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Abstract

The statistical analysis of functional data is a growing interest research
area. In particular more and more frequently in the biomedical context
the output of many clinical examinations are complex mathematical ob-
jects like images or curves. In this work we propose, analyze, and apply a
new concept of depth for multivariate functional observations, i.e. statis-
tical units where each component is a curve, in order to study them from
a statistical perspective. Robust statistics, such as the median function or
trimmed mean, can be generalized to a multivariate functional framework
using this new depth measure definition so that outliers detection and non-
parametric tests can be carried out also within this more complex context.
Mathematical properties of these new concepts are established and proved.
Finally, an application to Electrocardiographic (ECG) signals is proposed,
aimed at detecting outliers for identifying stable training set to be used in
unsupervised classification procedures adopted to perform semi automatic
diagnosis and at testing differences between pathological and physiological
groups of patients.

1 Introduction and notation

Nowadays, an ever-increasing number of clinical and epidemiological studies
leads to the necessity of dealing with functional data, since more and more
often the analysis of data coming from biomedical fields meets problems where
ideal units of observation are curves and a function is observed for each individ-
ual. This calls for the identification of suitable models and inferential techniques
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for managing with complexity of such data. For example, a challenging task in
functional data analysis is to provide an ordering within a sample of curves
that allows the definition of order statistics, such as ranks and L-statistics (see
Fraiman and Meloche, 1999).
A natural tool to analyze these functional data features is the idea of statistical
depth, which provides a measure of centrality or outlyingness of an observation
with respect to a given dataset or a population distribution. Several definition
of depth measures for multivariate data have been proposed and analyzed in
literature (see Mahlanobis, 1936; Tukey, 1975; Liu, 1990; Zuo and Serfling, 2000;
Zuo, 2003 among others). A generalization to functional data is given in López-
Pintado and Romo (2009), starting from depth measures for multivariate data.
They also provide the extension of robust statistics to a functional framework,
generalizing properties of depth measures which are proved to hold in multi-
variate case (see Liu, 1990; Zuo and Serfling, 2000; Serfling, 2004 for further
details on multivariate setting). Finally a specific focus on trimmed means for
functional data can be found in Fraiman and Muniz (2001), where a generaliza-
tion of some issues treated in Fraiman and Meloche (1999) about multivariate
L-estimation is proposed.
Once a depth measure is associated with each data within a sample, it is possible
to rank them as well as to visualize graphically the result of ranking through
Functional Boxplots, as proposed in the work of Sun and Genton (2011) and
Ieva (2011).

There are lots of different aims which lead to rank curves according to suitable
depth indexes. Indeed, several applications focus on classification of functions
arising from different population and make inference about the latent differences
among them analyzing the morphological effects they induce on the curves shape.
This is usually carried out without parametric assumptions on the model which
the sample of curves is associated with, like in Cuevas et al. (2007) and López-
Pintado and Romo (2003). On the other hand, sometimes the interest is in
making inference on specific summary statistics, as proposed in Li and Liu (2004)
for the multivariate setting.
In this work we deal with multivariate functional observations, i.e. statistical
units where each component is a curve. Then we firstly need to generalize
the concept of depth for functional data to the multivariate functional case,
then to define suitable generalizations of nonparametric statistics for ranking
and classifying multivariate curves as well as making inference on them. So we
propose, analyze, and apply a new concept of a multivariate index of depth,
derived from averaging univariate centrality measures for functional data in a
suitable multivariate index. We also widen the employment of the functional
boxplots, adopting this graphical tool also in the more complex case of samples of
multivariate functions. Then the Wilcoxon rank test based on the order induced
by the multivariate functional depth is proposed to test differences between
groups of multivariate curves.
In fact, two are the main goals of the analysis: the first one is to point out a

2



suitable method for performing outliers detection in a multivariate functional
setting, within a sample of curves arising from the same population; the second
one is to carry out non parametric test for comparing samples of multivariate
curves and making inference on the corresponding populations.
A natural application of this theoretical framework comes from the biomedical
context, and in particular from applications that deal with cardiovascular dis-
eases diagnoses carried out using Electrocardiographic devices. In fact, ECG
signals can be considered multivariate functional data with dependent compo-
nents. In this context, some issues of interest are, for example, classification
of groups of curves with similar morphological patterns, multivariate functional
outliers detection within a homogeneous group and classical inference on mean
and quantiles of subpopulations. From a clinical point of view, the first issue
concerns how to carry out a semi automatic diagnosis based only on the mor-
phological deviations from physiological patterns induced by the presence of the
disease of interest; the second one leads to profile “typical” curve expression for
each pathology; finally the third one allows for the investigation of the presence
of statistically significant differences in the subpopulations of pathological units
with respect to physiological ones.
The article is organized as follows. In Section 2 the definition of multivariate
functional depth is presented and mathematical properties of this depth measure
are proved in the more general framework of multivariate functional data. In
Section 3 an application to ECG signals of patients affected and not affected by
Bundle Brunch Block Infarction is presented. Finally, Section 4 contains conclu-
sions, discussion of results and further developments. The proofs are included
in the Appendix.

2 Band depth and inference for Multivariate Func-

tional Data

In this Section, the new concept of multivariate functional depth measure is
presented and natural properties are established and proved. Moreover, the
modified version of the band depth is given, since it is used to implement the
modified version of the functional boxplot. Finally, Wilcoxon non parametric
rank test framework is adopted to make inference on samples of multivariate
functional data, once a suitable ranking has been obtained.

2.1 Band depth for Multivariate Functional Data

As mentioned in the previous Section, a natural tool to analyze and rank func-
tional data is the idea of statistical depth, which measures the centrality of a
given curve within a group of trajectories providing center-outward orderings
of the set of curves itself. In general, several different definitions of depth can
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be given (see Zuo and Serfling, 2000). In our case, we refer to the band depth
measure for functional data proposed by López and Pintado (2009).

Let X a stochastic process with law P taking values on the space C(I) of
real continuous functions on the compact interval I. The graph of a function
f ∈ C(I) is the subset of the plane G(f) = {(t, f(t)) : t ∈ I}. The random band
depth, of order J ≥ 2, for a function f ∈ C(I) is then

BDJ
PX

(f) =
J

∑

j=2

PX{G(f) ⊂ B(X1, X2, ..., Xj)},

where B(X1, X2, ..., Xj), for j = 2, ..., J is the random band in R
2 delimited by

X1, ..., Xj , independent copies of the stochastic process X, defined as

B(X1, ..., Xj) = {(t, y(t)) : t ∈ I, min
r=1,...,j

Xr(t) ≤ y(t) ≤ max
r=1,...,j

Xr(t)}

In this paper we propose a new definition of a band depth measure for multivari-
ate functional data, i.e. data generated by a stochastic process X taking values
in the space C(I; Rs) of continuous functions f = (f1, ..., fs) : I → R

s.

Definition 1

Let f be a function on I taking values in R
s. The multivariate band depth

measure is defined as

BDJ
PX

(f) =
s

∑

k=1

pkBDJ
PXk

(fk), pk > 0 for k = 1, ..., s,
s

∑

k=1

pk = 1. (1)

Let X a multivariate random process such that P (mink=1,...,s ‖Xk‖∞ > M) → 0
as M → ∞, then it is easy to prove, using the properties of the functional depth
measure summarized in López and Pintado (2009), the following results on the
basic properties of the multivariate band depth measure defined in (1).

Proposition 1

(a) Let T (f) = A(t)f(t) + b(t), where ∀t ∈ I A(t) is a s × s diagonal matrix
such that Akk(t) are continuous functions in I, with Akk(t) 6= 0, for each
t ∈ I, and b(t) ∈ C(I; Rs). Then BDJ

PT (X)
(T (f)) = BDJ

PX
(f).

(b) BDJ
PX(g(t))

(f(g(t))) = BDJ
PX(t)

(f(t)) = when g is a one-to-one transforma-

tion of the interval I.

(c) supmink=1,...,s ‖fk‖∞>M BDJ
PX

(f) → 0 as M → ∞.

(d) If ∀k = 1, ..., s the probability distribution PXk
on C(I) has absolutely

continuous marginal distributions, then BDJ
PX

is a continuous functional
on C(I; Rs).
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If X1, . . . ,Xn are independent copies of the stochastic process X, the sample
version of (1) can be introduced in order to conduct descriptive and inferential
statistical analyses on a set of multivariate functional data f1, ..., fn generated
by the process X. For any f in the sample f1, ..., fn we can compute the depth
as

BDJ
n(f) =

s
∑

k=1

pkBDJ
n,k(fk),

where for the function fk ∈ C(I)

BDJ
n,k(fk) =

J
∑

j=2

(

n

j

)−1
∑

1≤i1<i2<···<ij≤n

I{G(fk) ⊂ B(fi1;k, ...fij ;k)}

and I{G(fk) ⊂ B(fi1;k, ..., fij ;k)} indicates if the band determined by (fi1;k, ..., fij ;k)
contains the whole graph of f . The k component of the vector fi is denoted by
fi;k.

Proposition 2

The sample version of multivariate functional depth is consistent, in fact

|BDJ
n(f) − BDJ

PX
(f)| → 0, a.s. if n → ∞ (2)

As proposed in López-Pintado and Romo(2009) also in this multivariate func-
tional setting we can move to the analogous of the modified band depth:

MBDJ
n(f) =

s
∑

k=1

pkMBDJ
n,k(fk), (3)

where for the function fk ∈ C(I) the modified band depth measures the propor-
tion of time that the curve fk is in the band, i.e.

MBDJ
n,k(fk) =

J
∑

j=2

(

n

j

)−1
∑

1≤i1<i2<···<ij≤n

λ̃{E(fk; fi1;k, ..., fij ;k)},

where E(fk) =: E(fk; fi1;k, ..., fij ;k) = {t ∈ I,minr=i1,...,ij fr;k(t) ≤ fk(t) ≤

maxr=i1,...,ij fr;k(t)} and λ̃(fk) = λ(E(fk))/λ(I) and λ is the Lesbegue measure
on I. As stated in López and Pintado (2009) the values of the modified band
depth measure are stable with respect to the choice of J , and in order to be
computationally faster we set J = 2 and we denote MBDJ

n(f) as MBD(f) in
the following. The use of the modified band depth measure avoids also having
too many depth ties.
Given the multivariate band depth measure defined in (3), a sample of mul-
tivariate functional data f1, ..., fn can be ranked. In the following we denote
f[i] the sample curve associated with the ith largest depth value, so f[1] =
argmaxf∈{f1,...,fn} MBD(f) is the median (deepest and more central) curve, and
f[n] = argminf∈{f1,...,fn} MBD(f) the most outlying one.
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2.2 Multivariate functional boxplot and outliers detection

The idea of generalizing the concept of functional boxplot to multivariate func-
tional data is based on the new definition of multivariate functional depth mea-
sure given in (3) which takes into account simultaneously the behaviour of all
the s components of f weighting in a suitable way the components in order to
take into account correlations among them. Concerning the aim of performing
outliers detection for robustifying training set adopted in unsupervised classifica-
tion algorithms, the following steps should then be implemented on multivariate
curves sample f1, ..., fn:

1. For each statistical unit j, compute the value of measure depth MBD(fj);

2. Rank the multivariate functions fj(t) according to the value of multivariate
depth measure and define outliers those curves that, for at least one t, are
outside the fences obtained inflating the envelope of the α% central region
by h times the range of the α% central region. In particular the α% central
region for the component fk determined by a sample of curves is defined
as

Cα =

{

(t, y(t)) : min
r=1,...,⌈αn⌉

f[r];k(t) ≤ y(t) ≤ max
r=1,...,⌈αn⌉

f[r];k(t)

}

where ⌈αn⌉ is the smallest integer greater than or equal to αn. In the
following we set α% = 50% and h = 1.5.

3. Visualize the functional boxplot of each component, building the envelope
of the 50% deepest functions and then the functional boxplot according to
the ranking arising from the multivariate index previously pointed out.

Notice that this algorithm defines outliers according to a multivariate index of
depth, which takes into account simultaneously the depth of all components of
the multivariate function.

2.3 Robust statistics and rank test

Given the order in the sample of curves induced by the multivariate func-
tional depth measure, the definition of trimmed mean following, for example,
in Fraiman and Muniz (2001) can be extended to multivariate functional data
straightforwardly. We can also widen to this framework a non parametric rank
test to compare two samples of multivariate functions. In particular consider
a sample f1, ..., fn generated according to a distribution PX and another sam-
ple g1, ...,gm generated according to a distribution PY. We want to test dif-
ferences between the two populations; combine the two samples, that is, let
W = w1, ...,wn+m ≡ f1, ..., fn,g1, ...,gm. We can assign to each element of the
combined set a rank according to values of the multivariate functional depth,
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and in particular the higher the depth the lower the rank. The proposed test
statistics R is the sum of the ranks of the second sample g1, ...,gm with respect
to the combined set W (R =

∑m
j=1 RankW (gj) ≡

∑m
j=1 r(gj)). If there is no

differences between the distributions generating the data (H0), (r(g1), ..., r(gm))
can be viewed as a random sample size m drawn without replacement from the
set (1, ..., n + m), and we reject H0 for values of R too small or too high. For
large values of n and m it is possible to use a normal approximation (see Li and
Liu, 2004).
Such test represents a quantitative method for carrying out inference in a super-
vised multivariate functional clustering framework. On the other hand, for the
unsupervised clustering case, it can be also seen as a way to test if the process
generating the outliers pointed out by the functional boxplot can be considered
as different from the process generating the curves of the α% most central region.

3 An application to ecg signals

In Ieva et al. (2011), a statistical framework for analysis and classification of
ECG curves starting from their sole morphology is proposed. The main goal
of the paper is to identify, from a statistical perspective, specific ECG patterns
which could benefit from an early invasive approach. In fact, the identification
of statistical tools capable of classifying curves using their shape only could sup-
port an early detection of heart failures, not based on usual clinical criteria.
In order to do this, a real time procedure consisting of preliminary steps like
reconstructing signals, wavelets denoising and removing biological variability in
the signals through data registration is tuned and tested. Then, a multivariate
functional k-means clustering of reconstructed and registered data is performed.
Since when testing new procedures for classification the performances of classi-
fication method are to be validated through cross validation, it is mandatory a
suitable training of the algorithm on data. This would lead to robustify classi-
fication algorithm and would improve reliability in prediction. The procedure
proposed in the previous Section is an effective way to reach this goal. In fact,
it leads to select for the training set the proportion of multivariate curves whose
depth is greater. Considering the ECG of the j-th patient as a 8-variate function
fj = (fj;1, ..., fj;8), the fj;k, (k = 1, ..., 8) correspond to the eight leads I, II, V1,
V2, V3, V4, V5 and V6. Then the procedure discussed in Section 2 is applied in
order to carry out functional boxplots and to perform outliers detection for two
different groups: physiological and pathological patients, i.e. people affected by
a particular kind of heart disease, called Bundle Branch Block (BBB). This is
a pathology which is easy to detect through the observation of shape modifi-
cations it induces on ECG pattern and divides in Right Bundle Branch Block
(RBBB) and Left Bundle Branch Block (LBBB) according to the heart side it
affects. In the following, we will consider a sample of 100 physiological signals
and 50 pathological ones, where the latter come from patients affected by LBBB.

7



In Figures 1 and 2 the row data are shown, whereas Figures 3 and 4 show the
corresponding functional boxplots, one for each lead of the ECG, (see Ieva et al.
(2011) for details on statistical analysis and procedures). Functional Boxplots
are produced according to the ranking induced by the multivariate functional
index where the weights pk, (k = 1, . . . , 8) are all equal to 1/8, weigthing in the
same way all the leads.
Since there is a common ranking of all components of fjs, induced by the mul-
tivariate index of depth, the central band is defined with the same curves in
each component of the functional boxplot, since the multivariate funtional index
of depth defined in (3) takes jointly into account the order of each component
(lead) of the multivariate function (ECG). This is the main and most important
difference between functional boxplots reported in Figures 3 and 4 and those we
would have obtained simply asking for functional boxplots of each lead. To be
noticed is that the procedure is very easy to generalize to the adoption of any def-
inition of multivariate index of depth for which properties like those established
in Proposition 1 and 2 can be proved.
As described in Section 2.3, given the order in the sample of curves induced by the
multivariate functional depth measure, it is possible to widen to this framework
a non parametric rank test in order to compare two samples of multivariate func-
tions. Actually, we will adopt the rank test to check for differences in the under-
lying process generating the LBBB curves with respect to the physiological ones.
Then the combined dataset consists of 150 8-variate functional ECG signals. The
p−value of the test carried out on these curves using the multivariate functional
index computed on them all is equal to 3.38 ∗ 10−16. The statistical evidence is
still very strong (p−value = 2.96 ∗ 10−16) if we compute the depth measure (3)
setting (p1, ..., p8) equal to (1/10, 1/10, 2/10, 1/10, 1/10, 1/10, 1/10, 2/10), stress-
ing the weight of leads V1 and V6, since they are the most important for carrying
out the LBBB diagnosis, as confirmed by cardiologists.

That is, a strong evidence for the LBBB to be considered as arising from a
different latent process exists. This is also detectable looking at the functional
boxplots arising from the new database, shown in Figure 5: almost all the outliers
are those related to LBBB signals.

4 Conclusions

In this work, we generalize the notion of depth for functional data presented in
López-Pintado and Romo (2009) to the multivariate functional case and define
also a new multivariate functional index of depth which is able to take into ac-
count jointly the depth of the multivariate functional data on each component.
This provides a center-outward ordering criterion for a sample of multivariate
functions. Extensions and proofs of the properties of the new index are also pro-
vided, as well as for its modified version. A generalization of the non parametric
test to this framework has been adopted to carry out inference in a supervised
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clustering context. Finally, the application of the new index to a real case of
ECG signals has been proposed and discussed, highlighting how the methodol-
ogy works effectively both in detecting outliers and in distinguishing between
samples arising from different underlying processes.

Appendix

Proof of Proposition 1: (a) using Definition 1 and the property (1) of Theorem
3 in López and Pintado (2009) we have

BDJ
PT (X)

(T (f)) =

s
∑

k=1

pkBDJ
PAkkXk+bk

(Akkfk+bk) =

s
∑

k=1

pkBDXk
(fk) = BDJ

PX
(f).

The diagonality requirement on matrix A means that the multivariate func-
tional depth measure BDJ

PX
(f) is invariant as regards affine transformations of

each component taken one by one, without combining different elements of the
multivariate function.
(b) follows directly from property (2) of Theorem 3 in López and Pintado (2009).
(c)

sup
mink=1,...,s ‖fk‖∞>M

BDJ
PX

(f) = sup
mink=1,...,s ‖fk‖∞>M

s
∑

k=1

pkBDXk
(fk)

and each term in the sum over components goes to zero when M goes to infinity.
(d) also this point follows directly from property (4) of Theorem 3 in López and
Pintado (2009).
Proof of Proposition 2:

|BDJ
n(f) − BDJ

PX
(f)| = |

s
∑

k=1

pkBDJ
n,k(fk) −

s
∑

k=1

pkBDXk
(fk)|

≤

s
∑

k=1

pk|BDJ
n,k(fk) − BDXk

(fk)| (4)

and each term of the sum in the last term of (4) goes to zero as stated in Theorem
4 of López and Pintado (2009).
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Figure 1: Row signals of the 100 physiological patients.
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Figure 2: Row signals of the 50 pathological patients.
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Figure 3: Functional boxplots of each component (lead) of the 100 physiological
ECGs. The central bands (purple coloured area) and outliers (red dotted lines)
of each lead are defined as described in Section 2.2, according to the ranking
induced by MBDJ

n(f) defined in (3).
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Figure 4: Functional boxplots of each component (lead) of the 50 pathological
(Left Bundle Brunch Block) ECGs. The central bands (purple coloured area)
and outliers (red dotted lines) of each lead are defined as described in Section
2.2, according to the ranking induced by MBDJ

n(f) defined in (3).
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Figure 5: Functional boxplots of each component (lead) of the 150 physiological
(100) and pathological (50 Left Bundle Brunch Block) ECGs. The central bands
(purple coloured area) and outliers (red dotted lines) of each lead are defined as
described in Section 2.2, according to the ranking induced by MBDJ

n(f) defined
in (3).
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