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Abstract

We propose a new statistical method, called Generalized Mixed-Effects Random
Forest (GMERF), that extends the use of random forest to the analysis of hierar-
chical data, for any type of response variable in the exponential family, considering
both continuous and discrete covariates and without assuming a closed form in the
association between the response and the fixed-effects covariates. At the same time
GMERF takes into consideration the nested structure of hierarchical data, modelling
the latent grouping structure that exists in the higher level of the hierarchy and al-
lowing statistical inference on this structure. In the case study, we apply GMERF
to Higher Education data to analyse the university students dropout; in particular,
we are interested in predicting students dropout probability given students-level in-
formation and considering the degree program they are enrolled in as the grouping
factor.

Keywords: Hierarchical data; Generalized models; Random forest, University students
dropout.

2



1 Introduction

In today’s Big data era there is often the need of analysing big amounts of complex data.

The focus of the analyst is twofold: to reach a good accuracy in the prediction of a given

phenomenon and to understand the complexity of the underlying structure that data have;

in this sense the analyst has often to find a compromise between the interpretability of the

model, high in a simple model, and its accuracy, which usually increases together with the

model complexity.

To this purpose tree-based methods were introduced by Breiman et al. (1984) and they are

now raising in popularity for how easy they are to fit and to understand; however their

high variability is often an issue, resulting in loose predictions (Hastie et al. (2009)). Hence,

new methods using trees as building blocks, called tree-based ensemble methods, started

being developed to improve the predictive performance of trees (James et al. (2013)). An

example of such methods is the Random Forest (RF), described in Breiman (2001), which

is a bootstrap aggregation method that combines the predictions of a large number of trees.

In recent years, part of the statistical literature focused on extending the use of tree-based

methods to the analysis of nested data, i.e. data with a hierarchical structure, embedding

them into mixed-effects models (Pinheiro and Bates (2006)). However the development of

such methods is still at its beginning. One way in which tree-based methods for nested

data are being employed is integrating them with Linear Mixed-effects Models (LMMs),

with the aim of solving their low-flexibility issue, due to the parametric assumptions.

LMMs (Pinheiro and Bates (2006)) are used to model situations in which statistical units

naturally have a hierarchical structure and this structure is worth to be taken into account

for several reasons: (a) nested data are not i.i.d., as classical regression models assume,

but their distribution depends on their grouping structure; (b) neglecting the hierarchical

structure could result in a loss of a valuable piece of data information; (c) disentangling the

effects given to each level of the hierarchy allows to understand and investigate the latent

structure that is present in the higher level of the hierarchy and this might be exactly the

focus of the interest.

The first step of this integration, called Mixed Effects Regression Tree (MERT), is pre-
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sented in Hajjem et al. (2011) and it uses a regression tree to estimate the fixed effects part

of a LMM. An analogous approach, but with a different estimation procedure, is presented

in Sela and Simonoff (2012) with the name of Random Effects Expectation Maximization

tree (RE-EM tree) and it is able to deal with both multilevel data and longitudinal data.

With the aim of improving the accuracy in predictions, regression trees are replaced by a

RF in the work of Hajjem et al. (2014), where the authors develop a method called Mixed

Effects Random Forest (MERF).

However, all such methods deal with a Gaussian response variable and they are not suit-

able to classification problems. In Hajjem et al. (2017) the MERT approach is extended

to non-gaussian data and a Generalized Mixed Effects Regression Tree (GMERT) is pro-

posed. This algorithm is basically the Penalized Quasi Likelihood (PQL) algorithm used

to fit Generalized Linear Mixed Models (GLMMs) where the weighted linear mixed effect

pseudo-model is replaced by a weighted MERT pseudo-model. Another extension to a clas-

sification problem is the Generalized Mixed Effects Tree (GMET), presented in Fontana

et al. (2018), which is in line with the approach of Sela and Simonoff (2012) since it uses

the tree leaves as indicator variables, rather than using the tree predictions as the MERT

approach does. Lastly, the most recent work is proposed in Speiser et al. (2018), where

the authors develop a decision tree method for modelling clustered and longitudinal binary

outcomes using a Bayesian setting.

In this work, we develop a novel model called Generalized Mixed Effects Random Forest

(GMERF), that extends the GMET model for considering a RF instead of a standard tree

in the fixed-effects part of the mixed-effects model. This work can then be considered as

a further step in the literature consisting in tree-based mixed-effects models as Table 1

illustrates. Following the GMET approach, GMERF is based on a GLMM in which the

estimation of fixed effects part is performed with a RF, with the aim of handling interactions

among the different covariates and dealing with highly non linear effects. This new method

is the first one in the literature able to model hierarchical data with a random forest, which

is a flexible and robust method, for a non-gaussian response variable. Indeed GMERF, as

all GLMs, is able to deal with different types of responses, as long as their distribution
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mixed-effects Regression Classification
models

Simple tree MERT (Hajjem et al. (2017)) GMERT (Hajjem et al. (2017))
RE-EM trees (Sela and Simonoff (2012)) GMET (Fontana et al. (2018))

Random MERF Hajjem et al. (2014) GMERF
forest

Table 1: Tree-based mixed-effects models in the literature

belongs to the exponential family; this is not true for the bayesian approach of Speiser

et al. (2018), which works only with binary responses. The strength of this method is that

it satisfies the flexibility and the predictive power typical of random forest, maintaining

the ability of modelling hierarchical data, for different types of response variable in the

exponential family.

After describing the GMERF, providing a pseudo-code for the estimation procedure,

we show a simulation study, comparing its performance to other existing methods and

then we apply it to a case study. We apply GMERF to a real dataset, that Politecnico

di Milano selected for the Student Profile of Enhancing Tutoring Engineering (SPEET)

project (https://www.speet-project.com/). SPEET is a project aimed at determining

and categorizing different profiles of Engineering students across Europe. SPEET consor-

tium is composed by six European universities: Universitat Autnoma de Barcelona (UAB)

- Barcelona, Spain; Instituto Politecnico de Braganca (IPB) - Braganca, Portugal; Opole

University of Technology - Opole, Poland; Politecnico di Milano (PoliMi) - Milano, Italy;

Universidad de Len - Len, Spain; University of Galati Dunarea de Jos - Galati, Romania.

The essence of SPEET project is to apply data mining algorithms in order to extract in-

formation about students and to profile students. A student profile is a set of categories

to which a student belongs, that give an insight about how the student is approaching and

dealing with his/her studies. Some examples of student profiles are: students that finish

degree on time or students that are blocked on a certain set of subjects. Comparisons

among different partner institutions will be done in order to establish correlations and get

a more complete European-level picture. The role of Politecnico di Milano in the SPEET

project is to describe why students leave their studies at the university before accomplish-
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ing the degree and to produce a classification method that automatically identifies such

students who are likely to drop their studies; from now on we refer to this abandonment

as dropout. The importance of this task is motivated by the fact that, across all SPEET

partners, almost a student out of two leaves his/her Engineering studies before obtaining

the BSc degree.

In the last decades, the analysis of university students dropout is receiving particular

attention in the educational context. Many studies focus on predicting which are the

students at risk in the perspective of identifying the determinants of the dropout and of

helping those students (see among the others Goldschmidt and Wang (1999), Chiandotto

and Giusti (2005), Barbu et al. (2017), Romero and Ventura (2010)). If it was possible to

know as soon as possible to which profile a student belongs, it would be of valuable help

for tutors to improve their guiding actions.

We apply GMERF method to Politecnico di Milano data for predicting students dropout

probability by means of student-level characteristics and considering the grouping structure

of students within engineering degree programs. In our analysis students are the statisti-

cal units, which are considered nested based on the degree-program they are enrolled in;

as student-level covariates we consider both their performances at Politecnico di Milano

(during the first semester of the first year, in the perspective of providing an early warn-

ing system) and their collateral data, such as gender or nationality. It turns out that the

dropout is correlated much more with the early performances of the student rather than

with other student-level variables; also, with the information at our disposal, we are able

to predict the dropout in the 90% of cases.

The paper is organised as follows: in Section 2 we present the GMERF method, in

Section 3 we perform a simulation study to investigate the strengths and weaknesses of our

method, Section 4 reports the case study, i.e. the application of GMERF to Politecnico di

Milano data to predict students dropout probability and finally in Section 5 we draw our

conclusions.
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2 Methods

In this section, after a brief introduction about Generalized Mixed Models (Subsection 2.1),

we present the Generalized Mixed Effects Random Forest (GMERF) model with the algo-

rithm for the estimation of its parameters (Subsection 2.2).

2.1 Generalized Mixed Models

We start by considering a generic Generalized Linear Mixed Model (GLMM), described in

Pinheiro and Bates (2006). This model is an extension of the Generalized Linear Model

(GLM) Nelder and Wedderburn (1972) that includes both fixed and random effects in the

linear predictor. Therefore GLMMs handle a wide range of response distributions and a

wide range of scenarios where observations have a hierarchical structure which means they

are grouped at different levels and so the independence assumption is no more valid.

For a GLMM with a two-level hierarchy, each observation j, for j = 1, ..., ni, is nested

within a group i, for i = 1, ..., I. Let y
i

= (yi1, ..., yini
) be the ni-dimensional response

vector for observations in the i-th group. Conditionally on random effects denoted by bi,

a GLMM assumes that the elements of y
i

are independent, with density function fi from

the exponential family, of the form

fi(yij|bi) = exp{yijηij − a(ηij)

φ
+ c(yij, φ)}

where a and c are specified functions, η is the natural parameter and φ is the dispersion

parameter. In addition, we have

E[yij|bi] = a′(ηij) = µij

V ar[yij|bi] = ψa′′(ηij)

A monotonic, differentiable link function g specifies the function of the mean that the

model equates to the systematic component. Usually, the canonical link function is used,

i.e., g = (a′)−1. From now on, without loss of generality the canonical link function is used.
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In this case, the model takes the following form:

µ
i

= E[y
i
|bi] i = 1, ..., I

g(µ
i
) = η

i
(1)

η
i

= Xiβ + Zibi

bi ∼ NQ(0,Ψ)

where i is the group index, I is the total number of groups, ni is the number of observations

within the i-th group and
∑I

i=1 ni = J , η
i

is the ni-dimensional linear predictor vector.

In addition, Xi is the ni × P matrix of fixed-effects regressors of observations in group i,

β is the P -dimensional vector of their coefficients (including the fixed intercept), Zi is the

ni × Q matrix of regressors for the random effects, bi is the Q-dimensional vector of their

coefficients (including the random intercept) and Ψ is the Q×Q within-group covariance

matrix of the random effects. Fixed effects are identified by parameters associated to the

entire population, while random ones are identified by group-specific parameters.

GLMMs parameters are estimated through Maximum Likelihood (ML) or Restricted Maxi-

mum Likelihood (REML), as described in Patterson and Thompson (1971); such estimation

methods, for models of this type, do not have closed form solutions; optimal parameters

are found numerically, for example with Gaussian Quadrature (GQ) or Penalized Quasi-

Likelihood (PQL, Rodŕıguez (2008)) in order to estimate the integrals to evaluate the

likelihood, which is then maximized through an iterative method.

2.2 Generalized Mixed-Effects Random Forest

Our proposed Generalized Mixed-Effects Random Forest (GMERF) embeds the use of tree-

based methods for different classes of response variables in the exponential family. At the

same time the method can deal with the grouped data structure as GLMMs do.

We basically relax the linear assumptions of the fixed effects of a GLMM and we substitute it

with a tree-based structure, allowing the model to be more flexible. The matrix formulation
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of the GMERF model is the following:

µ
i

= E[y
i
|bi] i = 1, ..., I

g(µ
i
) = η

i
(2)

η
i

= f(Xi) + Zibi

bi ∼ NQ(0,Ψ)

with the same notation of Equation (1).

The fixed part f(Xi) is not forced to be linear any more, but it is assumed to have a tree-

structure. In particular, we estimate the effects of this part by means of a Random Forest

(RF), which is a tree-based ensemble method (Breiman (2001)). The basic idea of a RF is

to train a large number of trees, each one using a different dataset built from the original

one by bootstrap and by testing only some of the available covariates; the prediction of the

forest is a suitable aggregation of the prediction of each tree.

As in a GLMM, bi and bi′ are independent for i 6= i′. Fixed effects are identified by a non-

parametric RF model associated to the entire population, while random ones are identified

by group-specific parameters.

To fit this kind of model we have to decouple the estimation of the fixed effects part of

the model from the random effects one. To this purpose, we can note that, if random

effects were known, the model implies that we could fit a random forest to estimate f using

ηij − ZT
ijbi as dependent variable. Similarly, if the population-level effects f were known,

then we could estimate the random effects using a traditional mixed-effects linear model

with response corresponding to ηij−f(X ij). Since neither the random effects nor the fixed

effects are known, we implement an iterative method that alternates, until convergence,

the estimation of the RF with the estimation of the random effects. A second issue that

needs to be faced is that η
i

is not known and cannot be directly deduced from data. The

solution that we propose, which is in line with the one proposed in Fontana et al. (2018),

is estimating it by means of a standard GLM model using as covariates the fixed effects
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covariates.

The pseudo-code of the estimation procedure is shown in Algorithm 1.
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Algorithm 1 GMERF model estimation procedure

Input:

y- vector with responses yij
cov- data frame with all covariates

gr- vector with the grouping variable for each observation

znam- vector with names of covariates to be used as random effects

xnam- vector with names of covariates to be used as fixed effects

fam- distribution of y (must be part of the exponential family)

b0- optional matrix of initial values for each bi
toll threshold to decide whether our estimation converged or not

itmax maximum number of iterations

Z ← (1; cov[znam]) {to include also the random intercept}
Initialize b to a matrix of zero (if b0 is not given) {Each column b[i, ] of b will be the i-th random

coefficients bi}
all.b[0] = b

fit a GLM model using y as response and cov as matrix of covariates

eta← estimated ηij by the GLM model

it← 1

while it < itmax and not conv do

targ ← eta− Z × b
fit a random forest model using targ as target and cov as predictor matrix

fx← fitted values of the forest model

fit the GLMM ηij − f(xij) = zTij × bi
all.b[it]← b← the estimated b from the model

M ← max(abs(b− all.b[it− 1]))

(i, j)← argmax(abs(b− all.b[it− 1]))

tr ←M/all.b[it− 1](i, j)

if tr < toll then

conv ← true

else

conv ← false

end if

it+ +

end while

if not conv then

give a warning

end if

Output:

the final GLMM fitted

the final forest model fitted

b, the final estimation of the random coefficients

it, the number of iterations
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The RF is fitted using the R package randomForest (Liaw and Wiener (2002)) which

implements the original algorithm of (Breiman (2001)). The mixed model is fitted using

the function glmer from the R package lme4 (Bates et al. (2011)). To predict a new

observation [X ij; zi] we use the formula

η̂ij = f̂(xij) + zTij b̂i (3)

where f̂ is the random forest estimated by the algorithm, b̂i is the vector of the random

effects coefficients related to the i-th group. Then the prediction on µ̂ij is obtained by

applying to the corresponding η̂ij the inverse link function g−1. In the application of

GMERF model to binary outcomes we will use the canonical link function logit :

g(x) = logit(x) = log

(
x

1− x

)
.

3 Simulation study

In this section we compare the performance of the proposed GMERF method to simi-

lar classification methods on different simulated datasets, with the aim of evaluating the

strengths and weaknesses of our method.

3.1 Simulation design

Without loss of generality we simulate our response from a Bernoulli distribution, but

any distribution from the exponential family could have been used. The Data Generating

Process (DGP) of binary data is based on the following equations:

ηij = f(X ij) +

Q∑
q=1

biqzijq

µij = logit−1(ηij) (4)

yij ∼ Bernoulli(µij)
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where f is the fixed effect part and X ij is the P−dimensional vector of fixed effects co-

variates,
∑Q

q=1 biqzijq is the random effect part of the model, which will change in different

simulations. As far as the fixed effect part is concerned we choose to have a good (but

not too high) number P of covariates and we design f to include both a linear part and a

tree-like part, as well as interactions among covariates; in this way we have a very diverse

structure that will test the flexibility of our method; so we choose P = 7 and we design f

like this:

f(x1, ..., x7) = α(x21 − 3x2 − x2x23) + βtree(x4, x5, x6), (5)

where α and β are two parameters used to control the variability of f ; tree(x4, x5, x6) is a

function with a tree-like structure, described in Figure 1. The last variable X7 by construc-

tion has no significance so that we can test if the algorithm is misled by it. The covari-

ates are randomly generated according to the following distributions: X1, X2 ∼ U(−1, 1),

X3 ∼ Weibull(3), X4 ∼ U(−3, 3), X5 ∼ U(−6, 6), X6 ∼ U(−5, 5), X7 ∼ U(−4, 4).

For the random effects part we generate N = 10 groups, each one with ni = 40 obser-

vations 1 (for a total of 400 units) by sampling from a normal distribution, according to

the assumption of the GLMM. For the random-effects generation, we simulate two cases:

• Random intercept:
∑Q

q=1 bqzqj = bi0 ∼ N (0, γ2) so there is just one scalar random

effect; γ regulates the variability of the random effect;

• Random intercept and slope:
∑Q

q=1 biqzijq = bi0 + bi1xij1, where x1ij is the first fixed

covariate and the random coefficients is b ∼ N2(0,Σ), with Σ = diag(γ2; δ2); b0i and

b1i are independent for any value of i; δ is a variance-regulation parameter as well.

Given the presented four parameters to regulate the variability, we select their values so

that probability µij of each unit is not too close to 0 or 1 (except for a small number of

observations). We perform a total of 8 simulation cases in which we change the value of

each coefficient to have a low or high variance for the corresponding component of the

model; the cases and values of the coefficients are summarized in Table 2.

The models that we test in order to compare their performances with the GMERF’s ones

1The size does not need to be the same one for all groups.

13



x4 < 1
x4 > 1

|x6| > 3
|x6| < 3

x5 > −1
x5 < −1

x5 < 5
x5 > 5

return
20

return
-2

return 2

x6 < 0
x6 > 0

return 1

return
-1

return 0

Figure 1: How tree(x4, x5, x6) in Equation (5) is computed.
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Random effects
Fixed
effects
variability

α β
Random
effects
variability

γ2 δ2

Intercept only Small 0.4 0.25 Small 0.5 0
Intercept only High 0.7 0.6 Small 0.5 0
Intercept only Small 0.4 0.25 High 2 0
Intercept only High 0.7 0.6 High 2 0

Intercept and slope Small 0.4 0.25 Small 0.3 0.5
Intercept and slope High 0.7 0.6 Small 0.3 0.5
Intercept and slope Small 0.4 0.25 High 1.4 1.4
Intercept and slope High 0.7 0.6 High 1.4 1.4

Table 2: Simulation parameters in Equation 5 for the simulation data process.

are: GLM, which can be fit with any version of R, GLMER, which fits the GLMM and

is part of the R package lme4 (Bates et al. (2011)), Random Forest (RF), which can be

fitted using the R package randomForest (Liaw and Wiener (2002)), GMET, described in

Fontana et al. (2018).

3.2 Simulation results

For each of the eight combinations described in Table 2 and each of the five models we

simulate 100 times the dataset and analyse thir results, so that we get a good estimation

of the performances. In order to have a good estimation of the predictive performances we

generate, together with each dataset, also a test set, consisting of 50 observations for each

group (500 in total), which will be used for model evaluation.

To evaluate the quality of the predictions we use two indexes: Predictive Mean Absolute

Deviation (PMAD) and Predictive MisClassification Rate (PMCR), which are defined as

PMAD =
1

Ntest

I∑
i=1

ni∑
j=1

|µij − µ̂ij| (6)

PMCR =
1

Ntest

I∑
i=1

ni∑
j=1

|yij − ŷij|
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where Ntest = 500 and ni = 50 ∀i = 1, ..., 10; µij are the actual probabilities of the sim-

ulation generated by the DGP in (4), µ̂ij are the probabilities predicted by the model, yij

are the actual values of the response and ŷij are the responses predicted by the model.

Note that the RF algorithm does not produce probabilities as output, but just the actual

responses, so the PMAD is not available for it.

Results of the simulation just described are shown in Table 3. Overall the prediction

of the probabilities is quite good, since the average PMAD is usually a little greather than

0.1, while the misclassified samples are roughly 1 every 5.

First of all we notice that the best mean performances, both on PMAD and on PMCR, are

the ones of GLM and GLMER models; GMET model performs always worse than those,

while GMERF sometimes is comparable to them, some other times is even worse than

GMET; as for RF, it is in two cases the best performing one (in terms of mean), all other

times is the worst one. The two cases in which RF is the best one are the the ones with

large-variability fixed effects and small-variability random effects; this means that RF is

very good at identifying fixed effects, but, when the hierarchical structure becomes rele-

vant, it struggles because on input is given just the label i; this result is quite expected

because the effect of the group structure on the response is linear in the simulated dataset

and RF is the only algorithm (among the ones we test) in which such effect is not assumed

linear.

GMERF algorithm’s performances seem to follow by RF ones, since its worst values of

PMCR correspond to the cases where also the PMCR of RF is particularly bad; that is

also reasonable, since GMERF is built with a RF. That being said, the performances of

all algorithms are comparable, expecially in the average PMAD value, which almost never

differs more than 0.02 between two different algorithms.

As for the variances of the estimations GMET and GMERF are at the opposites: the for-

mer is often the one having the largest variance (expecially for PMAD, where we do not

take into account RF), while the latter is the one with the smallest variance (expecially in

PMAD, where this happens 6 times out of 8). This is a big upside of the algorithm, which
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Model
Fixed
effects
variability

Random
effects
variability

Algorithm
used

Empirical
mean of
PMAD

Sample
variance
of PMAD

Empirical
mean of
PMCR

Sample
variance
of PMCR

Int small small GLM 0.1129 0.1098 0.201 1.2302
Int small small GLMER 0.1089 0.0844 0.2039 1.1796
Int small small RF NA NA 0.2470 0.8260
Int small small GMET 0.1204 0.1501 0.2199 1.2500
Int small small GMERF 0.1115 0.0765 0.2026 0.8371
Int large small GLM 0.1695 0.1004 0.228 0.7415
Int large small GLMER 0.1633 0.0980 0.2177 0.6372
Int large small RF NA NA 0.1966 0.6936
Int large small GMET 0.1773 0.0758 0.2311 0.6164
Int large small GMERF 0.1721 0.0882 0.2190 0.5244
Int small large GLM 0.0912 0.1754 0.1196 1.2777
Int small large GLMER 0.0907 0.1478 0.1201 1.1769
Int small large RF NA NA 0.2118 2.6451
Int small large GMET 0.1006 0.1820 0.1296 1.5699
Int small large GMERF 0.1038 0.1215 0.1339 1.3794
Int large large GLM 0.1331 0.2087 0.1595 0.8296
Int large large GLMER 0.1364 0.1689 0.1644 0.6291
Int large large RF NA NA 0.2166 0.9118
Int large large GMET 0.1477 0.1967 0.1758 0.8511
Int large large GMERF 0.1560 0.1179 0.1742 0.7673
Int+Slope small small GLM 0.1124 0.1217 0.2019 1.0409
Int+Slope small small GLMER 0.1106 0.1206 0.2009 1.1424
Int+Slope small small RF NA NA 0.2451 1.2247
Int+Slope small small GMET 0.1219 0.1629 0.2184 1.2822
Int+Slope small small GMERF 0.1121 0.1192 0.1999 1.0417
Int+Slope large small GLM 0.1636 0.0763 0.2171 0.4859
Int+Slope large small GLMER 0.1620 0.0753 0.2142 0.6465
Int+Slope large small RF NA NA 0.1953 0.4411
Int+Slope large small GMET 0.1759 0.0539 0.2338 0.4713
Int+Slope large small GMERF 0.1724 0.0681 0.2235 0.6432

Int+Slope small large GLM 0.0897 0.1561 0.1178 1.3974
Int+Slope small large GLMER 0.0908 0.1437 0.1173 1.3041
Int+Slope small large RF NA NA 0.2116 2.4989
Int+Slope small large GMET 0.1012 0.1831 0.1239 1.4359
Int+Slope small large GMERF 0.1056 0.1297 0.1320 1.504

Int+Slope small large GLM 0.1331 0.1969 0.1581 0.9307
Int+Slope small large GLMER 0.1368 0.2644 0.1645 1.1237
Int+Slope small large RF NA NA 0.2162 0.7322
Int+Slope small large GMET 0.1472 0.2967 0.1737 1.3997
Int+Slope small large GMERF 0.1570 0.2059 0.1778 1.239

Table 3: Prediction performances of each model in each of the 8 simulation cases listed in
Table 2
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proves to be the most robust one; this robustness is probably due to the iterative nature

of the algorithm, which stabilizes the estimates.

This justifies our improvement of the algorithm by replacing the tree estimate with a forest.

In conclusion, GMERF algorithm performs comparably to GLMER and GLM, partic-

ularly where fixed effects are larger than random effects, but it is more robust than those

in the estimates; this can be seen in the same way as ridge regression versus classical linear

regression: ridge is biased, but its estimates have lower variance and so in some cases it is

preferable to its unbiased alternative.

4 Case study

In this section we present a real life application of our GMERF model, by giving our

contribution to the SPEET project in predicting students dropout, as anticipated in Section

1. The aim of this study is to apply GMERF to predict the university student dropout

probability considering students information - including demographics, previous studies

and the beginning of their academic career - and the engineering degree programs they are

enrolled in. Our case study is inspired by the one proposed in Fontana et al. (2018), where

the authors apply GMERT to the same dataset: in our application we aim to compare our

results with GMET ones.

4.1 The dataset

The data for our analysis comes from Politecnico di Milano database and it consists of

41,098 engineering careers in Bachelor of Science (BSc) that began between A.Y. 2010/2011

and 2015/2016. Politecnico di Milano has I = 23 different engineering degree programmes

and, in our sample, students are structurally nested within those programs. A descriptive

analysis shows that a high percentage of students (27% , more than one out of four)

leaves Politecnico di Milano before obtaining the degree. Therefore, our goal is to find out

which student-level indicators could discriminate between two different profles: dropout and
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graduate students. The dataset at our disposal contains a huge amount of information. We

select the student-level covariates to include in the model that we think could be more

informative as well as the university career information. In this regard, we include in the

model only the career information of the first semester of the first year, in the perspective

of predicting the student dropout probability as soon as possible. A similar approach has

already been used in other articles, such as Goldschmidt and Wang (1999) and Belloc

et al. (2010). Standing on the previous literature (Arulampalam et al. (2004)), there

are typically three macro-areas of student-level information that result to be significant

in student dropout prediction: student collateral data(i.e. general personal information

about students who enrolled in the university), student previous studies (i.e. information

about the studies of each student before enrolling at the university), student career data

(i.e.: everything about the careers of each student in the university, including exams and

mobilities). Taking this prior knowledge into account, after some explorative analysis we

decided to include in our final dataset the covariates shown in Table 4. Since students

are naturally nested in their degree programs, we choose to include in the model a random

intercept given to the degree program in which students are enrolled in, in order to take into

account this source of dependence among students and to investigate possible differences

in the dropout phenomenon across degree programs. Variable Avg1.1 has a peculiarity, in

the sense that it takes values from 18 to 30 (the minimum and maximum score to pass an

exam) plus a point mass at 0, representing students who passed no exams at all.
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Variable name Type of variable Domain Description

Status Factor {′0′,′ 1′}

The response variable: did
the career end with a de-
gree or with a dropout?
(’1’=Dropout, ’0’=Graduate)

Sex Factor {′M ′,′ F ′} Gender of the student

Nationality Factor {′I ′,′ F ′} Nationality of the student
(’I’=Italian, ’F’=Foreign)

Previous studies Factor 4 levels
Type of studies before
university: ′Scientifica′,
′Classica′, ′Tecnica′, ′Altro′

Avg 1.1 Numeric {0} ∪ [18; 30]
Weighted average score ob-
tained in exams of the first
semester of the first year

Attempts 1.1 Numeric [0; 10]
Average number of attempts
per exam of the first semester
of the first year

Credits 1.1 Integer {1, ..., 40}

Total number of Crediti For-
mativi Universitari (CFU)
obtained by the student after
the first semester of the first
year.

Degree program Factor 23 levels
Degree program the student
is enrolled in (it is the group-
ing variable)

Table 4: Covariates used for the analysis of SPEET data with GMERF model
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We excluded from the dataset four degree programs having few students enrolled (less

than 200), so the final number of degree programs considered is I = 19. The statistical

units are the concluded (either graduated or dropout) careers of students in the university

enrolled in the degree programs listed above. The final dataset has 24,736 statistical units

nested in 19 degree programs and it is the same one which is used in Fontana et al. (2018),

with the only difference that variable Previous studies here has 4 levels, while in Fontana

et al. (2018) it has just 3 levels (’Classica’ and ’Altro’ are considered together); this has a

minor impact on the final results of the analysis, so a comparison between the two of them

is still possible.

We randomly split the dataset into training and test subsets, with a ratio of 70% for model

fitting and 30% for evaluation (which we will refer to as test set). We then split again the

model fitting set into a training set and a validation set using a proportion of, respectively,

80% and 20%; validation set will be used to select the best value of the treshold α for the

prediction

4.2 Model results

The model we implement has, as random effect, just the intercept b0. We apply our model

using toll = 0.02 and itmax = 30; it converges after 8 iterations, so it reaches stability

in a short time. Estimates of random intercepts together with their confidence intervals

are shown in Figure 2. We can see that 10 intercepts are not significantly different from 0

(with 95% confidence), being in line with the average. Five programs increase the log-odds

of dropout, while four programs decrease those. The Variance Partition Coefficient (VPC)

is a possible measure of intraclass correlation introduced in Goldstein et al. (2002); it is

equal to the percentage of variation that is found at the higher level of a hierarchical model

over the total variance. It is defined as

V PC =
σ2
m

σ2
m + σ2

lat

(7)

where σ2
m is the estimated variance of random effects, while σ2

lat is the residual variability

that can neither be explained by fixed effects, nor through the group features that are
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Figure 2: Random intercepts of the GMERF model with their confidence interval.

represented by the random intercept. Since the variance of the standard logistic distribution

is π2/3 ' 3.29 , the VPC can be estimated as:

V PC =
σ2
m

σ2
m + π2/3

= 0.2261.

This means that roughly 23% of unexplained variation in the response is attributable

to the nested structure; this is a good indicator of the significance of the hierarchical

structure. Regarding the fixed-effects part, RF model gives us the importance of each

covariate (measured as the increase of the Residual Sum of Squares (RSS) when the values

of the corresponding variable are randomly permuted in the training dataset) in explaining

the response and the partial effect of each covariate (that can be displayed using partial

dependence plots). To this purpose we can look at Figure 3. Our GMERF model considers

as most important variables Avg 1.1 and Credits 1.1. In particular the three covariates

associated with performance of the student during his/her first semester career are all more

important than the collateral information; this suggests that what influences the choice of
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leaving the studies is the university performance of the student, more than its background

when enrolling.

Figure 3: Plot of GMERF’s variable importance; the height of the bar is the increase of the
Residual Sum of Squares (RSS) when the values of the corresponding variable are randomly
permuted.

Using partial plots we can highlight the effect of each variable with respect to the re-

sponse; in Figures 4 and 5 the partial plot for the most important fixed effects covariates

are shown; in particular, for variable Avg1.1, we show two different plots, Figures 4a and

4b: the former shows the plot with respect to all values of Avg1.1, while the latter focuses

just on the values from 18 to 30; the jump after 0 in the first one is motivated by the fact

that there are no values of this variable in the interval (0; 18).

Looking at Figures 4a and 4d we can see an inverse proportional association between the

probability of dropout and the variables Avg1.1 and Attempts1.1, suggesting us that stu-

dents trying less exams and not passing them at the first semester tend to drop their studies.

This pattern repeats in Figure 4c, even if not in the same straightforward way; from this

figure we can also note that students who obtain 30 credits after the first semester (which

means that the student passes all exams of that semester) has almost null probability of

dropout; this strongly suggests that a student likely to dropout can be identified already
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after a semester of studies. Finally, Figure 4b shows that the probability of dropout de-

creases linearly with variable Avg1.1.

Regarding the previous studies, Figure 5 shows that there is not a significant difference in

the dropout probability of students who attended scientific, classic or other schools (after

adjusting for the other characteristics), while students who attended technical schools are

more likely to dropout.

GMERF model returns also the probability that a student drops his/her studies. To

evaluate the quality of the predictions we use four indexes: Accuracy A, that is the per-

centage of correctly classified units; Sensibility SN that is, out of all the positive units, the

proportion of those found by the algorithm; Specificity SP that is, out of all the positive-

predicted units, the percentage of those who actually are; F1-measure, which combines

Sensitivity and Specificity as

F1 =
2 · SN · SP
SN + SP

. (8)

We use the validation set to choose the optimal treshold α for prediction, by looking at the

prediction accuracy and at the ROC curve (we denote Specificity with SP and Sensitivity

with SN) that we build with this set (Agresti and Kateri (2011)). In Figure 6 the complete

ROC curve Sensitivity-Specificity is shown. The optimal value turns out to be α = 0.4,

both in terms of Accuracy (A = 0.9082) and F1-measure (F1 = 0.8305); the other indexes

values are SN = 0.8102 and SP = 0.8495, while misclassification table relative to this

value is

y = 0 y = 1

ŷ = 0 2366 180

ŷ = 1 138 779

Overall these results show that the model is very good at predicting our validation set; we

can then apply these results to the test set.

The contingency table of the predictions on the test set is

y = 0 y = 1

ŷ = 0 5138 406

ŷ = 1 273 1603
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(a) (b)

(c) (d)

Figure 4: Partial plots of dropout probability with respect to continuous variables: variable
Avg1.1 on the entire range in panel (a), variable Avg1.1 on the range (18; 30) in panel (b);
variable Cfu1.1 in panel (c) and variable Attempts1.1 in panel (d).
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Figure 5: Partial plot of the student dropout probability with respect to variable PrevS-
tudies

Figure 6: ROC curve obtained from the validation set; the point highlighted is the one
corresponding to the optimal value of α found with the validation process.

26



and the value of the indexes are:

A = 0.9085

SP = 0.8544

SN = 0.7979

F1 = 0.8252.

So, overall, our model gives the right prediction 91% of times, 80% of students who will

drop their studies are correctly identified and 85% of students predicted as dropout actually

are; these are very good values, especially the indices SN and SP , because they show that

our model is very accurate, but at the same time is not too sensitive in predicting students

to drop their studies.

We can now compare our results with the ones found in Fontana et al. (2018) by using the

GMET model on the same dataset. Both models identified in variables CFU1.1 and Avg1.1

the two most important variables to predict a dropout; on the other end variable Sex is

not considered significant by either of them. As far as random effects are concerned, both

models identify Environmental and Land planning engineering as the ones associated with

the lowest dropout rate and they also both associate Computer and Civil engineering with

a higher dropout probability. The major differences between the fixed effects estimates by

GMET and GMERF are the following:

• Variable Attempts 1.1 is considered important by GMERF, but it does not appear

in GMET as splitting node; this may happen because the effect of this variable is

masked, in GMET, by the first split based on variable CFU 1.1 ; the two variables,

at least for very small values, are naturally correlated (people attempting no exams

do not pass exams and therefore do not get any CFU); however, the random forest

used in GMERF uses different variables in different trees and is then able to identify

the effect of both variables, which is one of the main advantages of a RF over a

classification tree;

• Nationality is considered very important by GMET, being the second split, while in

GMERF it has almost null importance.

As for the estimation of random effects, the major differences between the estimations of
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the two models (GMET and GMERF) are three:

• Management Engineering, which our model considers in line with the average, is

estimated by GMET to decrease the dropout odds;

• Biomedical Engineering and Telecommunications Engineering, which in our model

are associated with a positive coefficient, in GMET they are associated with a null

coefficient.

Finally, comparing the predictive power of the two models on the test set, we can see

that GMERF brought a slight improvement to the accuracy, from GMET’s 0.878 to 0.908;

therefore 3% more of the students are correctly classified, which confirms our initial expec-

tation. Overall we can say that the two models highlighted similar dynamics, which is an

evidence on the robustness of the two of them; the major difference is the higher precision

with which our GMERF model classified students and showed the effects of each covariate

on the dropout probability.

5 Conclusion

In this work, we present a model called Generalized Mixed Effects Random Forest (GMERF),

which consists in a novel method that extends the use of random forest to the analysis of

hierarchical data, for a non-gaussian response variable. GMERF modelling substitutes the

linear combination of the fixed-effects covariates of a GLMM with a random forest. This

new method contributes to the statistical literature about mixed-effects models and tree-

based method, taking advantage of the flexibility and the predictive power of a random

forest, but maintaining the structure of mixed-effects models. Moreover, although our study

focuses on the binary response case, this approach can handle any type of response variable

in the exponential family. Using suitable link functions, we can model different outcomes

such as counts data, as well as the particular case of a Gaussian response. GMERF can be

considered the missing piece of a class of models which combine tree-based methods with

Linear Mixed Models. The simulation study shows that GMERF has prediction perfor-

mances comparable to models like GLM and GLMM, with the advantage that its estimates
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are less variable then the ones of these models; moreover it has the added benefit of having

no assumption or structure for the fixed effect part; finally, as the RF algorithm, it can deal

with heterogeneous covariates (discrete and continuous) at the same time, which is a very

big advantage in terms of flexibility. In the case study we give a contribution to the SPEET

project, by providing a robust method to classify students as dropout or graduate that is

successful in the 90% of cases. These results might be useful in the perspective of defining

new tutoring systems to help students at risk. Our study results in an improvement in the

prediction accuracy over the GMET model, which was applied on the same dataset; this

is one of the goals we expect to achieve when using GMERF, since the two models have

the same formulation, but GMERF uses a RF to estimate the fixed effects, which is an

algorithms that improves the regression tree used in GMET. When applied to a complex

real data problem, GMERF proves to be a powerful and an easily interpretable method.
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