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Abstract

Segmentation of patient-specific vascular segments of interest from
medical images is an important topic for numerous applications. De-
spite the great importance of having semi-automatic segmentation meth-
ods in this field, the process of image segmentation is still based on
several operator-dependent steps which make large-scale segmentation
a non trivial and time consuming task. In this work we present a
semi-automatic segmentation method to reconstruct vascular struc-
tures from three-dimensional medical images. We start from the mini-
mization of the Region Scalable Fitting Energy using the Split-Bregman
method and we modify the resulting algorithm adding a connected
component extraction of the solution starting from a point that identi-
fies the vascular structure of interest. In this way, we add a constraint
to the algorithm focusing it only on the vascular structure we want
to reconstruct and avoiding the attachment with the nearby objects.
Finally, we describe a strategy to minimize the number of involved
parameters in order to limit the user effort. The results obtained on
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two different images (a Magnetic Resonance and a Computed Tomog-
raphy) demonstrate that our method outperforms the original method
in segmenting the vascular region of interest without the inclusion of
nearby objects in the result.

1 Introduction

Segmentation of patient-specific vascular segments of interest from medi-
cal images is an important topic for numerous applications such as patient-
specific computational hemodynamics [1], patient-specific computational me-
chanics [2] and patient-specific complex vascular morphological analysis [3,
4]. Despite the amount of studies concerning the aforementioned fields has
been growing over the last years, works including a large patient population
are still very limited [3,5]. The ability of performing large-scale studies in a
controlled way is a fundamental requirement in the clinical setting. Indeed,
only large-scale studies can be used to draw population conclusions or to val-
idate computational methods. One of the main reasons for the lack of large
studies is the fact that, starting from medical images, the process of image
segmentation is still based on several operator-dependent steps which make
large-scale segmentation a non trivial and time consuming task. Moreover,
operator-dependent tasks represent a source of error difficult to quantify.
The semi-automatic tools that are able to segment vascular structures with
low user interaction are few [6, 7] and still require a certain amount of user
involvement. In Antiga et al. [7], for example, the segmentation algorithm
requires the user to put two seeds for each branch of the vascular segment
to be segmented. This implies that, for complex geometries such as the
aorta or the coronaries, the user should define six or more initial seeds with
a consequent user effort in image interpretation. Starting from these con-
siderations, in this work we aim to propose a new segmentation method for
vascular structure able to: (i) work on different types of medical images
(e.g. Magnetic Resonance images, Computed Tomography scans), (ii) min-
imize user interaction and operator dependence, (iii) minimize the number
of parameters to be specified. To this aim we develop a region based seg-
mentation method which includes a local constraint able to extract only a
user-defined region of interest, avoiding its attachment with nearby regions.
Moreover, we reduce the user effort to the selection of a single initial point
and to the setting of only three parameters. The method is developed in
C++ using some of the structures provided by The Visualization Toolkit
(www.vtk.org) for the visualization and the interaction with the user.
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2 Methods

The anatomy of blood vessels can be inferred from Magnetic resonance (MR)
studies, three dimensional ultrasound (3D-US), computed tomography (CT)
and rotational angiography (RA) scanners. The information provided by
these clinical scanners is represented as a 3D array of grayscale intensities.
In this work we are interested not in the identification of entire vascular
networks contained in the image but in the identification of the individual
vascular segments of interest. In this way, the result of our segmentation
strategy is ready to be used for grid generation for computational analysis
or directly for morphological exploration. To this aim we ask to the user the
unique identification of a point inside the object of interest limiting the effort
required by the operator in the interpretation of the image content. To de-
fine our segmentation strategy two main components have to be described:
the segmentation method in terms of the involved equations and the choice
of the feature image, i.e. the input to the segmentation itself. Our segmen-
tation method starts from the method proposed in [8] which is based on
the minimization of the Region-Scalable Fitting Energy (RSFE) [9] through
the Split-Bregman method [10]; we further modify the method through the
incorporation of an iterative Connected Component [11] extraction. The
RSFE model, firstly proposed in [9], can be seen as an improvement of the
classical Piecewise Constant Chan-Vese model [12]. In the latest, the image
is divided in two regions approximating the intensity of the image inside each
region with a constant value representing the average of the intensity inside
the region. The idea behind the RSFE model is similar, but it substitutes
the constant values with functions that approximate the image intensity in
a local region through the use of a Gaussian kernel. The method is scalable
because the Gaussian kernel depends on a scale parameter, thus it is possible
to decide the size of the stencils on which the average of the intensity around
a pixel is calculated. In [8] the original energy is modified to make it convex
through the use of the Global Convex Segmentation (GCS) method [13]. In
this work we start with the same convex functional proposed in [8] and we
modify it adding an iterative Connected Component extraction to deal with
the problem of segmentation of an individual region of interest in medical
images.

In detail, let Ω ⊂ R3 be the image domain: the aim of the method
is to subdivide the domain into two regions Ω1 and Ω2 representing the
object to be segmented and the background, respectively. The functional
F to be minimized is written in a level set formulation, in this way the
zero level of the level set function represents the boundary between Ω1 and
Ω2. We use the following notation: u0 : Ω → R is the image intensity
function, φ : Ω → R is the level set function, L1(Ω) is the function space
of Lebesgue-integrable functions and ‖ · ‖1 is its norm, L2(Ω) is the Hilbert
space of the square-integrable functions, ‖·‖2 is its norm and 〈·, ·〉 is its inner
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product, H1(Ω) ⊂ L2(Ω) is the Hilbert space of the functions with also a
square-integrable gradient, ∗ denotes the convolution product. We set the
minimization problem in the limited space Uad to make the global minimum
well defined [8]:

Uad := {φ ∈ H1(Ω) : − α ≤ φ(x) ≤ α, q.o. x ∈ Ω}, (1)

φ = arg min
φ ∈ Uad

F(φ), (2)

where α is a positive constant. The functional reads:

F(φ(x)) = 〈φ(x), λ1e1(φ(x))− λ2e2(φ(x))〉 (3a)

+ ν‖∇φ(x)‖g, x ∈ Ω, (3b)

where λ1, λ2, ν are positive constants and we define the following functions:

Hε(φ(x)) = 0.5 + π−1 arctan (φ(x)/ε) , (4)

Mε,1(φ(x)) = Hε (φ(x)) , (5)

Mε,2(φ(x)) = 1−Hε (φ(x)) , (6)

Kσ(x) =
1

(
√

2πσ)3
exp

{
−|x|

2

2σ2

}
, (7)

fi(φ(x)) =
(Kσ ∗Mε,iu0)(x)

(Kσ ∗Mε,i)(x)
, i = 1, 2 , (8)

ei(φ(x)) =

∫
Ω
Kσ(x− y) |u0(x)− fi(φ(y))|2 dy, (9)

g(u0(x)) =
1

1 + β |∇(uo(x))|2
, β ∈ R+, (10)

‖∇φ(x)‖g = ‖g(u0(x))∇φ(x)‖1 . (11)

Hε is a smoothed Heaviside function depending on the smoothing parameter
ε and as a consequence the two functions Mε,i identify the two domains Ω1

and Ω2. The regional scalable behavior of the method is due to the presence
of the Gaussian kernel Kσ depending on the scaling parameter σ. Combining
these functions and u0 through the convolution product, the functions f1

and f2 play the role of a local approximations of the image intensities in
Ω1 and Ω2, respectively. In conclusion, the first term (3a) in the functional
is the term which guides the method to divide the image into two regions.
Instead, the second term (3b), as proposed in [8,14], is a modification of the
standard total variation norm adding the classical edge detector function
g(u0) as a weight (see equation (10) and (11)). Hence, this term plays the
role of a penalization on the smoothness of the segmented region enriched
with information about the position of the image edges taken directly from
the image intensity function u0.
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The application of the Split-Bregman method to solve (2) leads to the
following iterative algorithm [8,10]:

φ0 = φ0, d0 = ∇φ0, b0 = 0, (12a)

rk =λ1e1(φk)− λ2e2(φk), (12b)

φk+1 = arg min
φ ∈ Uad

{
〈φ, rk〉+

λ

2

∥∥∥dk −∇φ− bk
∥∥∥2

2

}
, (12c)

dk+1 = arg min
d

{
ν‖d‖g +

λ

2

∥∥∥d−∇φk+1 − bk
∥∥∥2

2

}
, (12d)

bk+1 = bk +∇φk+1 − dk+1, (12e)

where φ0 is the arbitrary initial level set function and λ is a positive constant.
The Euler-Lagrange equation of the first optimization problem (12c) leads
to the resolution of the following Poisson problem to find φk+1:−∆φ = ∇ ·

(
bk − dk

)
− rk

λ
in Ω

∂nφ = 0 on ∂Ω

, φ ∈ Uad. (13)

Note that the definition of rk in (12b) exploiting the level set φk of the
previous iteration follows the implementation of [8] and it is necessary to
obtain in (13) a linear partial differential equation. The minimization of
(12d) can be performed, instead, using the shrinkage operator [10]:

shrink(f, γ) = sgn f max(|f | − γ, 0), (14)

which leads

dk+1 = shrink
(
bk +∇φk+1,

ν

λ
g
(
u0

(
φk+1

)))
. (15)

Concerning our numerical implementation, we discretize each function in-
volved in the algorithm on the structured grid of pixels naturally defined
by the 3D medical image. Thus, we use the finite difference method to dis-
cretize (13), as well as every other differential operator. Finally, we solve
the linear system generated by the finite difference discretization of (13)
using the Gauss-Seidel iterative method initializing the solution with the
level set at the previous iteration φk. We solve the convolution products in
(8) and (9), necessary to update rk at each iteration, exploiting the Convo-
lution Theorem and the Discrete Fourier Transform (DFT) of each factor.
Moreover, we compute each DFT using the Fast Fourier Transform (FFT)
algorithm and, as proposed in [9], we limit to four the number of convolu-
tions necessary at each iteration. Concerning the initialization, we always
define the level set φ0 as a small cube including the region of interest of
the medical image, assuming the value α inside and −α outside. The cube
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is constructed asking to the user the identification of one point inside the
vessel of interest and a characteristic dimension of the vessel itself.

The method described above is a region-based method that divides the
image in two regions. Each region can be constituted of more than a unique
connected part. Furthermore, since the second part of the functional (3b)
penalizes the curvature of the object to be segmented, the algorithm encour-
ages the union between objects near each other. These are typical limitations
when dealing with 3D medical images, since usually in this field the goal of
the segmentation is to isolate a single organ of interest from everything else:
the attachment of the object of interest with nearby objects with similar
intensity is a classical problem. To overcome these problems, we include in
our method an automatic Connected Component Extraction (CCE) [11] of
the level set φ. Since the level set assumes positive values inside the region
of interest and negative outside, the CCE consists of selecting only the pix-
els which have positive values and which are topologically connected to an
initial point P0, chosen inside the region of interest (for example, the center
of the initial cube defined by φ0 or a different point chosen by the user).
This procedure is performed automatically each N iterations and only if the
level set is positive in the initial point P0. In this case, we define the level
set φk+1 as a binary image equal to α inside the extracted component and to
−α otherwise and we initialize again the Split-Bregman variables bk+1 and
dk+1. We remark that every time we perform the CCE step the minimiza-
tion problem (2) reduces to the first term (3a) ignoring the smoothing part
(3b). Concerning the implementation, we use a classical CCE algorithm [11]
using a six-connected 3D image graph. In conclusion, setting the level-set
equal to a connected component each N iterations, we force the whole al-
gorithm to extract only the vascular segment of interest from the medical
image.

Finally, we have to define the feature image to be given as input to our
segmentation procedure. Since the method takes information mainly from
the image intensity u0, we have to ensure that the vascular segment we
want to extract is characterized by the highest image intensity values and
by high contrast with its background. If the medical image does not have
this features, we can select a range of intensity values [a, b] and set all the
pixels out of the range equal to the value a. In this way, choosing b as the
maximum intensity value of the region of interest and a as a value of its
background, we obtain a processed image with the desired features. We call
this pre-processing step select-range. Another problem of medical image can
be the presence of noise. Despite our method, thanks to the convolution with
the Gaussian kernel, works good also in case of some noise, reducing it can
improve the general performance. Indeed, the presence of noise negatively
affects the quality of the edge detector g(u0) (10). Moreover, if the select-
range step is performed, some amount of noise is naturally introduced by
the thresholding procedure and some subsequent smoothing is consequently
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Table 1: Fixed Parameters of the Segmentation Method

λ1 λ2 ε β ν α

10−5 10−5 10−5 100 1 0.5

needed. Thus, in case of noisy images or after the select-range step, we filter
the image with a median filter of radius equal to one pixel. Finally, the
last step we perform to generate our feature image consists of a rescaling
of the intensity values in the fixed range [0, 255] to deal always with similar
intensity values. Note that, since the function u0 takes real values, the image
does not loose any information during this step. We perform this rescaling
in order to define a set of parameters that do not depend on the single
medical image. Indeed, despite the number of parameters is high, we can
leave most of them fixed with the values shown in Table 1, focusing only on
the scale parameter σ, the Lagrange multiplier λ and the frequency 1/N of
the CCE. We discuss more in detail the meaning of each parameter in the
next section.

We conclude showing the whole algorithm of our method, underlining
also the generation of the feature image just described:

1: u0 ← select-range(u0, [a, b]) {in case of bad contrast}
2: u0 ← median-filter(u0) {in case of noisy image}
3: u0 ← rescale-values([0, 255])
4: φ0 ← φ0, d0 ← ∇φ0, b0 ← 0 {initialize variables}
5: for k = 0, 1, 2, . . . do
6: rk ← λ1e

k
1 − λ2e

k
2 {using φk and eq. (4)→(9)}

7: φk+1 ← solve-poisson-problem {eq. (13)}
8: dk+1 ← shrink-operator {eq. (15)}
9: bk+1 ← bk +∇φk+1 − dk+1

10: if (k mod N and φk+1(P0) > 0) then
11: φk+1 ← CCE(φk+1) {binary level set}
12: dk+1 ← ∇φk+1, bk+1 ← 0
13: end if
14: end for

3 Results and Discussion

We apply our method on two different kind of medical images, a 3D contrast-
enhanced MR image (CE-MRI) and a CT scan, and we compare the obtained
results with the results of the original method proposed by [8]. In both
cases our aim is to reconstruct the aorta. The first image is a CE-MRI of a
patient with a dilated ascending aorta (Fig. 1); the second image is a CT of
a patient with a ventricular assist device (VAD) (Fig. 2a) and we want to
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Figure 1: The CE-MRI of the patient with ascending aortic dilatation, with
the initial cube in red.

(a) (b)

Figure 2: The original CT of the patient with VAD on the left and the
resulting image after preprocessing on the right (with the initial cube in
red).
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segment both the aorta and the artificial cannula with the anastomosis at the
beginning of the ascending aorta. The CE-MRI, thanks to the contrast agent
injected in the patient, is ready for the application of our method. Indeed,
the aorta has a good contrast with its background and assumes the highest
image intensity values. More in detail, the image intensity values are in the
range [0, 751] and the aorta is characterized by values in the range [350, 550]
which are among the highest in the image. Concerning image resolution, the
CE-MRI pixel size is 1.375mm×1.375mm, while the spacing between slices
is 1.5mm. The CT image, instead, is characterized by intensity values in
the range [−1024, 3071], while the vascular segment we want to extract has
values in the range [250, 450] with a background of about −50. The highest
value of intensity characterize, aside from the bones, the right part of the
heart and circulation, where the contrast agent was located in the moment of
the scan; indeed, there is no contrast agent in the aorta and in the cannula at
the moment of the acquisition. Thus, we can considerer this image as a CT
without contrast agent in the vascular segment of our interest (see Fig. 2a).
In this case we have to pre-process the image in order to construct the correct
feature image, hence the select-range step is performed with values [−50, 450]
and the median filter is consequently used. The processed image is shown
in Fig. 2b: after the pre-processing steps the aorta assumes the highest
intensity values as required by our method. Concerning image resolution,
the CT pixel dimension is 0.771mm×0.771mm, while the distance between
slices is 1mm.

We discuss now the meaning of each parameter involved in our method,
starting from the ones that we suggest to leave fixed (Table 1). The pa-
rameters λ1 and λ2 weight the two functions e1 and e2, e.g. if λ1 > λ2

the evolution of the level set in Ω1 is penalized. We decided to fix them
equal each other since the unbalance of the two parameters has some neg-
ative consequences, i.e. the overestimation or the underestimation of the
object of interest or the generation of new artificial contour inside it [9].
The parameter ε decides the accuracy of the approximation of the Heaviside
function and, as a consequence, the measure of the intersection between Ω1

and Ω2. Setting it to a small value ensures a small overlap between the
two regions, disadvantaging the attachment of near objects. The weight β
beside the gradient of the intensity function u0 in equation (10) determines
the influence of the edge detector in the evolution of the level set. A big
weight is suggested if the edge detector is of good quality, while a small one is
better in the contrary. Since in general, when dealing with medical images,
it is difficult to identify the edges only with the gradient of the intensity
function, a good choice is to set β to an intermediate value. Considering
the order of magnitude of each function involved in the algorithm after the
automatic rescaling of u0 in the range [0, 255], the value of 100 represents
a good compromise. Finally, the parameter ν can be fixed to 1 without
loosing the generality of the method [8] and we suggest a value of α equal
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Table 2: User Parameters of the Segmentation Method for the CE-MRI and
the CT images

σ λ N

CE-MRI 3.5 0.15 2

CT 4.5 0.1 2

to 0.5.
In Table 2 we report the values of the other parameters in the two differ-

ent cases of the CE-MRI and CT. The scale parameter σ regulates the width
of the Gaussian kernel (7) and, as a consequence, the width of the local ap-
proximation of the intensity u0 through the two functions f1 and f2 (8). As
a consequence, a small σ allows the segmentation of inhomogeneous images
and ensures a result with a higher level of details; on the contrary, it can
cause the development of new contours inside the object of interest. A good
compromise is to set this parameter about an order of magnitude smaller
than the diameter of the vessel we are interested to segment. Thus, in the
case of the aorta, values of sigma between 2mm and 5mm are good choices,
while, in the case of smaller vessels (e.g. coronaries) a much smaller σ is
necessary. Finally, the Lagrange multiplier λ, since it appears as a weight in
the right hand side of the equations (13), influences the quantity of diffusion
at each iteration k and, as a consequence, the speed of growth of the level
set φ. Hence, when the value of this parameter is high, the algorithm slows
down and a bigger number of iterations are necessary to obtain the final
result. Despite this strategy seems useless, we need to combine the CCE
with a general slowing-down of the algorithm, to avoid the attachment with
near objects. For this reason, we suggest to set λ about 0.1 and perform the
CCE each two iterations. In case this is not sufficient to avoid the union of
near objects, it is suggested to increase λ even more.

We finally show the results of our method at different iterations and on
both images, comparing them with the results of the original method [8]
(see Fig. 3 and Fig. 4). Note that we apply both methods to the same
initial images (Fig. 1 and Fig. 2b) with the same parameters (Tables 1 and
2) and the same initializations (i.e. the red cubes in Fig. 1 and Fig. 2b).
Moreover, we recall that the results of both methods can be made of more
than a connected component. While in the case of our method the parts
not connected with the region of interest are usually small or do not exist
(because they are iteratively deleted by the CCE every two iterations), in
the case of the original method they can be very large. For this reason, to
be fare in the comparison, we always show only the part of the zero level of
φ connected to the region of interest.

In Fig. 3 we report the results obtained with the CE-MRI after 5, 25
and 59 iterations for both methods. The dilated ascending aorta is very
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well segmented by our method (see Fig. 3f) and, looking at the evolution
of the contour (Fig. 3 (d)–(f)), it is clear that we reach the aim of avoiding
the attachment with other objects. On the contrary, the corresponding
results of the original method (Fig. 3 (a)–(c)) are clearly affected by the
attachment of nearby vessels and organs both in the ascending and in the
descending aorta resulting in an incorrect final segmentation. An analogous

(a) Iteration 5. (b) Iteration 25. (c) Iteration 59.

(d) Iteration 5. (e) Iteration 25. (f) Iteration 59.

Figure 3: CE-MRI, comparison of the results at different iterations: (a)–(c)
obtained with original method described in [8], (d)–(f) obtained with our
method. The red surface is the connected component of the zero level of φ.
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behavior can be seen in the second test of the CT with VAD (Fig. 4).
The evolution of the contour with the original method generates a surface
including also the pulmonary artery and part of the heart (Fig. 4 (a)–(e)),
while our method is able to isolate only the aorta and the artificial cannula
of the VAD (Fig. 4 (b)–(f)). Moreover, we note also the quality of the final
segmentation (Fig. 4f), where the three sinuses of Valsalva are clearly visible
and the anastomosis between the artificial cannula and the aorta is perfectly

(a) Iteration 5. (b) Iteration 5.

(c) Iteration 15. (d) Iteration 15.

(e) Iteration 45. (f) Iteration 45.

Figure 4: CT image, comparison of the results at different iterations: (a)–
(c)–(e) obtained with original method described in [8], (b)–(d)–(f) obtained
with our method. The red surface is the connected component of the zero
level of φ.
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reconstructed. Finally, we underline that these results are obtained with a
minimum interaction by the user, that has only to choose the position of
the initial cube.

We conclude noting that our results can be easily post-processed to
perform the applications mentioned in the first section, such as patient-
specific computational hemodynamics, patient-specific computational me-
chanics and patient-specific complex vascular morphological analysis.

4 Conclusions

In this work we develop a modification of the segmentation method proposed
in [8] in order to make it suitable for the reconstruction of vascular structures
from 3D medical images. The original method consists in the minimization
of the RSFE functional [9] using the Split-Bregman method [10]. We mod-
ify the iterative algorithm adding a connected component extraction of the
solution each N iterations, starting from a point that identifies the vascular
structure of interest. In this way, we take advantages of a local constraint to
focus the original region-based method only on the user-defined region of in-
terest and, consequently, we avoid the attachment of the vascular structure
with nearby objects. Finally, we suggest a strategy to limit the user inter-
action: we fix most of the parameters of the method, allowing the tuning of
only three of them. We test the proposed method on two different kind of
medical images (a MRI and a CT) reconstructing in both cases the aortic
arch of two patients with complex geometries (an ascending dilatation and
the ventricular assist device). The obtained results demonstrate that our
method outperforms the original method in segmenting the vascular region
of interest and all the important details (such as the sinuses of Valsalva,
the anastomosis and the aortic dilatation) without the inclusion of nearby
objects in the result (such as pulmonary branches or heart).

A limitation of our study is related to the low number of tested images;
indeed, the currently available data involve vessels of relatively large size.
We are planning to test the algorithm in more challenging situations with the
presence of veins/arteries of relatively small diameter. Despite the obtained
results are qualitatively very promising, additional studies with a larger
dataset and with quantitative comparison with other methods are required.
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