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†Department of MathematisUniversity of Texas at AustinAustin, TX 78712, USAkoh�math.utexas.eduKeywords: Computer assisted proofs, Morse indexAMS Subjet Classi�ation: 35J25, 35B06AbstratWe onsider the equation −∆u = wu3 on a square domain in R
2, withDirihlet boundary onditions, where w is a given positive funtion that isinvariant under all (Eulidean) symmetries of the square. This equation isshown to have a solution u, with Morse index 2, that is neither symmetrinor antisymmetri with respet to any nontrivial symmetry of the square.Part of our proof is omputer-assisted. An analogous result is proved forindex 1.1 IntrodutionIt is a well known phenomenon that symmetri equations an have non-symmetrisolutions. However, �simple� solutions often tend to be symmetri, even in aseswhere the notion of simpliity is not manifestly related to symmetry. A ase inpoint is the boundary value problem problem

−∆u(z) = f(z, u(z)), ∀z ∈ Ω , u(z) = 0, ∀z ∈ ∂Ω , (1)1



on a bounded open domain Ω ⊂ R
n that is symmetri with respet to someodimension 1 hyperplane. If Ω is onvex in the diretion orthogonal to thisplane, and if f does not depend expliitly on z, then any positive solution uof the equation (1.1) is neessarily symmetri as well. This is a lassial resultby Gidas, Ni, and Nirenberg [1℄. Subsequent extensions inlude, among otherthings, lasses of solutions that are not neessarily positive [5, 7, 9, 11, 12℄.We onsider the same equation (1) but fous on a di�erent lass of �simple�solutions, proposed �rst in [5℄, namely solutions with �xed Morse index. Reallthat solutions of equation (1) are ritial points of the funtional J on H1

0 (Ω),
J(u) =

∫

Ω

[

1

2
|∇u(z)|2 − F (z, u(z))

]

d2z , ∂uF = f , (2)assuming that F satis�es some growth and regularity onditions; and the Morseindex of a ritial point u is the number of desending diretions of J at u.The question onsidered in this paper is motivated by the symmetry results in[11℄, whih over domains (balls and annuli) and nonlinearities f that are radiallysymmetri. We refer to [11℄ for the preise assumptions and results. Roughlyspeaking, ∂uf is assumed to be onvex in u, but f need not be monotone in
|z|. Then any solution u of Morse index ≤ n has an axial symmetry. Given thisresult, it is natural to ask whether there is an analogue for domains that onlyhave disrete symmetries, suh as regular polytopes.We will give a partial answer by onstruting ounter-examples with index
1 and 2, in n = 2 dimensions. We start with the easier ase: a non-symmetriindex-1 solution. Let Ω be a bounded Lipshitz domain in R

2 with only �nitelymany (Eulidean) symmetries. A funtion u on Ω is said to have symmetry σ if
u ◦ σ = u.Theorem 1.1 There exists a C∞ funtion w ≥ 0 on Ω, possessing all symme-tries of Ω, suh that (1) with f = wu3 admits a positive solution u ∈ H1

0 (Ω),with index 1, that has no nontrivial symmetry of Ω.This theorem an be proved by standard variational methods; see Setion 2.In what follows, the domain Ω is �xed to be the square Ω = (0, π)2. Our maingoal is to prove an analogous result for index 2, using omputer-assisted methods.Suh a result seems urrently outside the sope of other known methods. Similartehniques should apply to a variety of other semilinear ellipti problems, as longas the domain and other quantities involved take a relatively simple form.When onsidering solutions u with multiple extrema, the natural question iswhether |u| is symmetri; u itself may be antisymmetri with respet to some ofthe re�etions that leave Ω invariant. There is numerial evidene that this isindeed the ase for low-index solutions, at least for some standard nonlinearitiesthat do not depend expliitly on the variable z [2, 3, 4, 6, 8℄. But it is not learwhether this holds more generally. While symmetry results have been proved inmany situations, no antisymmetry results are available, as far as we know.2



Our analysis in the index-2 ase uses a nonlinearity f = wCu3, with
wC(x, y) = C1

(

41
32

cos(x) cos(y)[cos(2y)−cos(2x)]
)2

+(1−C1)+C2[sin(x) sin(y)]8(3)and 0 ≤ Ck ≤ 1. These funtions wC possess all the symmetries of the square
Ω, and they are nonnegative.Theorem 1.2 Let f = wCu3 with C1 = 97

128
and C2 = 145

256
. Then the equation(1) admits a real analyti solution, that has Morse index 2 and is neither sym-metri nor antisymmetri with respet to any nontrivial symmetry of the square.Our proof of this theorem is omputer-assisted. To be more preise, we �rstreformulate (1) as a �xed point problem G(u) = u and show that the Morse indexof u is related to the spetrum of the derivative DG(u). This is done in Setion 3.In Setion 4, we redue the proof of Theorem 1.2 to a set of su�ient onditionson G and DG, near an approximate �xed point u0 . Setion 5 desribes howthese onditions (inequalities) an be, and have been, veri�ed with the aid of aomputer.The omputation of the approximate solution u0 is desribed in Setion 6.The graphs of u0 and of wC are shown in Figure 1.
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Figure 1: Weight wC and solution u, for C1 = 97
128

and C2 = 145
256

.2 Proof of Theorem 1.1To simplify notation, we write H1
0 = H1

0 (Ω) and Lp = Lp(Ω). Given a nontrivialontinuous funtion w ≥ 0 on Ω, the funtional (2) an be written as
J(u) =

1

2
‖u‖2

H − F (u) , ‖u‖2
H =

∫

Ω

|∇u|2 , F (u) =
1

4

∫

Ω

wu4 .We start by maximizing F on the unit sphere S = {u ∈ H1
0 : ‖u‖H = 1}. Notiethat F is well de�ned and ontinuous on L4. Sine S is a ompat subset of L4,3



we an �nd a sequene (un) in S, that onverges strongly in L4 and weakly in H1
0 ,suh that limn F (un) = supS F . The limit u annot be zero, sine supS F > 0.Furthermore, ‖u‖ ≤ 1. In fat, we must have ‖u‖H = 1, otherwise ‖u‖−1

H u ∈ Ssatis�es F (‖u‖−1
H u) = ‖u‖−4

H F (u) > F (u).Let u ∈ S be any point where maxS F is ahieved. We may assume that
u ≥ 0, sine F (|u|) ≥ F (u), and |u| ∈ S. The latter follows from the fat that
|∇|u|| = |∇u| a.e. [14, Theorem 6.17℄. Furthermore, given that the funtion u isontinuous and vanishes on ∂Ω, it has a maximum at some point z1 ∈ Ω. Sine
u is harmoni outside the support D = supp(w) of w, we must have z1 ∈ D, and
u(z) < u(z1) for all z ∈ Ω \ D.Next, we pik a partiular weight w. Let σ1, σ2, . . . , σn be the symmetriesof Ω, with σ1 the identity. We may assume that n ≥ 2. Let w1 be a nontrivialnonnegative C∞ funtion on Ω, suh that the funtions wj = w1 ◦ σj havemutually disjoint supports Dj = supp(wj), where 1 ≤ j ≤ n. De�ne w =
w1 + w2 + . . . + wn .Assume for ontradition that u ◦ σ = u for some nontrivial symmetry σ of
Ω. Without loss of generality, we may assume that z1 ∈ D1 and σ = σ2 . Then
u takes its maximum value at the distint points z1 ∈ D1 and z2 = σ(z1) ∈ D2 .Choose c < u(z1) suh that B = {z ∈ Ω : u(z) > c} is disonneted, with oneonneted omponent B1 ontaining z1 , and another onneted omponent B2ontaining z2 . Consider the funtion u′ = u−v1 +v2 , where vj(z) = u(z)− c forall z ∈ Bj , and vj(z) = 0 for all z 6∈ Bj . Using again [14, Theorem 6.17℄, togetherwith the fat that v2 = v1 ◦ σ, we see that u′ ∈ H1

0 and ‖u′‖H = ‖u‖H = 1. But
F (u′) > F (u), sine f(x) = x4 satis�es f(a − b) + f(a + b) > 2f(a) whenever
a > b > 0. This ontradits the fat that F (u) = maxS F . Thus, u annot havea nontrivial symmetry of Ω.Consider now the funtion J : R × S → R de�ned by J (t, v) = J(tv) =
1
2
t2 − t4F (v). When restrited to R × {u}, it has a maximum at some value

t = τ > 0. And the restrition of J to {τ} × S has a minimum at (τ, u).Consequently, τu is a ritial point of J , with Morse index 1. This ompletes theproof of Theorem 1.1.The remaining part of this paper is devoted to the proof of Theorem 1.2.3 The �xed point equation and Morse indexSolutions of the equation (1) an be obtained as �xed points of the map G,
G(u) = (−∆)−1f(· , u) . (4)In this setion we relate the Morse index of a solution u to the spetral propertiesof the derivative of G at u. For simpliity, we assume that f(z, u) is a polynomialin u with oe�ients in L∞(Ω). Then the funtional (2) is of lass C∞ on H1

0 (Ω),4



and its seond derivative is given by the quadrati form
Qu(v) =

∫

Ω

(|∇v|2 − Wuv2) , (5)where Wu(z) = (∂uf)(z, u(z)). The Morse index of u is the number of negativediretions of Qu . The derivative of G at u is given by
DG(u)v = (−∆)−1(Wuv) . (6)De�ne vm(x) = sin(mx) for positive integers m. The funtions vm×vn are theeigenfuntions of the Dirihlet Laplaean on Ω, and they onstitute an orthogonalbasis for H1

0 = H1
0 (Ω), with the standard inner produt on this spae (see below).Thus, every funtion h in H1

0 has a onvergent sine series expansion
h =

∑

m,n∈K

hm,n vm× vn , (7)where K is the set of all positive integers. Modulo a onstant fator, the standardinner produt on H1
0 is given by

〈g, h〉H := π−2

∫

Ω

(∇g)(z) · (∇h)(z) d2z =
∑

m,n∈K

(m2 + n2)gm,nhm,n . (8)And the inverse Dirihlet Laplaean takes the following simple form
−∆−1h =

∑

m,n∈K

(m2 + n2)−1hm,n vm× vn . (9)Proposition 3.1 Assume that Wu is of lass C1. Then DG(u) is a ompatpositive self-adjoint operator on H1
0 (Ω). Its eigenvalues are stritly positive, if

Wu > 0 almost everywhere on Ω. If u solves equation (1), then the Morse indexof u agrees with the number of eigenvalues of DG(u) that are larger than 1.Proof. The ompatness of DG(u) follows from the fat that −∆−1 is ompat and
h 7→ Wuh bounded. The identity

〈g, DG(u)h〉H = π−2

∫

Ω

g(z)Wu(z)h(z) d2z (10)shows that DG(u) is self-adjoint and positive. Furthermore, if Wu > 0 almost every-where, then 〈h, DG(u)h〉H is positive, unless h = 0. Denote by λ1 ≥ λ2 ≥ . . . ≥ 0 theeigenvalues of DG(u). The orresponding eigenvetors u1, u2, . . . an be hosen to bean orthonormal basis for H1
0 . Then

Qu(v) =
〈

v, [I − DG(u)]v
〉

H
=

∑

n

(1 − λn)
∣

∣〈v, un〉H
∣

∣

2
. (11)This shows that the number of negative diretions for Qu agrees with the number ofeigenvetors un for whih 1 − λn < 0. �Our aim is to solve the �xed point equation G(u) = u on a spae Ao thatis muh smaller than H1

0 . The following proposition will be used to reoverproperties of DG(u) : H1
0 → H1

0 from properties of DG(u) : Ao → Ao.5



Proposition 3.2 Let H be a Hilbert spae. Let X be a Banah spae that isontinuously and densely embedded in H. Let L be a self-adjoint bounded linearoperator on H, that leaves X invariant and de�nes a ompat linear operator LXon X. Then every eigenvetor of L for a nonzero eigenvalue belongs to X.Proof. Let λ be a nonzero eigenvalue of L. Denote by P the spetral projetion for
LX , assoiated with all eigenvalues of modulus ≥ |λ|. Sine L is self-adjoint and P has�nite rank, P de�nes an orthogonal projetion on H that ommutes with L.Consider the self-adjoint operator T = L(I − P) on H . Assume for ontraditionthat T has an eigenvalue λ. Let y be a normalized eigenvetor for this eigenvalue. Pik
x ∈ X suh that 〈x, y〉H = a > 0. Then ‖T nx‖H ≥ a|λ|n for all n. This, together withthe embedding inequality ‖ · ‖H ≤ C‖ · ‖X on X , implies that the operator LX(I − P)on X has a spetral radius ≥ |λ|. This is impossible by the de�nition of P. Thus, everyeigenvetor of L with eigenvalue λ belongs to PH ⊂ X . �Before de�ning the spae Ao mentioned earlier, we note that the sine series(3.4) extends a funtion h ∈ H1

0 to a funtion on R
2. Denoting the extensionagain by h, and using the notation h = h(x, y), the funtion h is 2π-periodiin both variables x and y. Furthermore, −h(−x, y) = h(x, y) = −h(x,−y) forall x, y ∈ R. A funtion h with this property will be alled an odd funtion.Similarly, a funtion h : R

2 → R that satis�es h(−x, y) = h(x, y) = h(x,−y) forall x, y ∈ R will be alled even.Sine we will need to estimate both odd and even funtions, we onsiderFourier series (7) with K = N, where vm(x) = cos(mx) for integers m ≤ 0. Ifthe series (7) for h has only �nitely many nonvanishing terms, the funtion hwill be referred to as a Fourier polynomial. Given ρ > 0, we de�ne A to be theompletion of the vetor spae of Fourier polynomials h with respet to the norm
‖h‖ =

∑

m,n

|hm,n|e
ρ|m|+ρ|n| . (12)This spae A is a Banah algebra, that is, ‖gh‖ ≤ ‖g‖‖h‖, for all g, h ∈ A. Theodd and even subspaes of A will be denoted by Ao and Ae, respetively. Clearly,

H1
0 ontains Ao as a dense subspae.Proposition 3.3 Assume that Wu belongs to Ae and is positive on Ω. Then alleigenvetors of DG(u) : H1

0 → H1
0 belong to Ao, and the restrition of DG(u) to

Ao de�nes a ompat linear operator on Ao.Proof. By using the Banah algebra property of A, and the representation (9) for
(−∆)−1, we see that DG(u) de�nes a ompat linear operator on Ao. Clearly, thereexists C > 0 suh that 〈u, u〉H ≤ C‖u‖2, for all u ∈ o. The assertion onerningthe eigenvetors of DG(u) : H1

0 → H1
0 now follows from Proposition 3.1, and fromProposition 3.2, using X = Ao and H = H1

0 . �6



4 Estimates used to prove Theorem 2.1Consider now the �xed point problem for G, in the ase where
G(u) = (−∆)−1[wu3] , (13)with w some �xed but arbitrary positive funtion in Ae. Sine A is a Banahalgebra, and ∆−1 : Ao → Ao is ompat, the equation (13) de�nes a ompat

C∞ map G on Ao. Notie also that DG(u) has a �Nehari eigenvalue� 3 at any�xed point u 6= 0 of G, with eigenvetor u, due to the fat that G is homogeneousof degree 3.Let u0 ∈ Ao be �xed, and let A be a linear isomorphism of Ao. If u ∈ Ao,then u0 + Au is a �xed point of G if and only if u is a �xed point of N , where
N (h) = G(u0 + Ah) − u0 + (I − A)h , h ∈ Ao . (14)Furthermore, if DG(u0) does not have an eigenvalue 1, and if we hoose Asu�iently lose to [I −DG(u0)]

−1, then N is a ontration near the origin. Theequation (9) shows that DG(u0) an be approximated by �nite rank operators.This motivates the following.Let p be an invertible map from N = {1, 2, . . .} onto N×N. For every positiveinteger k, de�ne vk = vm× vn , with (m,n) = p(k). Furthermore, denote by hkthe oe�ient of vk in the expansion (7) of a funtion h ∈ Ao. Then, to any real
N × N matrix M , we an assoiate a linear operator M̂ on Ao, by setting

M̂h =

N
∑

k,j=1

Mk,jhjvk , h ∈ Ao . (15)From now on, we �x w to be the funtion wC de�ned in (1.3), for the parametervalues desribed in Theorem 2.1. In addition, we �x the spae A by hoosing
ρ = ln(1 + 2−60) in the equation (12).Given r > 0 and g ∈ Ao, de�ne Br(g) = {h ∈ Ao : ‖h − g‖ ≤ r}.Lemma 4.1 There exists an odd Fourier polynomial u0 , a real square matrix
M , and real numbers δ, ε,K > 0, satisfying ε + Kδ < δ, suh that the followingholds. M has no eigenvalue 1, and the map N , de�ned by (14), with A = I −M̂ ,satis�es

‖N (0)‖ ≤ ε , ‖DN (h)‖ ≤ K , ∀h ∈ Bδ(0) . (16)The proof of this lemma is omputer-assisted and will be desribed in Setion5. By the ontration mapping priniple, the given bounds imply that N hasa unique �xed point h∗ in the ball Bδ(0). In what follows, u∗ = u0 + Ah∗denotes the orresponding �xed point of G. Notie that u∗ belongs to Br(u0), if
r ≥ ‖A‖δ.The following lemma shows that u∗ is not symmetri or antisymmetri withrespet to any symmetry of the square.7



Let E = {(π/4, π/2), (π/2, π/4), (3π/4, π/2), (π/2, 3π/4)}. Clearly, eah non-trivial symmetry of Ω ats as a nontrivial permutation on E.Lemma 4.2 There exists r ≥ ‖A‖δ, suh that for every u ∈ Br(u0), the funtion
z 7→ |u(z)| takes 4 distint values on E.The proof of this lemma is omputer-assisted and will be desribed in Setion5. Reall that, by (Morse), all eigenvalues of DG(u) are positive. Our next goalis to prove that all but two eigenvalues of DG(u∗) are smaller than 1. To thisend, we approximate DG(u∗) numerially by an operator T̂ assoiated with an
N × N matrix T . In what follows, T ∗ denotes the adjoint of T with respet tothe inner produt on R

N indued by (8).Lemma 4.3 With A, δ, r, u0 as in Lemmas 4.1 and 4.2, there exists a squarematrix T = T ∗ with eigenvalues µ1 > µ2 > 1 > µ3 > . . . > 0, suh that
∥

∥

∥
[DG(u) − T̂ ](T̂ − I)

∥

∥

∥
< 1 , ∀u ∈ Br(u0) .The proof of this lemma is omputer-assisted and will be desribed in Setion5. Combining the last three lemmas we arrive at the following.Proof of Theorem 1.2 By lemma 4.1 and the ontration mapping prini-ple, the map N de�ned by (14) has a unique �xed point h∗ in Bδ(0). If r > ‖A‖δthen the orresponding �xed point u∗ = u0 +Ah of G belongs to the ball Br(u0).Clearly, u∗ is a real analyti solution of (1). Furthermore, u∗ is not symmetrior antisymmetri with respet to any symmetry of the square Ω, as (nosymm)shows.Consider the operators Ls = sDG(u∗) + (1 − s)T̂ , for 0 ≤ s ≤ 1, with T̂ asdesribed in (SpeGap). They all have the following properties. Ls is ompat,symmetri with respet to the inner produt (8), and positive, in the sense that

〈h,Lsh〉H ≥ 0 for all h ∈ o. Furthermore, Ls − I has a bounded inverse,
(Ls − I)−1 = (T̂ − I)−1(I + sV )−1 , V = [DG(u∗) − T̂ ](T̂ − I)−1 ,sine ‖V ‖ < 1 by Lemma 4.3. In other words, Ls has no eigenvalue 1. Sinethe positive eigenvalues of Ls vary ontinuously with s, this implies that theoperators T̂ = L0 and DG(u∗) = L1 have the same number of eigenvalues(ounting multipliities) in the interval [1,∞) and its interior. By Lemma 4.3,this number is 2. This, together with Proposition 3.1, 3.2 and 3.3 with X = Aoand H = H1

0 , implies that u∗ has Morse index 2. This ompletes the proof ofTheorem 2.1.5 The omputer-assisted partWhat remains to be proved are the Lemmas 4.1, 4.2, and 4.3. Given the Fourierpolynomial u0 and the matries M and T (obtained from purely numerial om-putations), this task is learly a sequene of trivial estimates, assuming that8



there are no fundamental obstrutions. The sequene is �nite, sine ∆−1 an beapproximated to arbitrary auray by �nite rank operators. But the steps aremuh too numerous to be arried out by hand, so we enlist the help of a omputer.For the types of operations needed here, the tehniques are quite standard bynow. Thus, we will restrit our desription mainly to the problem-spei� parts.As with any lengthy task, proper organization is ruial. We start by assoi-ating to a spae X a olletion std(X) of subsets of X, that are representable onthe omputer. These sets will be referred to as �standard sets� for X. A �bound�on an element s ∈ X is then a set S ∈ std(X) ontaining s. Eah olletion
std(X) orresponds to a data type in our programs. Unless stated otherwise,
std(X × Y ) is taken to be the olletion of all sets S × T with S ∈ std(X) and
T ∈ std(Y ).Our standard sets for R are assoiated with a type Ball, whih onsistsof pairs S=(S.C,S.R), where S.C is a representable number (Rep) and S.R anonnegative representable number (Radius). The standard set de�ned by a BallS is the interval B(S) = {s ∈ R : |s − S.C| ≤ S.R}. Our standard sets for Ao arerepresented by a type Fourier2 onsisting of a triple F=(F.T,F.C,F.E), whereF.T is a reord identifying the spae Ao, F.C is an array(0..K,0..K) of Ball,and F.E is an array(0..2*K,0..2*K) of Radius. The orresponding set B(F)in std(Ao) is the set of all funtion u = p + h ∈ Ao,

p =

K
∑

m,n=1

pm,n vm× vn , h =

2K
∑

m,n=1

hm,n , hm,n =
∑

i≥m,j≥n

hm,n
i,j vi× vj ,with pM,N ∈ B(F.C(M, N)) and ‖hM,N‖ ≤ F.E(M, N), for all M,N ≥ 1. The typeFourier2 is also used to de�ne our standard sets for the spae Ae, and for someother subspaes of . In our programs, the �maximal degree� K is either 100 or

125.For the representable numbers, we hoose a data type (renamed to Rep) forwhih elementary operations are available with ontrolled rounding. This makesit possible to implement a bound Sum on the funtion (s, t) 7→ s + t on R×R, aswell as bounds on other elementary funtions on R or R
n, inluding things likethe matrix produt or the Gram-Shmidt orthogonalization map.Here, a bound on a map f : X → Y is a map F : DF → std(Y ), withdomain DF ⊂ std(X), suh that f(s) ∈ F (S) whenever s ∈ S ∈ DF . Suhbounds are implemented as proedures or funtions in our programs. This anbe done hierarhially. Using e.g. the Sum for the type Ball, it is straightforwardto implement a bound Sum on the map (g, h) 7→ g + h from Ao × Ao to Ao.Similarly for maps like u 7→ ‖u‖ or −∆−1. Implementing a bound on the produt

(g, h) 7→ gh is a bit more tedious, but straightforward.A bound on ‖N (0)‖ is now obtained by omposing the basi bounds men-tioned above. In order to estimate ‖DN (h)‖, as required for a proof of Lemma4.1,9



we use the following fat. If L is a ontinuous linear operator on Ao, then
‖L‖ = sup

k

‖Lek‖ , ek = ‖vk‖
−1

vk ,where v1, v2, . . . are the funtions desribed before equation (15). This expliitexpression for ‖L‖ is our main reason for working with a weighted ℓ1 norm. Forthe operator L = DN (h), it is easy to determine k0 , given c > 0, suh that
‖Lek‖ ≤ c whenever k ≥ k0 . Thus, estimating the norm of DN (h) redues to a�nite omputation. Choosing δ > 0 to be a representable number, this estimatean be arried out simultaneously for all funtions h ∈ Bδ(0), sine Bδ(0) belongsto std(o).The same approah is used to estimate the operator norm in equation (4.3).The N × N matrix T is taken to be of the form

T = UMU∗ , M = diag(µ1, µ2, . . . , µN ) ,where µ1, µ2, . . . , µN are positive numerial approximations for the largest Neigenvalues of DG(u∗), and where U is an orthogonal N ×N matrix. To be morepreise, U is orthogonal for the inner produt on R
N indued by (8), and U∗ isthe orresponding adjoint matrix, so that U∗ is the inverse of U . This ensuresnot only that T = T ∗, but it also makes it easy to ompute the inverse of T̂ − I.The size N used in our programs is 250.Verifying the laim in (nosymm) is omparatively simple. All we need is abound on the evaluation funtion (z, u) 7→ |u(z)| on R

2 × Ao. For the �higherorder� part h in the deomposition u = p + h, we use the fat that |h(z)| ≤ ‖h‖,for all z ∈ R
2.For a preise and omplete desription of all de�nitions and estimates, we referto the soure ode and input data of our omputer programs [18℄. The soureode is written in Ada2005 [15℄. For the type Rep we use a MPFR �oating pointtype, with 128 or 256 mantissa bits, depending on the program. MPFR is an opensoure multiple-preision �oating-point library that supports ontrolled rounding[17℄. Our programs were run suessfully on a standard desktop mahine, usinga publi version of the g/gnat ompiler [16℄.6 Some numerial resultsOur approximate solution u0 was obtained by starting with a symmetri solutionfor C1 = C2 = 0, where wC = 1, and following solution branhes where either

C1 or C2 is �xed. The symmetry breaking ours in two steps, as we will nowdesribe.Consider �rst C2 = 0. In this ase, and for C1 > 0, the weight funtion wClooks similar to the funtion shown in Figure 1, exept that the enter peak ismissing: wC has a loal minimum at the enter of Ω. The other peaks inreaseas C1 inreases. 10
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Figure 2: Starting point and bifuration point on branh 1.For C1 ≥ 0, we �nd a branh (referred to as �branh 1�) of solutions that aresymmetri with respet to the diagonal x = y and antisymmetri with respet tothe diagonal x+y = π. At a value C1 ≈ 0.66, we observe a pithfork bifuration.As C1 is inreased past this value, the Morse index on branh 1 hanges from 2to 3.On the interseting branh (alled �branh 2�), for C1 & 0.66, the solutionsno longer have the two re�etion symmetries mentioned above, but they are stillantisymmetri with respet to the omposition of these symmetries: a rotationby π about the enter of Ω. The Morse index is 2, and no bifuration is observedup to C1 = 0.85. Now we �x C1 = 97
128

= 0.7578125 and start inreasing C2 .This auses the weight wC to develop a peak in the enter. The goal is to make itfavorable for the solution u to have a nonzero value at the enter of Ω. And theother 8 peaks of wC should make it di�ult to ahieve this goal while keeping arotation symmetry.The resulting �branh 3� is observed to undergo a pithfork bifuration at avalue C2 ≈ 0.095, where the Morse index hanges from 2 to 3. (It appears thatthere is another bifuration later, where the solutions beome symmetri withrespet to x = y and antisymmetri with respet to x + y = π.)the interseting branh (alled �branh 4�), for C2 & 0.095, the solutions areneither symmetri or antisymmetri with respet to any of the symmetries ofthe square. Along this branh, the third largest eigenvalue �rst dereases from 1down to about 0.857, and then it inreases again (reahing 1 around C2 = 1.22).The minimum is reahed near the value of C2 used in Theorem 1.2.The �basi� proedure that was used to follow a branh is to gradually hangeparameter values, and using a Newton-type map N assoiated with G, to �ndan aurate �xed point at eah step. Near a bifuration point u, where DG(u)has an eigenvalue lose to 1, we ompute the orresponding eigenvetor h. Thenew branh is found by starting with v = u + εh and adjusting the parameterto minimize the norm of G(w) − w, where w = N k(v) for some appropriate k.Then the map u 7→ w is iterated until the eigenvalues of DG(u) are far enough11
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Figure 3: Two points on branh 3.
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Figure 4: Two points on branh 4.
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from 1 for the basi branh-following proedure to work. This approah an ofourse be improved, but that was not our goal here.The equation (1) for the disk, with nonlinearities that depend expliitly on
z, is being investigated in [13℄. Other numerial studies on related equations anbe found in the referenes [2, 3, 4, 6, 8℄.Aknowledgments. The authors would like to thank Filomena Paella forintroduing them to this problem, and for helpful disussions.Referenes[1℄ B. Gidas, W.-M. Ni, L. Nirenberg, Symmetry and related properties via themaximum priniple, Commun. Math. Phys. 68, 209-243 (1979).[2℄ G. Chen, J. Zhou, W.-M. Ni, Algorithms and visualization for solutions ofnonlinear ellipti equations, Int. J. Bifurat. Chaos 10, 1565-1612 (2000).[3℄ J.M. Neuberger, W. Swift, Newton's method and Morse index for semilinearPDEs, Int. J. Bifurat. Chaos, 11, 801-820 (2001).[4℄ D. Costa, Z. Ding, J.M. Neuberger, A numerial investigation of sign-hanging solutions to superlinear ellipti equations on symmetri domains,J. Comp. Appl. Math.,131, 299-319 (2001).[5℄ F. Paella, Symmetry Results for Solutions of Semilinear Ellipti Equationswith Convex Nonlinearities, J. Funt. Anal., 192, 271�282 (2002).[6℄ B. Breuer, P.J. MKenna, M. Plum, Multiple solutions for a semilinearboundary value problem: a omputational multipliity proof, J. Di�. Equa-tions 195, 243-269 (2003).[7℄ D. Smets, M. Willem, Partial symmetry and asymptoti behaviour for someellipti variational problems, Cal. Var. Part. Di�. Eq. 18, 57-75 (2003).[8℄ J. Horák, Constrained mountain pass algorithm for the numerial solutionof semilinear ellipti problems, Numer. Math. 98, 251-276 (2004).[9℄ T. Bartsh, T. Weth, M. Willem, Partial symmetry of least energy nodalsolutions to some variational problems, J. Anal. Math. 96, 1-18 (2005).[10℄ J. Wei, M. Winter, Symmetry of Nodal Solutions for Singularly PerturbedEllipti Problems on a Ball, Indiana Univ. Math. J. 54, 707-742 (2005),[11℄ F. Paella, T. Weth, Symmetry of solutions to semilinear ellipti equationsvia Morse index, Pro. Amer. Math. So. 135, 1753-1762 (2007).13
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