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Abstract
Resistive random access memories (RRAMs) constitute a class of memristive de-

vices particularly appealing for bio-inspired computing schemes. In particular, the
possibility of achieving analog control of the electrical conductivity of RRAM de-
vices can be exploited to mimic the behaviour of biological synapses in neuromor-
phic systems. With a view to neuromorphic computing applications, it turns out to be
crucial to guarantee some features, among which a detailed device characterization,
a mathematical modelling comprehensive of all the key features of the device both in
quasi-static and dynamic conditions, a description of the variability due to the inher-
ently stochasticity of the processes involved in the switching transitions. In this paper,
starting from experimental data, we provide a modelling and simulation framework to
reproduce the operative analog behaviour of HfOx-based RRAM devices under train
of programming pulses both in the analog and binary operation mode. To this aim,
we have calibrated the model by using a single set of parameters for the quasi-static
current-voltage characteristics as well as switching kinetics and device dynamics. The
physics-based compact model here settled captures the difference between the SET
and the RESET processes in the I-V characteristics, as well as the device memory
window both for strong and weak programming conditions. Moreover, the model re-
produces the correct slopes of the highly non-linear kinetics curves over several orders
of magnitudes in time, and the dynamic device response including the inherent device
variability.

1 Introduction

Resistive random access memories (RRAMs), belonging to the broader class of mem-
ristive devices, are two-terminal devices able to settle in different resistance states upon
proper voltage application [1]. These devices have recently achieved a massive interest for
non-traditional computing schemes, such as in-memory and bio-inspired computing [2, 3].
Indeed, RRAMs can implement hardware synaptic elements in neural networks, by ex-
ploiting the possibility to achieve multiple conductance levels. As a matter of fact, neural
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network applications have been growing in recent years, thus posing a severe problem of
energy consumption, especially when dealing with the network training process. In this
specific regard, training protocols are generally implemented by exploiting the switching
dynamics of the devices, i.e., the analog or multilevel operation in RRAMs in response to
repeated identical stimuli [4, 5, 6, 7, 8, 9, 10]. Such programming strategy is the main chal-
lenge that distinguishes the use of memory devices for neuromorphic computing with re-
spect to their employment in non-volatile memory application, where only the static values
of the resistance are strictly relevant. On the other hand, the engineering and understand-
ing of analog dynamics in RRAM devices is still ongoing, with the specific need to join
experiments with a device modelling able to address all the key features of analog RRAM
devices.

The aim of the present work is therefore to provide such a missing piece of information,
i.e., the combination of an experimental characterization with a physics-based modeling
for the dynamic behaviour of RRAM devices when programmed under trains of pulses.
We consider RRAM devices based on filamentary switching in oxide, which have reached
good maturity as binary storage elements, and which have been recently studied also as
analog memories for neuromorphic computation [6, 11, 12]. The switching mechanism is
related to the formation and the dissolution of conductive filaments in oxide shorting two
metal electrodes. The formation and the dissolution of the conducting filaments is usually
ascribed to the motion of oxygen vacancies [13, 14, 15]. For this class of RRAMs, also
named valence change RRAMs in the literature, various compact models have been pro-
posed in order to reproduce the experimental quasi-static characteristic [16], the switching
kinetics (a measure of the switching speed) and the endurance of RRAMs with their sta-
tistical behavior [17, 18]. In turn, few works provide a comprehensive description of the
device dynamics which includes also analog resistance modulation [19, 20]. Moreover,
the fitting of the experimental dynamics is usually performed by means of analytical be-
havioral models [21, 7, 22], or using higher dimensional models [23, 24]. In this paper,
we show a detailed characterization of the device under various programming conditions.
The physics-based compact model we propose proves to be able to comprehensively repro-
duce the quasi-static device behavior, the magnitude, the speed, and the time evolution of
the device resistance variation during the switching, which improves the existing literature
with particular reference to [16]. The variability in response to repeated identical stimuli in
binary and analog switching is correctly described by the model. The presented equations
allow to model the complex interplay between resistance and temperature dynamics, that
eventually leads to the resistive switching. The novelty of the work consists in highlighting
that the same description of the feedback processes involved during the quasi-static oper-
ational mode can be exploited to reproduce the device behavior also in a pulse regime, in
a wide range of time scales, and using a single set of model parameters. In particular, the
actual shape of the time evolution of the resistance can be explained and reproduced with
the same mechanisms, even in presence of variability.
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Figure 1: TiN/Ti/HfO2/TiN device: (a) device structure; (b) equivalent circuit model; (c)
experimental I-V characteristic; (d) simulated I-V characteristic. In (a) the sketch of the
filament is representative of the partially dissolved state after RESET.

2 Experimental details and modelling framework

2.1 Device fabrication and testing

The devices considered in this work, both for experimental measurements and simulations,
are based on the 40 nm TiN (top electrode)/10 nm Ti/5.5 nm HfO2/40 nm TiN (bottom
electrode) structure (see figure 1(a) for a sketch). HfO2 is grown at 300◦C by atomic layer
deposition (in a Savannah 200 reactor, Cambridge) using the MeCp2HfMe(OMe)Hf pre-
cursor as Hf source, and H2O as oxygen source. The Ti and TiN layers are deposited
by RF magnetron sputtering using only Ar and mixed Ar/N2 environment, respectively.
The device area is patterned by lift-off process. Device electrical testing, either in quasi-
static conditions or under applied trains of pulses, has been performed through a Keysight
B1500A semiconductor parameter analyser. During the forming process, a quasi-static
voltage ramp from 0 to -2 V, with a current compliance of 1 mA (data not shown), cre-
ates a conductive filament shorting the two electrodes. Then, RESET and SET operations
partially dissolve and re-instate the filament, respectively [25]. Figure 1(c) shows a rep-
resentative experimental quasi-static current-voltage (I-V) characteristic (with sweep rate
|SR| = 0.1 V/s) with negative voltage SET transition, from high resistance state (HRS) to
low resistance state (LRS), and positive voltage RESET transition, from LRS to HRS. It
is worth noting that the devices we consider can be operated in bipolar switching mode,
namely with negative SET/positive RESET voltages or vice versa, thanks to a complemen-
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tary switching behaviour [16, 4, 26]. In particular, except for the data in figure 4, we refer
to a negative SET/positive RESET voltage case throughout the whole paper. The devices
have been then characterized with trains of identical pulses by a variable amplitude and
width, as described in sections 3.2 and 3.3, and in the first section of the supplementary
material.

2.2 Description of the modelling framework

The electrical experimental data have been simulated by resorting to a compact model im-
plemented in MATLAB. Before analyzing the simulation results into details, we provide a
description of the adopted modelling framework. It is based on the equivalent circuit (fig-
ure 1(b)) of the TiN/Ti/HfO2/TiN device (figure 1(a)). According to [16, 27], we assume
that the oxide of a filamentary RRAM can be divided into two regions, i.e., the gap, the part
of the oxide near the active electrode where the switching is supposed to take place, and the
filament, which represents an extension of the electrode in the oxide. The filament region
is supposed to act as a reservoir of oxygen vacancies during the switching, and to well
conduct for the whole duration of the switching processes [17]. The gap region is modeled
as a variable resistor which depends on the oxygen vacancies density N, while the filament
region is modeled as a resistor with a fixed oxygen vacancies density N f . Moreover, we
suppose that the electron conduction mechanism in the filament is a thermally-enhanced
ohmic conduction [28], which can be described as conduction in band with temperature-
dependent mobility [16, 24]. It follows that the gap and the filament resistances are defined
by

Rgap = Rgap(N,T ) =
Lgap

eµn0 exp(−∆Eac
kBT )NA

, (1)

R f = R f (T ) =
L f

eµn0 exp(−∆Eac
kBT )N f A

, (2)

respectively, where T is the temperature, Lgap = Lox−L f is the length of the gap, with Lox

the length of the oxide and L f the length of the filament, e is the elementary charge, µn0 is
the electron mobility, ∆Eac is the electron activation energy, kB is the Boltzmann constant
and A = πr2

f is the section area of the conductive filament, with r f the filament radius.
We consider also a series resistance Rs to take into account ohmic losses at the contacts
and potential resistive parasitics (we refer to figure 1(b) for a sketch of all the resistances
involved in the proposed model).

The dynamics of the two state variables, N and T , is described through the system of
ordinary differential equations

dN
dt

=− 1
zV0eALgap

Iion(N,T )

dT
dt

=
Iel(N,T )VRgap

Cth
− T −T0

CthRth

(3)

where the equation for the state variable T coincides with the Newton’s law of cooling [29],
whereas a standard rate equation [16] is adopted to describe the dynamic of the oxygen va-
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cancies density N. In more detail, zV0 denotes the charge number of the oxygen vacancies,
Iion and Iel are, respectively, the ion and the electrical currents (see figure 1(b)), VRgap is
the voltage drop across the gap variable resistor, T0 is the room temperature, while Rth and
Cth denote the thermal resistance and the capacitance of the oxide, respectively. Rth is de-
fined by Lgap/(kthA), where kth is the thermal conductivity of the oxide here described by
a piece-wise constant model, with a higher value during the RESET phase (kRESET

th ) with
respect to the SET transition (kSET

th ). This choice takes into account that the accumulation
of oxygen vacancies in the gap region enhances the heat conduction during the transition
from the HRS to the LRS. Concerning Iel flowing in the series of resistances, it is evaluated
through the Ohm’s law, by dividing the voltage V applied to the RRAM device (see figure
1(b)) by the sum of the resistances, Rgap, R f , Rs. Following [16], we define Iion as the sum
of the drift and the diffusion contributions to the ion hopping conduction, with an electric
field-induced barrier lowering effect, being

Iion = Iion,dri f t + Iion,di f f usion (4)

= AC
(

N̄ sinh
(

zVoeaE
2kBT

)
+

a
2

dN
dx

cosh
(

zVoeaE
2kBT

))
, (5)

with

C = 2zVoeaν0 exp
(
−∆Eac,ion

kBT

(√
1− γ2 + γ arcsinγ

))
, (6)

γ =
zVoeaE

π∆Eac,ion
, (7)

where N̄ is the geometric mean between N and N f , a is the hopping distance, E denotes the
electric field, ν0 is the attempt-to-escape frequency, and ∆Eac,ion is the activation energy
for ion hopping. The factor γ takes into account the effect of the electric field when the
hopping barrier is modified. For the sake of a compact implementation of the model, we
approximate the ion concentration gradient dN/dx in equation (4) by a finite difference
ratio,

dN
dx
≈

N f −N
Lgap

. (8)

Finally, the electric field E is defined to be polarity-dependent, since we assume that the
band bending occurs entirely on the gap region during the SET transition, and along the
whole extension of the oxide during the RESET transition [27].

The discussed model has been validated on several experimental data. Table 1 sum-
marizes the best model parameters achieved after a thorough calibration of the model on
experimental data. We resort to a unique set of parameters to deal both with the quasi-static
and the dynamic behaviour. The experimental results and the corresponding simulation will
be discussed into details in the following sections.
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Table 1: Table of the model parameters used in the simulations.
Symbol Value Symbol Value
|SR| 0.1V/s ∆Eac,ion 0.95eV
Rs 200Ω a 0.35nm
r f 35nm ν0 1 ·1012 s−1

N f 5 ·1021 cm−3 Lgap 1.4nm
zV0 +2 Lox 5.5nm
T0 300K kSET

th 0.9W/(m ·K)
∆Eac 0.06eV kRESET

th 1.1W/(m ·K)
µn0 0.6 ·10−1 cm2/(V · s) Cth 1 ·1016Ws/k

3 Results and Discussion

3.1 Quasi-static I-V: experimental data and simulation

First, we show that the considered model is able to capture the main features of the quasi-
static experimental I-V characteristics (see figure 1(c)). In particular, figure 1(d) shows
the simulated I-V curve which correctly reproduces the SET and RESET voltages, as well
as the difference between the abrupt SET and the gradual RESET transition. It is worth
noting that, at low voltages, the device conduction is symmetric with respect to the origin
in both the HRS and LRS. As a consequence, and differently from [16, 27], we do not need
to include a metal/oxide interface barrier in the model. The SET transition occurs sharply
around -0.55V, due to the triggering of a positive feedback between resistance decrease and
Joule heating [7]. During the measurements, the SET transition is limited by the current
compliance which prevents possible overshoots [30, 31]. The RESET transition starts from
about 0.55V and gradually continues due to the set up of a negative thermal feedback and
the attainment of an equilibrium between the drift and the diffusion of oxygen vacancies
in the gap [7, 23, 32]. In particular, the diffusion process counteracts the drift, which tends
to reduce the oxygen vacancies concentration [33]. Therefore, maximum and minimum
concentration values have to be evaluated self-consistently through at least one complete
SET and RESET cycle.

3.2 Device operation under pulse programming: binary and analog switch-
ing

In the following, we discuss the device operation under pulse programming and the corre-
sponding simulation results (see figure A of the supplementary material for details on the
program/read scheme). In particular, we refer to figure 2 that reports the resistance window
RHRS/RLRS for various combination of pulse voltages and pulse widths. The panels (a) and
(b) in figure 2 show the experimental resistance memory windows RHRS/RLRS for both SET
and RESET operations. To obtain a single experimental memory window, corresponding
to a single pixel in the figure, the following procedure is followed. For the SET transition,
the device is set to the HRS, in the 3kΩ range. Then, 300 identical programming pulses at
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Figure 2: Experimental (a)-(b) and simulated (c)-(d) memory windows for the SET (left)
and the RESET (right) transition. For each pixel, we provide the extracted RHRS/RLRS total
variation, after applying 300 identical programming pulses at negative, (a)-(c), or positive,
(b)-(d), voltage polarity, for each pulse width/amplitude condition, following the procedure
described in the text.

negative voltage polarity, spaced out by reading phases at 100 mV, are applied to the device.
The final resistance is read after the application of all the pulses. Finally, the RHRS/RLRS

total variation is evaluated as the ratio between the initial to the final device resistance, i.e.,
before and after the application of the 300 programming pulses. The procedure is repeated,
starting from the same initial condition, for different combinations of pulse amplitudes
(from 0.35 V to 0.95 V in absolute value) and pulse widths (from 0.1 µs to 300 µs), thus
obtaining a different memory window for each pulse width/pulse amplitude combination,
corresponding to a single pixel of figure 2(a). Figure 2(b) shows the results associated with
the RESET case. The adopted procedure is essentially the same as for the SET, starting
from positive programming pulses. The RHRS/RLRS total variation for the RESET case is
evaluated as the ratio between the final to the initial device resistance, i.e., after and before
the application of the 300 programming pulses. The experimental behaviour is accurately
reproduced by the model as highlighted in the panels (c) and (d) in figure 2. We notice that,
while experimentally we apply trains of separate pulses, the simulations are carried out by
resorting to a single voltage pulse with a duration equal to the total experimental time span
(i.e., the sum of the width of all the applied pulses).

Figure 2 emphasizes that the maximum resistance variation after 300 identical pulses,
i.e., the maximum memory window that we can set, is related to the programming con-
dition (pulse amplitude/pulse width), and that the maximum achievable (RHRS/RLRS) is
slightly above 5. In particular, we observe that only if the pulse voltage amplitude and
the pulse width are sufficiently large (bottom right corners of the panels in figure 2), a
resistance variation close to the maximum resistance window can be obtained. In this
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case we can refer to a strong programming condition, where the resistance variation is
driven to the maximum value by the first or by the first few pulses. This operation mode
is the one usually employed in binary switching for storage applications. Otherwise, for
intermediate values of the pulse voltage amplitude and of the pulse width, the resistance
variation after 300 pulses equals only a fraction of the maximum resistance window, i.e.,
a weak programming condition is reached [4]. Under the latter programming condition,
each pulse produces a small resistance variation and therefore multiple resistance states are
achieved. The devices exhibit a gradual resistance dynamics as a function of the number of
applied pulses. This feature representing the key functionality for neuromorphic comput-
ing. Finally, for applied voltage and pulse width below a certain threshold, no variation of
resistance is measurable (actually, the values for RHRS/RLRS in figure 2 are close to zero).

To summarize, the proposed model captures the device resistance variation for all the
investigated programming conditions in a pulse regime, and figure 2 defines the existence
of programming windows both for analog and binary switching.

Figure 3: Comparison between experimental (black squares) and simulated (blue line)
kinetics for SET (a) and RESET (b) processes.

3.3 Switching kinetics, dynamics and variability of RRAM devices

A different way of describing the switching over different voltages and times is through the
switching kinetics, i.e., the time required by the device to get a certain resistance change,
for a definite applied voltage. In the present case, we consider a resistance change from
the initial condition equal to a resistance window with RHRS/RLRS = 2, namely we halve
and double the initial resistance value in the SET and RESET experiments, respectively.
Figure 3 confirms the very good agreement between the experimental (symbols) and the
simulated (line) switching kinetics, over several orders of magnitude of switching times.
The simulations correctly reproduce the experimental slopes, by returning values of about
80 mV/dec and 100 mV/dec for SET and RESET, respectively. In figure 3, each exper-
imental value for the switching time (black squares) corresponds to the total time taken
by n pulses (at a fixed amplitude and time) when applied to the device in order to achieve
the specified memory window. Notice that trains of n pulses characterized by the same
amplitude but with a different pulse width can lead to the same total switching time, de-
pending on the number of pulses. Therefore, the observed variability in the switching time
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for a certain voltages depends on the combined effect between the typical switching vari-
ability of RRAM devices programmed in a weak pulse regime [4, 34], and the difference
in time resolution between series of applied pulses. In particular, the variability turns out
to be higher for the SET process than for the RESET one. This finding can be partially
ascribed to the time resolution, limited by the pulse width, which affects more the fast SET
transition rather than the smooth RESET phase. Moreover, apart from the experimental
measurement error, it is well-known that RRAM devices exhibit a significant intrinsic vari-
ability, ascribed to random changes in the filament geometry or to the density of oxygen
vacancies therein, when filaments are continuously formed and dissolved through SET and
RESET operations [17, 35, 36].

Figure 4: (a) Experimental (empty circles) versus simulated (filled circles) data for 1000
cycles of consecutive digital SET and RESET transitions (VSET = 0.9 V, VRESET = -1.2 V,
pulse width = 10 µs); (b) Experimental (black lines) and simulated (blue lines) cumulative
distribution functions for the HRS and the LRS.

The developed compact model allows us to correctly include variability. This has been
firstly validated on a binary switching operation, and for the parameters r f , N f and Lgap. In
particular, figure 4(a) shows the variability for parameter Lgap, by comparing experimental
(empty symbols) with simulated (filled symbols) repetitive binary switching between a high
and a low resistance states. Each parameter value is extracted from a normal distribution,
with mean equal to the value used in the deterministic simulations (see Table 1) and a
relative standard variation of 2.1%. The variation adopted for Lgap appropriately describes
the measured experimental variability also for the cumulative distributions considered in
figure 4(b). Indeed, the simulated resistance spread, both in the LRS and in the HRS, well
reproduces the experimental values, with a larger deviation from the average value for the
HRS than for the LRS, in agreement with other studies [37, 34]. In fact, after the RESET,
Rgap dominates the series of resistances, thus enhancing the effect of the variability in the
Lgap parameter (see equation (1)).

Finally, we discuss the RRAM device dynamics when programmed in the analog regime
under weak programming conditions. This operation mode represents the most challenging
and useful kind of programming for neuromorphic computing. Figure 5 shows representa-
tive dynamics curves which are yielded by different sequences of trains of identical pulses
at a fixed pulse amplitude (-0.85 V for the SET and 0.9 V for the RESET) but with diverse
pulse widths. In particular, for a given pulse amplitude, we first acquire the evolution of
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Figure 5: Experimental (black markers) and simulated (coloured lines) dynamics. The sim-
ulated dynamics are obtained by introducing variability in three model parameters, namely
(a)-(b) Lgap, (c)-(d) r f and (e)-( f ) N f .

the device resistance under the application of 300 consecutive pulses at a fixed pulse width
equal to 0.1 us. Then we plot the R values as a function of time, by considering the total
time of voltage application equal to the product between the pulse width and the number
of pulses, which, e.g., for 1 µs pulse width leads to 300 µs. Then, the device is reset to
the initial resistance value by a controlled DC sweep. This procedure is repeated for the
same pulse amplitude but different pulse widths equal to 0.3, 3, 30 and 300 µs. In this
way we can assess how the resistance changes over a large time scale, but, at the same
time, we have enough resolution also to track small variations for shorter pulse width. It
is worth mentioning that this procedure is necessary since, for each pulse amplitude/pulse
width, the maximum resistance variation that we can achieve is limited as shown in figure
2. Hence, it would not be possible to reproduce the entire resistance dynamics simply by
setting a specific pulse width and applying more than 300 pulses. Finally, all these data are
plotted in the same panel to achieve the overall R evolution from 100 ns to 100 ms. Such
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estimation of the overall dynamics is correct under the assumption that the voltage/overall
time pair solely determines the device behavior, meaning that the pulse rate is not affecting
the device response, as previously demonstrated in [38]. Notice that each sequence of ex-
perimental data, related to a different pulse width, is represented in the figure by a different
marker. Concerning the experimental data variability observed for the resistance dynamics
curves (i.e., the different resistance values measured after a given time), we can distinguish
two different origins. First of all, dynamics variability is typical of a weak programming
regime and is related to the intrinsic stochasticity of the filament formation/rupture pro-
cesses, as previously discussed. In addition, dynamics variability can be caused by the
lack of time resolution when applying pulses with a large pulse width. In fact, in such a
case, the switching transition could occur before the ending of the pulse, since we read the
device resistance after the pulse takes place. This fact can lead to an over-estimation of the
time. The variability is higher for the SET configuration with respect to the RESET phase.
Figure 5 superimposes the simulated curves for the device dynamics (coloured lines) to
the experimental data (highlighted by different markers). It is evident that the proposed
model overall well reproduces the functional shape of the resistance evolution, as a func-
tion of time. In both SET and RESET transitions, the resistance curve changes slowly at
the beginning, until a positive feedback between resistance change and Joule heating sets
up. At this point, the resistance varies quickly, changes concavity and finally saturates to
a LRS or to a HRS. The saturation of the resistance value during the SET process occurs
when the gap resistance becomes negligible with respect to those of filament and series
contributions. The RESET saturation occurs due to a negative thermal feedback and to the
reached equilibrium between the ion drift and the ion diffusion in the gap, as for the quasi-
static case. Even though the simulated resistance dynamics curves succeed in replicating
the overall experimental behavior of the resistive switching over several orders of magni-
tude in time, some discrepancies with experimental data can be noticed, especially for the
saturation part of the SET. Indeed, while the experimental dynamics curves saturate to the
LRS, the simulated resistances continue to decrease in value, even if with a considerably
reduced trend with respect to the transition slope. The sharp experimental saturation at the
end of the SET can be ascribed to the complementary resistive switching (CRS), exhibited
by the investigated device [32]. The CRS is caused by the presence of a TiOxNy interlayer
formed in correspondence of the TiN/H f O2 interface. The TiOxNy interlayer acts as a
sink/source of oxygen vacancies during the SET/RESET, inducing an opposite transition
that supports the resistance saturation. The phenomenon is particularly evident for the SET
transition in the pulse regime, as the combination of short pulses with the CRS behavior
prevents the device breakdown without current limitation [32]. The inclusion of the effect
of the TiOxNy interlayer in the model, as a variable resistor dependent on the oxygen va-
cancies density of the interlayer, is a possible solution to improve the overall quality of
the fitting of the experimental dynamics curves, in particular for the saturation part of the
LRS. Beside the general shape of the resistance evolution curve, we studied the influence
of intrinsic variability of the switching process on the device dynamics. To this aim, in
figure 5 we superimpose various simulated dynamic curves to the data, as a function of
some of the geometric parameters characterizing the filament, namely the gap length Lgap

(figure 5(a)-(b)), the filament radius r f (figure 5(c)-(d)), and the filament ionic density
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N f (figure 5(e)-( f )). We can draw the following conclusions. Both the SET and RESET
transitions occur earlier for large values of Lgap, even if the advance is more evident for the
RESET. Concerning the speed of the transition, the SET transitions are faster in the case
of large values for Lgap, while the RESET transitions occur with about the same resistance
slopes. Further details and explanations on the role of the gap length in the dynamics can
be found in the second section of the supplementary material (see figures C - J). Similarly
to the case of digital transitions in figure 4, the difference between the curves becomes
more evident as the device resistance approaches the associated HRS. For large values of
r f , the dynamics curves are translated vertically, towards lower resistance values, and the
transitions are delayed. Finally, for high concentrations N f of ions, the transitions occur
early, and the curves saturate to lower resistance values.

4 Conclusions

In conclusion, modelling and simulation of the operative analog behaviour of HfO2-based
devices have been presented. The discussed model succeeds both in replicating the dy-
namical behaviour (analog and digital) and in highlighting all the main characteristics of
the device (abrupt SET and gradual RESET in quasi-static regimes, the memory window
in weak and strong pulse regimes, highly nonlinear kinetics with the correct slope over
several orders of magnitude in switching times). The stochasticity involved in the filament
formation and dissolution has been also considered in the model, due to its relevant effect
in dynamic conditions.

Supplementary material

Further details about the program/read scheme, the influence of the variability of the gap
length on the resistance dynamics, and a discussion about the SET saturation can be found
in the supplementary material.

Data availability

The experimental data and the MATLAB scripts developed for the numerical simulations
are available from the authors upon reasonable request.
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