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Numerical treatment of boundary conditions to replace

lateral branches in haemodynamics ∗

Azzurra Porpora†, Paolo Zunino‡, Christian Vergara§, Marina Piccinelli¶

Abstract

In this paper, we discuss a technique for weakly enforcing flow rate
conditions in computational hemodynamics. In particular, we study the
effectiveness of cutting lateral branches from the computational domain
and replacing them with non perturbing boundary conditions, in order
to simplify the geometrical reconstruction and the numerical simulation.
All these features are investigated both in the case of a rigid and of a
compliant wall. Several numerical results are presented in order to discuss
the reliability of the proposed method.

1 Introduction and motivations

The prescription of suitable boundary conditions on artificial sections is a major
issue in computational haemodynamics [27]. An artificial section is a part of the
domain boundary which does not correspond to any physical wall, but it is just
introduced by the truncation of the computational domain, in order to separate
a vascular district selected for a computational fluid-dynamics (CFD) analysis
from the proximal and distal parts of the arterial tree [15].

In the last years, the development in the biomedical acquisition techniques,
such as phase contrast-magnetic resonance imaging (PC-MRI), allowed to obtain
satisfying pointwise information about the velocity field at a section. However,
these procedures are nowadays still very onerous both from computational (3-4
minutes are needed for each acquisition, which often has to be repeated), and
economic point of view.

For this reason, a great attention in computational haemodynamics is still
paid to averaged data, which can be more easily obtained, for example with a
Doppler-ultrasound technique, which unlike MRI is very fast and inexpensive.
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In particular, with this technique it is possible to obtain at each time the flow

rate

Q =

∫

Γ

u · n ds,

where u is the fluid velocity, Γ the section at hand, and n the unit outward
normal. When such data are prescribed as boundary conditions at the artificial
sections, they are usually referred as defective boundary conditions, because
some additional requirement is needed to close the system of governing equations.

Another situation where averaged data are needed is when one couples the
3D model with reduced models (one-dimensional, 1D, or zero-dimensional) to
take into account the complementary part of the arterial tree. In this case, due
to the reduced dimensionality of such models, just averaged quantities, such as
the flow rate, can be exchanged with the 3D model. We refer the interested
reader to [11] for a review of these topics.

Several strategies have been introduced for the management of defective flow
rate conditions. The first ad hoc treatment is found in [15], where the authors
proposed a suitable variational formulation, which however requires to build up
null-flow rate functional spaces, which are hardly discretized by means of the
finite element method. For this reason, other techniques have been developed
in the last decade. We cite the Lagrange multipliers approach [10, 30, 31], an
optimal control-based method [12], and the coupled momentum method [33, 34].
Recently, in [37] the authors proposed to manage the flow rate condition through
Nitsche’s method [23]. This method does not introduce additional unknowns
such as Lagrange multipliers and it does not need any iterative schemes to solve
the discrete problem as in the optimal control-based approach (for a numerical
comparison with the Lagrange multipliers technique, see [32]). When applied
to flow rate conditions, Nitsche’s technique weakly perturbs the flow profile
naturally determined by the continuity and momentum equations inside the
computational domain. However, a weak boundary control can lead to lack
of stability of the numerical scheme. On this basis, the analysis of [5, 8, 20]
is devoted to develop and compare numerical treatments of outflow boundary
conditions to avoid backflow effects that could destabilize the numerical scheme.
Such obstacle will be overridden by means of a suitable stabilization technique.

In this work, we consider Nitsche’s method for the prescription of defective
conditions applied to haemodynamics. More precisely, the main goal of this work
is to study its reliability when lateral branches are neglected in the geometry
reconstruction from biomedical images. We are interested in this situation for
many reasons.

Firstly, the geometry reconstruction and the related mesh formation to ob-
tain the patient-specific computational domain may be simplified if lateral branches
are not considered. Indeed, focusing just on the main vessel can in some cases
facilitate the reconstruction of the surface since often lateral branches are small
and difficult to recognize. For what concerns the mesh set up, avoiding small
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angles and vessels with small radius facilitates the formation of regular triangu-
lations.

Secondly, the presence of lateral branches poses some difficulties in the set up
of fluid-structure interaction (FSI) models. Artificial sections almost orthogonal
to the vessel centerline are usually kept fixed in FSI models. In the case of
vascular districts with several secondary branches, the previous approach could
introduce an artificial stiffening of the arterial district (see for example [5] for an
application to the ascending aorta, and [36] for the thoracic aorta). Furthermore,
the three-dimensional arterial wall geometry and mesh are obtained usually from
extrusion of the fluid domain, since the vessel walls are not easily detected from
biomedical images. Then, the presence of small bifurcation angles could lead to
a failure in the structure mesh generation.

Lastly, when considering a membrane model for the deformation of the ar-
terial walls, the main and Gaussian curvatures of the vessel surface are needed
in order to feed the governing equations, see [25]. Obviously, removing lateral
branches from the main vessel makes both curvatures almost constant, simpli-
fying the application of such FSI models.

As an example among many other cases, the approach that we propose could
be particularly effective to account for the presence of intercostal arteries branch-
ing from the descending thoracic aorta. Indeed, several studies have recently an-
alyzed the effect of such arteries on wall shear stresses, by means of the classical
approach where lateral branches are fully accounted in the geometrical model,
see [35, 18, 19]. We will show on a simple test case that the method proposed
here could provide comparable results with a simplified geometrical setting.

The outline of the work is as follows. In Sect. 2 we review the problem of
the geometry reconstruction of patient specific models in haemodynamics. In
Sect. 3 we describe Nitsche’s method for the prescription of defective conditions,
discussing the application to problems where lateral branches are neglected from
the geometrical model and we address some numerical experiments to validate
the method at hand. In Sect. 4 we discuss the reliability of the method when
a fluid-structure interaction model with a membrane structure is considered,
complementing the description of the scheme with extensive numerical results.
Finally, in Sect. 5 we address some conclusions of the work.

2 Set up of patient specific geometrical models in

haemodynamics

Image segmentation is the operation of partitioning an image into different spe-
cific objects. In the context of patient-specific computational fluid dynamics it
provides the surface identifying the interface between blood and vessel wall and
consequently the volumetric domain for the simulation itself. Crucial features
of the images, typically dimensionality, spatial resolution and, given the recent
technological advances in the radiological field, temporal resolution, determine
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the segmentation technique to be applied and the accuracy of the results. In
an ideal situation all the vessels in a specific vascular district should be recon-
structed and included in the model to properly represent the in-vivo condition.
In many real situations some collateral or side branches may be difficult to
model due to their small caliper compared to the image resolution or to subopti-
mal quality of the available images. In these cases the proposed approach could
be an important improvement to the simplistic solution of omitting unavailable
side branches.

The aortic arch is a challenging benchmark test for haemodynamics, because
of high speed flow and corresponding complex flow patterns as well as for the
study of non perturbing boundary conditions for inflow and outflow artificial
sections, see for instance [5, 8, 20, 21, 22, 36]. For this reason, we exploit a
patient specific aortic arch model to test the validity of the present method.
The package VMTK (http://www.vmtk.org) was used for the preparation of
the 3D model.

An MRI scansion of the aortic arch was obtained at Ospedale Borgo Trento

in Verona, Italy. The images were acquired with a 1.5 Tesla machine (Magne-
tom Simphony, Siemens Medical Systems, Erlangen, Germany) after injection
of contrast agent and saved in DICOM format for subsequent processing. The
following parameters were used: TE=1.6 ms, flip angle=65o, slice thickness=6
mm, field of view=400 mm, acquisition matrix =256× 256. The images were
segmented by means of the segmentation tool available within VMTK based on a
gradient-driven level-set approach [1]; the complete model of the aortic arch was
reconstructed from the aortic root to the first portion of the descending aorta
including the three main branches that originate from it: the brachiocephalic,
the left common carotid and the left subclavian arteries. We depict in Figure 1
(top, left) the complete model of the aortic arch.

To provide a model of the aortic arch where side branches have been removed,
two sets of the VMTK tools for editing 3D triangulated surfaces were employed:
first, the branches were manually clipped from the arch; secondly the resulting
holes on the arch surface were re-meshed by progressively and smoothly, i.e.
following the local surface curvature, fill them in with concentric triangulated
circular strips. The triangles that eventually capped the aortic arch surface
were coherently marked in order to keep trace of where the removed arteries
were originally positioned, see Figure 1 (right column) for a description of the
model after the removal of sovra-aortic branches.

In both cases, valve leaflets opening and closing mechanisms were not taken
into account, so that numerical simulations have been performed in the systolic
configuration. In particular, an analytical model of the aortic valve orifice was
defined as a circle of area 3.0 cm2 (see Figure 1, bottom, left). Moreover, the
leaflets were not drawn, since their modelization is outside of the goals of this
work.

The solid model was successively turned into a volumetric mesh of linear
tetrahedra in order for computational fluid-dynamics simulations to be carried
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Figure 1: Patient specific model of the aortic arch including the brachiocephalic,
the left common carotid and the left subclavian arteries (top, left), compared
with the analogous model without side branches (top, right). On the bottom,
a detail of the valve orifice at systole (bottom, left) and of the outflow sections
reconstructed on the surface of the aortic wall in correspondence of the removed
lateral branches (bottom, right).

5



out. We have 227858 tetrahedra for the mesh with lateral branches and 198292
tetrahedra for the mesh without lateral branches. These dimensions were reached
after successive mesh refinements, with the aim of obtaining a mesh-independent
numerical solution.

3 Outflow boundary conditions for lateral branches.

3.1 Steady Navier-Stokes model with rigid walls.

We assume that blood behaves as a homogeneous and Newtonian fluid [11],
and that the arterial walls could be considered as rigid boundaries. Reminding
that u denotes the blood flow velocity, p the pressure and µ the blood dynamic
viscosity, we define the strain rate and the Cauchy stress tensor as follows

D(u) :=
1

2

(
∇u + ∇′u

)
, T(u, p) := 2µD(u) − pI.

Let Ω be a domain representative of both full (Ωf ) and reduced (Ωr) flow
domains, see Figure 1. We assume that such domains feature N outflow sections
(distal artificial sections with respect to the heart) and a single inflow section
(proximal to the heart). We denote by Γi such artificial sections, where Γ0 cor-
responds to the inflow and Γk with k = 1, . . . , N represent the outflow sections.
We denote with Γ := ∪N

k=0
Γk the union of all artificial sections, then ∂Ω \ Γ

corresponds to the arterial wall.
As previously observed, one of the main issues in computational haemo-

dynamics consists in providing boundary conditions for the artificial sections
Γk that separate the considered vascular district Ω from the remaining part of
the arterial tree. In absence of accurate data on inflow and outflow velocity
profiles, boundary conditions that minimally perturb blood flow should be ap-
plied. In particular, mean flow rate or mean pressure conditions (or equivalently
mean normal stress) are often applied to computational haemodymamics studies
[15, 10, 30, 31, 12, 34, 37]. A more general model consists in enforcing a linear
combination of the two previous conditions [33, 5, 32]. Denoting by ρf the con-
stant fluid density, by Qk a reference flow rate, by Pk the mean stress and by
Rk a constant coefficient, such condition prescribes that

ρfRk

(∫

Γk

u · n ds − Qk

)
+
(∫

Γk

n′T(u, p)n ds + Pk

)
= 0. (1)

Previous conditions can be interpreted as mean resistance conditions, that pre-
scribe a constitutive law between the blood flow rate through an artificial section
Γk and the resistance to discharge, in the spirit of Poiseuille law for a laminar
flow in a straight tube. In this case, the parameter Rk assumes the role of
resistance to flow induced by the arterial tree distal to the artificial section.

We observe that boundary conditions (1) only constrain the mean value of
normal velocity components and stresses. Therefore, they are not sufficient to
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ensure that, combined with Navier-Stokes equations for conservation of mass
and momentum, the problem is uniquely solvable. For this reason such type
of conditions is often classified as being defective. To override this drawback,
additional conditions on stresses at the artificial sections must be prescribed.
More precisely, we require that the normal stress vector is constant along each
artificial section Γk, with unknown modulus along the normal direction to the
considered section, that is

T(u, p)n = ckn on Γk or equivalently

n′T(u, p)n = ck, n × T(u, p)n = 0 onΓk,

for suitable constants ck. Then, given Qk, Pk and Rk with k = 0, . . . , N , and
the forcing term f , our reference problem consists to find velocity and pressure
fields u, p and constants ck such that





−µ∇ ·
(
∇u + ∇′u

)
+ ρf

(
u · ∇)u + ∇p = f in Ω,

∇ · u = 0 in Ω,

u = 0 on ∂Ω \ Γ,

ρfRk

( ∫
Γk

u · n ds − Qk

)
+
( ∫

Γk
n′T(u, p)n ds + Pk

)
= 0 on Γk,

T(u, p)n = ckn on Γk.

(2)

Most often parameters Rk, Pk should be provided by suitable mathematical
models for the distal arterial tree, see for instance [26]. Although the problem
setting is kept general throughout this section, for the numerical investigation we
restrict to flow rate boundary conditions, which correspond to (1) with Rk → ∞.
In particular, we assume that the entire flow division is provided in our case.
More precisely, for each outflow section Γk with k = 1, . . . , N, the flow rate
Qk is known, while the inflow flow rate is provided by enforcement of mass
conservation constraint, i.e. Q0 = −

∑N
k=1 Qk.

Remark 1 For the sake of completeness, we notice that it is possible to gener-

alize defective boundary conditions to account for the angle of incidence between

the main channel and the outgoing vessels. This gives rise to the following con-

dition,

ρfRk

(∫

Γk

u ds − Qk

)
+
(∫

Γk

T(u, p)n ds + Pk

)
= 0,

where Qk ∈ R
3, P k ∈ R

3. By this way, the mean value of the tangential compo-

nents of the velocity and of the normal stress vector are also taken into account.

We refer to this condition as vector valued defective condition.

3.2 Numerical treatment of resistance boundary conditions.

Let Th be a family of admissible, shape regular and quasi-uniform triangulations
of Ω with characteristic mesh size h. We denote by Vh and Qh respectively, the
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selected finite element spaces for velocity and pressure approximation, which will
be specified later on. For the forthcoming method the choice of such spaces is
independent of the definition of boundary conditions on artificial sections. Then,
the main difficulty for the approximation of problem (2) in the framework of the
finite element method consists in embedding resistance boundary conditions into
the scheme. Our approach is based on the reinterpretation of (1) as an averaged
Robin-type (or mixed type) boundary condition, which consists in the following
rearrangement,

∫

Γk

n′T(u, p)n ds = Gk − µRk

∫

Γk

u · n ds (3)

with Rk :=
ρfRk

µ
, Gk := µRkQk − Pk.

We aim to develop a general approximation scheme capable to handle the entire
range of admissible Robin coefficients Rk, from the case of mean stress condi-
tions, corresponding to the limit Rk → 0, to the flow rate conditions obtained
when Rk → ∞. Furthermore, the selected approximation scheme should be ro-
bust, namely the stability of the scheme must not depend on Rk. In particular,
by multiplying the momentum equation by a test function v and apply Green’s
formula to the viscous term and to the pressure, and by exploiting the fact that
T(u, p)n is constant and aligned with the normal direction on each section Γk,
we obtain,

(
2µD(u),D(v)

)
Ω

+
(
ρf (u · ∇)u,v

)
Ω
−
(
p,∇ · v

)
Ω

−
(
T(u, p)n,v

)
∂Ω\Γ

−
∑

k

〈
n′T(u, p)n,v · n

〉
Γk

=
(
f ,v
)
Ω

(4)

where
(
·, ·
)
Ω

is the L2 inner product and 〈·, ·〉Σ denotes the following symmetric
positive semidefinite bilinear form [37],

〈u, v〉Σ :=
1

|Σ|

∫

Σ

u ds

∫

Σ

v ds.

We observe that equation (3) could now be naturally enforced into (4), by sub-
stitution into the last term on the left hand side, namely 〈n′T(u, p)n,v · n〉Γk

.
However, to improve the generality and the robustness of the resulting scheme,
we opt for a technique recently proposed in [17] to weakly enforce Robin condi-
tions for the Laplacian, then extended in [32, 37] to the defective-Stokes case.
This approach is based on suitable linear combinations of (3) and (4), and con-
trarily to the approach based on simple substitution, it has the advantage to
be applicable to the entire range of parameters Rk, including Rk → ∞ that
corresponds to the pure flow rate boundary conditions.

Given a penalty parameter γ to be specified later on, by following [32] we
obtain the governing equations for the desired finite element approximation of
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problem (2), which consists to find uh ∈ Vh and ph ∈ Qh such that





aR,h(uh;uh,vh) + bR,h(ph,vh) = FR,h(vh) ∀vh ∈ Vh

bR,h(qh,uh) + cR,h(ph, qh) = GR,h(qh) ∀qh ∈ Qh

(5)

where aR,h(·, ·), bR,h(·, ·), cR,h(·, ·) are defined as follows,

aR,h(w;u,v) :=
(
2µD(u),D(v)

)
Ω

+
(
ρf (w · ∇)u,v

)
Ω

+
∑

k

µRk

1 + γ Rk h
〈u · n,v · n〉Γk

−
∑

k

γ Rk h

1 + γ Rk h

[〈
2µn′D(u)n,v · n

〉
Γk

+
〈
2µn′D(v)n,u · n

〉
Γk

]

−
∑

k

γ

1 + γ Rk h

h

µ

〈
2µn′D(u)n, 2µn′D(v)n

〉
Γk

bR,h(q,v) := −
(
p,∇ · v

)
Ω

+
∑

k

γ Rk h

1 + γ Rk h
〈q,v · n〉Γk

+
∑

k

γ

1 + γ Rk h

h

µ

〈
q, 2µn′D(v)n

〉
Γk

cR,h(p, q) := −
∑

k

γ

1 + γ Rk h

h

µ
〈p, q〉Γk

where, to simplify the description of the scheme, we have assumed that the
finite element space conforms with no-slip boundary conditions on ∂Ω \ Γ, i.e.
Vh ∈ H1

∂Ω\Γ(Ω) so that
(
T(u, p)n,v

)
∂Ω\Γ

= 0. However, in the forthcoming

numerical experiments we will apply Nitsche’s type approximation of no-slip
conditions at the interface with rigid walls. The right hand side terms in (5) are,

FR,h(v) :=
(
f ,v
)
Ω
−
∑

k

1

1 + γRkh

1

|Γk|
〈Gk,v · n〉Γk

−
∑

k

γ

1 + γRkh

h

µ

1

|Γk|

〈
Gk, 2µn′D(v)n

〉
Γk

,

GR,h(q) :=
∑

k

γ

1 + γRkh

h

µ

1

|Γk|
〈Gk, q〉Γk

.

In previous definitions of bilinear and linear forms, the suffix R stands for the
collection of values [R0, . . . ,RN ], highlighting the dependence of the forms on
the value of the resistances.

It has been proved in [32] that the linearized version of problem (5) (that is
the Oseen problem) is well posed and robust provided that the stability param-
eter γ is smaller than a given threshold.

3.3 Stabilization technique for inflow sections and flow reversal.

In the seminal work [15] Heywood, Rannacher and Turek observed that, in
contrast to Dirichlet boundary conditions, the application of mean pressure or
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mean flow rate conditions results in a difficulty in estimating the energy balance
across artificial sections. A similar issue consists on the simulation divergence
due to flow reversal at outflow boundaries as addressed in [5] and extensively
analyzed in [8], where different stabilization approaches are compared.

In our view, the theory developed in [15] already sheds light on an efficient
and sound technique to override this drawback. In particular, owing to the
identity 1

2
∇|u|2 = u(∇u)T , the convection term

(
ρf (u·∇)u,v

)
Ω

can be replaced
with its symmetric form

(
ρf (u · ∇)u,v

)
Ω
−
(
ρf (v · ∇)u,u

)
Ω

+
1

2

(
ρf∇|u|2,v

)
Ω
, (6)

where the kinetic energy 1
2
ρf |u|

2 can be combined with the hydrostatic pressure
to give the total pressure P := p + 1

2
ρf |u|

2. Then, reformulating the resistance
conditions in terms of total pressure and resorting to the symmetrization of the
convective term could restore the control on kinetic energy balance. However,
it has been observed that such technique provides unsatisfactory results of ar-
tificial outflow boundaries, see for instance Figure 8 in [15], which is the most
significant case for us. In alternative, we consider the introduction of a stabiliza-
tion term to restore control on the kinetic energy at inflow and outflow sections.
Such technique, originally proposed in [5], can be reinterpreted in the present
framework. Setting v = u into (6) and applying integration by parts we easily
conclude that (

ρf (u · ∇)u,u
)
Ω

=
ρf

2

∫

∂Ω

u · n|u|2 ds.

It is straightforward to see that neither resistance nor flow rate conditions allow
to control such residual boundary terms. This task is achieved by the introduc-
tion into the momentum bilinear form aR,h(w;u,v) of the following stabilization
term

sk(w;u,v) :=
ρf

2

∫

Γk

(|w · n| − w · n)u · v ds, (7)

complemented by the right hand side sk(w;Uk,v), being Uk a given velocity pro-
file. In particular, for outflow sections we consider Uk = 0 with k = 1, 2, 3, . . .,
while for the inflow section Γ0 we propose to apply a flat velocity profile U0 =
(Q0/|Γ0|)n.

We immediately verify that, if no-slip conditions on the arterial wall are
embedded into the solution search space, the stabilization term restores the
positivity of the convective terms at the boundaries,

(
ρf (u · ∇)u,u

)
Ω

+
∑

k

sk(u;u,u) =
ρf

2

∫

Γ

|u · n||u|2 ds ≥ 0.

Unfortunately, the introduction of this new term violates the strong consistency
of the scheme (5) with the governing equations (2). Then, a natural question to
address concerns the characterization of the new governing equations after the
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introduction of the stabilization term, with special attention to the boundary
conditions.

In particular, the term sk(w;u−Uk,v) can be interpreted in multiple ways.
On the one hand, it can be seen as a penalization term corresponding to the
weak enforcement of the pointwise conditions u = Uk on Γk. In this case, the
penalty parameter directly depends on the negative part in the inflow / outflow
convective velocity, namely 1

2
(|w · n| − w · n). By this way, the stabilization is

active only for the part of the boundary where the flow is entering the domain.
On the other hand, as previously remarked in [5, 8], the introduction of

sk(w;u,v) can be compared with the aforementioned application of total pres-
sure to resistance boundary conditions. Indeed, the stabilization technique cor-
responds to replacing the constraint T(u, p)n = ckn with T(u, p)n + 1

2
(|u · n| −

u · n)u = ckn. Then, equation (3) becomes
∫

Γk

T(u, p)n ds = Gk−µRk

(∫

Γk

u · n

)
n ds−

1

2

∫

Γk

(|u·n|−u·n)u ds on Γk. (8)

Then, replacing (8) into the weak form of the Navier-Stokes momentum equa-
tion, the additional term

∑
k

1
2

(
(|u · n| − u · n)u,v

)
Γk

appears, which is ex-

actly
∑

k sk(u;u,v). This shows that the proposed stabilization technique cor-
responds to modify the traction force at the artificial sections where flow reversal
takes place.

3.4 Numerical solver

Problem (5) does not yet correspond to an uniquely solvable discrete linear
problem and several steps are necessary to cast it into such a framework.

As previously remarked, formulation (5) does not set any specific constraints
for the definition of the finite element spaces Vh, Qh. To obtain an easily imple-
mentable scheme, we opt for the equal order affine approximation for velocity
and pressure fields. It is well known that such choice violates the inf-sup stabil-
ity condition for mixed problems such as (5). To restore stability of the discrete
problem we resort to the so called Brezzi-Pitkaranta stabilized formulation (we
refer the interested reader to [29] and references therein), which is based on the
relaxation of the incompressibility constraint by means of the introduction of
the following additional term

dh(ph, qh) :=
γph

2

µ

∫

Ω

∇ph · ∇qh

into the continuity equation of (5), which becomes

bR,h(qh,uh) + cstab
R,h(ph, qh) = GR,h(qh), ∀qh ∈ Qh,

where we have set cstab
R,h(·, ·) := cR,h(·, ·) + dh(·, ·). The parameter γp is chosen

to guarantee stability and appropriate conditioning of the discrete system of
equations.
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Another source of instability comes from the fact that the momentum equa-
tion for blood flow in large or medium sized arteries is usually convection dom-
inated. To treat the lack of stability of the finite element method in these
conditions, we apply the classical streamline upwind method which consist to
modify the bilinear form aR,h(·, ·) as follows,

astab
R,h(w;u,v) := aR,h(w;u,v) +

γvρfh2

µ

∫

Ω

((w · ∇)u) · ((w · ∇)v) ,

where γv is a parameter to be suitably chosen.
We finally observe that for the forthcoming numerical investigations we will

consider the particular case obtained by taking Rk → ∞, corresponding to
mean flow rate conditions on each artificial section Γk. Owing to the generality
and the robustness of the method, the limit cases Rk → 0 or Rk → ∞ can
be straightforwardly obtained by restriction of the bilinear forms, indeed all
the scaling expressions depending on Rk remain bounded for any value of the
parameter. For the sake of clarity, we report here the problem with flow rate
conditions, which takes the form (we omit the suffix R to identify this case, that
is Rk → ∞, k = 0, . . . , N)






astab
h (uh;uh,vh) + bh(ph,vh) = Fh(vh) ∀vh ∈ Vh,

bh(qh,uh) + cstab
h (ph, qh) = Gh(qh) ∀qh ∈ Qh,

(9)

with

astab
h (w;u,v) :=

(
2µD(u),D(v)

)
Ω

+
(
ρf (w · ∇)u,v

)
Ω

+
γvρf h2

µ ((w · ∇)u, (w · ∇)v)Ω

+
∑

k
µ

γ h 〈u · n,v · n〉Γk
−
∑

k

[
〈2µn′D(u)n,v · n〉Γk

+ 〈2µn′D(v)n,u · n〉Γk

]
,

bh(q,v) := −
(
p,∇ · v

)
Ω

+
∑

k 〈q,v · n〉Γk
,

cstab
h (p, q) :=

γph2

µ (∇ph,∇qh)Ω ,

Fh(v) :=
(
f ,v
)
Ω
− 〈ρfQk,v · n〉

Γk
− 〈ρfQk, 2µn′D(v)n〉

Γk
,

Gh(q) := 〈ρfQk, q〉Γk
.

(10)
We observe that the momentum equation of (9) is nonlinear because of the

convective term. For simplicity, we apply dumped Picard (or fixed point) itera-
tions to linearize it. More precisely, we replace (9) with the following sequence
of problems. Given u0

h, for k = 1, 2, . . . aim to find uk
h ∈ Vh and pk

h ∈ Qh such
that





σ
(
uk

h − uk−1
h ,vh

)
Ω

+ astab
h (uk−1

h ;uk
h,vh) + bh(pk

h,vh) = Fh(vh) ∀vh ∈ Vh,

bh(qh,uk
h) + cstab

h (pk
h, qh) = Gh(qh) ∀qh ∈ Qh,
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where σ > 0 is the damping parameter to be suitably chosen for each test case.
The corresponding algebraic problem is solved by means of a pressure ma-

trix method, which consists in the elimination of the velocity vector unknowns
and the solution of the pressure Schur complement matrix. Since such sys-
tem is usually ill conditioned (see for instance [29]) especially when the velocity
mass matrix appears in the discrete momentum equation, the Cahouet-Chabard
preconditioner has been applied to speed up GMRES iterations. We have ap-
plied such solver, implemented in the finite element library Freefem++ (see
http://www.freefem.org/ff++/) for the approximation of the test cases ad-
dressed in the forthcoming sections.

3.5 Numerical results

The aim of this section is to validate (9) for the approximation of outflow con-
ditions at the intersection with lateral branches. We consider two test cases,
an idealized model addressed in [18] and a realistic aortic arch. Since we focus
on haemodynamics applications, pressure, flow profiles and wall shear stresses
(WSS) will be analyzed.

In all the numerical tests of this section and of Section 4 we have used the fol-
lowing values for parameters: γ = 10−4, ρf = 1.0 g/cm3, µ = 0.035 Poise, Rk =
Rk = ∞, ∀k, γp = 5 × 10−4, γv = 5 × 10−2.

3.5.1 Application to an idealized model of lateral branch

The present test case has been proposed in [18] to study the effect of small lateral
side branches, such as intercostal arteries, on the shear stress patterns at the
wall of large arteries, such as the descending thoracic aorta.

Following [18] we consider the domain depicted in Figure 2 (top), where the
main box measures 1 × 26 × 0.5 cm, being (x, y, z) the lateral, longitudinal and
vertical directions, respectively, and the side branch is modeled as a cylindrical
segment 0.1 cm wide. The visualized computational mesh consists on 31778
tetrahedral elements.

The bulk flow is oriented form left to right, driven by a steady semi-parabolic
inflow profile ux = 0, uy(z) = 3

2
U(1 − (z/0.5)2), uz = 0. The upper surface of

the main channel corresponds to a no-slip boundary, where the velocity is fixed
to zero, while on the lateral sides of the box we set homogeneous Neumann
conditions. The inflow flow rate Q0 is computed according to the inflow profile,
while the lateral branch flow rate is set to Q1 = 0.0079 Q0. The flow rate at the
main outflow section on the right hand side of the box, denoted with Q2, is set
to satisfy mass conservation. The profile modulus U is chosen to make sure that
the flow Reynolds number is equal to 250, which corresponds to test case (a) of
Figure 2 in [18], in order to allow for a visual comparison with present results.

As depicted in Figure 2 (middle row) we consider two configurations. A full
model where the lateral branch is accounted (on the left) and a simplified model
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where the flow rate Q1 is weakly enforced at the intersection of the lateral branch
with the main branch (on the right). As a preliminary validation, we observe
the flow profiles at the bifurcation of the side branch are rather similar.

A more significant validation is achieved in Figure 2 (bottom row) by com-
paring the WSS patterns on the surface of the main vessel, in the neighborhood
of the side branch. In particular, we report here the modulus of the WSS vector,
normalized with respect to the WSS at the inflow of the main channel. Again,
the agreement between the full model and the incomplete one is satisfactory. We
observe that the WSS pattern is also significantly similar to the one reported in
Figure 2(a) of [18], for the full geometrical model and equivalent flow conditions.

3.5.2 Application to an aortic arch model

In this test case we consider the full aortic arch model described in Section 2,
together with the variant where the ascending branches have been omitted.

For simplicity, we consider steady flow conditions, where the inflow rate
Q0 is set to 80 cm3 s−1, corresponding to the mean value over a heart beat.
Concerning the outflow, the flow division between the brachiocephalic, left com-
mon carotid and left subclavian arteries is kept constant to the values Q1 =
5%, Q2 = 5%, Q3 = 7% of the inflow Q0, respectively, which corresponds to
realistic haemodynamic conditions. In the full model such flow rates are weakly
enforced on the distal section of each branch, while for the reduced model equiv-
alent boundary conditions are set on the outflow sections Γk, with k = 1, 2, 3,
laying on the reconstructed surface of the main branch, as depicted in Figure
1 (bottom, right). According to these conditions, the inflow and outflow ve-
locity profiles were not a priori enforced, but determined by the flow governing
equations to satisfy the constraints of given flow rate and constant stresses.

In Figure 3 we compare the pressure fields (top), velocity profiles (middle)
and WSS distributions (bottom) for the full and the incomplete model (left and
right columns respectively). Again, the results for the two models remarkably
agree. This confirms the effectiveness of the defective flow rate conditions to
correctly capture the outflow profile, even though the geometrical features of
the lateral branches are omitted.

4 Fluid structure interaction with outflow boundary

conditions on lateral branches

4.1 Preliminaries

We notice that now the domain moves in time, so that we distinguish between the
current configuration Ωt, which changes in time, and the reference configuration
Ω0, which corresponds to the initial fixed geometry. When the fluid domain
is moving, a classical Eulerian approach is not suitable for writing the fluid
equations since one would like to follow the movement of the fluid-structure

14



Figure 2: Details of the idealized model of lateral branch (as in [18]). Geometry
(top), lateral outflow velocity profiles (middle) and corresponding WSS (bottom)
are depicted. For the last two rows, we report the case where the lateral side
branch is accounted (left) as well as the one without it (right).
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Figure 3: From top to bottom we depict the pressure fields, velocity profiles
and WSS distributions for the full and the incomplete aortic arch models, cor-
responding to left and right columns respectively.
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(FS) interface. On the other hand, a pure Lagrangian framework would deform
the fluid domain also at the artificial sections. Therefore, the fluid equations are
written in a hybrid configuration, namely the Arbitrary Lagrangian-Eulerian

(ALE) framework (see e.g. [16, 7]). To this aim we consider the ALE map A.
A classical choice in haemodynamic applications to define the ALE map is to
consider a harmonic extension of the structure displacement at the FS interface
Σt := ∂Ωt \ Γt in the reference domain (see, e.g., [6]), and to fix the artificial
section (at least) in the normal direction. For any function v living in the
current configuration, we denote by v̂ := v ◦ A its counterpart in the reference
configuration.

As pointed out previously, with current imaging devices displacement is
mainly retrieved on the interface between fluid and structure, so that extru-
sion of fluid mesh is needed to obtain structure meshes. However, the thickness
of the vessel is not acquired by these devices, so that a priori assumptions on it
are mandatory. Furthermore, the vascular wall is usually thinner than the lu-
men. For these reasons, in order to reduce the computational time, we consider
here the vascular wall as a thin membrane. In particular, the membrane law
considered in this work is the simple interial-algebraic law [25]

ρshs
∂2η̂

∂t2
+ β̂hsη̂ = f̂s in Σ0, (11)

where ρs is the structure density, β = E
1−ν2 β∗ with β∗ = (4ρ2

1 − 2(1 − ν)ρ2),
where ρ1 and ρ2 are the mean and the Gaussian curvature, hs is the thickness
of the membrane, E the Young modulus and ν the Poisson ratio. Here, η is the
structure displacement in the normal direction with respect to Σ0, and fs the
external forces. We observe that we have written the structure equation as usual
in the Lagrangian framework.

As it emerges from the membrane law (11), the knowledge of the curvature
of the FS interface is mandatory in order to write the structure problem, and
consequently also the FS coupled problem, as it will be clear from the next
subsection. The cut of lateral branches provides a computational domain with
almost constant curvatures. As an example, in Figure 4 we depict the value
of β (which depends on curvatures) for the computational domains considered
in this work. We observe that by cutting the lateral branches the value of β
is almost constant, while viceversa in the original domain it features values in
the range [0, 100]. Since the case with uniform parameters leads to a better
conditioned system, the case without branches is preferable for the numerical
simulations. This provides another motivation for cutting lateral branches in
the computational setting of cardiovascular applications.

4.2 Coupled formulation

The numerical solution of the FSI problem features two major difficulties: the
treatment of the interface position, which is an unknown of the problem, and the
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Figure 4: Magnitude of β∗ = (4ρ2
1 − 2(1 − ν)ρ2), ρ1, ρ2 being the mean and

Gaussian curvature respectively, in the case with (left) and without (right) lateral
branches.

prescription of the continuity interface conditions, namely continuity of velocities
and normal stresses, which reads as follows [11]

{
u · n = η on Σt,
T(u, p)n · n = −fs on Σt.

(12)

In the tangential direction, there is no coupling, so that we have to prescribe
further conditions, namely either u × n = 0 or Tn × n = 0.

For the prescription of (12) two strategies have been proposed and widely
studied in the literature, namely the partitioned and the monolithic approaches.
In the first case, one solves the fluid and structure subproblems in an iterative
framework, until fulfillment of the interface continuity conditions (see, e.g., [28,
6, 2]. Here, however, we consider the second strategy, based on building the
whole FSI matrix, and then by solving it with an efficient method [14, 4, 13].
In this way the interface continuity conditions are automatically satisfied. The
drawback of this approach is the non-modularity, in the sense that an ad hoc

code has to be implemented, without any possibility to exploit existing fluid and
structure solvers. However, here we consider the monolithic strategy introduced
in [25] in the case of a membrane structure, which requires just the solution of
the fluid subproblem. In particular, the structure subproblem is “embedded”
into the fluid one leading to a Robin boundary condition for the fluid at the FS
interface.

Concerning the treatment of the interface position, we consider here an ex-

plicit treatment as proposed in [9, 3], based on a suitable extrapolation of the
interface position from previous time steps. Recently, in [24] it has been high-
lighted the effectiveness and accuracy of this treatment for haemodynamics ap-
plications.

Moreover, in order to obtain physical solutions, one has to deal with another
difficulty, namely the formation of spurious pressure reflections at the outlets,
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where non ad-hoc boundary conditions are prescribed. To this aim, we consider
the following absorbing boundary condition at a generic outlet, introduced in
[25] and obtained by a 1D reduced model,

T(u, p)n · n = β

((
Qout

4χAout
+ (A0

out)
1/4

)2

− (A0
out)

1/2

)
,

where χ :=
√

β
2ρf

and Qout(t) and Aout(t) (with A0
out = Aout(t = 0)) are the

flow rate and the area at the outlet at hand. This condition gives an implicit
relation among the normal stress, the flow rate and the area at the outlet. In the
numerical simulations, we will use an explicit expression of flow rate and area,
by using a suitable extrapolation of previous time steps, relying to a Neumann
boundary condition.

In view of writing the time discrete problem, given a quantity z, we denote
with zn its approximation at time tn = t0 + n ∆t, tn ∈ [t0, T ], where ∆t is the
time discretization parameter. Moreover, we indicate with wh the finite element
approximation of the fluid domain velocity. Then, after time discretization (im-
plicit Euler for the fluid with a semi-implicit treatment of the convective term,
and Backward Differentiation Formulae (BDF) of first order for the structure),
the FSI problem with flow rate conditions on the artificial sections reads at each
time tn+1 as follows [25]

1. Given un
h, ηn

h , ηn−1
h , solve the fluid problem that is to find un

h, pn
h such that

for all vh ∈ Vh and qh ∈ Qh the following equations hold true






1
∆t(u

n+1
h − un

h,vh)Ωn + astab,n
h (un

h − wn
h ;un+1

h ,vh) +

∫

Σn

(
βhs∆t +

ρshs

∆t

)
un+1

h · vh ds

+bn
h(pn+1

h ,vh)= Fn
h (vh) +

∫

Σn

(
−βhsη

n
h +

ρshs

∆t2
(
ηn

h − ηn−1
h

))
n · vh ds

+

∫

Γn
out

β

((
Qn

out

4χAn
out

+ (A0
out)

1/4

)2

− (A0
out)

1/2

)
n · vh ds,

bn
h(qh,un+1

h ) + cstab,n
h (pn+1

h , qh) = Gn
h(qh).

Superscript n over bilinear forms astab
h (·, ·), bh(·, ·) and cstab

h (·, ·) and over
functionals Fh(·) and Gh(·) denotes that such quantities are evaluated over
Ωn. The number of artificial sections where a flow rate is imposed are
N , namely Γk, k = 0, . . . , N − 1, and we have denoted the main outflow
section with Γout. The third term at the left hand side and the second
term at the right hand side of the momentum equation are related to the
monolithic FSI formulation and represent a Robin boundary condition at
the FS interface for the fluid due to the coupling with the membrane [25].
The third term in the right hand side of the momentum equation is due
to the absorbing Neumann boundary condition at the outlet Γout.
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2. Compute the structure displacement

ηn+1
h = ηn

h + ∆tun+1
h · n;

3. Compute the fluid domain displacement by solving for all ẑ ∈ Zh ∈ H1(Ω0)
the following harmonic extension problem

(
∇ŵn+1

h ,∇ẑ
)
Ω0 +

1

γ h

(
ŵn+1

h , ẑ
)
Σ0 −

(
∇ŵn+1

h n, ẑ
)
Σ0 −

(
∇ẑ n, ŵn+1

h

)
Σ0

+
1

γ h

(
ŵn+1

h · n, ẑ · n
)
Γ0

0
∪Γ0

out
−
(
n′∇ŵn+1

h n, ẑ · n
)
Γ0

0
∪Γ0

out
−
(
n′∇ẑ n, ŵn+1

h · n
)
Γ0

0
∪Γ0

out

=
1

γ h

(
ûn+1

h , ẑ
)
Σ0 −

(
∇ẑ n, ûn+1

h

)
Σ0

and then update the fluid domain by

xn+1 = xn + ∆t ŵn+1
h ,

where x are the coordinates of the fluid domain with respect to the refer-
ence configuration. We notice Nitsche’s treatment of the Dirichlet bound-
ary condition at the FS interface for the harmonic extension. This choice
allows more versatility in imposing different kind of boundary condition
for the tangential and the normal components, as usually happens in this
problem. In particular, we observe that we fixed the inlet Γ0 and the
outlet Γout in the normal direction by imposing a homogeneous Dirichlet
condition, whilst we let them free to move in the tangential direction by
imposing a homogeneous Neumann condition. Finally, we observe that at
sections Γk, k = 1, . . . , N − 1, we have imposed homogeneous Neumann
conditions for all the components.

We observe that due to the explicit treatment of the interface position, the
solution of the FSI problem involves just one fluid problem per time step. There-
fore, this method is very interesting from the point of view of the computational
time.

4.3 Numerical results

We have considered the computational domain without lateral branches ad-
dressed in the rigid case (see Figure 1, right column). We have used the same
parameters and flow division of the rigid case as described in Section 3.5, as
well as the same solver and code as described in Section 3.4, apart from the
convective term which has been treated here explicitly. Moreover, we have set
∆t = 2 · 10−3 s, ρs = 1.1 g/cm3, and we have imposed the physiological flow
rate depicted in Figure 5. In favor to the stability of the numerical scheme, the
values of the flow rate have been set to four time less than physiological ones.
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Figure 5: Flow rate prescribed at the inlet.

Therefore, the numerical results obtained by these simulations are not physi-
ological and have to be thought as an intermediate result in view of realistic
patient-specific simulations.

We have considered two sets of simulations: in the first case we have added
the term (7) to the bilinear form astab

h (·, ·) (10)1, whilst in the second case we
have dropped it. In this way, we could evaluate the effect of (7) on the solution
in terms of stabilization of flow reversals.

In Figure 6 we report the vectors of the velocity field for both cases (with
and without (7)) at three different times. In particular, we consider early, peak
and late systole. In the same picture the background color refers to the pres-
sure distribution. First of all we notice the effectiveness of Nitsche’s method
for the prescription of the flow rate at the inlet. We observe indeed that the
peak velocity at this section is moved towards the inner wall, as expected for the
aortic arch. Moreover, we observe that in both cases the cut of lateral branches
allows to recover a satisfying solution also in the case of a deformable vessel. In
particular, the ALE map is stable and displacements of the artificial sections ac-
counting for lateral branches are coherent to the ones of the neighboring arterial
wall. This suggests that the choice of prescribing homogeneous Neumann con-
ditions for the harmonic extension at these sections is valid in terms of stability
and accuracy.

Finally, we remark the effectiveness of the stabilization induced by (7). At
peak systole flow reversal does not occur at outflow sections. In this case (Figure
6, middle row) the stabilization technique does not perturb the flow. Conversely,
early and late systole are characterized by transient flow patterns. During early
systole flow acceleration takes place. In this case it seems unlikely to develop flow
reversal, which however appears on artificial sections corresponding to lateral
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Figure 6: Velocity vectors on inlet and outlet sections and pressure distribution
in the background for the case with (left) and without (right) stabilization term
(7) - Time t = 0.05 s (top), t = 0.11 s (middle), and t = 0.22 s (bottom).
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branches (Figure 6, top row). We believe that this is a spurious flow mode due
to lack of pointwise control at these outflow sections. The stabilization technique
is able to filter such flow conditions, restoring outward velocity field at lateral
sections. The behavior at late systole is different (Figure 6, bottom row). In
this case, highly decelerating flow takes place, which promotes physiological
flow reversal. Indeed, it occurs at all outflow sections and we notice that the
stabilization technique does not completely remove such effects, but reduces their
magnitude in order to ensure stability of the discrete scheme.

5 Conclusions

In this work we have considered the problem of the prescription of average data
at artificial sections in computational haemodynamics, when lateral branches
are cut from the original computational domain. The interest in cutting these
branches is multiple: for example, we mention a possible simplification for the
geometry reconstruction and mesh generation, as well as for the treatment of
the FSI problem, in particular when a membrane structure is considered (as
usually done in haemodynamics). In particular, in this work we have studied
the effectiveness of Nitsche’s method to prescribe flow rate conditions in this
context.

Firstly, we have compared the results obtained with and without lateral
branches by performing steady Navier-Stokes simulation both in an idealized
and in a real computational domain. In the first case, the numerical results
highlighted the good accuracy of the solution obtained without lateral branches
with respect to the full model also in proximity of the artificial sections. In the
second case, we considered a real aortic arch as computational domain and again
the results showed a good agreement among the solutions obtained in the two
cases.

Secondly, we have studied the effectiveness of Nitsche’s method for the pre-
scription of the flow rate when lateral branches are cut, in the context of the
FSI problem when a membrane structure is considered. Here, first of all we
have noticed the significant simplification in the model due to the cut of lat-
eral branches, since the curvature of the simplified domain is almost constant.
Moreover, we have observed the effectiveness of Nitsche’s method which allows
to recover physiological velocity profiles without choosing them a priori. Finally,
we have compared the case with and without a stabilization at the artificial sec-
tions to avoid flow reversal. These results highlighted the effectiveness of this
technique, which guarantees a stable distal flow profile without affecting the
solution far from the artificial sections.
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