above methods, while study the dependence structure between
mixture variables trying to unmix the dependent signals in independent
sources, do not exploit the possible correlation structure within the sources
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(and, then, within the mixtures). However in the real applications where
ICA is commonly used, the signals are often autocorrelated, in time or
space. For instance the typical framework where ICA has been introduced
is the cocktail-party problem, where different microphones in a room reg-
ister sounds produced by different sources. The goal here is to recover
the original audio signals through the time signals registered by the micro-
phones. In this case a time correlation within the sources (and the mixtures)
is present.

ICA is a method widely used also in the analysis of fMRI data [9, 20].
This kind of data consists in the registration of the brain activity in a cer-
tain number of cuboid elements, called voxels, for a period of time. Then
both a spatial (between voxels) and temporal (between instants of time)
dependence is present and there are two different approaches that can be
applied. We can consider each spatial brain map at every instant of time
a mixture of independent image components, or each temporal signal at
every voxel a mixture of independent temporal sources. The former ap-
proach is called spatial ICA (sICA) while the latter is named temporal ICA
(tICA). Some methods have been developed taking into account the cor-
relation within the sources for the tICA approach. The method described
in [23] is the first algorithm that considers the temporal autocorrelation
of the sources, through the analysis of their spectral densities. However
this method is based on the assumption that the spectral densities of the
sources are known up to a scale parameter and this assumption is unre-
alistic in the real applications. Other methods, like AMUSE or TDSEP
algorithms (see [28, 30]), exploit the autocorrelation of the sources in the
sense that they estimate the unmixing matrix W taking into account the
independence between the sources at different lags. However they do not
analyze the temporal structure within the single sources. Colored ICA
(cICA) [18], instead, is an innovative procedure that takes into account the
autocorrelation of the sources and it also works in the spectral domain, but
in this case the knowledge of the spectral densities is not needed. Regarding
the sICA approach in the literature there are no methods that involve the
spatial autocorrelation of the sources in the evaluation of the independent
components, imposing some stochastic spatial structure. In this paper we
provide a method to fill this lack. Indeed, since the spatial independence is
well suited to the sparse distributed nature of the spatial pattern for most
cognitive activation paradigms (see, e.g., [20]), spatial approach is becom-
ing dominant in the fMRI analysis. Furthermore, other fields where ICA
analysis can provide interesting results are spreading over. For instance,
spatiotemporal datasets that perfectly fit in the BSS framework are the
geo-referred data, where the temporal changes of a certain quantity are
measured on a specific geographic area. In this paper we present an inter-
esting application of our method to the analysis of a mobile-phone traffic
dataset related to the urban area of Milan, Italy. sICA approach, in this
case, is particularly interesting because it allows to find out independent
spatial maps related to different patterns that can be associated with spe-
cific activities within the city. The temporal profiles in the mixing matrix
represent the temporal evolutions of such activities.

The metropolitan area of Milan, located in the North of Italy, is the
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fifth biggest metropolitan area of the entire Europe in terms of number
of inhabitants. As all the large metropolitan areas, it is characterized by
a consistent presence of working and residential/leisure activities. Indeed,
the urban area of Milan provides nearly the 10% of the Italian gross do-
mestic product and it is the most populated province of the country, with
a density of more than 1000 inhabitants per km2. An Organization for
Economic Co-operation and Development (OECD) review of 2006 (see [22]
for the complete report) identified housing, transport and congestion as the
principal limitation for the future development of the area. In particular
most of the principal roads connecting the city of Milan with its suburbs
have reached their saturation during the rushing hours. These aspects cause
a lot of problems, above all in terms of pollution and economy. Although in
recent years something has been done to decrease the congestion stimulat-
ing the use of different means of transport, like the public transports or car
and bike-sharing systems, a deep analysis of the main features regarding
working, residential and mobility activities is crucial for the well-being of
the city. Indeed, as highlighted in [17] and [27], changes in management
of mobility are a key point to understand times, places and modes of so-
cial life, thus structuring the urban areas. Mobile phone network data are
potentially an interesting tool to study population behaviors and for the
real-time monitoring of the urban dynamics. Indeed they have been widely
analyzed in several experimental studies (see e.g, [25, 1, 14]). Since these
studies are quite qualitative, our aim is to analyze this kind of data through
suitable statistical methods. Some first and recent statistical approaches to
analyze these data are presented in [19] and [26]. Here we want to apply the
method described in this paper in order to retrieve meaningful and useful
information for urban planning.

The rest of the paper is organized as follows. Firstly, in Section 2
we briefly describe spatial processes on lattices, introducing some simple
models well known in literature and presenting a non-parametric method
to estimate the spectral density of spatial stochastic processes. Then, in
Section 3 we describe in details the algorithm we propose. Since it extends
the cICA method to the spatial case we call it spatial colored Independent
Component Analysis (scICA). In Section 4 we present some simulation to
validate scICA and to show the improvement due to take into account
the spatial correlation within the sources. Finally, in Section 5 we deeply
analyze the mobile-phone traffic dataset by highlighting the significative
results obtained by scICA algorithm. All the simulations and the analyses
of real data are carried out using R statistical software [24]. Furthermore
we are developing a R package implementing cICA and scICA algorithms.

2 Spatial models on lattices and their spec-

tral representation

Let s ∈ R
2 be a generic location in a 2-dimensional Euclidean space and

suppose that the potential datum Z(s) at a spatial location s is a random
quantity. If s varies over an index set D ⊆ R

2, the spatial random field

{Z(s); s ∈ D} (5)
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is generated. A realization of (5) is denoted {z(s); s ∈ D}. We consider D
a fixed regular collection of countably many points, say D = {s = (u, v)′ :
u = · · · ,−1, 0, 1, · · · ; v = · · · ,−1, 0, 1, · · · }. In this case (5) is called a
spatial process on a lattice. We consider weakly-stationary processes, when
the covariance C(u) is defined, for every u ∈ Z

2, as

C(u) = Cov(Z(s+ u), Z(s)) ∀ s ∈ D. (6)

If the covariance values form an absolutely summable sequence, then we
can define its Fourier Transform as:

f(ω) =
1

(2π)2

∑

u∈Z2

C(u)e−iu′
ω, (7)

with (ω1, ω2)
′ = ω ∈ Π2 = [−π, π] × [−π, π]. The function f(ω) is the

spectral density of the stochastic process Z(s). The covariance function at
lag u can be recovered by the Inverse Fourier Transform of the spectral
density as:

C(u) =

∫

Π2

f(ω)eiu
′
ωdω. (8)

Therefore covariance and spectral density form a Fourier pair (a detailed
description of spatial stochastic processes and their properties can be found,
for instance, in [7, 13]).

2.1 Spatial Autoregressive Moving-Average Models

We now introduce the class of Spatial Autoregressive Moving-Average (SARMA)
models (see [13] for a complete description). We start with the model for
Z(u, v) given by

Z(u, v) =

+∞∑

j=−∞

+∞∑

l=−∞

ϕjlZ(u− j, v − l) + ϵ(u, v), (9)

or, by setting Φ(T1, T2) = 1 −∑+∞
j=−∞

∑+∞
l=−∞ ϕjlT

j
1T

l
2 so that (9) can be

abbreviated as
Φ(T1, T2)Z(u, v) = ϵ(u, v), (10)

where ϕ00 = 0, T1 and T2 are such that T p1

1 Z(u, v) = Z(u + p1, v) and
T p2

2 Z(u, v) = Z(u, v+p2) and ϵ(u, v) is white noise with zero mean and vari-
ance σ2. Model (9) or (10) is called Spatial Autoregressive (SAR) model.
For example, if we consider a symmetric first-order model, Φ(T1, T2) reads:

Φ(T1, T2) = 1− ϕ1(T1 + T−1
1 )− ϕ2(T2 + T−1

2 ). (11)

We take into account now a finite lattice with n = n1 · n2 sites {s1, ..., sn}.
We also define the random vector Z in R

n as Z = (Z(s1), Z(s2), ..., Z(sn))
′

and the random vector ϵ in R
n as ϵ = (ϵ(s1), ϵ(s2), ..., ϵ(sn))

′, assuming that
ϵ is gaussian distributed with 0 mean and a (diagonal) covariance matrix
Λ. Let B = (bjl) be a matrix to be interpreted as the spatial-dependence
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matrix (the matrix that gathers the coefficients ϕjl) with bjj = 0. Then,
the SAR model for Z can be written as:

(I −B)Z = ϵ. (12)

Thus, it is easy to see that the distribution of ϵ induces the distribution of
Z. Specifically:

Z ∼ Nn(0, (I −B)−1Λ(I −B′)−1). (13)

By the analogy with time-series models, it is possible to introduce Spatial
Moving-Average (SMA) or Spatial Autoregressive Moving-Average (SARMA)
processes

Z(u, v) = Θ(T1, T2)ϵ(u, v) (14)

Φ(T1, T2)Z(u, v) = Θ(T1, T2)ϵ(u, v), (15)

respectively, where θ00 = 1. Defining E = (ejl) the spatial dependence
matrix that gathers the coefficients θjl such that ejj = 0, the SMA model
for Z can be written as:

Z = (I − E)ϵ. (16)

Hence
Z ∼ Nn(0, (I − E)Λ(I − E′)). (17)

The SARMA model for Z

(I −B)Z = (I − E)ϵ (18)

provides

Z ∼ Nn(0, (I −B)−1(I − E)Λ(I − E′)(I −B′)−1). (19)

2.2 Spectral representation for SARMA models

Consider the general expression for SARMA model

Φ(T1, T2)Z(u, v) = Θ(T1, T2)ϵ(u, v) (20)

that can be reduce to the SAR or SMAmodel if Θ(T1, T2) = 1 or Φ(T1, T2) =
1, respectively.

It can be shown that the spectral density f(ω) of the stochastic process
Z at a frequency ω ∈ Π2 is given by:

f(ω) =

∣∣∣∣∣∣

+∞∑

j=−∞

+∞∑

l=−∞

θjle
−i(j,l)·ω

∣∣∣∣∣∣

2

∣∣∣∣∣∣
1−

+∞∑

j=−∞

+∞∑

l=−∞

ϕjle
−i(j,l)·ω

∣∣∣∣∣∣

2

σ2

(2π)2
=

|A(ω)|2
|B(ω)|2 fϵ(ω), (21)

where fϵ(ω) = σ2/(2π)2 ∀ω ∈ Π2 is the spectral density of the white noise
and (j, l) · ω = jω1 + lω2.
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2.3 Estimation of the spectral density based on Whit-

tle log-likelihood

We now approach the problem of estimating the spectral density. In par-
ticular we focus on a non-parametric estimation of the spectral density
based on Whittle log-likelihood [29]. For this reason we briefly introduce
the spatial periodogram, an essential tool for the Whittle estimator.

The periodogram (also called sample spectral density) is a classical non-
parametric estimator of the spectral density. For spatial processes observed
on a regular grid D = {s = (s1, s2) : s1 = 0, ..., n1 − 1; s2 = 0, ..., n2 − 1},
D ∈ R

2, n = n1 · n2, the spatial periodogram at a frequency ω ∈ Π2 is
given by:

I(ω) =
1

(2π)2n

∣∣∣∣∣
∑

s∈D

Z(s) exp(−is′ω)

∣∣∣∣∣

2

. (22)

The periodogram is usually computed at the set of bidimensional Fourier
frequencies ωk = (ωk1

, ωk2
):

ωk1
=

2πk1
n1

k1 = 0,±1, ...,±m1 where m1 = ⌈ (n1 − 1)

2
⌉

ωk2
=

2πk2
n2

k2 = 0,±1, ...,±m2 where m2 = ⌈ (n2 − 1)

2
⌉.

If we define the Discrete Fourier Transform of the data as:

J(ω) =
1

2π
√
n

∑

s∈D

Z(s)e−is′ω, (23)

then the periodogram can be obtained as:

I(ω) = J(ω)J(ω) = |J(ω)|2. (24)

The spatial periodogram is an asymptotically unbiased estimator of the
spectral density, but it is not consistent, since the variance at a specific
frequency is proportional to the square of the spectral density at that fre-
quency. Nevertheless, the periodogram values at different frequencies are
asymptotically uncorrelated [11]. To avoid this inconsistency problem one
of the most popular methods in the spectral parametric context is the
Whittle estimation, based on an approximation to the Gaussian negative
log-likelihood, and it uses the periodogram as a pilot estimate. For a para-
metric model of the spectral density fθ, with θ ∈ Θ ∈ R

p, the Whittle
parameter estimator θ̂ is given by:

θ̂ = argmin
θ

L(θ, I), (25)

where L(θ, I) denotes the Whittle log-likelihood

L(θ, I) =

∫

Π2

(
log fθ(ω) +

I(ω)

fθ(ω)

)
dω. (26)
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The log-likelihood (26) can be interpreted as the Kullback-Leibler diver-
gence between I and fθ. Note that, in practice, (26) is approximated by a
discretized version:

∑

k

(
log fθ(ωk) +

I(ωk)

fθ(ωk)

)
, (27)

where the sum extends over all the Fourier frequencies.
Based on the discrete approximation (27), it is possible to obtain a

nonparametric estimator for the log-spectral density mθ = log fθ [8, 10]. It
is easy to see that, minimizing (27) is equivalent to maximize in θ

∑

k

(
Yk −mθ(ωk)− eYk−mθ(ωk)

)
(28)

where Yk denotes the log-periodogram value at the Fourier frequency ωk.
We consider the estimator obtained for the log-spectral density function
m(ωj) = log f(ωj) by a multidimensional local linear kernel estimator.
At each Fourier frequency ωj , this is carried out by approximating m(x)
using aj + b′

j(ωj − x) for x in a sufficiently small neighborhood of ωj .
The parameters aj and bj will then be estimated by maximizing the local
likelihood function described by

max
aj ,bj

∑

k

(
Yk − aj − b′

j(ωj − ωk)− eYk−aj−b
′

j(ωj−ωk)
)
KH(ωj−ωk), (29)

where the function KH is a rescaled bidimensional kernel, H is a bidi-
mensional bandwidth matrix and KH(x) = |H|−1/2K(H−1/2x). The local
maximum likelihood estimator m̂LK(H,ωj) ≡ m̂LK(ωj) of m(ωj) is âj in

the maximizer (âj , b̂j) of (29).

3 Spatial colored Independent Component Anal-

ysis

We now consider the BSS problem (3) assuming the sources to be spatial
processes defined on a finite lattice D with n sites. Let S = (S1, ..., Sp)

′

be a random vector in R
p. We can define the spectral density and the

periodogram of the jth source as fSj
(ω) and I(ω, Sj) respectively. Then

the sources Whittle log-likelihood is given by

L(fS;S) =

p∑

j=1

n∑

k=1

(
I(ωk, Sj)

fSj
(ωk)

+ ln(fSj
(ωk))

)
(30)

where fS is the diagonal spectral density matrix of the sources (diagonal
because the sources are assumed independent). In practice we do not ob-
serve the sources, but we observed the mixed spatial processes. So the
log-likelihood (30) can be rewritten as

L(W, fS;X) =

p∑

j=1

n∑

k=1

(
e′jW

′I(ωk,X)Wej

fSj
(ωk)

+ ln(fSj
(ωk))

)
+n ln | det(W )|

(31)
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where I(ωk,X) is the matrix periodogram of the mixed signals at the
Fourier frequency ωk and ej = (0, ..., 0, 1, 0, ..., 0)′ with the jth entry being
1. Then we basically need to estimate both the unmixing matrix W and
the sources spectral density fSj

, for j = 1, ..., p. Therefore we implement an
iterative algorithm, alternating a step where sources spectral densities are
estimated with a step where an estimate Ŵ of W is obtained. The itera-
tive algorithm stops when the difference between Ŵnew and Ŵold is under a
convergence threshold, where the difference is measured through the Amari
error (see [3] for details), a criterion widely used in ICA framework.

3.1 The iterative algorithm

Firstly we imagine the unmixing matrix W to be fixed. Then, the log-
periodogram Y (ωk, Sj) can be easily evaluated for every j = 1, ..., p and
every k = 1, ..., n. Hence, for every j = 1, ..., p, the spectral density fSj

can be estimated through the nonparametric method (29). In the cICA
algorithm [18], differently, the parameter of the spectral density of the
temporal sources are estimated through a parametric procedure and then
the spectral densities are evaluated. In our framework, where sources are
assumed to be spatial stochastic processes, a parametric approach would be
difficult to deal with, because of the nontrivial way to choose the order of
the autoregressive and moving-average parts in SARMA models. Moreover,
spatial parametric procedures would be too restrictive, because of the very
different features that spatial sources could present in real applications.
Hence, the nonparametric approach allows us to take into account many
different structures for the sources.

We now fix fSj
for j = 1, ..., p. A typical procedure in ICA methods is

to prewhite data [16]. In this way W is orthogonal and this allows us to
drop the last term in (31). However we need to impose an orthogonality
constraint on the unmixing matrix. Then, for every j = 1, ..., p, we minimize

L̃(W, fS;X) = w′
j(Ak + τCj)wj (32)

where wj = Wej is the jth column of W , Ak =
∑n

k=1
I(ωk,X)
fSj

(ωw) , Cj =
∑

k ̸=j wkw
′
k and τ is a positive tuning parameter. Matrix Cj provides

an orthogonality constraint in the sense that w′
jCjwj =

∑
k ̸=j⟨wj ,wk⟩2.

This representation provides a straightforward estimate for wj . Indeed it
is easy to see that (Ak + τCj) is symmetric and positive-definite. Hence
the argmin of (32) is the eigenvector of (Ak + τCj) corresponding to the
lowest eigenvalue. However, the problem of setting the tuning parameter τ
still remains. It is important to point out that orthogonality has to be a
constraint and not simply a penalization. For this reason we set an initial
(small) value for τ and then we proceed in an alternating way as follows:

a) we obtain Ŵ from (32);

b) if the orthogonality error is under a certain threshold, we remain with
this estimate for W . Unless we repeat the step a) with τ = 2τ .

The orthogonality error is measured by ∥ŴŴ ′− I∥F , with ∥ · ∥F being the
Frobenius norm.
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We can finally summarize the iterative algorithm discussed in this sec-
tion. Firstly we initialize Ŵ . Then, while the Amari error is greater than
a certain threshold, we repeat the following steps:

1) we estimate the sources spectral density through the nonparametric
algorithm (29);

2) we update Ŵ according the minimization of (32), using the rule de-
scribed above to impose the orthogonality constraint.

Remark 3.1 Another possibility to involve the orthogonality constraint is
to use the Newton-Raphson method with Lagrange multiplier as presented in
[18]. However in the framework analyzed in this paper, the nonparametric
estimate of the spectral density could lead to bad conditioned Hessian matrix
in the Newton-Raphson update. For this reason we prefer to estimate the
unmixing matrix W through the criterium (32). In any case we point out
that, in those situations where the Hessian matrix does not present bad con-
ditioning problems, the results of the two approaches do not show relevant
differences.

Remark 3.2 We presented here the particular case when K = p. To con-
sider K < p a typical procedure adopted in ICA method is to project data in
the K-dimensional space identified by the first K principal direction. Then
proceed with the estimate of the unmixing and of the mixing matrix in this
space and finally recover the original mixing matrix by the inverse of the
first transformation.

4 Simulation study

In this section we present some simulation studies, comparing the results
obtained by scICA with those obtained by cICA and fastICA (the most
popular ICA algorithm). To perform cICA algorithm, we vectorize the 2D
processes and we consider them as 1D processes. We make this in order to
compare cICA with scICA and to evaluate if taking into account the 2D
dependence gives significative improvements with respect to consider the
dependence only in one direction. fastICA algorithm, instead, is used as
a benchmark algorithm to implement ICA, since it is the most widespread
method used in the literature. All simulations are carried out on a n1 × n2

grid, with n1 = n2 = 20.

4.1 First simulation study: symmetric SARMA pro-

cesses of the first order

The simulation involves two sources and two mixtures. We perform 100
different runs and for each run the mixing matrix C is generated randomly.
The first source is generated according the following symmetric SAR model
of the first order:

Z(u, v) = ϕ1(Z(u−1, v)+Z(u+1, v))+ϕ2(Z(u, v−1)+Z(u, v+1))+ϵ(u, v)
(33)
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with ϕ1 = 0.3, ϕ2 = 0.4 and ϵ(u, v) a gaussian noise with zero mean and
variance σ2 = 0.32. The second source is generated according the following
SMA model of the first order:

Z(u, v) = ϵ(u, v)+θ1(ϵ(u−1, v)+ϵ(u+1, v))+θ2(ϵ(u, v−1)+ϵ(u, v+1)) (34)

with ϕ1 = 0.25, ϕ2 = 0.3 and ϵ(u, v) a gaussian noise with zero mean and
variance σ2 = 0.32. Then, the data matrix X is generated according to the
model (3). In the left panel of Figure 1 the boxplots of the Amari errors
for every method considered are shown. Both scICA and cICA significantly
outperform fastICA algorithm. The two colored methods seem comparable.
However, if we consider the differences between the two errors for every
run, we can observe that scICA is significantly better. In the right panel
of Figure 1 the boxplot of the differences is depicted. Furthermore we
report the p-value of the test to verify if the mean of the difference can
be considered less than zero. The p-value is very low, equal to 0.00304,
providing statistical evidence that the difference is significant.

In BSS problems we are not interested only in a good estimate of the
mixing matrix, but we also aim to reconstruct efficiently the sources. For
this reason we evaluate for each run the error in estimating the sources, i.e.
the mean of the absolute value of the difference between the true and the
estimated sources over the 400 pixels of the 20 × 20 lattice. In Figure 2
we show the differences of the error over the 100 runs between scICA and
cICA algorithm, both for the first and the second source. We also depict
the p-value to verify if the mean of the differences could be considered lower
than zero. We can observe that for the second source the p-value is around
0.05, providing us slight evidence to reject the null hypothesis, while for
the first source the evidence is substantially stronger.

Figure 1: Simulation 1 - On the left panel: boxplot of the Amari error for the
three methods considered. On the right panel: boxplot of the differences between
scICA and cICA Amari error. The p-value to test if the mean of the difference
can be considered lower than zero is shown above the boxplot.
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Figure 2: Simulation 1 - On the left panel: boxplot of the differences of the
errors between scICA and cICA algorithm in estimating the first source. The
p-value to test if the mean of the difference can be considered lower than zero is
shown above the boxplot. On the right panel: boxplot of the differences of the
errors between scICA and cICA algorithm in estimating the second source. The
p-value to test if the mean of the difference can be considered lower than zero is
shown above the boxplot.

4.2 Second simulation study: spatial sources with ir-

regular structure

We now take into account two sources, say S1 and S2 created artificially
and showed in Figure 3.

Figure 3: The two sources considered in the second simulation.
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Figure 4: Simulation 2 - On the left panel: boxplot of the Amari error for the
three methods considered. On the right panel: boxplot of the differences between
scICA and cICA Amari error. The p-value to test if the mean of the difference
can be considered lower than zero is shown above the boxplot.

Figure 5: Simulation 2 - On the left panel: boxplot of the differences of the
errors between scICA and cICA algorithm in estimating the first source. The
p-value to test if the mean of the difference can be considered lower than zero is
shown above the boxplot. On the right panel: boxplot of the differences of the
errors between scICA and cICA algorithm in estimating the second source. The
p-value to test if the mean of the difference can be considered lower than zero is
shown above the boxplot.

We perform 100 different runs, generating the mixing matrix randomly
at each run and the data matrix according to the model (3), where the
sources matrix is composed by the sources of Figure 3 plus some gaussian
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noise with zero mean and different variances for the two sources. Specifically
σ2
1 = 22 and σ2

2 = 0.12.
The boxplots of the Amari errors for every method considered are de-

picted in the left panel of Figure 4. The two colored methods clearly out-
perform fastICA algorithm, as well as in the first simulation. Furthermore,
in this case the improvements by accounting for the spatial structure of
the sources seem even more evident. Indeed the p-value is significantly
lower, as shown in the right panel of Figure 4. Comparing the estimate
of the sources for the two colored method, is evident how scICA strongly
outperform cICA, as highlighted by the extremely low p-values in Figure 5.

5 Analysis of Telecom data

In this section we analyze a real mobile-phone traffic dataset, related to
the metropolitan area of Milan (Italy). We refer to the data analyzed in
[19] and [26], where the analyses are carried out through basis representa-
tions that do not consider any probabilistic assumptions on the model. In
this paper we want to exploit probabilistic assumptions through the ICA
framework, taking into account the spatial structure of this dataset using
scICA algorithm.

5.1 Telecom dataset: description

The dataset describes the mobile phone traffic on the metropolitan area
of Milan. Data are courtesy of Telecom Italia, the biggest mobile phone
Italian company, thanks to a research agreement between Telecom and the
Politecnico di Milano. Telephone traffic is anonymously recorded as the
average number of simultaneous contacts in a time unit. Then, Telecom
elaborates these measurements with a weighted interpolation, thus obtain-
ing an evaluation of the phone traffic on a tessellation of the territory in
rectangular areas (i.e., pixels). We analyze here the municipality of Mi-
lan divided into a lattice D0 of 25 × 28 pixels (232m × 309m each). For
each pixel of the covered area we observe the Erlang every 15 minutes for
14 days. The Erlang is a dimensionless unit calculated as the sum of the
length of every call in a given time interval divided by the length of the
interval (i.e., 15 minutes). For each pixel and for each quarter of an hour,
this measure represents the average number of mobile phones simultane-
ously calling through the network, that, as a first approximation, can be
considered proportional to the number of active people in that area at that
time. The Erlang xij related to the pixel li ∈ L0 and to the time interval
tj (i.e., the jth quarter of a hour) is evaluated as

xij =

R∑

r=1

T r
ij

where T r
ij indicates the length in minutes of the time interval (or union

of intervals) in which the rth mobile phone is calling while moving in the
pixel li during the time interval tj . R indicates the total number of potential
network users. Hence these data describe a phenomenon in a 2D-space at
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different instants of time. This may be represented by a surface varying
along time, as depicted in Figure 6.

Figure 6: On the left: Erlang distribution on the lattice at a fixed instant of
time. On the right: Erlang profile at a fixed pixel.

Aim of the analysis is to decompose the observed signal as a time-varying
linear combination of a reduced number, say K, of time-invariant source
surfaces. Specifically, for a fixed pixel li and a fixed time interval tj :

xij = si1aj1 + ...+ siKajK ,

where sik represents the contribution of the kth source in the pixel li and
ajk is the intensity of the kth source at the jth time interval. This problem
fits in the BSS framework, indeed the purpose of the analysis is to represent
X as the product of two matrices, a p x K matrix A and a n x K matrix
S, where each column of S represents the evaluation at the n pixels of the
corresponding source surface and the element ajk indicates the contribution
of the kth surface at time j.

The Erlang data we deal with are recorded from March 18th to March
31st, 2009. Due to discontinuities in the information provided by the Tele-
com antennas, a pre-processing step is needed. For this purpose we follow
the analysis presented in [19] and [26]. We do not go into the details of
the pre-processing step here and we simply say that the dataset we used in
our analysis is represented by the Erlang measurements in the lattice D0 at
p = 200 instants of time regularly spaced in the time interval of one week.

5.2 Independent Component Analysis: results obtained

through fastICA and scICA algorithms

We now perform an Independent Component Analysis on the Telecom
dataset. In this case the sources (i.e, the columns of S) are spatial maps.
Classical ICA methods, such as fastICA, do not take into account this in-
formation. Here we propose to apply the scICA algorithm to exploit this
information from the estimate of S and C. Furthermore we compare it with
the well-known fastICA algorithm. In Figures 7, 8 and 9 we present three
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dominant components identified by the two algorithms. Figure 7 seems to
catch working activities. Indeed the temporal profiles, that are quite sim-
ilar, are turned on during the daily hours of the working days more than
during the daily hours of the weekend (the first day shown is Wednesday)
and turned off during the nights. The spatial sources highlight the financial
districts in the center of the city (i.e., the areas devoted to working activ-
ities). Figure 8 catches the behavior of the railway stations. Indeed both
temporal profiles present a peak every working day around 6pm, when peo-
ple take the train to come back home after work. However, while fastICA
highlights in the spatial map only the Central railway station, that is the
biggest Milanese station, scICA also catches the Garibaldi station (in the
top central part of the map), another large station of the city.

Figure 7: Working activities: the top panel presents surface (on the left) and
temporal profile (on the right) identified by scICA. The bottom panel presents
surface (on the left) and temporal profile (on the right) identified by fastICA.
The surfaces catch the areas devoted to working activities. The temporal profiles
are quite similar and they are turned on during the daily hours of the working
days more than during the daily hours of the weekend and turned off during the
nights.

Figure 9 presents the more interesting component to compare the two meth-
ods, where the improvements by incorporating the spatial dependence seem
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clear. The temporal profiles, indeed, are turned on during the daily hours
of the working days more than during the weekend, with a peak around
6pm. The surfaces identify the areas around the center. This component
seems to speak about the traffic after the work activities. However scICA
component presents a more interesting surface, highlighting the big outflow
streets, while fastICA seems able to highlight only the big ring around the
center of the city.

Figure 8: Railway stations: the top panel presents surface (on the left) and
temporal profile (on the right) identified by scICA. The bottom panel presents
surface (on the left) and temporal profile (on the right) identified by fastICA.
Both temporal profiles present a peak around the 6pm of the working days.
The fasICA source (bottom panel on the left) shows a single pixel with a high
value on the Central railway station, the biggest railway station of Milan. The
scICA source (top panel on the left) highlights the Central railway station, but
also highlights Garibaldi railway station (in the central top part of the map),
another large railway station of the city.
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Figure 9: Traffic: the top panel presents surface (on the left) and temporal
profile (on the right) identified by scICA. The bottom panel presents surface
(on the left) and temporal profile (on the right) identified by fastICA. The
temporal profiles are on during the daily hours of the working days more than
the weekend, with a peak around 6pm. The surfaces identify the areas around the
center. This component seems to speak about the traffic after the work activities.
The scICA component presents a more interesting surface, highlighting the big
outflow streets of the city.

6 Conclusion

In this paper we presented a new algorithm, named scICA, to solve the Inde-
pendent Component Analysis problem, considering the unobserved sources
as spatial stochastic processes on a lattice. Therefore this algorithm is par-
ticularly suitable to face the spatial ICA approach and allows to take into
account the spatial dependence between the sources (and the mixtures).
Our method works in the spatial spectral domain and follows the idea of
the cICA method, where the Whittle likelihood is exploited in order to
estimate the unmixing matrix and the spectral densities. However, in the
spatial case, a parametric estimate of the spectral density might present
several drawbacks. Hence we considered a non-parametric approach for
the spectral density estimation. Through different simulated examples we
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clearly showed the improvements due to take into account the spatial de-
pendance, both with respect a benchmark algorithm like fastICA and the
cICA method that, differently, considers the dependence only in one di-
rection. Then we applied scICA algorithm to a real dataset regarding the
mobile-phone traffic in the metropolitan area of Milan (Italy) along time,
obtaining very interesting and meaningful results useful, for instance, for
urban planning.

Future works and improvements can be considered. In particular meth-
ods for the estimation of the spectral density on irregular lattices or for
nonstationary spatial processes (see, for example, [11, 12]) can be integrate
with the proposed algorithm in order to allow the analysis of more general
spatial datasets.
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