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Abstract
Response-adaptive designs are increasingly being implemented

in clinical trials, particularly early phase trials, and they have in-
creasingly stimulated the work of researchers. This paper reviews
a particular class of response-adaptive designs, which have a differ-
ent property from the most adaptive designs in literature. These
are response-adaptive designs targeting asymptotically the superior
response, that is, treating with the superior treatment with prob-
ability converging to one. The model underlying such designs is a
randomly reinforced urn. In the context of clinical trials, this prop-
erty is particularly attractive from an ethical point of view. This
overview starts from the early paper of [8] until the recent work by
[9].
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1 Introduction

In recent years, there has been an increasing interest, in the context of clin-
ical trials research, in response-adaptive designs. This is because response-
adaptive designs are sequential procedures that can skew, along the experi-
ment, the allocation probabilities of statistical units on the base of previous
allocations and responses. In a clinical trial to compare two or more treat-
ments, the experimenter faces two simultaneous goals: collecting evidence
to determine the superior treatment, and skewing the allocations toward
the superior treatment in order to reduce the proportion of patients that
receive the worst treatment. The first is an inferential goal and concerns fu-
ture patients’ interest; the second is an ethical responsibility and concerns
the current study patients’ interest.

An informed review about the theory of response-adaptive designs can
be found in [23] and in [12]. A particular role in response-adaptive designs
has been played by urn models. As addressed in the review work of [22],
urn models are particularly attractive for clinical experiments because they
guarantee the randomization of allocations.

In this review paper, we focus on a particular urn model that we
call the Randomly Reinforced Urn (RRU). The RRU for binary exper-
iments (success/failure) was introduced by [8] and [14] as a modification of
the randomized-play-the-winner scheme, and applied to select an optimal
dosage in [7]; further, it has been extended to experiments with general
responses by [18]. It is important to know that the RRU model differen-
tiates from the generalized Polya urn (GPU) described in [22] and in the
references therein, because its reinforcement matrix is not irreducible. This
gives the RRU -designs different properties from the other urn designs. In
a different context, the RRU has an interesting potential for applications
since it can be used to describe a general model for reinforcement learning
([10] and [4]).

Most of response-adaptive designs presented in literature allocate pa-
tients targeting asymptotically a certain proportion ρ ∈ (0, 1), which may
be ad hoc or may be determined by some optimality criteria that are usu-
ally a function of the unknown parameters of the outcomes and has to be
estimated. The RRU -designs are different because they have the ethically
optimal property of assigning patients to the best treatment with a pro-
portion that converges almost surely to 1, while the proportion of patients
allocated to the inferior treatment converges to 0.

In this work, we provide an overview of response-adaptive designs gen-
erated by a RRU , with particular attention to recent developments and
open problems. We focus on the case of K = 2 treatments, since the
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results can be extended straightforwardly to more then two treatments;
further comments about the K > 2 case are postponed in Section 7. Hope-
fully, this review will stimulate a further developments in this important
area of research.

The paper is organized as follows: after the presentation of the model,
we motivate its application in clinical trials. Then, we review the asymp-
totic results and we concentrate on problems and results concerning in-
ference. Finally, we present simulation studies and some concluding com-
ments.

2 Model and designs

An experiment is conducted to compare two treatments, say B and W .
Patients enter the experiment sequentially and are allocated randomly to
a treatment according to a RRU -design, whose model can be described in
the following way.

Let {(YB(n), YW (n)) : n ≥ 1} be a sequence of independent and identi-
cally distributed random response vectors with marginal distributions LB
and LW , discrete or continuous on R. Only one response, YB(n) or YW (n),
will be observed for each subject n depending on their treatment assign-
ment. Consider an urn containing initially b black balls and w white balls,
where b and w are two strictly positive real numbers. With the arrival of
the first patient (n = 1), a ball is drawn at random from the urn and its
color is observed: we define a random variable δ1 that we assume to be
independent of the potential response vector (YB(i), YW (i)) for every i ≥ 1
such that δ1 = 1 if the extracted ball is black; while δ1 = 0 if the ex-
tracted ball is white. So δ1 is a Bernoulli random variable with parameter
Z0 = b/(b + w). After the ball is extracted, if it is black, it is replaced
in the urn together with U(YB(1)) black balls. Otherwise, if it is white,
is replaced in the urn together with U(YW (1)) white balls, where U is an
arbitrary measurable function such that U(YB(1)) and U(YW (1)) have dis-
tributions on a nonnegative and bounded real set. In typical applications,
U will be a monotone function. (Note that U can be the identity func-
tion when the distributions LB and LW have nonnegative and bounded
support).

This process is then iterated for each new patient n + 1, n ≥ 1: a ball
is extracted and δn+1 indicates its color: δn+1 = 1 if the ball extracted is
black, while δn+1 = 0 if the ball extracted is white. We always assume
that δn+1 is independent of the potential response vector (YB(i), YW (i)) for
every i ≥ n+1. After the ball is extracted, it is replaced in the urn together
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with
δn+1U(YB(n+ 1)) + (1− δn+1)U(YW (n+ 1))

balls of the same color. So, given the σ-algebra

Fn = σ (δ1, δ1YB(1) + (1− δ1)YW (1), . . . , δn, δnYB(n) + (1− δn)YW (n)) ,

δn+1 is conditionally Bernoulli distributed with parameter

Zn =
Bn

Bn +Wn

,

where {
Bn = b+

∑n
i=1 δiU(YB(i))

Wn = w +
∑n

i=1(1− δi)U(YW (i)).

The RRU procedure drives the allocations {δn}: when δn is 1, allocate
the n-th patient to the first treatment, say treatment B, and let the ran-
dom variable YB(n) be the potential response of n-th patient to treatment
B; when δn is 0, allocate the n-th patient to the second treatment, say
treatment W , and let YW (n) be the potential response of n-th patient to
treatment W . The one response for the n-th patient that is actually ob-
served can be written as Y (n) = δnYB(n) + (1− δn)YW (n).

Thus the RRU generates the following processes: the sequence {δn :
n ≥ 1} of conditionally Bernoulli random variables, corresponding to the
treatment allocations, and the sequence {Zn : n ≥ 0} of random variables
in [0, 1] representing the proportion of black balls present in the urn at
every stage. Now the total number of patients that have been assigned
to treatment B and to treatment W through the nth treatment allocation
can be written as NB(n) =

∑n
i=1 δi and NW (n) =

∑n
i=1(1 − δi), respec-

tively; clearly NB(n) + NW (n) = n. Also note that Bn and Wn are the
cumulative (possibly transformed) observed responses to treatment B and
W, respectively, augmented by the initial numbers of balls in the urn.

3 Motivation for applying a RRU-design to

clinical trials

Let mB =
∫
U(y)LB(dy) and mW =

∫
U(y)LW (dy) be the means of the

transformed responses, that is, the urn reinforcements; a fundamental re-
sult, proved by [14] for dichotomous responses and extended to general
responses by [18] and [2], is that

if mB > mW , then lim
n→∞

Zn = 1, almost surely. (1)
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As a consequence, suppose that the sequences of responses {YB(n)} and
{YW (n)} have finite means µB =

∫
yLB(dy) and µW =

∫
yLW (dy) and

that, for instance, the treatment B is preferred to the treatment W if
µB > µW . Then, choosing a function U such that µB > µW if and only
if mB > mW and µB = µW if and only if mB = mW , it follows that a
RRU -design allocates patients to the superior treatment with probability
converging to one as n goes to infinity. This is the reason why these designs
are optimal from an ethical point of view.

As argued in [19], the existence of a suitable function U is guaranteed
from the theory of utility. Different choices of the function U imply dif-
ferent properties for the RRU -design, in terms of rate of convergence and
skewness of allocations. More needs to be done to identify good choices of
U . This choice will be influenced by the trade-off between inferential and
ethical goals that is considered preferable for a particular experiment.

Note that, notwithstanding the fact that in a RRU -design the condi-
tional probability of allocating the nth patient to the inferior treatment W
converges to zero, both the random numbers of patients

NB(n) and NW (n) converge almost surely to infinity, (2)

as the total number n of patients goes to infinity. This is a basic re-
sult, proved in [15], allowing their development of inferential procedures
for RRU -designs.

Also, when the two treatments are equivalent, that is, when mB = mW ,
the sequence of proportions

{Zn : n ≥ 0} converges almost surely to a random limit Z∞ in [0, 1],

since it is eventually a bounded super or sub-martingale, as proved by [18].
An important property, proved by [2], is that

P (Z∞ = p) = 0 for all p ∈ [0, 1] (3)

in this case; while on the contrary, if mB > mW , then P (Z∞ = 1) = 1 from
(1). The distribution of Z∞ when mB = mW is in general unknown and
it is a non-trivial, open problem; further discussion of this is postponed to
Section 4.1.

We remark also that, both when treatments are equivalent and when
one treatment is superior, the proportion of patients allocated to B and W
has the same limit as the urn composition:

lim
n→∞

NB(n)

n
= Z∞, a.s. and lim

n→∞

NW (n)

n
= 1− Z∞, a.s., (4)

as proved in [15]. As a consequence, also the proportion of patients allo-
cated to the best treatment converges to one.
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4 Asymptotic results

[15] generalize [7] in proving the following asymptotic results. The first one
concerns the relative convergence rates of the cumulative responses:

Bn/(Wn
mB/mW ) converges almost surely to a random variable ψ with

support in (0,∞).

The following two regard the case when treatment B is superior to treat-
ment W : if mB > mW , then there exist a random variable η2 with
P (0 < η2 <∞) = 1 such that

lim
n→+∞

NW (n)

nmW /mB
= η2, a.s., (5)

lim
n→+∞

1− Zn
nmW /mB−1

=
mW

mB

η2, a.s. (6)

Since η2 is an almost sure finite random variable with no mass at zero,
from (5) we obtain the exact rate of convergence to infinity of the number
of patients assigned to the worst treatment, while from (1) and (4) we know
that this rate for the number of patients allocated to B is n.

Simulations on the distribution of η2 are provided in [16] and in [13]; in
particular, it is shown that η2 is not a point mass.

4.1 The limiting urn composition when treatments
are equivalent

The study of the distribution of the limit urn composition Z∞ in a RRU -
design when treatments are equivalent, motivated by applications, has re-
sulted several theoretical works. In fact, for testing hypotheses about treat-
ment effects, it is important to know the limiting urn composition under
the null hypothesis that there is no difference between treatment effects.

The exact distribution of Z∞ is unknown except in a few particular
cases. Consider first the case in which LB = LW so that the urn reinforce-
ments U(YB(n)) and U(YW (n)) have the same distribution, say µ. When µ
is a point mass at a non-negative real number m, the RRU degenerates to
Polya’s urn, in which case Z∞ has a Beta(b/m,w/m) distribution. This is
also the case for binary responses (success/failure) when m balls are added
to the urn after each success is obtained; in fact, [1] prove that only the
non null part of the reinforcement distribution needs to be considered.

[17] have proved, in the case with LB = LW = µ, that the sequence
{δn} of treatment allocations is asymptotically exchangeable, having De
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Finetti measure equal to the distribution of Z∞; [18] have extended this
result to the general case of mB = mW . Notice that, when mB = mW ,
it may happen that

∫
U(y)kLB(dy) 6=

∫
U(y)kLW (dy) for some k ≥ 2 and

then U(YB(n)) and U(YW (n)) may have different distributions; this is of
particular interest because it corresponds to a situation in which the two
treatments are considered equivalent but reinforcement distributions are
not the same.

For the general RRU , [1] and [3] have characterized the distribution of
Z∞ as the unique continuous solution, satisfying some boundary conditions,
of a specific functional equation in which the unknowns are distribution
functions on [0, 1].

[2] have proved a central limit theorem for the sequence of random
compositions when the means of the reinforcement distributions are the
same. As a consequence, they have been able to show that the limiting urn
composition has no point masses. This gives also a new drive to the open
problem concerning the absolute continuity of the distribution of Z∞.

5 Inference

Consider estimation of the means {µB, µW} and the variances {σ2
B, σ

2
W}

of the responses to treatments. In [15], the following estimators based on
the observed responses through patient n are defined, with random sample
sizes NB(n) and NW (n), respectively:

ŶB(n) =

∑n
i=1 δiYB(i)

NB(n)
and ŶW (n) =

∑n
i=1(1− δi)YW (i)

NW (n)
,

σ̂2
B(n) =

∑n
i=1 δi(YB(i)−ŶB(n))2

NB(n)
and σ̂2

W (n) =
∑n

i=1(1−δi)(YW (i)−ŶB(n))2

NW (n)
.

[5] prove independence properties of the sequences of observed responses,
so that the strong consistency of estimators based on those sequences can
be deduced:

ŶB(n), ŶW (n) and σ̂2
B(n), σ̂2

W (n) are strong consistent estimators
for µB, µW and σ2

B, σ2
W , respectively.

Moreover, these estimators, appropriately standardized, are jointly asymp-
totically normal, both when the two treatments are equivalent and when
one treatment is superior; this holds despite the randomness of NB(n) and

7



NW (n), their dependence, and the fact that they don’t satisfy the classi-
cal assumption that NB(n)/n and NW (n)/n converge in probability to a
constant in (0, 1):(√

NB(n)

σB

(
ŶB(n)− µB

)
,

√
NW (n)

σW

(
ŶW (n)− µW

))
d−→ N (0, I) (mixing).

The mixing property of the convergence (for details see [15]), is es-
sential to obtain the asymptotic distribution of the classical two-sample
t-test statistic applied to RRU data; it can be derived from the following
asymptotic result:

ζ(n) :=
ŶB(n)− ŶW (n)− (µB − µW )√
σB2/NB(n) + σW 2/NW (n)

d−→ N(0, 1) (mixing), (7)

both when µB = µW and µB 6= µW . Result (7) holds also with σ̂2
B(n) and

σ̂2
W (n) instead of σ2

B and σ2
W .

5.1 Testing hypothesis

Suppose interest is in the hypothesis test of the mean responses:

H0 : µB = µB versus H1 : µB > µW ,

which is equivalent, for a suitable choice of the function U , to the test on
the mean reinforcements: H0 : mB = mB versus H1 : mB > mW . From
(7), it follows that the following natural extension of the t-test statistic

ζ0(n) =
ŶB(n)− ŶW (n)√
σ̂2
B(n)

NB(n)
+
σ̂2
W (n)

NW (n)

(8)

is asymptotically normal when H0 is true. Hence, fixing an asymptotic
significance level α and denoting by z1−α the quantile of order 1 − α of a
standard normal distribution, one can consider the following critical region:

Cα = {ζ0(n) > z1−α}.

Note that arguments about asymptotic normality and power comparisons
in [11] and in [24] apply when response-adaptive allocation proportions
converge to a determined proportion ρ ∈ (0, 1), and thus don’t apply to
RRU data. [15] establish also that, under the alternative hypothesis H1,
the test statistic ζ0(n) is a mixture of normal distributions, where the
mixing variable is the positive square root η of the random variable η2

defined in (5):
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the conditional distribution of ζ0(n) given η, is asymptotically normal

with mean equal to
√
nmW /mB η µB−µW

σW
and unit variance.

It follows that the power of the t-test can be approximated, for a large
number of patients n, by

1− β1 = P

(
N + nmW /(2mB)η

µB − µW
σW

> z1−α

)
,

where N is a standard normal random variable independent of η.
[9] investigate also a different test statistic given by the proportion Zn

of black balls. In fact, for an asymptotic significance level α, they can
consider the critical region

C∗α = {Zn > c1−α},

where c1−α is the quantile of order 1 − α for the distribution of the limit
variable Z∞. Moreover, they can approximate the power of this test, for
large n, by

1− β∗ = P

(
η2 < (1− c1−α)

mB

mW

n1−mW /mB

)
.

We believe that a promising future area of research, to improve the
performance of tests of hypothesis for RRU -designs, could be to perform
permutation tests in this case; for an overview on these tests see, for in-
stance, [21].

6 Simulation studies

[20] propose as new guideline for the evaluation of response-adaptive de-
signs considering their performance in competion with a non-adaptive bench-
mark. As a seminal example, in their paper they select their benchmark
to be the problem of comparing the means of two normal responses (with
same known variance), with reference to the t-test statistic defined by (8).
The default design is a balanced, non-adaptive design of level α, and having
n choosen such that the power is a given value 1 − β when the difference
δ between the two mean responses is greater or equal to a clinically rele-
vant difference δ0 > 0. (Recall that the balanced allocation, assigning the
same number of patients to treatments B and W , maximizes the power of
the one-sided z-test.) Numerical simulations show that for clinical trials
where δ0 is sufficiently large, we expect that a RRU -design to be effective
alternative for the experimenter, since
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(a) to obtain an α-level test with power at least 1 − β when δ ≥ δ0, it
needs a trial of sample size n∗ slightly larger then n;

(b) when the sample size is n∗ and δ ≥ δ0, the random number NW (n∗)
of patients allocated to the worst treatment is less then n/2 with high
probability.

For instance, for n = 100 and known variance of the responses v2
0 = 0.252,

of one can conclude that, at the possible cost of a larger sample size for the
trial, the RRU -design becomes a viable alternative to a balanced design
for values of δ0 greater then 0.25.

A different approach to the numerical evaluation of the performance of
a RRU -design is proposed in [9]. In this work, they simulate the number
of patients assigned to the superior treatment in a fixed sample size exper-
iment modeled by a RRU -design, in comparison with other competitive
response-adaptive designs proposed in literature. Then they evaluate the
empirical power of the two-sample t-test in the RRU -design for different
values of the mean responses. Their numerical simulations are performed
in the basic case when treatments have dichotomous (success/failure) re-
sponses, substituting pB and pW for mB and mW , respectively. Their
analysis could be extended to a more general situation. Simulations show
that for sample size n = 400, the RRU -design provides the empirical dis-
tribution of NB most skewed towards the best treatment and the empiri-
cal distribution of the total number of failures most skewed towards zero,
which are the desirable ethical properties. Unfortunately, the variability
is high, but it decreases if one increases the initial parameter b = w (a
good compromise seems to be reached for b = w = 3) and for smaller val-
ues of pW/pB. As expected, simulations show that power decreases when
the success probabilities are close. Moreover, the t-test seems to be more
powerful than the test based on the proportion of black balls. However,
since neither statistic alone is sufficient, they suggest the development of a
judicious combination of the two test statistics to further increase power.

In order to study the properties of the non-centrality parameter of the
t-test statistic ζ0(n), which determines the power of the test, [16] have sum-
marized some numerical simulations regarding the distribution of η2. In
particular, they have considered some RRU -designs with different continu-
ous treatment responses, iterating simulations to obtain an approximation
of η2 in terms of the empirical distribution of NW (n)/nmW /mB for large n.
Simulations suggest that the distribution is weakly dependent on the par-
ticular shape and variance of the responses, while it seems to be strongly
dependent on the difference between mB and mW . Also the location of η2,
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which has an asymmetric distribution between zero and infinity, seems to
vary linearly with such difference.

7 K > 2 treatments

After the work of [8], the first extension of the RRU -designs to K ≥ 2
treatments was presented by [14] for the case of dichotomous responses.
In particular, they find the limits of the urn proportions Zni, for any
i = 1, . . . , K, and they show that a proportion converges to one when
treatment-i has a unique maximum probability of success. [7] also show
when success probabilities are equal and the initial numbers of each ball
type are equal, allocation proportions converge to a Dirichlet distribution.
More generally, if success probabilities are equal but the initial numbers
of each ball type are not the same, allocation proportions converge to the
ratio of a gamma random variable divided by a linear combination of gam-
mas, where the coefficients in the linear combination depend on the initial
numbers of balls of each type. The results by [18], for the RRU with gen-
eral responses, also are proved for K ≥ 2 treatments in their work. The
asymptotic results in [15] and results concerning the distribution of the test
statistic, is extended to the K-case in the private communication by [25].

We believe that the characterization of the limiting urn composition for
more general (non-binary) random variables when treatments are equiva-
lent that is presented in [1] and [3] could be extended for K > 2. A central
limit theorem for the sequence of random compositions is proved for a
multi-color RRU , generalizing the result of [2], by [6].

We note that K group comparisons did not provide the original mo-
tivation for RRU development. [7] were interested in an randomized ex-
ploratory procedure in a dose response setting. In the 1980’s, Flournoy
proposed using the RRU with binary responses whenever a ball was drawn
whose color indicated a dose on the interior of the current design space.
But if a ball was drawn whose color indicated a dose on the boundary of the
current design space, the procedure would differ: if a success was observed,
the design space would be enlarged by adding a ball whose color indicated a
neighboring dose; if a failure was observed, the ball at that boundary dose
would be removed. Flournoy called this procedure the migrating urn, and
conducted several simulation studies of its properties. While it remains
intriguing as a randomized conservative dose finding procedure, it’s feasi-
bility for clinical practice is limited by slow convergence. So finding ways
to speed convergence while maintaining convergence to the best treatment
with probability one is important for future work.
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8 Final comments

As already addressed by [22], sequential analysis has been tenuously de-
veloped for response-adaptive treatment allocation procedures. For what
concerns the designs described in this overview, an initial contribution can
be found in [14] and [7], where they propose a simple random stopping rule
for the experiment. It is obtained by inserting in the urn an additional ball
type, called control balls, and they are able to derive the expected number
of successes and failures correspondent to each treatment after this stop-
ping rule, and the expected sample size of the experiment. We believe a
significant improvement to RRU -designs, and response-adaptive treatment
allocation procedures in general, could be obtained by the development of
optimal stopping rules and sequential tests. We hope to see work in this
important area of research in the future.

In our knowledge, no other results on randomized response-adaptive
designs targeting the best treatment have appeared in literature. In par-
ticular, we wonder if it is possible to modify the RRU -design or build other
response-adaptive designs targeting the ethically optimal allocation with
probability one, maintaining randomization, but having faster convergence
and smaller variability.
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