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ABSTRACT 20 

We present an inverse modeling procedure for the calibration of uncertain model parameters 21 

characterizing basin scale sandstone compaction due to mechanical and geochemical processes. 22 

Unknown model parameters include geophysical and geochemical system attributes as well as 23 

pressure and temperature boundary conditions. We derive a reduced model of the system based 24 

on the generalized polynomial chaos expansion (gPCE) approximation method and compute the 25 

variance-based Sobol indices for the selected uncertain parameters. The gPCE is used to 26 

approximate the model response at a low computational cost and the Sobol indices quantify the 27 

effect of each uncertain parameter on the state variables. Parameter estimation is performed 28 

within a Maximum Likelihood framework. Results are illustrated on a one-dimensional test case 29 

involving quartz cementation and mechanical compaction in sandstones. The reliability of the 30 

gPCE approximation in the context of an inverse modeling framework is assessed. The effects of 31 

(a) the strategy adopted in building the gPCE and (b) the type and spatial location of calibration 32 

data (such as temperature and porosity) on the goodness of the parameter estimates are explored 33 

by means of classical estimation error analysis and model selection criteria. 34 

35 
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1. INTRODUCTION 36 

Diagenesis of sedimentary basins involves the coupled action of mechanical and 37 

geochemical processes [Wangen, 2010]. Mechanical compaction is due to the effective stresses 38 

caused by the load of the overlying sediments after deposition. These effective stresses induce 39 

grain rearrangement and therefore porosity reduction with increasing depth. Geochemical 40 

compaction has also a large influence on the evolution of the porous matrix structure. Typical 41 

examples include quartz cementation in sandstones and smectite to illite transformation in shales 42 

[see, e.g., Osborne and Swarbrick, 1999; Milliken, 2004; Taylor et al., 2010 and references 43 

therein]. In this work we focus on quartz cementation phenomena, which are particularly 44 

relevant in sandstones. These processes take place at the pore scale and are typically 45 

temperature-activated. 46 

Basin evolution models require the solution of temperature and pressure fields. 47 

Knowledge of these quantities is crucial in several applications, e.g., quantitative assessment of 48 

saline groundwater flow and residence times in coastal reservoirs [Kreitler, 1989], prediction of 49 

liquid overpressure [e.g., Jiao and Zheng, 1998], evaluation of hydrocarbon generation and 50 

migration [e.g., Taylor et al., 2010; Zhao and Lerche, 1993], analysis of risk assessment in 51 

drilling practice [Nadeau, 2011; O’Connor et al., 2011]. The characteristic spatial and temporal 52 

evolutionary scales of sedimentary basin compaction processes are, respectively, of the order of 53 

kilometers and millions of years. On the other hand, the critical physical and chemical processes 54 

take place at the pore scale and are typically analyzed through laboratory experiments. A 55 

complete and rigorous model formulation which embeds the multiscale nature of the diagenetic 56 

processes is still not available. Therefore, simplified effective models are usually adopted. 57 

Empirical relationships between porosity and stresses [e.g., Schneider et al., 1994] are 58 
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commonly employed. Nonetheless, issues related to quartz cementation, including the role 59 

played by pressure and hydrocarbons in the precipitation/dissolution process as well as the 60 

proper identification of the source of silica, have been largely debated in the literature [Taylor et 61 

al., 2010]. Although inhibition of quartz cementation due to fluid overpressure has been 62 

observed [e.g., Osborne and Swarbrick, 1999], widely used quartz cementation models rely on 63 

the assumption that (i) quartz precipitation is a temperature-driven reaction-limiting factor [e.g., 64 

Oelkers et al., 1996] and (ii) dissolution of grains and quartz precipitation happen at the same 65 

location, meaning that the source of quartz is local [e.g., Walderhaug 1994, 1996; Lander and 66 

Walderhaug, 1999].  67 

Outputs of basin compaction models are affected by uncertainty, mainly due to the lack 68 

of knowledge of the appropriate interpretive conceptual and mathematical model and the 69 

associated parameters. Since direct measurements of model parameters are typically scarce, 70 

parameter estimation can be performed by conditioning a given compaction model on measured 71 

state variables, such as temperature, heat flux, porosity and pressure [Lerche, 1991; Zhao and 72 

Lerche, 1993; Tuncay and Ortoleva, 2004; Beha et al., 2008; Huvaz et al., 2005].  73 

Recently, Formaggia et al. [2013] presented a comprehensive simulation tool for 74 

sandstone compaction in the presence of quartz cementation. This model allows to (a) perform a 75 

global sensitivity analysis of the system states under uncertain mechanical and geochemical 76 

parameters and (b) obtain an efficient surrogate model of the compaction system. The surrogate 77 

model is based on a sparse grid sampling technique in the context of a generalized polynomial 78 

chaos expansion (gPCE) approximation of the system states [Ghanem and Spanos, 1991; Xiu and 79 

Karniadakis, 2002; Le Maitre and Knio, 2010]. Being a polynomial expression, the gPCE 80 

approximation of the model outputs can be evaluated at any location in space and time and for 81 
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any combination of values of the uncertain parameters at a reduced computational cost. This 82 

allows obtaining a fast evaluation of the mean and the variance of the system states associated 83 

with the randomness of the model parameters, as well as of the Sobol sensitivity indices [Sobol, 84 

1991; Sudret, 2007; Crestaux et al, 2009] which provide a direct quantitative measure of the 85 

influence of each uncertain parameter on the total output variance. The information embedded in 86 

the Sobol indices can be used in the context of an inverse modeling procedure to derive optimal 87 

calibration data locations [see, e.g., Fajraoui et al., 2011, 2012; Ciriello et al., 2013]. Probability 88 

density functions of output variables can also be computed to evaluate uncertainty propagation 89 

features through the model. 90 

The idea of accelerating the solution of inverse problems through the use of polynomial 91 

approximations has been already discussed in literature [e.g. Balakrishnan et al, 2003; Marzouk 92 

et al., 2007, 2009; Fajraoui et al., 2011, 2012; Ciriello et al., 2013; Oladyshkin et al., 2013]. In 93 

this work, we analyze the feasibility of estimating the key parameters of a basin compaction 94 

model within an inverse maximum likelihood (ML) framework [e.g., Carrera and Neuman, 95 

1986] where the full model is replaced by its gPCE approximation. A preliminary attempt to 96 

accelerate ML estimates with a gPCE methodology was presented by Pence et al. [2011] in the 97 

context of dynamical systems. 98 

Here we employ a synthetic example to explore the influence of the joint information given by 99 

heterogeneous and uncertain state variable measurements (e.g., porosity and temperature), on our 100 

ability to properly estimate the key parameters of a basin compaction model. Recent studies [e.g. 101 

Zhang et al., 2010; Lin and Tartakovsky, 2009] show that reduced models based on gPCE may 102 

result in inaccurate results in the presence of high nonlinearity. The distinctive feature of this 103 

work is the use of gPCE within inverse modeling for i) highly nonlinear coupled equations 104 
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system and (ii) large space-time evolutionary scales typical of basin compaction models. The 105 

relevance of the spatial location of data on the quality of parameter estimation  is also assessed. 106 

We highlight the parameters playing a critical role in the model through the use of the Sobol 107 

indices. An additional novel element of our study is the analysis of the way the ML framework 108 

can benefit from the adoption of anisotropic polynomial approximations, in which the surrogate 109 

model is refined only with respect to the key parameters. Here we use an a-priori anisotropic 110 

approximation strategy, where the importance of each parameter is established in advance, 111 

through human expertise or ad-hoc preliminary computations. The sparse grid sampling 112 

points/gPCE polynomials are then choosen accordingly, following the approach presented in 113 

[Nobile et al., 2008; Bäck et al, 2011]. We mention that on the other hand an a-posteriori 114 

anisotropic approximation strategy could also be possible, i.e. a strategy in which the importance 115 

of each parameter is discovered during the computation, as points / polynomials get added to the 116 

approximation [e.g., Gerstner and Greipel, 2003; Chkifa et al., 2013]. Such anisotropic strategies 117 

have been extensively discussed and applied e.g. to diffusion and groundwater flow problems 118 

[see e.g., Beck et al., 2012; Foo et al., 2008; Ganapathysubramanian and Zabaras, 2007]. To the 119 

best of authors' knowledge, the present paper is the first one using anisotropic approximation 120 

strategies in a model inversion approach.  121 

The paper is organized as follows. In Section 2 we recall the main features of the basin 122 

compaction model and of its gPCE approximation. Section 3 is devoted to the description of the 123 

ML inverse framework and of the numerical methodology adopted. Numerical results concerning 124 

a synthetic test case are discussed in Section 4. Concluding remarks are then presented. 125 

2. BASIN COMPACTION MODELING 126 
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In this section we briefly summarize the theoretical and numerical tools developed by 127 

Formaggia et al. [2013] for the analysis of mechanical and geochemical compaction in a basin-128 

scale model. We introduce the mathematical formulation of the sandstone compaction model and 129 

then recall the numerical methodologies employed to derive the gPCE-based reduced model. 130 

2.1 Forward basin compaction model 131 

Consider a one-dimensional sedimentary basin ( )tΩ  = [ ( ), ( )]
bot top

z t z t  evolving with time 132 

t, ( )
bot

z t  and ( )
top

z t  being the bottom and the top of the domain, respectively. Mass conservation 133 

of fluid and solid phases in ( )tΩ  are governed respectively by 134 

� � �� ��
� �

φρ φρ∂ ∂
+ =

∂ ∂
 (1) 135 

( ) ( )� �� � �

�
�

�
� �

φ ρ φ ρ
   
∂ − ∂ −   
   + =
∂ ∂

 (2) 136 

where φ  is the porosity of the sediments, u
i
 and ρi

 indicate the velocity and the density of i-137 

phase (with i = s for the solid phase and i = l for the fluid phase) respectively. The source terms 138 

��  account for processes associated with fluid (i = l, e.g., water released during transformation 139 

of clay mineral) and solid (i = s, e.g., quartz precipitation) generation.  140 

The Darcy flux (u
D
) is given by 141 

( )� � � �

�

	 

� � � �

�
φ ρ

�

 ∂  = − = −  ∂ 
 (3) 142 

where p is the pore pressure, µl
 is the fluid dynamic viscosity, g is the gravity acceleration and K 143 

is the permeability. The latter is modeled as 1 2( ) 10
k k

K
φφ −=  [Wangen, 2010] where k1 and k2 are 144 

fitting parameters which are usually determined through laboratory experiments. 145 
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The rate of porosity change due to mechanical compaction is given by 146 

( ) ( )0 exp CM
f C

dd

dt dt

σφ
β φ φ βσ= − − −  (4) 147 

where  148 

,sd
u

dt t z

⋅ ∂ ⋅ ∂ ⋅
= +

∂ ∂
 (5) 149 

Here, ϕ0 is the initial porosity of the basin, ϕf is the minimum porosity value that can be attained 150 

by pure mechanical compaction, β is the soil compressibility coefficient and σC is the effective 151 

stress, given by subtracting the liquid pressure from the total load. 152 

Quartz precipitation is modeled as proposed by Walderhaug [1996]  153 

0
10 ;           ;

 
= = > 

 

qb TQ Q

q C

Q act

d M
A a A A T T

dt

φ φ

ρ φ
 (6) 154 

where ϕQ is the volumetric fraction of quartz cement, MQ and ρQ are respectively the molar mass 155 

and the density of quartz, A0 and ϕact represent the specific surface and the actual porosity at the 156 

onset of quartz precipitation, and 
q

a  and 
q

b  are characteristic parameters of the system. The 157 

reaction takes place only if the temperature, T, is larger than a critical value TC (usually assumed 158 

equal to 80°C). 159 

Finally, the temperature evolution is modeled by 160 

1

0;
φφλ λ

−∂ ∂ ∂ ∂   + − = =   ∂ ∂ ∂ ∂ 
T T T T l s

T T T
C C K K

t z z z
 (7) 161 

where CT(ϕ) = ( )1l l l s s s
c u c u+ −φρ φ ρ  is the effective thermal capacity of the medium, TK  is the 162 

thermal conductivity, sλ  and lλ  are fluid and solid specific conductivities, 
l

c  and 
s

c  163 

respectively are the liquid and solid specific thermal capacities. The nonlinear partial differential 164 
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system (1)-(7) is complemented by appropriate initial and boundary conditions as detailed in 165 

Section 4.  166 

2.2 Global sensitivity analysis and model reduction technique 167 

Inverse modeling (or history matching) typically requires solving the forward system 168 

model for several values of the unknown parameters. This procedure depends on the 169 

methodology employed and is usually highly time consuming. In the following we alleviate the 170 

computational burden by introducing a polynomial surrogate of the full compaction model 171 

described in Section 2.1 172 

We collect the PN  uncertain parameters, ip , in vector PN∈ℜp . Since, in general, no 173 

detailed information on geochemical compaction model parameters are available, each ip  is 174 

assumed to be described by a uniform distribution within the interval [ ],i i ia bΓ = , so that 175 

1 2 ...
PN

∈ Γ = Γ × Γ × × Γp . Any output of the full compaction model can thus be described as a 176 

function ( ) :f Γ → ℜp . The generalized Polynomial Chaos expansion (gPCE) allows 177 

approximating ( )f p  by a sum of Q  multivariate orthogonal polynomials ( )iψ p  178 

1

( ) ( )
Q

i i

i

f α ψ
=

≈∑p p  (8) 179 

where iα  are real numbers called gPCE coefficients. The specific family of polynomials to be 180 

used in (8) depends on the probability distribution of the parameters. Since ip  are considered as 181 

uniformly distributed, in the following we adopt the family of multivariate Legendre 182 

polynomials [Ghanem and Spanos, 1991; Xiu and Karniadakis, 2001; Le Maitre and Knio, 183 

2010]. The cornerstone of the adopted algorithm is the so-called sparse-grid sampling of Γ  184 

[Smolyak, 1963; Xiu and Hestaven, 2005; Babuska et al, 2007; Formaggia et al., 2013], which is 185 
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a generalization of the simpler Cartesian grid sampling. In the latter, one first chooses a set of 186 

points within each interval iΓ  and then builds a grid over Γ  by taking the Cartesian product of 187 

such sets. The procedure is exemplified in Figure 1a. Clearly, the number of points of the 188 

resulting grid increases exponentially with the dimension of Γ , i.e., with PN . On the other hand, 189 

the sparse grid procedure allows improving the effectiveness of sampling upon creating a grid 190 

over Γ  by superposing many small Cartesian grids Γ  (see Figure 1b and 2). In other words, this 191 

method is able to capture the features of the sampled function ( )pf  by using a relatively small 192 

number of points, as can be seen by comparing Figures 1a and 1b. The results obtained with the 193 

full model at each point of the sparse grid are then used to build an intermediate surrogate model 194 

of ( )pf  which is termed sparse grid approximation of ( )pf  and which is then converted in the 195 

gPCE expansion with simple algebraic manipulations [see Formaggia et al., 2013 for details]. 196 

For a given Γ , the number of collocation points of the sparse grid, CN , and their distribution 197 

over the parameter space is determined according to the following steps [see, e.g., Bäck et al., 198 

2011]: 199 

(a) selection of the set of polynomials that will enter the gPCE expansion (8); common examples 200 

of polynomial sets are Legendre polynomials whose maximum degree in each direction 201 

1 2, , ,…
pN

p p p  does not exceed a given level ∈w N  (which constitutes the “maximum degree” 202 

gPCE) or the set of Legendre polynomials for which the sum of degrees in each direction does 203 

not exceed a given level (which is termed “total degree” gPCE); 204 

(b) introduction of anisotropic refinements of the gPCE approximation of ( )pf ; in this step it is 205 

possible to refine the gPCE model only with respect to the most relevant parameters by adopting 206 

anisotropic grids as shown, e.g., in Figure 1c. 207 
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We will follow these steps in the numerical examples described in Section 4, where we 208 

demonstrate that the gPCE can efficiently be employed as a surrogate model for the inversion 209 

procedure of a basin compaction model. The gPCE expansion also allows, after simple algebraic 210 

manipulations of the coefficients iα , to compute the mean and the variance of ( )pf  together 211 

with the Sobol indices. The latter provide a measure of the relative contribution of each 212 

parameter to the total variance of the state variables and can be used to perform a global 213 

sensitivity analysis of the system output with respect to the input parameters [Archer et al., 1997; 214 

Sudret 2007; Crestaux et al, 2009]. In particular, total Sobol indices include the sum of all Sobol 215 

indices related to a single parameter and can be employed to assess the global influence of any 216 

given parameter on the uncertainty related to the model output. 217 

3. INVERSE MODELING 218 

In this Section, we describe the Maximum Likelihood (ML) approach that we adopt to 219 

derive ML estimates p̂  of p  on the basis of porosity and/or temperature measurements. We set 220 

* * 1,...,
ii i i Nφ φφ φ ε= + =  (9) 221 

* * 1,...,
jj j T TT T j Nε= + =  (10)  222 

where iφ  and 
j

T  are, respectively, the (unknown) true values of φ  and T  at measurement points 223 

zi and zj at time t, *

i
φ  and 

*

jT  are their (known) measured values affected by zero-mean 224 

(unknown) measurement errors, 
*

iφε  and 
*

jTε . In practical applications of basin-scale problems the 225 

time t at which measurements are taken usually coincides with the current time [e.g., Zhao and 226 

Lerche, 1993; Taylor et al., 2010]. Following the work of Carrera and Neuman [1986] we 227 

assume (a) 
*

iφε and 
*

jTε  to be multivariate Gaussian, (b) absence of spatial correlation and cross-228 
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correlation between measurement errors of φ  and T , and (c) covariance matrix of measurements 229 

errors of φ , Cφ , and T, TC , to be known up to positive statistical parameters, 
2

φσ , and 2

T
σ , i.e., 230 

�
φ φ φσ=� �  2

T T T
=C Vσ  (11)  231 

where 
2

φσ , and 2

T
σ  are typically unknown and estimated during inversion. According to 232 

assumption (b) φV  and TV  become diagonal matrices. Furthermore, in the following we assume 233 

�φ
= =� � � , i.e., the prior estimation errors of φ  and T  are constant in space. 234 

The ML estimate p̂  of p is obtained by minimizing the negative log likelihood (NLL) criterion 235 

[Carrera and Neuman, 1986; Medina and Carrera, 2003] that, in the absence of direct 236 

measurements of p, becomes 237 

� �

� �
�� �� ���� ��

� � �

�

 
��� � � �

φ

φ φ

φ

σ σ π
σ σ

= + + + +  (12) 238 

where � �� � �φ= + . The quantities 
φ

 and 
�
  are, respectively, the porosity and the 239 

temperature residual criteria and are defined as  240 

( ) ( )� �
�

�
φ φ

−= − −�Φ Φ Φ Φ ;  (13) 241 

( ) ( )� �
�

�

�


φ

−= − −�Τ Τ Τ Τ  (14) 242 

where superscript 
T
 denotes transpose, �

Φ  is the vector of porosity measurements, �
Τ  is the 243 

vector of temperature measurements, Φ  and Τ  are the vectors of conditional porosity and 244 

temperature values evaluated according to the forward model (1)-(7) at measurement locations. 245 

Note that Φ  and Τ  depend on the parameter vector p . It is thus clear that the minimization of 246 

NLL requires the solution of the system (1)-(7) for a (typically large) number of p  values. This 247 

task can be extremely CPU time consuming, especially in the presence of strong model 248 
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nonlinearities. Therefore, in this work we explore the feasibility of replacing (1)-(7) by the gPCE 249 

approximation of Φ  and Τ , which can be efficiently evaluated for any particular value of p . 250 

For notational convenience, in the following we use Φ  and Τ  to refer to the gPCE solution. 251 

Therefore, 2

φσ  and 2

T
σ  include both measurement and model errors, the latter being due to the 252 

use of the gPCE approximation. Note that if 
2

φσ  and 2

T
σ  are known, minimization of (12) is 253 

equivalent to minimizing the general least squares criterion  254 

�  φ λ= +  (15) 255 

where 
� �	 �φλ σ σ= . Small values of λ  imply that porosity data are assumed to be more reliable 256 

than temperature data, and hence the minimization of J  will be essentially equivalent to the 257 

minimization of Jφ ; the opposite holds for large values of λ . 258 

In general, 
�
φσ and �

�σ (and therefore λ ) are unknown a priori. In principle, these statistical 259 

quantities could be estimated jointly with p by minimizing (12). However, such estimation is 260 

likely to be unstable [Carrera and Neuman, 1986]. Carrera and Neuman [1986] suggested to 261 

avoid this problem by (i) minimizing (15) with respect to p for a set of λ values, (ii) obtaining for 262 

each λ the corresponding ML estimates of 
2

φσ  and 2

T
σ  as 263 

2 minˆ
D

J

N
=φσ                

2

2
ˆ

ˆ
T =

φσ
σ

λ
 (16) 264 

where Jmin is the minimum value of J evaluated at step (i), (iii) evaluating NLL by (12) for each 265 

set of (p, 2ˆ
φσ , 2ˆ

T
σ ), and (iv) choosing the set (p, 2ˆ

φσ , 2ˆ
T

σ ) for which NLL is minimum. Riva et al. 266 

[2009, 2011] have demonstrated that an improved estimate of λ  can be obtained on the basis of 267 

the Bayesian criterion [Kashyap, 1982]  268 

�� � ��
�

	�� ��� � π= − − �  (17) 269 
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where 
 
�  is the Cramer-Rao lower bound approximation of the determinant of the covariance 270 

matrix of the estimation error, i.e., 271 

( )φ φ φ φσ λ
−− −= +
�� � �� �

� � �� � � � � � �  (18) 272 

where Jk (k = φ, T) is the Jacobian matrix including the derivatives of the output state variables 273 

(porosity or temperature) with respect to the model parameters evaluated at measurement 274 

locations at the values of p at the current iteration of the inversion procedure. Note that 275 

evaluation of Jk usually requires to solve several times the forward model to approximate the 276 

derivatives of the state variables with respect to the model parameters. A key point of the gPCE 277 

framework is that Jk can be obtained analytically, as φ and T are approximated by polynomial 278 

functions. For an extensive discussion of the reliability of KIC and NLL in driving the choice of 279 

λ  see, e.g., Ye et al [2008], Tsai and Li [2008], Riva et al [2011]. 280 

In summary, we propose here to obtain ML estimates of the parameters characterizing a 281 

basin-scale system subject to mechanical and geochemical compaction according to the 282 

following steps: 283 

1. Derivation of the gPCE surrogate model. 
��  uncertain model parameters are required to be 284 

selected. This step is developed upon sampling the parameters space Γ  with a sparse grid and 285 

solving the compaction problem (1)-(7) at each point of the sparse grid. Numerical evaluation 286 

of (1)-(7) is performed according to the lagrangian approach proposed by Formaggia et al. 287 

[2013]. 288 

2. Minimization of J for selected λ values. The minimization of J is performed through the 289 

Nelder-Mead simplex search method [Lagarias et al., 1998]. During this step, the gPCE is 290 

evaluated for each space-time location where measurements are available and for each 291 
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tentative value p̂  computed by the minimization algorithm. We repeat the minimization 292 

procedure with different initial parameters guesses, to avoid detecting local minima. 293 

3. ML estimation of 
2

φσ  and 2

T
σ  by (16) for each λ. 294 

4. Selection of λ by minimizing (with respect to λ) NLL and/or KIC. 295 

4. ILLUSTRATIVE EXAMPLE 296 

4.1 Problem Definition and Global Sensitivity Analysis 297 

We illustrate the proposed methodology on a synthetic basin compaction test case similar 298 

to the one analyzed by Formaggia et al. [2013]. The total sedimentation time we consider is 200 299 

Ma (millions of years) and the sedimentation rate is fixed to 30 m/Ma. Temperature and pressure 300 

values at the top of the basin (z = 
top

z ) are assigned, and are respectively equal to 295 K and 301 

γseahsea (i.e., the hydrostatic pressure of the overlying sea depth, 
���� , γsea being the specific 302 

weight of seawater). For our purposes we assume 
����  to be constant in time, thus disregarding 303 

possible erosion phenomena. The bottom of the basin is assumed to be impermeable (u
D
 = 0) and 304 

subject to a given a geothermal gradient, 
�� . 305 

Amongst the several parameters characterizing the system (1)-(7), Formaggia et al. [2013] 306 

showed that uncertainty typically associated with the three parameters β, aq and hsea bears the 307 

largest influence on porosity profiles, while temperature is mostly affected by aq and 
���� . In this 308 

study we also consider uncertainty in the geothermal gradient 
�� , which is expected to influence 309 

both temperature and porosity distributions. 310 

All these uncertain parameters are assumed to be uniformly distributed within the intervals 311 

(Min, Max) reported in Table 1. Selected bounds are consistent with the results of previous 312 

sensitivity analysis [Walderhaug, 1994; Lander and Walderhaug, 1999; Wangen, 2010; 313 
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Formaggia et al., 2013]. Relative ranges of parameters are computed as ( ) ( )min max /−i i ip p p , 314 

i.e., as the relative variation of the interval with respect to its mean value. A large relative range 315 

is considered for ��  and it is linked to the high level of uncertainty associated with the 316 

estimation of reaction kinetics parameters. The remaining parameters are assumed constant. In 317 

particular, we set: ������� = °C
-1

 [Walderhaug, 1994], and 2 16.94k =  [Wangen, 2010; 318 

Formaggia et al., 2013]. At the initial simulation time, we assume a layer of material of 500 m 319 

thickness. Initial porosity distributions is assigned through standard Athy’s law [e.g., Schneider, 320 

1994] for mechanical compaction. 321 

Figure 3 depicts the vertical profiles of the average temperature and porosity obtained by 322 

the gPCE approximation at the final deposition time. Here, we have used a “total degree” gPCE 323 

(see Section 2) at level 3w = , which is adequate to resolve the complexity of the input/output 324 

mapping (see also Section 4.2 for a further discussion). Figure 3 also reports the uncertainty 325 

envelopes obtained by summing and subtracting the associated standard deviation to the mean 326 

profiles. Figure 4 shows the Sobol indices associated with the results plotted in Figure 3. The 327 

mean porosity (Figure 3a) initially (z > - 2000 m) decreases with decreasing z following an 328 

exponential trend, as described by (4). This behavior is due to mechanical compaction and is 329 

strongly influenced by β  and 
���� , as shown in Figure 4a. Quartz cementation starts at about z  ≈ 330 

- 2000 m where the Sobol indices related to 
�
�  and 

��  increase. For z < - 2000 m the porosity 331 

rapidly decreases to zero and its variance tends to increase. Mean temperature (Figure 3b) 332 

increases almost linearly with depth until z  ≈ - 2000 m. It can be noted that the temperature 333 

gradient decreases when quartz cementation starts to become relevant. This behavior is 334 
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associated with the decrease of accessible pore space, which influences the thermal conductivity 335 

of the medium at large depth values. 336 

Figure 4b reveals that the temperature distribution is highly influenced by 
��  and 

���� , 337 

as these parameters are strictly related to the boundary conditions of the thermal problem. 338 

Parameter ��  plays also a role at high depths, highlighting the strong correlation between the 339 

vertical distributions of temperature and porosity when the quartz precipitation is active. 340 

4.2 Inversion modeling and results 341 

The reference porosity ����Φ  and temperature 
����
�  fields have been generated by solving 342 

(1)-(7) with p = ptrue (see Table 1). The profiles ����Φ and 
����
�  obtained at the final simulation 343 

time (t = 200 Ma) are shown in Figure 3. We sample ����Φ and 
����
�  at 300 equally spaced 344 

locations along the z-axis to obtain the information employed in the inversion procedure. In order 345 

to simulate measurements errors, the calibration data �
Φ  and ��  are obtained by superimposing 346 

a white Gaussian noise having a variance of �

φ
σ  and 

�

�
σ  to ����Φ  and 

����
� , respectively. In the 347 

following, we investigate the impact of (i) the order w  of the gPCE approximation, (ii) the type 348 

of calibration data available, and (iii) the spatial distribution of the data on the quality of p 349 

estimates. 350 

4.2.1 Analysis of the gPCE approximation in the inversion procedure 351 

We start by assuming that only porosity data are available (i.e., λ = 0 in (15)) and 352 

compare the outputs of the inversion procedure obtained with various orders w of the gPCE 353 

polynomial approximation (8) of the porosity. We set �
Φ  = ����Φ . Therefore, the only source of 354 

error in the calibration data is due to the gPCE approximation of porosity. Here, we investigate 355 

two different gPCE strategies, namely (a) an isotropic sampling strategy, according to which the 356 
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same accuracy is adopted to approximate the dependence of the porosity on each parameter; and 357 

(b) an anisotropic strategy, in which we consider different accuracies of the approximation with 358 

respect to each parameter. With reference to the isotropic setting, we use the total degree gPCE 359 

at two levels 3,4w = . In the context of the anisotropic setting, we set a polynomial order 3 for 360 

each parameter with the exception of 
q

a , for which we use polynomials up to order 6. This 361 

choice leads to a sparse grid sampling that concentrates sampling points along the 
q

a  direction in 362 

the parameters space Γ  (see Figure 1c for an example in a two-dimensional parameter space). 363 

This choice is motivated by the observation that the dependence of φ  on 
q

a  has a complex 364 

behavior, due to the fact that 
q

a  appears in the exponential quartz cementation rate (6), which 365 

results in a highly nonlinear input-output relationship, and therefore requires a special refinement 366 

[Formaggia et al., 2013]. Moreover, as noted above (see also Table 1), the relative range of 
q

a  367 

is much larger than that associated with the other uncertain parameters. In general, in the 368 

presence of real data, sparse grids refinement may be selected on the basis of information 369 

provided by a global sensitivity analysis (e.g., Sobol indices), estimates of parameter uncertainty 370 

and/or large relative ranges.  371 

The key results obtained are listed in Table 2. The lowest values of NLL, KIC and φσ  are 372 

obtained with the anisotropic gPCE approximation, thus identifying the latter as the best forward 373 

(surrogate) model. The relative errors ( ) � � 	
� �� �

 
 

η = −  (with i = β, aq, GT, hsea) associated 374 

with each estimated parameter are also reported in Table 2. As expected, 
�
η  decreases with w by 375 

adopting an isotropic grid in the parameter space. In particular, the parameter aq is poorly 376 

estimated when w = 3 and an isotropic sampling is performed. The anisotropic refinement of the 377 

sparse grid provides relative errors which are always smaller that 1%. Remarkably, adoption of 378 
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the anisotropic refinement leads to improved results with respect to those obtained through an 379 

isotropic gPCE with w = 4. This degree of accuracy is also associated  with a considerably 380 

reduction of the CPU time, i.e., of about 60% when compared against the isotropic gPCE with w 381 

= 4 (see also the number CN  of sparse grid points required in the two cases and reported in Table 382 

2). For validation purposes, the model inversion has also been performed through the use of a 383 

standard genetic algorithm [Storn and Price, 1997] by relying on the true forward model (1)-(7) 384 

(details not shown). The outcome of this analysis are practically coincident with the anisotropic 385 

gPCE-based solutions while the CPU time increases by one order of magnitude, thus 386 

corroborating the usefulness of the approach we propose for inversion purposes. 387 

Similar results have been obtained by considering that only temperature data are 388 

available, as shown in Table 3. Comparing the results listed in Tables 2 and 3 we note that the 389 

use of temperature data leads to slightly improved accuracy in the estimates of 
�� , 

����  and ��  390 

with respect to what can be obtained using only porosity data in the setting we analyzed 391 

(compare the relative errors η  in Table 3 and Table 2). On the other hand, relying on porosity 392 

data allows obtaining an improved estimate of β . This result is consistent with the Sobol indices 393 

analysis reported in Figure 4, where it is clear that β  does not influence significantly the 394 

temperature distribution. 395 

4.2.2 Choice of calibration dataset 396 

In this paragraph we consider the joint use of porosity and temperature in the inversion 397 

procedure. We set the measurement error standard deviations to 
����� ��

φ
σ −= ×  and 398 

�����
�
σ =  K, corresponding to coefficients of variations of the order of 10% of the interval 399 

comprised between minimum and maximum values displayed by the two variables (see Figure 400 
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3). Based on the analysis reported in Section 4.2.1, we resort to the anisotropic refinement of the 401 

sparse grid for the gPCE. As described in Section 2, we perform different inversions for selected 402 

λ  values. Figure 5 depicts the way NLL and KIC vary with λ . We note that the two curves are 403 

approximately flat within the interval 
− −× < < ×� �� �� � ��λ , with a minimum located at 404 

λ −= × �� �� . This result is consistent with the true reference value of λ , which is given by 405 

−= ×� � �	 � ��
�φ

σ σ . The ML estimates of the standard deviation of the porosity and temperature 406 

measurement error evaluated by (16) are 
� ���� ��

φ
σ −= ×  and  �����

�
σ =  K and are indeed 407 

very close to the true values. 408 

Figure 6 reports the ratio between the ML estimate, ˆ
ip , of each parameter and the true 409 

values obtained using (i) only �
Φ  data (Figure 6a), (ii) only ��  data (Figure 6b), and (iii) �

Φ and 410 

��  data jointly upon setting λ −= × �� ��  (Figure 6c). Figure 6 also reports the uncertainty bands 411 

of width ± 
�



σ / ptrue, where 
�



σ  is evaluated by (18).  412 

When only porosity data are used, values of 
,

ˆ /
i true i

p p  are comprised in the interval of 413 

width ± 
�



σ / ptrue around the corresponding estimated value (Figure 6a). Moreover we observe 414 

that 0.8<
,

ˆ /
i true i

p p <1.2, i.e., the relative errors ( )ipη  are always smaller than 20%. True values 415 

of the parameters lie within the range of width ± 
�



σ  around the mean value for 
�� , 

����  and ��  416 

while the mechanical compaction parameter β is underestimated. Uncertainty related to the 417 

estimate of ��  is considerably larger than that associated with the other three parameters.  418 

Using only temperature data ��  leads to overestimating all parameters, as shown in 419 

Figure 6b. In this case, significant prediction errors are observed for β and �� . This is consistent 420 



20 

with the vertical distribution of the Sobol indices (Figure 4b), which shows that β and ��  421 

influence only marginally temperature, as compared to 
��  and 

���� .  422 

When porosity and temperature measurements are jointly considered (Figure 6c) the 423 

parameter estimates are close to their true counterparts and their estimation uncertainty is 424 

considerably reduced. These results suggest that the characterization of a basin subject to 425 

mechanical and geochemical compaction greatly benefits by the joint availability of porosity and 426 

temperature data.  427 

Results of Figure 6 are complemented by Table 4, where we list estimates 
φ

σ  and 
�

σ  428 

obtained through the different calibration procedures, together with the associated CPU time. 429 

Standard deviations of measurement errors are accurately estimated (within 10% of error with 430 

respect to their true values). 431 

4.2.3 Analysis of the influence of the spatial distribution of available data 432 

Finally, we assess the influence of the spatial location of available calibration data on the 433 

accuracy and efficiency of the inversion procedure. As previously discussed, the influence of the 434 

selected uncertain parameter on the output variables can be quantified through the Sobol indices. 435 

Here, we show how the knowledge of the Sobol indices enables one to identify which parameters 436 

can be accurately estimated when data are available in specific zones of the domain. In 437 

particular, we consider the following two zones of width equal to 1000 m that, according to 438 

Figure 4, allow separating the effects of different groups of uncertain parameters: (i) an upper 439 

zone, for –500 m ≤ z ≤ –1500 m where no quartz cementation is observed, and (ii) a deep zone, 440 

for –2500 m ≤ z ≤ –3500 m. In the upper interval, porosity and temperature respectively depend 441 

on (β, hsea) and (GT, hsea). On the other hand when –3500 m < z< –2500 m both porosity and 442 

temperature are chiefly influenced by aq and GT (see Figure 4).  443 
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We consider the following six scenarios, depending on the location and type of available 444 

data: (1) only porosity data, 
�
�
Φ , are available within the interval –500 m < z < –1500 m; (2) 445 

only temperature data 
�
�
�  are available within the interval –500 m < z < –1500 m; (3) only 446 

porosity data, �
��Φ , are available within the interval –2500 m < z < –3500 m; (4) only 447 

temperature data, �
��� , are available within the interval –500 m < z < -1500 m; (5) porosity and 448 

temperature data, ( )� ���
 �
�Φ , are jointly available within the interval –500 m < z < –1500 m; (6) 449 

porosity and temperature data, ( )� ���� ���Φ , are jointly available within the interval –2500 m < z < 450 

–3500 m. In test cases 5 and 6 we set �� ��λ −= × , according to the results obtained in Section 451 

4.2.2. 452 

Figure 7a reports the ratio between ML estimated parameters and their true values for test 453 

cases 1 and 3, where only porosity data are available. Uncertainty bands of width ±σ
�



/ ptrue are 454 

also reported for each parameter, with the exception of ��  and GT in test case 1, where 455 

�
 	
�
� � ����
�σ = 279.74 and 

�
 	
�
� � ����
�σ  = 309.12. Calibration of β  and 

����  through porosity data 456 

leads to acceptable results, especially when the dataset 
�
�
Φ  is considered. On the other hand, it 457 

is clear that porosity data 
�
�
Φ  are not suited to estimate ��  and 

�� . This can be explained by 458 

observing that quartz precipitation is not active in the upper region of the domain and 459 

consequently porosity and temperature are not linked, i.e., 
��  cannot influence porosity 460 

distribution. As expected, uncertainty associated with the estimates ��  and ��  is largely 461 

reduced when the dataset �
��Φ  is employed. 462 
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Results obtained through temperature data are shown in Figure 7b. The estimates of β  463 

are not accurate in this case. This is consistent with results of Section 4.2.2 and with the 464 

information embedded in the Sobol indices (Figure 4b), which show that β  has a negligible 465 

influence on temperature. Note that calibration through �
���  yields an unphysical negative value 466 

for the estimated β . The parameter 
q

a  is significantly overestimated when �
���  is used. On the 467 

other hand, dataset 
�
�
�  leads to a negative value of ˆ

q
a , which is not compatible with the 468 

physical meaning of 
q

a . The geothermal gradient 
��  and the sea level seah  are well calibrated 469 

through both 
�
�
�  and �

��� . This is consistent with the observation that 
��  and seah  highly 470 

influence temperature at any location. As expected, the accuracy in 
��  is improved and 471 

uncertainty is reduced when �
���  is considered, while the opposite holds for seah . Figure 7c shows 472 

that the quality of the estimate of each parameter significantly increases when porosity and 473 

temperature data are jointly available (notice the different vertical scale axis). The only 474 

inaccurate result has been obtained for the calibration of 
q

a , when only data in the upper part of 475 

the basin are available. As noted above, this result is due to the fact that quartz cementation is not 476 

active at shallow locations where data ( )� ���
 �
�Φ  are observed. 477 

5. CONCLUSIONS 478 

We develop and present a methodology for model inversion of nonlinear basin-scale 479 

mechanical and geochemical compaction processes based on a reduced model of the system 480 

(gPCE) and a Maximum Likelihood (ML) approach. The gPCE of porosity and temperature 481 

distributions is derived upon relying on a (generally) anisotropic sparse grid approximation of 482 

the problem outputs in the parameter space. We illustrate the proposed technique in the context 483 
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of a one-dimensional synthetic test case when compaction occurs for mechanical stress and 484 

precipitation of quartz. Our work leads to the following major conclusions. 485 

1. Anisotropic grids can be efficiently employed to refine the sparse grid approximation and 486 

increase the accuracy of the parameter estimates. 487 

2. Inversion performed with only porosity data renders acceptable estimates of the 488 

considered uncertain parameters. However, large uncertainty is associated with the 489 

estimate �� , which determines quartz cementation kinetics. This result is associated with 490 

(i) relatively large uncertainty bounds assigned to the parameter, (ii) the nonlinear 491 

relationship between ��  and porosity. Relying only on temperature data lead to 492 

significant overestimation of both ��  and β. This result is consistent with Sobol indices 493 

showing that ��  and β  do not have a strong influence on the thermal problem. 494 

3. When porosity and temperature measurements are jointly considered all parameter 495 

estimates are close to their true counterparts and their estimation uncertainty is 496 

considerably reduced. 497 

4. The Sobol indices can be used to identify the parameters which can be accurately 498 

estimated when data are available in specific zones of the domain. This implies that Sobol 499 

indices can drive optimal selection of measurement locations also in the context of the 500 

type of complex nonlinear processes we consider, as previously suggested by Fajraoui et 501 

al. [2011, 2012] and Ciriello et al. [2013] for relatively simple laboratory scale transport 502 

scenarios. 503 

5. In the upper part of the basin, porosity depends mainly on β and hsea, while temperature is 504 

greatly affected by GT and hsea variations. On the other hand, both porosity and 505 

temperature are mainly influenced by aq and GT at the largest depths investigated. This 506 
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has a direct influence on reliability and accuracy of parameter estimates. In particular, our 507 

results suggest that proper characterization of quartz cementation kinetics requires 508 

availability of porosity and temperature data at deep locations in the basin. 509 

Future developments of the present work involve parameter estimation in the presence of 510 

heterogeneous basins, involving low permeability inclusions giving rise to fluid overpressure. 511 

Application of the proposed methodology to field measurements is also envisioned. 512 
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TABLES 658 

Parameter Min Max Relative range ptrue 

β [Pa
-1

] 5 × 10
-8

 7 × 10
-8

 0.33 5.8 × 10
-8

 

aq [mol m
-2

 s
-1

] 0.40 × 10
-18

 3.56 × 10
-18

 1.60 1.8 × 10
-18

 

��  [°C m
-1

] 2.70 × 10
-2

 3.30 × 10
-2

 0.20 3.10 × 10
-2

 

hsea [m] 450.0 550.0 0.20 520.0 

 659 

Table 1. Selected uncertain parameters, associated range of variability and relative range of variation; ptrue 660 

indicates the parameter values used to generate the reference porosity and temperature fields. 661 

  662 
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 663 

  

Isotropic gPCE 

w = 3 

Isotropic gPCE 

w = 4 

Anisotropic 

gPCE 

J 6.02 × 10
-4

 2.58 × 10
-4

 0.29 × 10
-4

 


φ

σ  
1.34 × 10

-3
 8.78 × 10

-4
 2.97 × 10

-4
 

NLL - 3458.60 - 3740.30 - 4465.42 

KIC 
-3631.98 -3876.85 -4649.95 

η(β ) 
0.83% 0.22% 0.02% 

η( �� ) 20.58% 3.07% 0.45% 

η(
�
� ) 

3.92% 0.74% 0.09% 

η(
���� ) 

1.47% 1.04% 0.07% 

��  137 385 153 

CPU time [s] 1663 4017 2266 

 664 

Table 2. Main statistics of calibration performed using only porosity data, isotropic gPCE with w = 3, 4 665 

and anisotropic gPCE. Number of collocation points and CPU times are also listed. 666 
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 668 

  

Isotropic gPCE 

w = 3 

Isotropic gPCE 

w = 4 

Anisotropic 

gPCE 

J 37.20 × 10
-3

 6.03 × 10
-3

 0.03 × 10
-3

 


�

σ [Κ] 
1.02 × 10

-2
 4.25 × 10

-3
 1.79 × 10

-3
 

NLL -2084.99 -2690.99 -3271.02 

KIC -2285.38 -2855.63 -3478.80 

η(β ) 
1.70% 0.10% 0.16% 

η( �� ) 0.68% 0.46% 0.02% 

η(
�
� ) 

0.18% 0.02% 0.02% 

η(
���� ) 

0.11% 0.03% 0.01% 

��  137 385 153 

CPU time [s] 1559 6249 1820 

Table 3. Main statistics of calibration performed using only temperature data with isotropic gPCE with w 669 

= 3 and 4 and anisotropic gPCE. Number of collocation points and CPU times are also listed. 670 
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 672 

  �
Φ   

��  
�
Φ , ��  


φ

σ  
0.028 - 0.026 


�

σ [Κ] 
- 9.820 10.01 

CPU time [s] 1487 1911 3211 

 673 

Table 4. Estimates of standard deviations of measurement error of porosity and temperature obtained 674 

using only porosity data ,
�
Φ , only temperature data, 

�� , and both types of data, (
�
Φ ,

�� ). CPU times are 675 

also listed. Corresponding parameter estimates are depicted in Figure 6.  676 
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 678 
Figure 1. Three different sampling strategies of a two-dimensional parameter space [ ] [ ]1,1 1,1−  −Γ ×  = : 679 

Cartesian grid (a); isotropic sparse grid (b); and anisotropic sparse grid with refinement along the 680 

direction of parameter p1 (c). 681 
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 683 

Figure 2. Graphical example of a sparse grid construction as a superimposition of tensor grids. 684 
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 686 

Figure 3. Vertical distribution of mean porosity (a) and temperature (b) (black solid lines) at final 687 

simulation time (t = 200 Ma). Intervals of width corresponding to one standard deviation about the mean 688 

are also shown as dashed black curves. Red curves represent the reference porosity and temperature 689 

fields. 690 
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 692 

Figure 4. Total Sobol indices associated with porosity (a) and temperature (b) at the final simulation time 693 

(t = 200 Ma). 694 
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 696 

Figure 5. KIC and NLL versus λ . The insert shows the details of the behavior of these curves around the 697 

minimum value. Solid symbols correspond to minima of KIC and NLL. 698 
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 700 

Figure 6. Normalized ML estimates of model parameters obtained through porosity (a), temperature (b), 701 

porosity and temperature data (c). Results in (c) are obtained by setting 
67 10λ −= × . Symbols (▬) 702 

indicate uncertainty bands of width ± 
�



σ / ptrue. 703 

  704 
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 705 

Figure 7. Normalized ML estimates of model parameters through porosity (a), temperature (b), porosity 706 

and temperature data (c). Black symbols refer to results obtained through calibration datasets (a) 
�
�
Φ , (b) 707 

�
�
� , (c) ( )� ���
 �
�Φ ; red symbols to (a) 

�
��Φ , (b) 

�
��� , (c) ( )� ���� ���Φ . Results in (c) are obtained by setting 708 

67 10λ −= × . Symbols (▬) indicate uncertainty bands of width ± 
�



σ / ptrue. 709 

 710 

 711 
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