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The transcendental is not infinite and unattainable tasks,

but the neighbor who is within reach in any given situation.
(D. Bonhoeffer)

Abstract

We provide an overview of the state of the art of adaptive strategies for high-order hp
discretizations of partial differential equations; at the same time, we draw attention on
some recent results of ours concerning the convergence and complexity analysis of adaptive
algorithm of spectral and spectral-element type. Complexity is studied under the assumption
that the solution belongs to a sparsity class of exponential type, which means that its best N-
term approximation error in the chosen piecewise polynomial basis decays at an exponential
rate with respect to N.

1 Introduction

The present authors are some generations apart, yet both of them have been deeply influenced
by the gigantic human and professional figure of Enrico Magenes; this paper is a modest yet
heartfelt tribute to his memory.

On the scientific ground, professor Magenes not only gave outstanding contributions to
the mathematical theory of partial differential equations, but he was a pioneer in fostering



the development of a Computational Mathematics at the same time soundly tied to functional
analysis and strongly immersed in real-life applications. The “Laboratorio di Analisi Numerica”,
that he founded in Pavia in the Seventies and directed for several decades, had a paramount
impact on the Italian Applied Mathematics community, and soon become a recognized reference
for the whole international community.

Enrico Magenes was able to create, and maintain over the years, a scientific environment
extremely open and favorable to the development and exchange of new ideas. Many young
researchers have been attracted by that atmosphere; some of them, such as the senior author
(CC), had the chance to become members of that institution, and bring everlasting gratitude
for the opportunity they had of being exposed day by day to the charismatic personality of the
founder; some others, such as the junior author (MV), have remained fascinated and deeply
influenced by his human and scientific legacy.

Enrico Magenes was always very careful in granting freedom of research to the members of
his group, the only conditions to respect being the quality and the interest of the undertaken
investigations. Good projects pushed forward by younger collaborators had the chance of being
supported as more mature lines of research. The onset of interest for spectral methods, which
are the object of the present contribution, at the “Laboratorio” in the early Eighties is precisely
an example of this favorable environment. Influenced by a stimulating visit at the “Laboratoire
d’Analyse Numérique” (created in Paris by Magenes’ coworker and friend Jacques-Louis Lions),
Alfio Quarteroni initiated a fruitful and long-lasting collaboration with the present senior author
on the numerical analysis of spectral and high-order methods for boundary-value problems; while
in the early stage the scientific guidance was provided by Franco Brezzi, the full and continuous
strategic and logistic support granted by professor Magenes was certainly a key ingredient for
the success of that research.

Since then, high-order methods such as spectral(-element) methods or the hp-version of finite
element methods (the two categories being often hardly distinguishable from each other) have
reached their maturity, both in the full understanding of their theoretical properties and in the
penetration into the scientific computing practices, in various applicative environments (see, e.g.,
[50, 12, 13]). Yet, some relevant aspects of these methods are still far from being in a satisfactory
shape, and deserve further investigations. An example is given by the so-called hp-adaptivity;
indeed, even for steady problems, a full and rigorous understanding of the selection strategies
between h-refinement and p-enrichment, and their influence on the complexity and optimality
of the related algorithms, is still lacking.

The purpose of the present paper is to provide a soft overview of the state of the art of
adaptive strategies for high-order discretizations of partial differential equations; at the same
time, we aim at drawing attention on some recent results of ours concerning the convergence
and complexity analysis of adaptive algorithm of spectral and spectral-element type.

We begin by recalling various approximation results which show that a proper choice of the
mesh and the polynomial degree distribution over the mesh guarantees an exponential decay
of the error even if the solution of the equation exhibits singularities inside the domain or at
the boundary, provided their position is known. The free parameter is the cardinality of the
set of active degrees of freedom. An elementary derivation is detailed, in the case of algebraic
singularity or piecewise analyticity. Obviously, such results on optimal “a-priori adaptivity”
constitute a benchmark for the “a-posteriori” adaptive strategies, which need to detect the
singularities and properly allocate the degrees of freedom around them. Thus, we are led to
review the main error estimators proposed in the literature for Ap methods, and the various
adaptation strategies which exploit their information. While the number of different strategies



is fairly large, with different mathematical sources and different practical performances, very
few algorithms can be rigorously proven to be convergent, with a precise estimate of their rate
of convergence. The situation becomes even worse if complexity or cost issues are to be taken
into account.

In this respect, we devote the second part of the paper to illustrate some recent results
we have obtained in collaboration with Ricardo H. Nochetto; we consider adaptive spectral
methods of Legendre type, and actually we extend them to cover the case of spectral-element
discretizations (or p-type finite elements). A representative algorithm (out of several possible
variants) is described, and its convergence properties are discussed. Furthermore, we investigate
its complexity, by comparing the output of the algorithm with the best possible approximation
of the exact solution in the chosen piecewise polynomial basis, for the same accuracy — this point
of view being related to the so-called “best N-term approximation” of a function. The novelty
of the analysis, compared to the available results in the literature, is that optimality is discussed
with respect to an assumed exponential (or sub-exponential) decay of the best N-approximation
error; this assumption appears indeed to be coherent with the use of spectral-type methods in
the discretization of the boundary-value problem.

Notation. Throughout the paper, by A < B we mean that the quantity A can be bounded
by a multiple of B, the multiplicator being independent of those parameters A and B may depend
on. Likewise A ~ B means A < B and B < A, whereas A ~ B means A = B + o(B), with
o(B) negligible with respect to B.

2 From approximation theory to a-priori adaptive hp methods

We begin by recalling some classical results concerning the approximation of a univariate function
having Sobolev or analytical regularity, by means of algebraic polynomials. These estimates will
be useful in the subsequent analysis of piecewise polynomial approximation.

Let I denote the reference interval (—1,1). If v belongs to the Sobolev space H™(I), m > 0,
then

Lt o=l < Co.m)p™ (2.1)

where the positive constant C'(v,m) can be bounded by the norm of v in H™(I) (actually, the
bound holds under weaker assumptions, see, e.g., [50, 12]). On the other hand, if v can be
extended to an analytic function on the closed ellipse E(—1,1;0) in the complex plane having
foci at z = +1 and semiaxes’ sum ¢ > 1, then setting n = log ¢ one has

inf — <C —1/2¢—mp 2.2
welﬂf,}pu)”” wl g2y < Clv,m)p~ /e (2.2)

(see, e.g., [30, 50]). A different estimate involves the maximum modulus of v over the ellipse
E(—1,1;0) and reads as follows:

Lo max o2 (2.3)

m ”U U)HL?(I) CSlnhn zEE(—l,l;O’)

weP,(I) B
(see, e.g., [12]).

The previous results can be easily combined to provide bounds of the approximation error
for piecewise smooth functions on a finite partition of the domain by piecewise polynomials;
in such cases, the estimates involve not only the polynomial degrees but also the sizes of the



subdomains. Less trivial is the problem of expressing the error in terms of the total number,
say N, of employed degrees of freedom, and, even more, of optimizing the allocation of degrees
of freedom for a given target accuracy. This is precisely the crucial problem of hp adaptivity.

The earliest attempts to study the adaptive approximation of a univariate function, having
a finite number of singularities and otherwise smooth, by means of piecewise polynomials of
variable degree dates back to the late Seventies, with the pioneering works [20] and [24] (see also
[21] and the references therein).

In [20], the best N-term approximation of a univariate function in the maximum norm by
piecewise polynomials of variable degree is studied, and in particular it is proven that for certain
classes of analytic functions the best N-term approximation is achieved by a single polynomial
over the entire domain. On the other hand, [24] deals with functions with singularities of the
type x® near the origin, and proves that a proper combination of graded mesh and linear increase
of polynomial degrees (see below) yields exponential decay of the best N-term approximation
error, with exponent proportional to v/N.

This result influenced Gui and Babuska [30] in their study of the convergence rate of the hp
approximation to a model elliptic problem in 1D. As usual, a Céa Lemma argument reduces the
problem to estimate the best N-term approximation error in the energy norm. Let us give some
detail.

Let Q = (0,1). Suppose that the solution u of the underlying elliptic PDE is real analytic in
(0,1] and behaves like u(x) = x® for some a > 1/2. Consider a partition of { into contiguous
intervals K; (0 < j < J) and a corresponding distribution of polynomial degrees p; > 1. Define
the subspace

Vs={ve H'(Q) : vk, €Pp(Kj), 0<j<J}. (2.4)

Let us assume that the mesh is geometrically graded towards 0, i.e., there exists 0 < p < 1 such
that ' '
Kj=[™p] for 0<j<J, K;=[0,p"], (2.5)

whereas the polynomial degrees grow linearly away from 0, i.e.,
p; = max(1, \(J - j)]) (2.6)
for some A > 0. Under these assumptions, there exists A such that one has for N = dim Vj

inf |lu— < Ce VN 2.
Jnf, ||u = vsll ) < Ce ; (2.7)

where the constants C' > 0 and b > 0 are independent of N. In particular, the choice p* =
(v/2 — 1)? for the grading factor is optimal for any o.

The result can be extended to more general functions; in particular, to those belonging to
the class Bg(Q) for £ = 1,2 and some 3 € (0,1); these are the functions u € H*~1(Q) such that,
setting @~ (x) = |z|7, the functions ®g4x_¢D*u belong to L?(Q) for any k > ¢, and there exist
constants C > 0 and d > 1 for which

1@ p4k—eD¥ul| 20y < CdF Mk — 1)1 (2.8)

Based on the previously described a-priori analysis, Gui and Babuska ([31]) proposed what
is probably the first hp adaptive algorithm (see also Subsection 3.2 below). Given an elemen-
tal error estimator satisfying suitable assumptions, the elements of the partition on which the



error estimator is larger than a fixed fraction of the largest estimator are marked for refine-
ment /enrichment; by inspecting the ratio between two error estimators on the marked interval
with two consecutive polynomial degrees, it is decided whether to divide the interval into two
parts carrying the same polynomial degree as before, or to keep the interval unchanged but in-
crease the polynomial degree by one. The algorithm is proven to be convergent, with a predicted
rate. However, the assumptions on the admissible error estimators appear to be overly restric-
tive, essentially they are taylored on the z®-type singularity, for which indeed the algorithm
produces a nearly optimal discretization.

In 2D, the counterpart of the previous a-priori analysis is as follows. Consider a bounded
polygon , having the origin 0 as a vertex. Let u be the solution of an elliptic problem in €2,
which is real analytic in Q \ {0} and behaves like |z|* as |z| — 0. Consider a conforming and
regular partition of Q by .J layers of elements around the origin; all the elements in the j-th
layer have diameter of the order of p/ for some fixed 0 < p < 1. Assume that all elements in
the j-th layer carry polynomial degrees of the order of p;, with p; = max(1, [A(J — j)]) for some
A > 0. Let the subspace Vs C H(f) be defined in the standard way, and let again N = dim V;.
Then, the following error bound is proven in [32, 33]:

inf |lu— sl ey < Ce PV (2.9)

vsEVs

with C' > 0 and b > 0 independent of N. The result extends to solutions in the class B%(Q),
locally defined in a neighborhood of each vertex in a manner similar as above. This is relevant,
since the solution of elliptic problems in §2 with data having suitable piecewise-analytic regularity
can be shown to belong to such a class, see [5].

The situation in 3D is more complex, since in polyhedra singularities occur not only at
vertices, but also along edges. Thus, an adapted mesh has a different structure in different
regions of the domain, to accomodate for the local structure of the solution: it is quasi-uniform
away from the boundary, it is isotropically graded towards a vertex, it is anisotropically graded
towards the central part of an edge (being quasi-uniform in the tangential direction), and finally
it has a transitional nature near the portion of an edge that gets close to a vertex. Then, a
proper distribution of the polynomial degrees over such a mesh guarantees the following behavior
of the best-approximation error vs the dimension N of the corresponding subspace Vj, for the
solution u of an elliptic problem in a polyhedron, with piecewise analytic data:

5
v;rg/& |u —vs 1) < Ce tVN , (2.10)
again with C' > 0 and b > 0 independent of N. The result (that should be compared to (2.7)
in 1D and (2.9) in 2D) was first asserted by Guo and Babuska [6]; for the proof, we refer to
[48, 49], where both Continuous- and Discontinuous-Galerkin hp discretizations are considered.
The analysis relies on very accurate estimates of suitable weighted norms of the solution, of the
type (2.8); we refer to [34] and to the more recent and comprehensive result [19].

2.1 An elementary analysis of hp approximations over dyadic partitions

Herafter, we use elementary arguments based on the repeated application of the error estimate
(2.3) in order to establish the exponential convergence of suitable hp approximations over dyadic
partitions to singular functions or piecewise-analytic functions in one space dimension.



To this end, given real numbers r < s and 0 > h := s — r, let E(r,s;0) denote the closed
ellipse in the complex plane having foci at z = r, s and semiaxes’ sum o; let us set ¢ = (r + s)/2
and f = h/2. Let v be a function defined on the interval (r,s) of the real line, that can be
extended to an analytic function on the closed ellipse E(r,s;o). Then, if we apply the change

of variable
T —c Yy

f ) y f )

it is easily seen that the function v such that 0(2) = v(x) = v(c+ fz) is defined on the reference
interval I = (—1,1) and can be extended to an analytic function on the closed ellipse E(—1,1;5)
with 6 = o/f. Thus, we can apply the bound (2.3) with n = logé = logo — log f, to obtain

T =

inf - =h'? inf ||o—a
weplpfé(rvs))ﬂv wl| 2 ((r,s)) wel[{,}p(I)Hv W[ r2(p)
1
< hl/Qi —np N
<C ShnC Bt [0(2)] (2.11)

1
_ h1/2 np )
¢ sinh ’I’]e ZEE(%,S;U) ’,U(Z)‘

2.1.1 The case of an algebraic singularity

Let © = (0,1). Suppose again that the solution u is real analytic in (0,1] and behaves like
u(x) = 2% for some o > 1/2. Let us consider the subspace of L?(2) defined similarly to (2.4),
ie.,

Vs={ve L) : vg, €Pp(K;), 0<j<J}, (2.12)
where the K are defined in (2.5) with p = % and the p; are to be determined in the sequel. If
vs denotes any function in Vg, we split the approximation error as

J
lu — Ué”%ym = Z [Juj — UJH%%KJ-)
j=0

with u; = yk; and v; = vsk,. For j = J, we take as v, the linear interpolant of w;. This
yields, with hy =277,

hy
|luy — Uj|’%2(KJ) ~ / (s — B 1s)2ds o~ BT o~ 9= (ot DT
0

Consider now any interval K; with 0 < j < J and set h; = 2-0U+1) We can think uj as
a real analytic function in K; which can be extended to an analytic function in any closed
ellipse E(p*! pl;0) with 0 < o = 2h;. Hence, setting 6; = 0;/f; = (3h;)/(3h;) = 3 and
nj = logd; = log 3, we can apply (2.11) in K and find v; € P, (Kj) such that
a2 < e 2Np) ()2
I = villizuy < Chye™™ s lusCz)
< C(u)hje 2mi = C(u)2~Gt1+n"p;)

with 7* = 2(log; ¢)
Let A, u be fixed constants > 0 such that A + = 1. Then,
J-1
= vsl|220y < € 27 Mot +'R) 4 9= (et )]
7=0



Let us enforce that
2 —2M
Ju— U5||L2(Q) <02

for any given M. The bound on the error given above suggests to choose J ~ 2M/(2ac + 1) as
well as pj + n*p;j ~ 2M, ie., pj ~ (2M — pj)/n*. With such choices, it is readily seen that the
total number N of activated degrees of freedom satisfies

J

N:ij2M2,
7=0

i.e., M ~+/N. We conclude that the best approximation error satisfies

inf |ju— < Ce VN 2.1
v§2V5Hu Vsl r2() < Ce (2.13)

for some b > 0, i.e., a bound of the same type as (2.7). Note that the definition of p; given
above is of the same type as (2.6).
The best approximation error in the H!(2)-norm can be estimated in a similar manner.

2.1.2 The case of a piecewise-analytic function

Assume now that u is a piecewise analytic function in Q. It is not restrictive to assume the
existence of just one singular point, say zs € . Thus, both w; = v 4, and u, = y;, q
can be extended to analytic functions in a neighborhood of their intervals of definition in the
complex plane.

With the aim of mimiking an adaptive algorithm which detects the position of the singularity
by some error indicator, we consider the approximation procedure that generates a dyadic parti-
tion of Q by recursively halving the subinterval which contains the singular point xs. Obviously,
if x4 itself is a dyadic point, the procedure stops after a finite number of subdivisions, and we
are just required to approximate by polynomials a finite number of analytic functions over a
partitions of €2; then, it is enough to apply (2.11) to each of them. If x, is not a dyadic point,
then at iteration J > 0 of the recursive algorithm we have a partition of the domain into J + 1
subintervals K, such that h; = |K;| = 277 for 0 < j < J, and such that K is the only interval
containing xs. Let us set u; 1= ug;.

If wy is of class C* In the interval Kz, for some ¢ > —1 (¢ = —1 meaning that u; has a jump
at ), then we can find a polynomial v; of degree ¢ + 1 such that

||’LLJ - ’UJH%Q(KJ) ~ h2JZ+3 ~ 2—(2€+3)J )
On the other hand, in any interval K; with 0 < j < J, u; is a real analytic function which
can be extended to an analytic function in some closed ellipse E(r;, s;;0;) where K; = [r}, 5]
and o; ~ 1 depending on the size of the ellipse of analyticity of either u; or u,. In view of
applying (2.11) in K; we observe that f; = h;/2 = 2-0U+1) g0 that n; = log(o;/f;) ~ a + bj
and sinhn; ~ %e"ﬂ' ~ 2J. Hence,

2 Yy 2
P — U < Ch; M Pj .
Ity = ||L2(Kj) - 3¢ zEEI(f”lﬁz;O'j) fu(2)
< C(u)27% e 2@tbips — ¢ (y)2~(Bi+(a"+b77)p;)



with a* = alog, e and b* = blogy e. Summing-up, we obtain
J-1
llu — U5||%2(Q) <C Z 9=79—(2j+(a*+b%)p;) 4 9= (20+3)J
§=0
Let us enforce that
lu = w5172y < C272Y

for any given M. The bound on the error given above suggests to choose J ~ 2M/(2¢ + 3) as
well as 2j + (a* + b*j)p; ~ 2M, i.e., pj ~2(M — j)/(a* + b*j). With such choices, it is readily
seen that the total number N of activated degrees of freedom satisfies

J J—-1 M-
N= 2 g = Mles T = Mlog

ie., M ~ ¢(N), where z = ¢(y) is the inverse function of y = zlogx for x > 1. We conclude
that the best approximation error satisfies

inf |lu—v < Ce o) 2.14

inf lu = vgll ooy < (214)

for some b > 0. The result indicates that the behavior of the best approximation error in

the presence of piecewise analyticity is only marginally worse than the one in the case of full
analiticity, see (2.7).

Again, the best approximation error in the H'(£2)-norm can be estimated in a similar manner.

3 hp adaptivity

Over the last few decades, adaptive algorithms have become a standard technique for solving
partial differential equations via the finite element method. The general form of an adaptive
algorithm can be stated as follows:

... — SOLVE — ESTIMATE — MARK — ENRICH — SOLVE — ...

Generally speaking, the algorithm starts computing the discrete solution (SOLVE) employing a
low-dimensional approximation space. Thereafter, in order to improve the accuracy of the ap-
proximation, an error indicator is employed (ESTIMATE) to obtain information about the error
distribution. Based on this error distribution, a set of elements are flagged (MARK) to be enriched
and a suitable enrichment of the approximation space is chosen (ENRICH). A new approximation
of higher accuracy is computed and a new adaptive iteration is performed in case the approxi-
mation is not sufficiently accurate. In the adaptive h-FEM, the enrichment of the finite element
space is simply done by subdividing into smaller elements all those elements with a large error
indicator. However, in the hp-FEM one has the option to split an element or to increase its ap-
proximation order. Thus, as already pointed out, a main difficulty in hp-adaptivity is to decide
whether to increase the approximation order p or to split an element whose error is large. The
importance of making the correct decisions is highlighted by the a priori results mentioned in
Section 2, from which it is evident that for a large class of problems an exponential rate of con-
vergence can be achieved if the mesh and the polynomial degree distribution are chosen suitably.



Although considerable progress has been made in the context of adaptive h-FEM on both the
a posteriori error analysis and the theoretical and computational assessment of the convergence
properties of the adaptive refinement strategies (see, e.g., [43] for a comprehensive introduction),
in contrast the theory of adaptive hp-FEM is far less advanced. Below we provide a brief review
of existing a-posteriori hp error estimates (Section 3.1) and hp adaptive methods (Section 3.2).

3.1 A-posteriori hp error estimates

In the hp framework, similarly to the case of h-FEM, error indicators can be subdivided into
the following categories:

e Estimators based on the (approzimate) solution of suitably defined local problems. This
includes [1, 2, 3, 4, 44]. The estimators of [1, 2, 3, 4] are based on solving local problems
with Neumann type boundary conditions; a forerunner of this approach is [44]. Addition-
ally, [44] discusses in detail other techniques known from h-FEM that can be extended
to the hp-context such as solving local Dirichlet problems on patches, employing duality
theory from convex optimization to derive upper and lower bounds of the local errors
and employing various interpolation/postprocessing techniques to obtain more accurate
approximations.

At this point, we also mention the equilibrated residual estimators introduced in [10].
Although the method of [10] uses equilibrated fluxes, it differs from estimators via local
Neumann problems as the estimators are obtained by the hypercircle method.

e Residual based a-posteriori error estimators. In the pioneering work [8], a posteriori error
error indicators of residual type have been considered. However, the two-dimensional
analysis of [8] is restricted to meshes consisting of axiparallel rectangles. In [40] the results
of [8] are extended to meshes containing quadrilaterals and triangles and a family 7, ,
a € [0, 1], of error indicators given by weighted residuals on the elements and on the edges
is introduced. It is shown that that 7o is reliable. As in [8], the reason for considering
a family of indicators is that simultaneous reliability and efficiency cannot be proved for
any fixed a € [0,1] due to the poor p-dependence of polynomial inverse estimates. For a
related residual based a posteriori error estimate in one dimension, see also [47].

e FEstimators based on more accurate approximate solutions of the global problem. This
approach is based on the following steps: (1) a reference (finer) solution is computed by
performing a global Ap-refinement, i.e., breaking each element isotropically and enriching
the polynomial order of approximation by one; (2) an error indicator is built by computing
(and localizing) a suitable projection-based interpolation error of the reference solution.
Roughly speaking, the indicator is computed by projecting the reference solution onto
a finite element space employing the original mesh, but with a local polynomial degree
incremented by one, as well as on a sequence of finite element spaces corresponding to a
local h-refinement of the element that results in the same increase in the number of degrees
of freedom as the p-enrichment. This approach has been introduced in [23] and further
developed in [38].

Finally, we refer to [35] for goal-oriented hp-type error estimators.



3.2 Adaptive hp methods

Classical h adaptive finite element methods simply subdivide elements where the local error
indicator is large, while keeping the polynomial degree fixed (at some low value). In general, this
may not be the most efficient strategy in terms of error reduction per unit cost. For example, if
the analytical solution to the underlying partial differential equation is smooth, or at least locally
smooth, an enrichment of the polynomial degree (p-refinement) may be much more effective in
reducing the local error per unit cost than a simple element subdivision (h refinement). Generally
speaking, a local p-refinement is expected to be more efficient on elements where the solution is
smooth, while local h-refinement is preferable for regions where the solution is not smooth.

In the following we will briefly review existing hp adaptive strategies. In particular, we will
highlight the mechanism driving the choice between h or p refinement.

1. Optimization strategy based on reference solution. In this strategy a reference solution is
computed on a finer finite element space, which is obtained by uniformly refining all the
elements and globally incrementing the polynomial degree by one. Then, on each element
in the coarser finite element mesh, the projection-based interpolation error of the reference
solution is computed (see in the previous subsection the description of the estimators based
on more accurate approximate solutions of the global problem). The optimal refinement
of each element is then chosen to be the one which leads to the smallest projection-based
interpolation error; elements in the mesh are then refined based on those that will lead to
the greatest decrease in the projection error per degree of freedom. This strategy was first
introduced by [46, 44, 22]; see also [23] for more recent work.

2. Relative size of the error estimators. In this strategy (originally introduced in [31]) it
is assumed the existence of a local error indicator ng (up p, hic, pr) which depends on the
element K, the approximate solution uy, ;, the local mesh-size hx and the local polynomial
degree px. Then, the choice between h and p refinement is based on the ratio rx =
K (Uhpy» hic, D) /MK (Uhpe—1, R, P — 1). In particular, if ¢, < v, 0 < v < 1 then
p-enrichment should be performed as the error decreases when the polynomial degree is
raised. On the other hand, if cx > + then the element K is subdivided.

3. Comparison of estimated and predicted error. This strategy has been proposed in [40] (see
also [27]) where the decision whether to subdivide an element or to increase its polynomial
degree depends on the refinement history of the element. In particular, it is introduced
a predicted local error indicator ng(red which can be viewed as a simple extrapolation of
the error indicators computed during the previous refinement steps under the assumption
that the solution is (locally) smooth. If the computed error indicator (which reflects the
actual error) is larger than the predicted one, then an h-refinement is performed since the
assumption of (local) smoothness, under which the computation of the predicted indicator
is performed, is false. Conversely, if the indicated error is smaller than the predicted one,
then p-refinement is performed.

4. Analyticity check by estimating the decay rate of expansion coefficients. In [21], the authors
propose to determine whether the solution is locally smooth or non-smooth by calculating
the decay rate of the Legendre expansion coefficients of the solution; this is performed by
a least-squares best fit. More recently, a strategy has been developed in [37] for estimating
the size of the Bernstein ellipse of the solution, thereby determining whether the solution

10



is analytic. In the case when it is not analytic, a second strategy, based on the work
developed in [36], seeks to directly compute the local Sobolev index of the solution.

5. Local regularity estimation. This strategy, first proposed in [4], relies on estimating in each
element K the local Sobolev regularity index my, by using a local error indicator which
is computed by solving a series of local problems with different polynomial degrees. The
local Sobolev regularity is then employed to perform h or p refinement. In particular, if
pr + 1 < mg, where pg denotes the current local polynomial order, then p-refinement
is performed in K, otherwise h-refinement is selected. This latter criterium relies on two
ingredients: i) the following hp a-priori error estimate on quasi-uniform mesh of size h and
elements of uniform polynomial degree p:

lu = unpll 1) < Ch“P_(m_l)HUHHm(Q)

where p = min(p,m — 1) and u € H™(Q), and ii) the idea that if the regularity of the
solution is such that the rate of convergence of the h-type finite element method with
elements of fixed degree p turns out to be sub-optimal, then an A refinement is needed.
Recently, related ideas have been exploited in [47, 26] where the residual, instead of the
error, has been employed to choose between p enrichment or h refinement. More recently,
an approach based on the Sobolev embedding of H! into an appropriate LP space has been
proposed for the one-dimension case in [54].

6. “Texas Three step”. This strategy was first introduced [45] and is based on a three-step
scheme where only three solutions of the problem are needed. First, the initial mesh details
as well as intermediate and final error tolerances are specified and the problem is solved.
Then, the h-refinements take place in order to guarantee that the (intermediate) error
(measured in some appropriate norm) is less than the intermediate tolerance. In the final
third step, the mesh is kept fixed and the p-refinements are carried out to achieve the final
error tolerance. For related work, we refer, e.g., to [53] and the references cited therein.

At last, we mention that a thorough comparison among various hp adaptive strategies has
been recently accomplished in [41]. Algorithms have been tested on different kinds of representa-
tive solutions (analytic solution, corner singularity, peak, boundary layer, wavefront, and so on)
and their preformance has been evaluated according to different measures of efficiency, such as
the number of activated degrees of freedom or the computational time. None of the considered
strategies has emerged as the best one in all situations, although some strategies perform better
than the others for specific kinds of solutions.

3.3 Convergence of adaptive spectral/hp methods

The theory of h adaptive finite element (AFEM) schemes for elliptic problems is quite satis-
factory: it started with the convergence results of [25] and [42]; the first optimality result was
derived in [9] for d = 2 and extended by [51] to any d. The most comprehensive results for
AFEM are contained in [16] for any d and L? data, and [18] for d = 2 and H~! data; we refer
to the survey [43]. In contrast, very little is known on convergence and optimality properties
of adaptive hp methods. The first pioneering result goes back to [31] where an adaptive hp
algorithm (see Subsection 3.2 for the description) is proven to be convergent, with a predicted
rate. However, due to the assumptions on the admissible error estimators which appear to be
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overly restrictive, the results in [31] cannot be considered completely satisfactory. Only after
two decades, in [26] a contraction result of the form

| = g1l g < pllu—unllg, p<1,

has been proven, where u, and u,+; are the coarse and the enriched discrete solutions built by
an adaptive hp algorithm approximating a one dimensional elliptic problem. More recently, the
convergence result of [26] has been extended to higher dimensions in [11]. In this respect, it is
also worth mentioning the result in [47] where an estimation (from above and below) of the error
between the actual discrete solution and its (h or p) enriched version is presented. However, to
the best of the authors’ knowledge, there are no optimality results for hAp adaptive algorithms:
this is still a completely open issue.

4 Spectral adaptive algorithms with optimality properties

Inspired by the analysis performed in the wavelet framework by [17, 29, 52] and in the finite
element framework by [25, 42, 9, 51, 16, 43|, the present authors in collaboration with Ricardo
H. Nochetto have recently initiated the study of the convergence and complexity properties of
adaptive Fourier Galerkin methods in arbitrary d-dimension [14], and of adaptive Legendre-
Galerkin methods in one-dimension [15]. Hereafter, we present a short account of the latter
results, which incorporates their extension to the case of discretizations by spectral elements.

We consider the elliptic problem in = (a, b)

{Au:—D‘(uDu)+au:f in Q, (4.1)

u(a) = u(b) =0,

where v and o are sufficiently smooth real coefficients satisfying 0 < v, < v(z) < v* < oo and
0<o.<o(x) <o*<ooin Q;let us set

e = min(vy, oy) and o = max(v*,0") .
We formulate this problem variationally as
weV:=HyQ) : a(u,v)=(fv) Vo € HY (), (4.2)

where a(u,v) = [vDuDv + [, ouv. We denote by [|v|| = \/a(v,v) the energy norm of any
v € HE(Q), which satisfies

vasllvll < floll < Var|oll - (4.3)

Our error estimators will be of residual type. Therefore, for any w belonging to some finite
dimensional subspace V) of H{(Q), we define the residual r(w) = f — Aw € H-1(Q2). Then, by
the continuity and coercivity of the bilinear form a, one has

1 1
— < flu — < — 4.4
S lr)ll < lu —wll < a*llr(w)l\ ; (4.4)
or, equivalently,
1 1
rw)| < llu—w| < r(w)|| . 4.5
\/a—*ll ()l <l I< —=lr)l (4.5)
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4.1 Bases and norm representations

Form now on, we assume that the coefficients and data of the problem are piecewise analytic on
a finite partition 7 = {K} of Q. Let us introduce the subspace of HZ () of the piecewise linear
functions on T, i.e.,

Vi(T) ={v € Hy(Q) | vx € P1(K) VK €eT};

then,

V= H)(Q) T e P Hy(K
KeT

where, for convenience, we assume that functions in H} (K) are extended by 0 outside the interval
K; indeed, for any v € V', we have

U:vL—i_E VK ,

KeT

where vz, € VL(T) is the piecewise linear interpolant of v on 7 and vg = (v —vr)|x € Hg(K).
Since

(vL, vK) i) = / v (v—vr) = U/L|K/ (v—vr)'=0 and  (vk,vK)g =0 if K #K',
K K

we have

el = Noz sy + Do Norly )
KeT

Given any F € V' = H~1(Q), let F, € Vi(T) denote the restriction of F' to Vy,(T); similarly,
for each K € T, let Fxx € H~(K) denote the restriction of F to H}(K). Then,

(Foo) = (Fr,ur) + Y (Fx,vg)  YoeV,
KeT

which easily implies

1F N1y = WFLlY, oy + D IFR -1 ) - (4.6)
KeT

Let us now introduce the Lagrangean basis functions 1, in V,(7) associated with the internal
nodes of the partition, say x4 for 1 < ¢ < @, so that

Vi(T) =span{y, [ 1 < ¢ < Q} .

On the other hand, on the reference element I= (—1,1), we consider the Babuska-Shen basis,
made of polynomials of strictly increasing degree,

ék@):\/%‘l/ L \/%L(Lk J8) — Le@) k=2, (47)

where Li(Z), k > 0, stands for the k-th Legendre polynomial, which satisfies deg L, = k,
Li(1) =1 and

1
2
Li(3) Lo (3) di: = S >0.
/_1 K(8) Ln(2) A = 7= O m
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It is easily seen that the basis functions satisfy
~ ~ 1 ~ ~
syt = [ (@)@ A = b, =2,
~1

i.e., they form an orthonormal system with respect to the H} (f )-inner product. Going back
to our partition, for any element K € T of size hx, we can map the reference element to the
element K via an affine transformation x = hx& + ¢, yielding the functions

orcrla) =\ K@), k=2, m

which form an orthonormal system with respect to the Hg (K )-inner product.

At this point, we are ready to give a representation of the norms in Hg(Q) and H~1((Q).
Precisely, any v € HZ(Q) is expanded as

U—qu?/)q‘F > ZW(MKk =) Oapa

KeT k=2 A€L
so that

[l Zlvql2+ > Ezlvml2 =) [0, (4.9)

KeT k=2 A€l

where the new notation on the rlght-most side has been introduced for subsequent convenience.
Similarly, for any F' € H~(Q), we set

Fy = (F, ) and Frp = (F, oK),

and we obtain

Q o0
IF 1) = Z| Z Z |Frepol? = Z 2\ (4.10)
q=1 k=2

A€l

KeT

The formal analogy between (4.9) and (4.10) suggests us to use the notation | . || to indicate
both the H}(2)-norm of a function v, or the H ( )-norm of a linear form F'; the specific
meaning will be clear from the context.

Moreover, given any finite index set A C L, we define the subspace of H{(Q)

Vi :=span{py) |\ € A};

we set [A| = card A, so that dim V = [A]. If g admits an expansion g = ), ;1 Grpx (converging
in an appropriate norm), then we define its projection Pyg onto Vj by setting

Pag = irpx -
AEA

Also note that if = r(va) is a residual, then its norm is given by

1712 = 17l (4.11)

A€L

with 7y = (f, ox) — a(va, py)-
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4.1.1 Algebraic representation and properties of the stiffness matrix

Let us introduce the semi-infinite, symmetric and positive-definite matrix

A = (arxp)rper  with  ay, = alpu ¢a) . (4.12)
Then, Problem (4.2) can be equivalently written as
Au=f, (4.13)

where the vectors u = (t,) and f = ( fx) collect, respectively, the coefficients of the solution
u =73, Uupy of Problem (4.2), and of the right-hand side f.

For any element K € T, let us denote by Ax the square block of A associated with the
basis functions {¢k } in K, ie.,

A = (axp) ) puel(k) where L(K)={\eL : \= (K, k) for some k > 2} .

For convenience, let us write k = k().

Let us assume that the restrictions to any K € T of the coefficients v and o of the differential
operator in (4.2) are analytic functions, so that their (scaled) Legendre coefficients in K decay
at an exponential rate. Then, one can prove the existence of strictly positive constants n4 and
c4 such that

lax | < ¢ eIk =k (p)] VA peL(K) . (4.14)

We say that any A g belongs to the exponential class D.(n4,c4). Note that it is not restrictive
to assume 74 and c4 independent of K, since the partition 7 has been fixed once and for all.
The following properties hold (see [14, 15]).

Proposition 4.1. Assume that the constant c4 satisfying (4.14) is such that for each K € T

1
~(e" —1) mi : 4.15
ca < (e ) A axa (4.15)

Then each Ak is invertible and A[_(1 € D.(7a,¢A) for some 4 € (0,m4] and ¢4 > 0. 0

Proposition 4.2. For any K € T and any integer J > 0, the truncated matrices (Ag)y such
that

(AR) = {* U Rl = 7 (1.16)

0 elsewhere

satisfy the inequalities
|AK — (Ak)s| < Cae™™7

for some constant Ca > 0. Furthermore, under the assumptions of Proposition 4.1, there exists
a constant C'po > 0 such that

AL — (AN || < Cae ™47 (4.17)
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4.2 The constitutive elements of an adaptive algorithm

We are going to present an adaptive algorithm which implements the following recursion: (i)
compute a Galerkin approximation of the exact solution; (ii) compute the corresponding residual,
actually a feasible (finite-dimensional) version of it, so that its norm can be taken as an error
estimator; (iii) apply Doérfler’s marking, also known as bulk-chasing, to the components of the
residual in order to identify a set of new basis functions to be activated for the next Galerkin
solve; (iv) expand this set using properties of the stiffness matrix of the problem; (v) compute the
new Galerkin solution on the enriched finite-dimensional subspace; (vi) get rid of the negligible
components of this solution by applying a coarsening procedure.

We anticipate that step (iv) guarantees an arbitrarily large error reduction, whereas step
(vi) assures a quasi-optimal complexity count.

We us now introduce the specific procedures, which will enter the definition of our adaptive
algorithm.

o up = GAL(A)
Given a finite subset A C L, the output up € Vj is the solution of the Galerkin problem .

up € Vo o a(up,vp) = (f,op) Yop € Vi . (4.18)

e 7:=RES(vy)
Given a function vy € V) for some finite index set A, the output r is, in an ideal algorithm,
the residual r(vy) = f — Avp. In a feasible version, the output, say 7 is a function with a
finite expansion along the chosen basis, obtained by suitably approximating the right-hand
side f and the image Awvy; it satisfies the inequality

[l =7l < ~ll7]

for some fixed constant v € (0,1). In the following, we restrict ourselves to the ideal case
where the residual is assumed to be computed exactly.

e A*:= DORFLER(r, 0)
Given 6 € (0,1) and an element » € H~1(I), the ouput A* C LL is a finite set of minimal
cardinality such that the inequality

[[Pa=r|| = 0|7l , (4.19)

or equivalently
Ir = Pasr|| < V1 =62, (4.20)

is satisfied. In terms of expansion coefficients, condition (4.19) can be equivalently stated

as
DR =6 P (4.21)

AEA* A€L

Thus, the output set A* of minimal cardinality can be immediately determined by a greedy
algorithm, i.e., by rearranging the coefficients 7, in non-increasing order of modulus and
retaining the largest ones until (4.21) is fulfilled.
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e A*:= ENRICH(A, J)
Given an integer J > 0 and a finite set A C LL, the output is the set

A :={u=(K,k) €L : thereexists A = (K,k’) € A such that |k — k| < J}.

Note that A is enriched element-by-element with respect to the fixed partition 7 = {K'}
of €.

e A* := E-DORFLER(r, 0)
The two previous procedures are combined as follows. Given 6 € (0,1) and an element
r € H1(I), the ouput A* C L is defined by the sequence

A :=DORFLER(r, 6)

v (4.22)
A* :=ENRICH(A, Jp) ,

where, based on Proposition 4.2, Jy is chosen as the smallest integer which satisfies

1-—6?

C’Ae—ﬁAJ <
e ™o

(4.23)

(see [15] for more details).

e A:= COARSE(w,e¢)
Given a function w € Vj~ for some finite index set A*, and an accuracy ¢ > 0 which is
known to satisfy ||u — w|| < ¢, the output A C A* is a set of minimal cardinality such that

||lw — Prwl|| < 2€, (4.24)

which obviously implies ||u — Pyw|| < 3e.

4.3 An adaptive algorithm with convergence rate

We are ready to present our adaptive algorithm. Each iteration can be viewed as a prediction
step, based on the inspection of the current residual and the application of (enriched) Dorfler
marking, followed by a correction step, based on coarsening. For this reason, we call it PC-
ADLEG - Predictor-Corrector ADaptive LEGendre algorithm.

Given two parameters 6 € (0,1) and tol € [0,1), let us define
Algorithm PC-ADLEG (6, tol)

Set ro:=f, Ag : =0, n=—1
do

n<n+1
9\, := E-DORFLER(r,,, )
Kn+1 = An U 5/\Xn

17



o~

Gt = GAL(A,)

Ans1 := COARSE (41, 2v/1— )l
Up+1 = GAL(ATL+1)

Tny1 = RES(up11)

while ||r,41]| > tol

The following convergence result can be proven, by adapting the arguments given in [15] for
the single-element case.

Theorem 4.1. Let 0 < 8 < 1 be chosen so that

p=p0) = GQ—*\/ 1—-62<1. (4.25)

*

If the assumptions of Proposition 4.1 are fulfilled, the sequence of errors u — u, generated for
n > 0 by the algorithm satisfies the inequality

I = wniall < pllu = unll -

Thus, for any tol > 0 the algorithm terminates in a finite number of iterations, whereas for
tol = 0 the sequence u,, converges to u in H*(I) as n — oco.

Note that the rate of decay of the error can be brought as close to 0 as desired by choosing
0 close enough to 1. This is a feature stemming from the Enrichment procedure, keeping into
account the decay properties of the inverse of the stiffness matrices Ag, K € T.

4.4 Nonlinear approximation in Gevrey spaces

In order to estimate the complexity of our algorithm, and evaluate its optimality, we have to
make assumptions on the structure of the solution u. Precisely, we have to make assumptions
on the minimal number of degrees of freedom (i.e., active basis functions) needed to build an
approximation of u within a given tolerance. This is usually expressed as the condition that u
belongs to a suitable sparsity class. Once this is done, we can compare the number of degrees of
freedom activated by our algorithm at a certain iteration (actually, an estimate of this number)
to the minimal number of degrees of freedom needed to obtain the same accuracy; optimality
usually means that the two numbers are within a constant independent of the solution and the
current iteration.

Sparsity classes typically involved in finite-order approximations such as wavelets or h-type
finite elements describe an algebraic decay of the best approximation error vs the number of acti-
vated degrees of freedom. Hereafter, we will rather consider sparsity classes describing an expo-
nential decay of that error; this choice is coherent with the nature of our discretization approach,
which uses an infinite-order spectral-element method, or p-type finite element method, hence
providing faster-than-algebraic decay of the error whenever the solution is piecewise smooth on
the partition 7 of the domain.

The definition of sparsity class is based on the concept of best N-term approxzimation error,
that we now recall. Given any nonempty finite index set A C L and the corresponding subspace
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VA C V of dimension |A| = card A, the best approximation of v in V) is the orthogonal projection
of v upon Vj, i.e. the function Pyv = ), Oxpx, which satisfies

1/2

lo = Prvl = | Y [oa)?

AZA

For any integer N > 1, we minimize this error over all possible choices of A with cardinality N,
thereby leading to the best N-term approximation error

Enx(v)= inf |lv — Pyv]|.
ACL, |A|=N

A way to construct a best N-term approximation vy of v consists of rearranging the coefficients
of v in decreasing order of modulus

[Ox | = o > |on, | 2 |ox, | > - -

and setting vy = Pyyv with Ay ={)\, : 1 <n <N}
We are ready to give the following fundamental definition.

Definition 4.1. Given two real numbers n > 0 and t € (0, 1], we denote by Agt(Q,T) the set
defined as

t
ALHQ,T) = {u €V =Hs(Q) : vl gm0 = sup En(v)e™ < +oo} :

As shown in [14], the set Agt(Q,T) is not a vector space, since it may happen that u, v
belong to this set, whereas u + v does not; however, one can show that v+ v € Agt(Q, T) with

n=2"n.
The quantity ||v|| AL dictates the minimal number N. of basis functions needed to

approximate v with accuracy €. In fact, from the relations

< < _W(Ns_l)t
E.(1) < ¢ < Bya(v) e ol (4.26)
we obtain
1 HUHAgf(Q,T) M
N, < it log - +1. (4.27)

In order to motivate our definition, let us first assume that 7 = {0}, i.e., let us concentrate
on a single element. Then, inspired by [7], one can introduce the following family of spaces of
Gevrey type: given any v € V, let v = ), ., Ur¢) be its expansion along the Babuska-Shen
basis defined as in (4.8) relative to the interval Q. Then, we set

ATH(Q) = {v €V : there exists a constant C' > 0 such that |ig| < Ce ™ vk > 2}.

It is well-known that for ¢ = 1 we get analytic functions in a neighborhood of Q. A slightly
stronger family of spaces is represented by the Sobolev-Gevrey spaces (see [28]; see also [39])
defined as

G ={veV: [vdq =D ™ ok* < oo} . (4.28)
k=2
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We immediately observe that G™'(Q) C A"!(Q). Furthermore, given any v € G"(Q) and
approximating it by the linear projection

N
Pyvo = ikt ,

k=2
we immediately get
7 t
En(v) < [lo = Pyoll < e [[ollgneoy

which implies G"!(Q) C Agt(Q,T). Thus, the latter space contains, in particular, analytic
functions and Gevrey functions.

Let us now consider an arbitrary finite partition 7 of Q. For any K € T, let v € H}(K); its
best N-term approximation error in K is defined as

Eicn() = b o= Pl

Consequently, we can define the class Agt(K ) by setting
A () = {o € HY(K) = ol gy o) 1= sup B (v) ™' < tool.

Given any v € H}(2), denote by vy, € VL(T) its piecewise linear interpolant, and set & = v — vy,
so that 0 € Hj(K) for all K € 7. Now, assume that v € Agt(Q,T), and let w be a best
N-term approximation of v, i.e., a linear combination of at most N basis functions (we will write
|[supp w| < N) such that

—_nNt
[o = wl < ™[0l gt -

Writing v —w = (v —vp) — (w —wg) + (vp —wr) =0 — W + 2, and using the orthogonality of
the basis functions, we have

lv—w|® =16 — @+ 2| > 6 —@))* = D ok — D371 e
KeT

where the appended K denotes restriction of a function to K; thus,
~ ~ _ Nt
ok — drcllg oy <™ ol VK ET

and since [supp wg| < [suppw| < N, we deduce that v € Agt(K) for all K € T.

On the other hand, let v € Hj(Q2) be such that 7 € Afc’jt(K) for all K € T, for some 77 > 0
to be determined later on. Then, there exist a constant C' > 0 and functions Wy € Hg(K) with
|supp Wi | < N such that

lox — Wkl g x) < Ce ' VK €T .

Denoting by w the function in €2 which coincides with wx in each K, and setting w = vy, + w,
we have )
S ~ - —27N
v —w|? =0 —a|? = Z |9 — wKH?{&(K) < (Q 4 1)C%e 21V
KeT
Now, observe that [supp w| = [suppvr|+)_ gy [supp k| < Q+(Q+1)N < (Q+2)N. Choosing
7 = (Q + 2)'n and letting N — oo, we conclude that v € Agt(Q, 7).
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4.5 Complexity analysis of the algorithm

We are now ready to investigate complexity issues for the sequence of approximations u, =
up,, generated by PC-ADLEG, under the assumption that the solution u belongs to a class
Agt(Q,T) for some n > 0 and t € (0, 1].

At first we note that each set A,, 11 of the active degrees of freedom produced by the algorithm
is generated by the procedure COARSE with a suitable tolerance €,. A general result about
coarsening (see, e.g., [52]) allows us to estimate its cardinality |A,4+1| = Ng,, according to (4.27).
On the other hand, one can prove that ||u—u,y1| < &p. Thus, we obtain the following optimal
result.

Theorem 4.2. Suppose that u € Agt, for some n > 0 and t € (0,1]. Then, there exists
a constant C > 1 such that the cardinality of the set An+1 of the active degrees of freedom
produced by PC-ADLEG satisfies the bound

1 ]| gt 1
[Ant1] < log ———<%— +logC +1, Y n>0.
/e \ 78 = g |

Next, we focus on the cardinality of the intermediate set Kn+1, which depends on that of
the incremental set 8An+17 in turns, this can be bounded by 2Jy times the cardinality of the
incremental set 8An+1 generated by DORFLER with residual r,,. Although under certain
assumptions on 6 it is possible to estimate such cardinality in terms of the sparsity class of the
solution (see [52]), in the most general situation as the one we want to consider here, it is the
sparsity class of the residual that influences the growth of degrees of freedom. Indeed, we recall
that the step

OA := DORFLER(r, 6)

selects a set JA of minimal cardinality in L \ A for which ||r — Pyar|| < V1 — 62||r||. In other
words, it performs a best approximation of the residual for the accuracy € = v/1 — 6?2||r||. Thus,
if r belongs to a certain sparsity class Agt(Q, T) for some 7] > 0 and ¢ > 0, we have by (4.27)

0A] < 7 (1o Il ™ 1 (4.29)
og +1. :
V1I=02|r|

Thus, it make sense to investigate the sparsity class of the residual. In a sparsity class of
algebraic type, this is the same as the class of the solution (see again [52]). Unfortunately, in a
sparsity class of exponential type such a property does not hold [14], and we have to expect the
generic residual to be less sparse than the exact solution.

The best result we can expect is as follows.

Proposition 4.3. Let v € AL (Q,T) for somen > 0 and t € (0,1]. Assume that ) < na, where
na is the constant for which (4.14) holds. Let us set

- t
St ;
n=¢(tn, i1z’
where we define
141
C(t) == ( ;L )”t VO<t<l. (4.30)



Then, one has Av € AgE(Q,T), with
||AUHA"8{(Q’T) S HUHAWG’t(Q,T) : (4.31)

Under the sparsity assumption on the solution v made in the previous theorem, this implies
that f = Au € Ag’t(Q, 7). On the other hand, it is possible to prove that any Galerkin solution
o ﬁ:i
produced by PC-ADLEG satisfies ||UnHAg,t(Q77—) < H’UJHAnc,t(Q’T), so that Au, € AL (Q,T).
Keeping into account the remark after Definition 4.1, we obtain the following result.

Proposition 4.4. Let u € Agt(Q,T) for some n > 0 and t € (0,1]. There exists 1 < n such
that rn = 7(un) € A (0, T) with

Irall gy S Tl -
Using (4.29), we arrive at the following final estimate.

Theorem 4.3. Suppose that u € AL (Q,T) for some n > 0 and t € (0,1] and that the as-
sumptions of Proposition 4.1 are satisfied. Then, there exist positive constants 7 < n, t < t

and C such that the cardinality of the intermediate sets Kn—i—l activated in the predictor step of
PC-ADLEG can be estimated as

A S e
|Ant1] < |Ap] + == | log +logC +2Jy Vn>0.
7/t |w = tn |

Keeping into account the conditions on 7 and ¢, we expect the cardinality of \Kn+1| to be
asymptotically larger than the optimal one of |A;,11], estimated in Theorem 4.2. Precisely for
this reason, a coarsening step has been added at the end of each adaptive iteration: coarsening
brings complexity from the one dictated by the sparsity class of the residual back to the one
associated with the exact solution. On the other hand, we consider such intermediate loss of
optimality to be worth of being accepted, since it should be compensated by the fast convergence
of our algorithm, guaranteed by the allowed aggressive policy of degree of freedom enrichment.

We mention that the sparsity class of the residual influences complexity even in other in-
stances of the algorithm, not discussed here. For instance, this is the case when a feasible
computation of the residual-based error estimator is considered: to avoid degradation of the
contraction property of the algorithm, approximate finite-dimensional residuals should be suffi-
ciently close to the exact ones, which can be obtained with a complexity related to the sparseness
of the residuals themselves. We refer to [14] for more details.
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