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Abstract 

Background This study aims to analyse the effects of reducing Received Dose Intensity (RDI) in chemotherapy 
treatment for osteosarcoma patients on their survival by using a novel approach. Previous research has highlighted 
discrepancies between planned and actual RDI, even among patients randomized to the same treatment regimen. To 
mitigate toxic side effects, treatment adjustments, such as dose reduction or delayed courses, are necessary. Toxicities 
are therefore risk factors for mortality and predictors of future exposure levels. Toxicity introduces post-assignment 
confounding when assessing the causal effect of chemotherapy RDI on survival outcomes, a topic of ongoing debate.

Methods Chemotherapy administration data from BO03 and BO06 Randomized Clinical Trials (RCTs) in ostosarcoma 
are employed to emulate a target trial with three RDI-based exposure strategies: 1) standard, 2) reduced, and 3) highly-
reduced RDI. Investigations are conducted between subgroups of patients characterised by poor or good Histological 
Responses (HRe), i.e., the strongest known prognostic factor for survival in osteosarcoma. Inverse Probability of Treat-
ment Weighting (IPTW) is first used to transform the original population into a pseudo-population which mimics 
the target randomized cohort. Then, a Marginal Structural Cox Model with effect modification is employed. Condi-
tional Average Treatment Effects (CATEs) are ultimately measured as the difference between the Restricted Mean Sur-
vival Time of reduced/highly-reduced RDI strategy and the standard one. Confidence Intervals for CATEs are obtained 
using a novel IPTW-based bootstrap procedure.

Results Significant effect modifications based on HRe were found. Increasing RDI-reductions led to contrasting 
trends for poor and good responders: the higher the reduction, the better (worsen) was the survival in poor (good) 
reponders. Due to their intrinsic resistance to chemotherapy, poor reponders could benefit from reduced RDI, 
with an average gain of 10.2 and 15.4 months at 5-year for reduced and highly-reduced exposures, respectively.

Conclusions This study introduces a novel approach to (i) comprehensively address the challenges related 
to the analysis of chemotherapy data, (ii) mitigate the toxicity-treatment-adjustment bias, and (iii) repurpose existing 
RCT data for retrospective analyses extending beyond the original trials’ intended scopes.

Keywords Marginal structural Cox models, Inverse Probability of treatment weighting, Effect modification, Target trial 
emulation, Received dose intensity, Chemotherapy, Toxicity, Event-free survival
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Background
Osteosarcoma is a rare malignant bone tumor primar-
ily affecting children, adolescents, and young adults, 
with an annual incidence of 3–4 patients per million [1]. 
While multidisciplinary management, including neo-
adjuvant and adjuvant chemotherapy with aggressive 
surgical resection [2], has improved clinical outcomes, 
there has been little progress in survival over the past 40 
years [3]. The strongest known prognostic factor for both 
event-free survival (i.e., time to local recurrence, meta-
static disease, second malignancy, or death) and overall 
survival (i.e., time to death) in osteosarcoma is Histo-
logical Response (HRe) [4], i.e., the result of the histo-
pathological examination to assess the improvement in 
microscopic tissue appearance following pre-operative 
chemotherapy. However, the impact of interventions 
in chemotherapy dosage and timing on patient survival 
remains unclear [5]. In this study the primary research 
questions are:

Does reduced chemotherapy dose intensity lead to 
improved Event-Free Survival (EFS) in patients with 
osteosarcoma who have completed treatment? Does 
this effect vary among subjects characterized by dif-
ferent histological responses?

Addressing these questions is very challenging, even 
with data from Randomized Clinical Trials (RCTs). A 
first attempt was made in [6], where the authors investi-
gated an Intention-To-Treat (ITT) landmark Cox model 
including as covariates the planned regimen, HRe, and 
their interaction. The ITT principle, widely applied in 
RCTs, measures the effect of assigning patients to dif-
ferent regimens [7, 8], disregarding post-randomization 
events, such as non-adherence or protocol deviations. 
However, the intensity of the assigned regimen often dif-
fers from the intensity of the received dose and actual 
duration. Interventions and discontinuation in treatment 
administration are common in real clinical practice, due 
to the toxic side effects developed by patients over ther-
apy [9] which affect subsequent exposure by delaying the 
next cycle or reducing chemotherapy doses [10, 11]. This 
implies that, even if assigned to the same protocol regi-
men and subjected to all treatment cycles, patients usu-
ally receive different drug doses and experience different 
treatment durations. Being at the same time risk factors 
for mortality and predictors of future exposure levels, 
toxicities are post-assignment confounders for the effect 
of received dose intensity on patient’s survival.

To measure the discrepancies between assigned (or 
planned) and received (or actual) treatments in terms of 
both dose reduction and delays, the so-called Received 
Dose Intensity (RDI) indicator has been introduced 
[12]. Previous studies showed that there is a mismatch 

between planned and achieved chemotherapy-RDI in 
osteosarcoma [5, 11]. Even patients assigned to the same 
regimen reported substantial variability in RDI at the end 
of treatment [5, 11, 13]. To evaluate the impact of actually 
receiving a treatment, per-protocol or as-treated analyses 
can be employed. The first focuses on participants who 
strictly adhered to the assigned protocol and excludes 
non-adherent data, while the second considers treatment 
actually received by patients, regardless of adherence to 
randomization [8]. Nonetheless, both approaches com-
promise the balance between patient groups achieved 
through randomization, potentially introducing selec-
tion bias and confounding into the treatment effect esti-
mate. In the presence of confounders, classical survival 
approaches [14–16] fail to estimate consistent causal 
effects. An alternative framework that emulates randomi-
zation, where confounders (e.g., toxicities) no longer pre-
dict treatment, is hence necessary.

In clinical trials, interventions in treatment adminis-
tration, as well as their underlying reasons, are typically 
well documented as required by protocols. This exist-
ing wealth of information has the potential to be repur-
posed for additional retrospective analyses beyond the 
scope of the original RCTs that generated the data, open-
ing up new possibilities for further investigations. More 
specifically, chemotherapy administration data can be 
employed to emulate another hypothetical RCT or Tar-
get Trial (TT) that explores new research questions on 
chemotherapy treatment outside the original scope. TT 
emulation has been introduced in [17] as a method for 
enabling the application of causal inference methods 
using observational data. A proper emulation requires a 
detailed specification of all the necessary protocol com-
ponents (i.e., eligibility criteria, treatment strategies, 
treatment assignment, start and end of follow-up, out-
comes, causal contrasts or estimands) and a data-analysis 
plan. This approach is particularly valuable for studying 
treatments or interventions where randomization is not 
possible or practical or is no longer present.

Objectives
In this article, a novel TT emulation based on RCT data 
of chemotherapy administration with interventions is 
proposed to estimate the effects of different received 
exposure strategies on EFS in patients with osteosar-
coma aged 40 years or less at baseline. Three exposure 
strategies are defined and considered: 1) standard, 2) 
reduced, and 3) highly-reduced RDI. Data from two 
RCTs in osteosarcoma, namely, the European Osteo-
sarcoma Intergroup (EOI) studies BO03 [18] and BO06 
[6] (European Organisation for Research and Treat-
ment of Cancer EORTC 80861 and 80931, respectively)
are analysed. By considering patients who successfully
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completed the six cycles of the same chemotherapy 
regimen, it is shown how properly documented chem-
otherapy-administration data can be reused to address 
novel research questions.

A Marginal Structural Cox Model (Cox MSM) with 
effect modification estimated by using Inverse Probabil-
ity of Treatment Weighting (IPTW) [19] is employed to 
study a model similar to the ITT landmark Cox landmark 
model in [6] in a causal setting. Specifically, the planned 
regimen in [6] is replaced with our RDI-exposure strate-
gies and their effect is supposed to vary based on the HRe 
(i.e., the effect modifier). IPTW is used to mimic rand-
omization in the defined TT, where RDI-exposure is no 
longer confounded by toxicities or other confounders, 
so that a crude analysis suffices to estimate the effective-
ness of RDI-reduction exposures on EFS in both HRe 
sub-groups. Conditional Average Treatment Effects 
(CATEs) are finally measured as the difference between 
the Restricted Mean Survival Time (RMST) of reduced/
highly-reduced RDI strategy and the standard one. A 
novel generalized bootstrap procedure [20, 21] utilizing 
unequal IPTW-based probability sampling [22, 23] and 
preserving the sizes of the sub-cohorts defined by differ-
ent combinations of strategies and effect modifier levels 
is proposed to compute confidence intervals for CATEs.

The overall procedure hence requires (i) a proper defi-
nition of the RDI-exposure strategy, (ii) a tailor-made 
identification of all possible pre-assignement and post-
assignement confounders, and (iii) a proper characteri-
sation of the causal structure of the chemotherapy data 
through a Direct Acyclic Graph (DAG) [19, 24]. Fur-
thermore, since adjustments in treatment allocation are 
determined by the overall toxic burden of each patient, 
the different types and number of side effects must be 
adequately summarized and quantified. The new longi-
tudinal Multiple Overall Toxicity (MOTox) score intro-
duced in [25] is hence adapted to the data under study. 
This allows multiple toxicities to be included within the 
causal inference framework in a novel way.

The ultimate goal is to introduce an innovative and 
comprehensive RDI-based analysis of chemotherapy 
administration data with interventions. A tutorial-like 
explanations of the challenges inherent in this context is 
provided along with novel problem-solving strategies. To 
the best of our knowledge, this study is the first to apply 
IPTW-based techniques to survival RCT data, aiming 
to mitigate the toxicity-treatment-adjustment bias when 
estimating the effects of RDI reductions on EFS, while 
considering intrinsic personal responses to chemother-
apy. Source code for the current study is available here: 
https:// github. com/ mspre afico/ TTEca usalR DI.

Methods
Data sources description: RCT data with interventions
Data from control arms of European Osteosarcoma Inter-
group (EOI) randomised clinical trials (RCT) BO03 and 
BO06 (EORTC 80861 and 80931, respectively) were ana-
lysed. Patients aged 40 years or less with a histologically 
confirmed diagnosis of high-grade nonmetastatic osteo-
sarcoma of the extremity were included in the trials. In 
both trials, control arms were characterized by the stand-
ard EOI treatment structured in 6 cycles of 3-weekly Cis-
platin (CDDP) (100 mg/m2 ) plus Doxorubicin (DOX) (75 
mg/m2 ), and compared to a different therapy regimen 
(i.e., variant of Rosen’s T10 regimen in BO03 [26] and a 
2-weekly intensified version of CDDP+DOX in BO06
[6]). Results about the primary analyses on BO03 and
BO06 data can be found in [6, 18].

As the control arms design in Fig. 1 shows, in both tri-
als chemotherapy was administered before and after sur-
gical removal of the primary osteosarcoma. At the end of 
the pre-operative treatment, with a nominal duration of 
3 cycles in BO03 and 2 in BO06, the tumour was surgi-
cally resected and the level of tumour necrosis – defined 
as the proportion of the tumor that underwent cell death 
(necrosis) following pre-operative chemotherapy com-
pared to the entire tumor mass in the resected specimen 
– was evaluated. Patients were subsequently classified

Fig. 1 Control arms design for BO03 and B006 randomised clinical trials, characterized by the standard European Osteosarcoma Intergroup 
treatment structured in 6 cycles of 3-weekly Cisplatin (CDDP) (100 mg/m2 ) plus Doxorubicin (DOX) (75 mg/m2)

https://github.com/mspreafico/TTEcausalRDI
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as poor or good responders based on the Histological 
Response (HRe) assessed in the resected specimen. A 
good HRe was defined as a percentage of tumor necrosis 
greater than or equal to 90%; otherwise, HRe was consid-
ered poor. Post-operative chemotherapy was intended to 
resume 2 weeks after surgery.

Along with patients baseline characteristics at rand-
omization (age, gender, allocated chemotherapy regimen, 
site and location of the tumour), treatment-related vari-
ables (administered dose of chemotherapy, cycles timing, 
haematological parameters, chemotherapy-induced tox-
icity and histological response to pre-operative chemo-
therapy) were collected prospectively during therapy. 
These data provide insights into interventions made 
during therapy administration (i.e., cycle delays or dose 
reductions) and the associated toxicity reasons, that led 
the patient to deviate from the originally planned EOI 
chemotherapy regimen.

Toxicity‑driven interventions
As it often occurs in clinical trials, therapy administra-
tion was complicated by the need for dynamic adjust-
ments based on the patient’s multi-systemic side effects 
(e.g., organ toxicity or myelosuppression) developed over 
time. Toxicities are a threat to patient’s life and must be 
controlled by either allocating dose reductions/discon-
tinuations or delaying the subsequent course [10].

Toxic side effects were recorded using the Common 
Terminology Criteria for Adverse Events Version 3 
(CTCAE v3.0) [27], with grades ranging from 0 (none) 
to 4 (life-threatening) (see Supplementary Material A for 
further details). Toxicities were collected longitudinally 
in BO06 trial, whereas in BO03 only the highest CTCAE 
grade (i.e., the most severe) was recorded for each toxic-
ity in both the pre-operative and post-operative periods. 
According to protocols, the following side effects were 
linked to specific dose reduction or delay rules: leuco-
penia, thrombocytopenia, oral mucositis, ototoxicity, 
cardiotoxicity and neurotoxicity. If different rule-specific 
conditions co-existed and more than one dose reduction 
(or cumulative delays) applied, the lowest dose (or the 
highest delays) calculated was employed. According to 
expert knowledge, although not directly related to a spe-
cific adjustment rule, patient’s generic conditions of nau-
sea/vomiting and infections was also taken into account 
during therapy.

Interventions in treatment administration were hence 
determined as a combination of overall toxic burden 
related to both rule-specific and generic conditions. 
Toxicities impact patient’s survival, leading to a com-
plex post-assignment confounding mechanisms between 
received chemotherapy dose intensity and the outcome.

Assessing interventions through received dose intensity
The so-called Received Dose Intensity (RDI) approach [5, 
12, 18] can be adopted to evaluate both dose reductions/
discontinuations, time-delays, and their impact in reduc-
ing the intensity over the whole therapy. This method 
summarizes information on treatment interventions by 
considering both received dose and actual timing. For 
each patient i ∈ {1, . . . ,N } , RDI is defined as the ratio 
between standardized dose �i and standardized time Ŵi , 
as follows:

Numerator in (1) represents the standardized dose, 
given by

where 6 is the total number of cycles in the EOI regi-
men, and δdij is the cycle-standardized received dose 
defined as the ratio between the actual dose [mg/m2] 
of drug d ∈ {CDDP, DOX} assumed at cycle j and the 
anticipated dose of drug d (CDDP: 100 mg/m2 ; DOX: 75 
mg/m2 ). Specifically, �i < 1 indicates dose-reduced ther-
apies, whereas �i > 1 corresponds to dose-augmented 
therapies.

Denominator in (1) represents the standardized time 
given by

where the actual treatment time is the difference in days 
between the starting date of cycle 1 and the 3rd day after 
the start of cycle 6 (i.e., end of therapy), and the antici-
pated treatment time is 21× 5+ 14 + 3 = 122 days (i.e., 
5 cycles lasting 21 days each, 14 days of surgery and 3 
days after the start of cycle 6). Specifically, Ŵi > 1 indi-
cates delayed therapies, whereas Ŵi < 1 corresponds to 
compressed treatments.

In general, �i ≤ 1 and Ŵi ≥ 1 due to dose reductions 
and delays, respectively; this implies RDIi ≤ 1 . Based 
on expert knowledge, a RDI (in percentage) of at least 
85% is defined as standard intensity level, from 85% 
to 70% is considered reduced, whereas below 70% is 
highly-reduced.

Study design
To address the research questions, a target trial emu-
lation approach is employed [17]. The protocol of the 
hypothetical TT and its emulation with chemother-
apy administration data from BO03/BO06 RCTs are 

(1)RDIi =
�i

Ŵi
.

(2)�i =
1

2
�CDDP

i +�DOX
i =

1

12

6

j=1

δCDDPij +

6

j=1

δDOXij ,

(3)Ŵi =
actual treatment time

anticipated treatment time
,



Page 5 of 18

described in Table 1. To be eligible, subjects have to be 
aged 40 years or less at baseline with a confirmed diag-
nosis of osteosarcoma. Further inclusion and exclu-
sion criteria are applied to focus on the eligible cohorts 
of the original BO03/BO06 RCTs. The TT compares 
three target strategies: 1) standard, 2) reduced, and 3) 
highly-reduced RDI of the EOI control regimen given 
by 6 cycles of 3-weekly CDDP+DOX. The final aim is to 
study the effect, if any, of reductions in RDI (compared 
to standard) on EFS in subgroups of patients charac-
terized by different HRe. Given that histopathological 
examination is evaluated after TT randomization, the 
statistical analysis has to be conducted utilizing a land-
mark approach [28–30] to appropriately incorporate 
HRe into the survival model. Specifically, an ITT land-
mark Cox model, with the landmark point at the time 
of surgery, is intended to serve as the survival model 

in the TT to estimate the effects of reduced exposures 
across HRe levels.

In the cohort selected from the BO03/BO06 data, 
randomization of target strategies is emulated by 
adjustment for confounding via IPTW. A pseudo-pop-
ulation is created by weighting each patient based on 
the inverse probability of observing a specific exposure 
allocation strategy given the confounders history. The 
pseudo-population mimics the randomized cohort of 
the TT and exhibits the following two properties: 

i. the pre-assignment and post-assignment history
of pseudo-patients no longer predicts exposure to
RDI-reductions in the next cycle;

ii. the association between exposure and outcome is
the same in both original and pseudo-population.

Table 1 Outline of the target trial protocol: specification and emulation using RCT data with interventions

a Ineligible patients: subjects with paraosteal, periosteal, Paget-related, or radiation-induced osteosarcoma; patients with prior malignancy, any chemotherapy before 
trial entry, reduced glomerular filtration rate ( < 60mL/min/1.73 m 2 ), cardiac dysfunction, or raised bilirubin
b Standard EOI treatment: 6 cycles of 3-weekly CDDP (100mg/m2 ) plus DOX (75mg/m2)
c Samilarly to the ITT landmark Cox model for regimen effect stratified by histological response in [6]

Protocol components Target trial RCT data with interventions
Specification Emulation [Required data]

Aim To estimate the effect, if any, of reductions in received dose 
intensity on event-free survival across levels of histologi-
cal response in patients with osteosarcoma aged 40 years 
or less.

Same as for TT specification.

Eligibility criteria Patients aged 40 years or less with a histologically confirmed 
diagnosis of high-grade nonmetastatic osteosarcoma 
in an extremity long bone.a Patients need to commence 
chemotherapy within 28 days after biopsy, with normal leu-
kocyte ( ≥ 3.5× 10

9/L ) and platelet ( ≥ 100× 10
9/L ) counts.

Same as for TT specification.
[Age, diagnosis type, start date of therapy, leukocyte count, platelet 
count]

Treatment strategies Chemotherapy dose intensity regimens: standard, reduced, 
and highly-reduced six-cycle EOI treatment.b

Same as for TT specification.
[Received dose, cycle timing]

Treatment assignments Eligible persons will be randomly assigned to one strategy 
and will be aware of which strategy they were assigned to.

Eligible persons assigned to the strategy based on observed 
dose-intensity behavior at the end of the therapy.

Outcomes Death, local recurrence, evidence of new or progressive 
metastatic disease, second malignancy, or a combination 
of those events.

Same as for TT specification.
[Date of death, local recurrence, or other malignancies]

Follow-up Start: treatment assignment.
End: death, local recurrence, evidence of new/progressive 
metastatic disease or second malignancy, or censoring.

Same as for TT specification, except start is the end of therapy.
[Date of loss to follow-up or censoring]

Causal estimand Intention-to-treat conditional effects (effect of being 
assigned to a reduced treatment across subgroups).
Per-protocol conditional effect (effect of receiving a reduced 
treatment as indicated in the protocol across subgroups).

Observational analogue of per-protocol conditional effect 
across subgroup.

Statistical analysis Intention-to-treat analysis via landmark Cox model [28–30] 
to estimate effects of reduced exposures across levels of his-
tological response.c

Randomization will be emulated via adjustment for pre-assign-
ment and post-assignment confounders by inverse probability 
of treatment weighting.

Conditional average effect measured as contrast of restricted 
mean survival times over follow-up.

Per-protocol analysis analogous to TT specification.
[Pre-assignement confounders, post-assignment confounders, 
histological response]
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Therefore, (heterogeneous) causal effects of different expo-
sure strategies (across sub-groups defined by HRe) can be 
estimated by a crude analysis on the pseudo-population by 
using a Cox MSM with effect modifications.

Causal inference framework
To address the research questions at hand, it is impera-
tive to appropriately emulate the target causal inference 
framework and develop a suitable data analysis plan. This 
requires both clinical expertise in the treatment of osteo-
sarcoma and statistical knowledge in variable definition 
and mathematical modeling. Causal analysis involving 
effect modification focuses on investigating the causal rela-
tionship between exposure and outcome across various 
levels of another factor that impacts this connection, and 
it requires adjustment for exposure-outcome confounders. 
The components of our causal framework hence include 
exposure, outcome, confounders, and effect modifier, as 
defined in the following sections. The causal structure 
is finally represented through a Directed Acyclic Graph 
(DAG) [19, 24]. This process requires special attention 
to the identifiability assumptions [19, 31] of consistency, 
no unmeasured confounding, and positivity, discussed in 
details in Supplementary Material B.

Outcome
The endpoint of this study is EFS, defined as time from 
the end of therapy until the first event (local recurrence, 
evidence of new or progressive metastatic disease, sec-
ond malignancy, death, or a combination of those events) 
or censoring at last contact. Let Ti = min(T ∗

i ,Ci) be the 
observed EFS time, where T ∗

i  is the true event time, and 
Ci is the censoring time (i.e., the time from the end of the 
therapy until the last visit). Let Di = I(T ∗

i ≤ Ci) be the 
event indicator (1 when T ∗

i ≤ Ci , and 0 otherwise). The 
EFS outcome for patient i ∈ {1, ...,N } is denoted by the pair 
(Ti,Di).

Exposure
The exposure strategies related to RDI values are now 
defined based on expert knowledge. A RDI percentage 
of 85% or more is considered a standard intensity level, 
as reductions up to 15% are classified as negligible. This 
standard level can be compared to reductions ranging from 
15% to 30% (reduced intensity) and reductions above 30% 
(highly-reduced intensity). Consequently, covariate Ai for 
RDI-exposure is defined as a three-level categorical vari-
able, as follows:

(4)Ai =







0 if RDIi ≥ 0.85
1 if 0.70 ≤ RDIi < 0.85
2 ifRDIi < 0.70

that is, Ai = 0 is equivalent to a “standard” RDI, Ai = 1 
to a “reduced” RDI, and Ai = 2 to a “highly-reduced” 
RDI. Accordingly, the three possible treatment/exposure 
strategies are denoted by a ∈ {0, 1, 2} . Based on expert 
knowledge, these strategies are well-defined to ensure the 
consistency assumption (see Supplementary Material B).

Effect modifier
Effect modification focuses on subgroup-specific causal 
effects of a single type of exposure [19, 32]. In general, a 
modifying variable V should be included into the analy-
sis under two conditions [19]: (i) when the investigators 
believe that V could potentially act as an effect modifier; 
(ii) when the investigators are more interested in under-
standing the causal effect of exposure within the groups
defined by covariate V rather than examining it across
the entire population. In the application considered here,
variable Vi is the binary covariate representing the HRe of
subject i, as defined in the original RCTs:

that is, Vi = 1 for patients with a “good” HRe, i.e., Good 
Responders (GRs), while Vi = 0 denotes patients with a 
“poor” HRe, i.e., Poor Responders (PRs).

Confounders
To draw valid conclusions about the causal exposure 
effect, the set of confounders of the exposure-outcome 
relationship under study need to be considered in the 
analysis. According to experts knowledge and proto-
col guidelines, the following pre-assignment and post-
assignment characteristics, denoted by vector Li , satisfy 
the hypothesis of no unmeasured confounding (see Sup-
plementary Material B).

Pre-assignment confounders. Due to their potential influ-
ence on drug metabolism and increased toxicity risk, age 
group, as defined in [33] (child: 0–12/0–11 years for males/
females; adolescent: 13–17/12–16 years for males/females; 
adult: 18/17 or older for males/females), as well as gen-
der (female; male) serve as pre-assignment confounders. 
While the trial number (BO03; BO06) does not serve as 
a significant risk factor for failures (p-value of log-rank test 
for Kaplan-Meier estimators stratified by trial is 0.967 – see 
Table  2), it can still be considered a pre-assignment con-
founder, as it reflect the different number of pre-operative 
cycles (see Fig.  1) and independently predicts dose inten-
sity (p-value of chi-squared test for the association between 
RDI-exposure and trial cohorts is < 0.001 – see Table 2).

(5)Vi =

{

0 if tumour necrosisi < 90%

1 if tumour necrosisi ≥ 90%



Page 7 of 18

Table 2 Patients and trial characteristics

a Categorical variables: p-value of chi-squared test for association with the trial. Continuous variables: p-value of two-sided Mann-Whitney U test for the variable 
distribution in BO03 vs BO06 cohort. EFS time: p-value of log-rank test for Kaplan-Meier estimators stratified by trial

 bAge groups were defined according to [33]: child (male: 0–12 years; female: 0–11 years), adolescent (male: 13–17 years; female: 12–16 years) and adult (male: 18 or 
older; female: age 17 years or older)

 cPre-/post-operative MOTox scores computed using Eq. (6) based on rule-specific conditions: Mrule = {leucopenia, thrombocytopenia, oral mucositis, ototoxicity, 
cardiotoxicity, neurotoxicity}

 dPre-/post-operative MOTox scores computed using Eq. (6) based on generic conditions: Mgen = {nausea, infection}

 eMedian EFS time was computed using the reverse Kaplan-Meier method [47]

All BO03 BO06
Patients 276 114 (41.3%) 162 (58.7%) p-valuea

Ageb 0.259

Child 76 (27.5%) 26 (22.8%) 50 (30.9%)

Adolescent 117 (42.4%) 49 (43.0%) 68 (42.0%)

Adult 83 (30.1%) 39 (34.2%) 44 (27.1%)

Gender 0.703

Female 109 (39.5%) 43 (37.7%) 66 (40.7%)

 Male 167 (60.5%) 71 (62.3%) 96 (59.3%)

Rule-specific MOToxc

Pre‑operative 0.009

 Median 3.667 3.883 3.500

 IQR [2.500; 4.500] [2.667; 4.792] [2.333; 4.167]

 Min/Max 0/6.167 0/6.167 0/5.833

Post‑operative < 0.001

 Median 4.333 3.833 5.000

 IQR [3.667; 5.333] [2.500; 4.958] [4.000; 5.500]

 Min/Max 0/6.833 0/6.167 0/6.833

Generic MOToxd

Pre‑operative 0.017

 Median 4.500 4.500 4.000

 IQR [3.000; 5.500] [3.500; 5.375] [3.000; 5.500]

 Min/Max 0/8 0/8 0/7.500

Post‑operative 0.021

 Median 4.500 4.500 4.000

 IQR [3.000; 5.500] [3.500; 5.375] [3.000; 5.500]

 Min/Max 0/8 0/7.500 0/8

Histological Response 0.732

Poor 182 (65.9%) 77 (67.5%) 105 (64.8%)

 Good 94 (34.1%) 37 (32.5%) 57 (35.2%)

RDI < 0.001

 Median 0.759 0.692 0.805

 IQR [0.649; 0.857] [0.589; 0.779] [0.762; 0.899]

 Min/Max 0.376/1.121 0.376/1.028 0.424/1.121

RDI exposure < 0.001

Standard 75 (27.2%) 10 (8.8%) 65 (40.1%)

Reduced 111 (40.2%) 46 (40.3%) 65 (40.1%)

Highly-reduced 90 (32.6%) 58 (50.9%) 32 (19.8%)

EFS status 0.673

Censored 124 (44.9%) 49 (43.0%) 75 (46.3%)

With event 152 (55.1%) 65 (57.0%) 87 (53.7%)

EFS time [months] 0.962

  Mediane [IQR] 89.59 [50.33; 146.30]
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Post-assignment confounders. Conditioning chemo-
therapy administration over treatment, rule-specific and 
generic toxicities are post-assignment confounding fac-
tors. To properly address toxicities as confounding covar-
iates, it is essential to accurately quantify and summarize 
the pre- and post-operative overall toxic burden arising 
from individual CTCAE side effects. This is achieved by 
utilizing the new longitudinal Multiple Overall Toxic-
ity (MOTox) score [25]. The MOTox score incorporates 
three significant components of adverse events: (i) mul-
tiple lower-grade chronic toxicities (which may affect the 
patient’s quality of life); (ii) substantial level in a specific 
toxicity (potentially causing severe and permanent con-
sequences for the patient); (iii) time dependency.

Since toxicity data over cycles were not recorded for 
the BO03 trial, MOTox computation is based on pre- 
and post-operative periods, by considering the highest 
CTCAE grade recorded for each toxicity during pre/post-
operative cycles.

Let Mrule = {leucopenia, thrombocytopenia, oral 
mucositis, ototoxicity, cardiotoxicity, neurotoxicity} and 
Mgen = {nausea, infection} be the two disjoint sets of 
toxicities related to rule-specific and generic toxicities, 
respectively. Denote by k ∈ {pre, post} the pre/post-oper-
ative time-period. For each patient i, let toxmijk (with value 
from 0 to 4) be the most severe CTCAE grade of the m-th 
toxicity of type j ∈ {rule, gen} (with m = 1, ..., |Mj| ) 
measured during period k. The MOTox score related to 
set Mj for the i-th patient during period k is defined as 
follows:

Specifically, four different MOTox scores can be com-
puted for each subject.

By adopting this approach rather than relying on indi-
vidual CTCAE grades for diverse toxicities, problems 
associated with dealing with a vast number of potential 
confounder combinations are mitigated. This ensures 
increased feasibility in the analysis. When considering 
individual grades for each toxicity, the number of pos-
sible confounders combinations would be too high lead-
ing to a violation of positivity. Additionally, this approach 
alignes with clinical practices, where treatment adapta-
tion occurs based on the patient’s overall toxic burden 
due to the presence of multiple toxicities.

Directed acyclic graph (DAG)
Figure  2 presents two alternative visualizations of the 
causal structure involving RDI-exposure (A), EFS out-
come (T), pre- and post-assignment confounders ( L ), 
and HRe as a modifying variable (V). In both cases, 
blue solid arrows indicate that both exposure A and 
the effect modifier V directly influence the outcome 
T, while dashed blue arrows represent the confound-
ing relationship between A and T. The purple arrows 
represent the influence of exposure-effect modifica-
tion A× V  on T, but there is no unanimous consen-
sus on how to graphically represent A× V → T  . In 

(6)

MOToxijk =
1

|Mj|

|Mj |
∑

m=1

toxmijk + max
m=1,...,|Mj |

(

toxmijk

)

.

Fig. 2 Directed Acyclic Graph (DAG) that represents the causal relationships between EFS outcome (T), RDI-exposure (A), pre-/post-assignment 
confounders ( L ), and HRe as effect modifier (V). The exposure-effect modification pathway A× V → T  (in purple) is depicted in DAG (a) using 
the “arrow-on-arrow" representation proposed by [34], whereas in DAG (b) including the additional node with both A and V as parents, as suggested 
by [35]
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this regard, DAG (a) utilizes the crossing “arrow-on-
arrow" representation provided by [34], while DAG (b) 
includes an additional node with both A and V as par-
ents, as proposed in [35].

The causal structure relies upon the hypothesis that 
there is no path between HRe and RDI-exposure, i.e., 
A�V  . This assumption is motivated by the following
reasons. 

1. HRe is the result of the histopathological exami-
nation after pre-operative chemotherapy. This
means that RDI computed as in Eq. (1) at the end
of treatment (i.e., after both the pre- and the post-
operative periods) could not affect HRe. This was
confirmed by the absence of evidence indicating
an association between the final RDI and HRe
(see Fig. 3), as reported in [18] as well. Therefore
A � V .

2. In the original BO03/BO06 RCTs, HRe was not
known until several weeks since chemotherapy
is resumed after surgery. This means that HRe
result could have influenced the decision to
modify therapy only in the last cycles. However,
the original RCT protocols did not provide for
treatment interventions based on HRe. As clini-
cians are generally committed to adhering to the
planned treatment without being influenced by
factors not foreseen in the protocol, very few pro-
tocol violations are expected in a RCT. Therefore,
V�A.

Statistical analysis
Once the causal inference framework has been 
defined, statistical analysis can be performed. This 
requires careful consideration about the identifi-
ability assumptions [19, 31] related to positivity and 
absence of model misspecification (see Supplemen-
tary Material B). Building upon the ITT landmark 
Cox model examined in [6], the idea is to assess 
subgroup-specific causal effects of different RDI-
exposure stategies on EFS-time using a Cox MSM 
with effect modification. In the ITT model from [6], 
the analysis incorporated the intended treatment, 
HRe, and their interaction to investigate the effect 
of assigned regimens stratified by HRe. In the Cox 
MSM proposed here, the binary variable represent-
ing intended treatment is replaced by two dummy 
variable representing reduced and highly-reduced 
RDI strategies, and their effects are assumed to vary 
based on the effect modifier (HRe).

Marginal structural Cox model with effect modification
Cox MSMs are a class of causal models that focus 
on counterfactual time-to-event variables [19, 36, 
37]. These variables represent the time at which an 
event would have been observed had a patient been 
administered a specific exposure level a, which 
might differ from the actual treatment received. In 
our context, the counterfactual EFS time that would 
be observed in a subject under exposure a ∈ {0, 1, 2} 
is denoted by Ta.

The Cox-type marginal structural hazard func-
tion for counterfactual EFS time under RDI-exposure 

Fig. 3 Scatter plots of RDIi against the standardized dose �i of CDDP+DOX conditional on trial (left panel: BO03; right panel: BO06) and HRe (purple 
points: poor; blue squares: good)
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a ∈ {0 : standard; 1 : reduced; 2 : highly-reduced}

with effect modification given by HRe variable 
V ∈ {0 : poor; 1 : good} is defined as follows:

Additive effect modification is present for a reduced 
RDI if β3  = 0 or for a highly-reduced RDI if β4  = 0.

Evidence for effect modification aids in identifying 
groups of individuals with specific inherent character-
istics which make them better responsive to treatment, 
while in others, treatment may be less effective, ineffec-
tive, or even harmful [32].

Inverse probability of treatment weighting (IPTW)
To estimate the causal parameters β of the Cox MSM 
defined in (7), a weighted Cox model [38, 39] can be fit-
ted to the pseudo-population obtained through IPTW, as 
follows:

with subject-specific stabilized weights given by

The numerator in (9) represents the probability that a 
subject i received exposure Ai given their HRe Vi . Includ-
ing the effect modifier in the numerator generally results 
in narrower confidence intervals around the effect esti-
mates [19]. The denominator is the probability that the 
subject received exposure Ai given HRe and confounders. 
In this case, the effect modifier is included to enhance the 
efficiency of the MSM parameter estimation process, as 
recommended in [19]. Both numerator and denominator 
are modelled by employing multinomial logistic regres-
sion models.

Under causal inference assumptions, association is cau-
sation in the pseudo-population and the estimates of the 
associational parameters θ are consistent for the causal 
parameters β . Nonetheless, a note of caution is required 
in applying this methodology to the chemotherapy data. 
Different model specifications in terms of confounding 
covariate features must be compared to satisfy the final 
assumptions of positivity and no misspecification of the 
weight-generating models (see Supplementary Material B) 
and guarantee an unbiased estimation of the results. Spe-
cifically, a mean weight value that significantly deviates 
from one or the presence of extreme values in the distri-
bution of the stabilized weights can signal potential issues 
related to positivity violation or model misspecification 

(7)hTa(t|V ) = h0(t) exp
{

β11(a=1) + β21(a=2) + β31(a=1)V + β41(a=2)V + β5V
}

.

(8)h
SWi

Ti
(t|Ai,Vi) = h0(t) exp

{

θ11(Ai=1) + θ21(Ai=2) + θ31(Ai=1)Vi + θ41(Ai=2)Vi + θ5Vi

}

(9)SWi =
P(Ai|Vi)

P
(

Ai

∣

∣Li,Vi

) .

[40]. In addition, graphical methods can be employed to 
check covariate balance between the exposure groups in 
the weighted samples [41].

Conditional average treatment effects (CATEs)
The Restricted Mean Survival Time (RMST) [42, 43] 
is employed as measure of treatment effect. More pre-
cisely, the RMST at time t under strategy a ∈ {0, 1, 2} for 
individuals in sub-group v ∈ {0, 1} is the expected con-
ditional time-to-event defined as follows:

This corresponds to the area under the counterfactual 
survival curve given the effect modifier V truncated at 
time t.

The Conditional Average Treatment Effect (CATE) 
at time t, or the “benefit" in each HRe sub-group, is 
measured as the contrast between the RMSTs of an 
RDI-reduction intervention ( a = 1, 2 ) and the standard 
strategy, as follows:

CATE is hence an estimate of the average months 
gained (if > 0 ) or lost (if < 0 ) at time t by employing 
RDI-reduction strategy a ∈ {1, 2} in sub-group V = v.

IPTW‑based bootstrap procedure for estimating confidence 
intervals for CATEs
To construct 95% point-wise Confidence Intervals (CIs) 
for each CATE, a generalized bootstrap procedure is 
proposed. This novel sampling procedure differs from 
typical random sampling by (i) separately considering 
the sub-cohorts defined by different combinations of 
strategies and effect modifier levels, (ii) utilizing une-
qual probability sampling [22, 23] based on estimated 
IPTW stabilized weights, and (iii) sampling (with 
repetitions) from each sub-cohort while maintain-
ing sub-sample sizes. At each iteration the generalized 
bootstrap sample is generated as the union of the vari-
ous bootstrap sub-samples. The steps are detailed as 
follows. 

(10)

µa(t; v) = E[min{Ta, t}|V = v] =

∫ t

0

Sa(s|V = v)ds.

(11)
τa(t; v) = µa(t; v)− µ0(t; v) a ∈ {1, 2}, v ∈ {0, 1}.
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1. Determine the set of possible sub-cohorts:

2. Assign the subjects to the sub-cohorts g ∈ G : 

3. For each sub-cohort g ∈ G , compute the sampling
probability of each subject j ∈ Dg as a transformation
of their stabilized weight from IPTW-Eq.  (9) as fol-
lows:

These unequal sampling probabilities represent the 
normalized IPTW stabilized weights within the sub-
cohort g in such a way that 

∑

j∈Dg
pgj = 1.

4. At each bootstrap iteration b = 1, . . . ,B (with
B = 1000 ): 

(a) obtain the sub-samples Db
g  with ng subjects

sampled with repetitions from Dg , where each
subject j has probability pgj to be selected;

(b) combine the sub-samples Db
g
 into the general-

ized bootstrap sample Db : 

(c) Estimate the CATEs τ ba (t; v) over time t in (11) 
on the generalized bootstrap sample Db.

5. For each RDI-reduction strategy a ∈ {1, 2} , effect 
modifier stratum v ∈ {0, 1} and time-point t, the
estimates τ̂ ba (t; v) are ordered from smallest to larg-
est. The resulting 2.5th and 97.5th percentiles are
selected to define the bounds of the 95% bootstrap CI
[20, 21].

Results
Statistical analyses were performed in the R-software 
environment [44], in particular using ipw [45] and sur-
vival [46] packages. Source code for the current study 
is available here: https:// github. com/ mspre afico/ TTEca 
usalR DI.

Study cohort
In total 444 eligible patients were enrolled in the con-
trol arms of BO03 (199) and BO06 (245). In this sample, 
106 (23.9%) patients were excluded due to missing HRe. 
Among the remaining 338 patients, 58 subjects stopped 
the chemotherapy treatment or did not undergo surgery, 
while 4 completed the treatment but experienced an 

G = {(a, v) : a = 0, 1, 2; v = 0, 1}

Dg =
{

i ∈ {1, . . . ,N } : (Ai ,Vi) = g
}

with sample size ng = |Dg |.

pgj =
swj

∑ng
k=1 swk

.

D
b =

⋃

g∈G

D
b
g where |Db| =

∑

g∈G

ng = N ;

event during its administration. The final cohort of 276 
patients who successfully completed the standard EOI 
treatment (114 from BO03 and 162 from BO06, respec-
tively) included in the per-protocol analyses (62.2% of the 
initial sample) is shown in the consort diagram in Sup-
plementary Material C.

Descriptives
Patient characteristics over the entire cohort and by trial 
are shown in Table 2. Overall, the median RDI value was 
0.759 (IQR=[0.649; 0.857]), with minimum and maxi-
mum values of 0.376 and 1.121. This corresponded to 
a total of 75 patients (27.2%) with standard RDI, 111 
(40.2%) with reduced RDI, and 90 (32.6%) with highly-
reduced RDI. Median EFS time computed using the 
reverse Kaplan-Meier method [47] was 89.59 months 
(IQR = [50.33; 146.30]) and 152 patients (55.1%) expe-
rienced an event after the end of the therapy. Generic 
MOTox scores were high: pre/post-operative median 
MOTox values were equal to 4.5; this means that in 
median patients experienced at least one generic side 
effect of CTCAE-grade 3 (i.e., severe or medically signifi-
cant). This is not surprising because nausea is the most 
common chemotherapy-induced adverse event. Rule-spe-
cific MOTox resulted higher in the post-operative period 
than in the pre-surgery one. This indicated that toxicity 
levels accumulate over time resulting in a more severe 
overall toxic burden in the second phase of treatment. A 
total of 94 patients (34.1%) experienced good HRe after 
surgical resection.

Figure 3 shows a scatter plot of RDIi against the stand-
ardized dose �i of CDDP+DOX for each trial (left panel: 
BO03; right panel: BO06) and HRe (circles: poor; squares: 
good). Points to the left of the black dashed vertical line, 
where �i < 1 , represent patients who received dose-
reduced therapies. The black diagonal solid line satisfies 
equation RDIi = �i , dividing the group of patients with 
standardized time Ŵi > 1 (delayed therapy, below the 
line) from the group of patients with Ŵi < 1 (anticipated 
therapy, above the line). The black diagonal dotted line 
satisfies equation RDIi = �i/1.2 , dividing the group of 
patients with therapy delayed by more than 20% of antici-
pated time (below the dotted line) from the group of 
patients with therapy delayed by less than 20% of antici-
pated time (between solid and dotted black lines). Solid 
horizontal lines vertically divide patients with a standard 
RDI-exposure (gray area above the blue line) from those 
with reduced (blue area between the blue and orange 
lines) and highly-reduced exposure (orange area below 
the orange line). This figure shows lack of a clear asso-
ciation between HRe and RDI-exposure, as confirmed by 
the chi-squared test (p-value = 0.614).

https://github.com/mspreafico/TTEcausalRDI
https://github.com/mspreafico/TTEcausalRDI
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IPTW diagnostics
Multinomial logistic regressions were used to model both 
numerators and denominators of stabilized weights SWi 
in (9). Five different IPTW specifications in terms of the 
confounding covariates included in the denominators 
(Table  3) were investigated to determine whether and 
which models best satisfied positivity and no misspecifi-
cation. See Supplementary Material D for further details.

The distributions of the stabilized weights (Table  3; 
left-panel of Fig.  4) suggest that there was no evidence 

of violation of the positivity or misspecification assump-
tions for IPTW methods 1 and 2 (mean values of about 
0.99 without extreme values), whereas methods 3 to 5 
presented lower mean values and higher standard devia-
tions. The same was confirmed by the diagnostics balance 
plot in the right panel of Fig. 4. The mean absolute stand-
ardized differences for confounders in the unweighted 
sample (black points) always exceeded those in the 
weighted samples, and the lowest values were observed 

Table 3 Inverse Probability of Treatment Weighting (IPTW) diagnostics based on summaries of stabilized weights SWi by different 
specifications of multinomial logistic regressions for the denominator Pr

(

Ai
∣

∣Li

)

a See Supplementary Material D for further details

IPTW Specification Stabilized weights: SWi 

Method Descriptiona Mean (s.d.) Min/Max

IPTW 1 Categorical/binary confounders and binary effect modifier as main effect only; each continuous MOTox score 
linearly related to the log-odds.

0.988 (0.663) 0.311/5.154

IPTW 2 Same as in IPTW 1 + interaction terms for toxicity confounders linearly related to the log-odds. 0.989 (0.691) 0.334/5.102

IPTW 3 Same as in IPTW 1 + interaction terms between toxicities and trial linearly related to the log-odds. 0.977 (0.685) 0.305/5.245

IPTW 4 Categorical confounders and effect modifier as main effect only; B-spline basis matrix for cubic polynomial 
splines with three internal knots were used to model the relationship between each continuous MOTox score 
and the log-odds.

0.969 (0.813) 0.306/7.027

IPTW 5 Same as in IPTW 1 + interaction terms between toxicities and histological response linearly related to the log-
odds

0.963 (0.694) 0.279/8.386

Fig. 4 Diagnostic plots for Inverse Probability of Treatment Weighting (IPTW) performed by using the five different specification methods in Table 3 
(purple: IPTW 1; orange: IPTW 2; yellow: IPTW 3; green: IPTW 4; blue: IPTW 5). Left panel: Boxplots of subject-specific stabilized weights SWi computed 
via Eq. (9) in logarithmic-scale. Diamonds represent the mean values. Right panel: Confounder balance plot. Lines represent the mean absolute 
standardized differences for each exposure-related confounder according to the four different specification methods (colored lines) and their 
unadjusted version (black line)
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for IPTW 1 and 2. IPTW model 1 was finally selected 
due to the lower number of parameters.

Estimated causal effects
The causal parameters β in Cox MSM (7) were estimated 
through their consistent parameters θ in weighted Cox 
model (8) fitted on the pseudo-population obtained with 
IPTW 1. Robust standard errors for computing the con-
fidence interval of each coefficient were obtained via 
the option robust=TRUE in R function coxph [46]. 

Estimates were finally compared to the results obtained 
by fitting a traditional Cox model [14] on the original 
unweighted population.

Table  4 shows the results in the pseudo-population 
(parameters β̂ to the left) and the original population 
(parameters β̂unw to the right). The difference clearly 
demonstrates how the latter was affected by the tox-
icity-treatment-adjustment bias. RDI exposure in the 
original population was not randomized: the final RDI 
represented the realization of the treatment trajectory 
influenced by both the severity of overall toxicity expe-
rienced by each patient and physicians’ interventions. In 
the pseudo-population mimicking the TT, randomization 
was emulated by adjusting for confounding. Therefore, 
the results can be interpreted in a causal setting.

Figure 5 displays the estimated EFS curves Ŝa(t|V = v) 
over time (up to 10 years since end of therapy) for stand-
ard (gray), reduced (blue), and highly-reduced (orange) 
RDI-strategy across poor (left panel) or good (right panel) 
responders. Results indicate evidence of effect modifica-
tion: exposures characterized by lower RDI resulted in 
better EFS in PRs, while, conversely, lower RDI-exposure 
led to poorer EFS in GRs.

Figure  6 shows the estimated CATEs over time (up 
to 5 years since end of therapy) for reduced (blue) and 

Table 4 Estimated parameters β̂ along with their 95% 
Confidence Intervals (CIs) for the Cox MSM in Eq. (7) and for the 
corresponding unweighted traditional Cox model

Cox MSM Unweighted Cox model

Pseudo‑population Original population

Covariate β̂ 95% CIs β̂unw
95% CIs

a = 1 −0.536 [−1.031;−0.041] −0.116 [−0.568; 0.335]

a = 2 −0.808 [−1.384;−0.231] −0.359 [−0.844; 0.127]

a = 1× V = 1 0.747 [−0.379; 1.873] −0.006 [−0.997; 0.984]

a = 2× V = 1 1.747 [0.554; 2.939] 0.979 [0.035; 1.923]

V = 1 −1.909 [−2.835;−0.981] −1.175 [−1.921;−0.429]

Fig. 5 Estimated Event-Free Survival (EFS) over time Ŝa(t|V = v) over time (up to 10 years since end of therapy) for standard (gray: a = 0 ), reduced 
(blue: a = 1 ), and highly-reduced RDI (orange: a = 2 ) strategies in subgroups of Poor Responders (PRs) (left panel: v = 0 ) and Good Responders (GRs) 
(right panel: v = 1)
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highly-reduced (orange) RDI-strategy (compared to 
standard) across patients with poor or good HRe, along 
with the estimated 95% bootstrap CIs. The CATE trends 
differ between PR and GR subgroups due to the het-
erogeneous effect of RDI reductions. GRs (right panel) 
exhibited a trend towards a clinical disadvantage result-
ing from reduced RDI, especially for high-reduced strat-
egy. Conversely, PRs (left panel) showed a clinically 
relevant benefit from reducing RDI, meaning that the 
intrinsic nature of PRs induced resistance to chemo-
therapy. In particular, 5-year estimated CATEs ( t = 60 
months) were τ̂1(60; 0) = 10.2 (95% CI = [1.5, 17.7] ) 
and τ̂2(60; 0) = 15.4 (95% CI = [5.2, 23.5] ), indicating 
an average gain of 10.2 and 15.4 months for reduced and 
highly-reduced exposure, respectively.

Clinical interpretation
A clinical explanation for these findings may lie in the effect 
of chemotherapy on non-cancerous cells. Chemotherapy 
targets a broad spectrum of rapidly dividing cells, includ-
ing immune cells, which are essential for detecting and 
destroying cancerous cells and protecting the body from 
infections. Damage to these immune cells impairs the 
immune system’s processes and ability to fight cancer, lead-
ing to a weakened response and compromising the body’s 
natural defense against any remaining cancerous cells.

In patients who responded well to treatment, chemo-
therapy’s effectiveness in reducing tumor burden out-
weighed its negative effects, leaving fewer cancer cells 
for the immune system to handle, partially offsetting 
immune suppression. In contrast, in PRs, chemotherapy 
was less effective in directly targeting the tumor, and its 
damaging impact on the immune system was more pro-
nounced. In such cases, an increased RDI may have led 
to a weakened and further suppressed immune response, 
amplifying the imbalance between the positive and nega-
tive effects of chemotherapy, and resulting in poorer EFS 
outcomes.

Discussion
Motivated by a sharp yet delicate clinical question, this 
paper introduces a novel approach to mimic a hypotheti-
cal target trial using RCT data with interventions. The 
final aim was to investigate the effect of reductions in 
RDI on EFS in patients with osteosarcoma, with a focus 
on subgroups of poor and good responders. Chemo-
therapy administration data in osteosarcoma from 
BO03 and BO06 RCTs were analysed. IPTW was first 
used to transform the original selected population into 
a pseudo-population emulating the randomized cohort 
of the TT. Then, Cox MSM with effect modification 
was employed to compared the effects of RDI reduc-
tions ranging from 15% to 30% (reduced exposure) or 

Fig. 6 Estimated Conditional Average Treatment Effects (CATEs) τ̂a(t; v) over time (up to 5 years since end of therapy) along with 95% 
bootstrap-percentiles CIs for reduced (blue: a = 1 ) and highly-reduced RDI (orange: a = 2 ) strategies compared to standard in subgroups of Poor 
Responders (PRs) (left panel: v = 0 ) and Good Responders (GRs) (right panel: v = 1)



Page 15 of 18

above 30% (highly-reduced exposure) to the standard 
RDI of EOI tratment (structured in 6 cycles of 3-weekly 
CDDP+DOX) in both PRs and GRs. CATEs were finally 
measured as the contrast between the RMST of reduced/
highly-reduced RDI-strategy and that of the standard 
one. The 95% CIs for CATEs were obtained using a novel 
IPTW-based bootstrap procedure while preserving the 
sizes of sub-cohorts.

Complexity of chemotherapy data and causal assumptions
Considering the data complexity and the underlying 
causal assumptions, a note of caution is required, as it 
needs to encompass all aspects of the chemotherapy 
process. First, exposure and outcome must be prop-
erly defined to guarantee the consistency assumption. 
Then, pre- and post-assigned confounders must be care-
fully identified to satisfy the assumption of no unmeas-
ured confounding. During this process, it is imperative 
to notice that assignment of dose reductions or delays 
in chemotherapy administration was determined not by 
individual toxicities but by the overall toxic burden for 
each patient. Therefore, pre- and post-operative side-
effects data were summarized using the new Multiple 
Overall Toxicity (MOTox) approach [25] for both rule-
specific and generic toxicity. This novel analytical strategy 
allowed (i) to reduce the number of possible confound-
ers combinations dealing with non-positivity and highly-
correlated data, and (ii) to meet the clinical rationale of 
tailoring treatment according to the patient’s overall toxic 
burden in the presence of multiple toxic side effects. 
Third, different weighting models have to be compared 
in order to preserve positivity and guarantee a cor-
rect IPTW specification. Finally, an outcome model to 
address the research question at hand must be correctly 
specified. This led to the definition of a Cox MSM with 
effect modification given by HRe, which represents the 
causal RDI analogue of the ITT landmark Cox model 
presented in [6]. These steps required careful considera-
tion and were crucial for ensuring unbiased results of the 
per-protocol analysis.

Study contributions
The first significant contribution of this study is its 
innovative use of TT emulation to address the research 
question. The results revealed evidence for effect modifi-
cations by HRe, as increasing RDI-reductions caused two 
opposite trends for PRs and GRs. Specifically, higher RDI 
reductions led to improved EFS in PRs but worsened EFS 
in GRs. Estimated CATEs highlighted that PRs can sig-
nificantly benefit from reduced RDI, due to their intrinsic 
resistance to chemotherapy.

Furthermore, the proposed TT emulation approach 
enabled the identification of potential pitfalls in a naive 
RDI-based analysis of chemotherapy data. When the 
ITT model from [6] was adapted into the traditional Cox 
models fitted on the unweighted original population by 
neglecting the influence of toxicities or other confound-
ing factors, the results were influenced by the presence 
of the toxicity-treatment-adjustment bias. By employ-
ing an IPTW-based Cox MSM, this study eliminated the 
feedback loop between side effects and treatment adjust-
ments. This resulted in unbiased estimates of the impact 
of RDI reductions on EFS within the two subgroups and 
provided a more accurate depiction of the effects of low-
intensity regimens.

The third significant contribution of our study is to 
have demonstrated how existing RCT data can be effec-
tively repurposed for additional retrospective analyses, 
extending beyond the intended scope of the original 
studies. Our proposed analytical approach possesses the 
versatility to be adapted and applied to various cancer-
related investigations. These investigations might encom-
pass diverse types of treatments (e.g., immunotherapies 
or molecularly targeted agents) with its unique set of side 
effects to study how reductions in treatment intensity 
influence the outcome of interest, possibly within specific 
subgroups of interest. This would require a detailed pro-
tocol and close collaboration with medical staff to iden-
tify patient’s clinical history, relevant side effects, and 
treatment-related factors.

Finally, a novel generalized bootstrap procedure was 
introduced to compute confidence intervals for CATEs. 
This approach diverged from typical random sampling 
in two key ways: (i) it sampled from each sub-cohort 
characterized by various combinations of strategies and 
effect modifier levels while maintaining the sub-sample 
sizes, and (ii) it employed unequal IPTW-based prob-
ability sampling [22, 23]. By employing this procedure, all 
sub-cohorts were adequately represented in the general-
ized bootstrap samples, avoiding estimation issues due to 
missing observations. Moreover, subjects with oversized 
weights were sampled more frequently, allowing for a 
more thorough exploration of the uncertainty associated 
with them [23]. This approach heavily relies on the esti-
mated stabilized weights. Therefore, it is crucial that the 
theoretical assumption of no unmeasured confounding 
holds, and the IPTW model must be correctly specified.

Limitations
As the first study to use TT emulation to assess whether 
reduced RDI led to improved EFS, this analysis has cer-
tain limitations. Due to the nature of the toxicity data in 
the BO03 trial, only the highest CTCAE grades for each 
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toxicity during pre- and post-operative cycles were meas-
ured. Consequently, the MOTox scores in (6) were based 
on pre- and post-operative periods rather than being 
computed per cycle, thus flattening the toxicity history. 
This data-forced approach is debatable, as multiple severe 
toxicities might occur simultaneously, potentially leading 
to significant interactions, and longer-lasting lower-grade 
toxicities may also impact patient outcomes. However, 
there is no certainty that the measured highest CTCAE 
grades happened simultaneously, and longer-lasting 
lower-grade events may have been obscured by a single 
severe episode. These aspects could not be adequately 
addressed in our context, and the approach adopted was 
the best possible option given the available data.

Upon clinical request, the study investigated patients 
who had successfully completed standard EOI treatment. 
Consequently, the analysis was limited to cohort mem-
bers who underwent surgery and all six cycles of chemo-
therapy. This corresponded to performing a per-protocol 
analysis analogous to TT on the RCT data (see Table 1), 
where EFS was measured from the end of therapy. The 
actual time between study enrollment and the end of 
therapy was included in the computation of the RDI 
level. Extending the proposed TT emulation approach to 
the entire cohort would require adapting the methodol-
ogy and the causal estimands to address: (i) time-varying 
exposure strategies (as RDI level may vary over cycles) 
and confounders; (ii) intermittent missing exposures (e.g., 
dosages) or characteristics (e.g., toxicity, effect modifiers) 
between cycles; (iii) informative dropouts (e.g., treatment 
discontinuation due to excessive toxicity); (iv) censor-
ing or death before the end of therapy. These extensions 
require the development of complex methodologies that 
integrate TT emulation into a longitudinal causal frame-
work for chemotherapy data, while also addressing miss-
ing values and within-treatment censoring. Fulfilling the 
causal assumptions and estimating causal models may be 
even more demanding in a longitudinal context, repre-
senting an interesting and valuable methodological chal-
lenge for future research.

Clinical impact and future research directions
This study revealed that exposures characterized by 
higher RDI resulted in poorer EFS outcomes in PRs, 
probably due to a weakened immune response due to 
chemotherapy effects on non-cancerous cells, combined 
with insufficient tumor reduction. In contrast, in GRs, 
the efficacy of chemotherapy in reducing tumour burden 
outweighed its negative effects on immune suppression. 
This evidence for effect modification can be exploited for 
establishing new treatment guidelines tailored to specific 
patient subgroups that could benefit from modified treat-
ment strategies. While treatment decisions for GRs could 

be made on a case-by-case basis, as their situation is less 
severe, guidelines for PRs should recommend treatment 
strategies that preserve immune function. This could be 
done by reducing the RDI or combining chemotherapy 
with immune-supportive therapies. Future clinical stud-
ies should further investigate this phenomenon and its 
translation into clinical practice.

This work also emphasizes the importance of meticu-
lous attention to the collection of chemotherapy data. 
Data from existing RCT can be used for further retro-
spective analyses beyond their original purpose only 
if they are of high quality. High-quality data are indeed 
essential for developing causal models that accurately 
account for the complex interactions between chemo-
therapy and toxicity, thereby minimizing the risk of 
biased results. This aspect must be carefully considered 
when designing case report forms for data collection in 
future trials.

Overall, this study provides a solid foundation for 
future research toward a cycle-by-cycle longitudinal per-
spective. Although this methodological extension would 
require developing complex methods to fully capture 
the peculiarities of cancer dynamics, it holds significant 
potential for shedding light on complex aspects of toxic-
ity-treatment interactions. By advancing methods in this 
research field and collaborating with medical person-
nel, the results could generate new knowledge in cancer 
treatment. For example, a novel longitudinal methods to 
investigate whether treatment delays and dose reductions 
recommended by guidelines can be accepted without 
compromising outcomes could be valuable for guiding 
treatment decisions and optimizing patient care. This 
approach may also significantly impact the formulation 
of new guidelines and their implementation in practice.

Conclusions
This work has introduced an innovative and comprehen-
sive analysis of chemotherapy administration RCT data, 
aimed at addressing specific clinical questions related to 
the reduction of RDI within subgroups of patients with 
osteosarcoma. The study is complemented by tutorial-
like explanations which provide insights into the inherent 
challenges in this scenario and the novel problem-solving 
strategies proposed. Furthermore, this study has empha-
sized the critical role of toxicities in this context and 
illustrated the detrimental consequences of neglecting 
them in the analyses.

To the best of our knowledge, no other studies have 
employed the principle of TT emulation to address this 
important research question in the oncological field. The 
developed approach offers several advantages, including 
(i) accounting for all the unique aspects of chemotherapy,
(ii) mitigating the toxicity-treatment-adjustment bias,



Page 17 of 18

and (iii) effectively repurposing existing RCT data for 
additional retrospective analyses extending beyond the 
intended scope of the original trials.

This study provides a solid foundation for future work 
toward a cycle-by-cycle longitudinal perspective, which 
could significantly enhance cancer research by capturing 
the complexities of cancer dynamics and chemotherapy 
data across treatment cycles.
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