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Abstract

Microfluidics proved to be a key technology in various applications, allowing to
reproduce large-scale laboratory settings at a more sustainable small-scale. The cur-
rent effort is focused on enhancing the mixing process of different passive species
at the micro-scale, where a laminar flow regime damps turbulence effects. Chaotic
advection is often used to improve mixing effects also at very low Reynolds numbers.
In particular, we focus on passive micromixers, where chaotic advection is mainly
achieved by properly selecting the geometry of microchannels. In such a context, re-
duced order modeling can play a role, especially in the design of new geometries. In
this chapter, we verify the reliability and the computational benefits lead by a Hier-
archical Model (HiMod) reduction when modeling the transport of a passive scalar
in an S-shaped microchannel. Such a geometric configuration provides an ideal set-
ting where to apply a HiMod approximation, which exploits the presence of a leading
dynamics to commute the original three-dimensional model into a system of one-
dimensional coupled problems. It can be proved that HiMod reduction guarantees
a very good accuracy when compared with a high-fidelity model, despite a drastic
reduction in terms of number of unknowns.

1 Introduction

In the last decade, microfluidics has gained increased interest, becoming a key technology
in the fields of biology and medical research, with various applications such as biosens-
ing, diagnostics, drug discovery, regenerative medicine, tissue engineering (Nguyen et al.
(2019); Sackmann et al. (2014); Bhatia and Ingber (2014); Davis (2008)). The strength of
microfluidics relies on the possibility to substantially reduce the sample volume by using
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disposable miniaturized devices which allow to replace large-scale conventional labora-
tory instrumentation, thus reducing hardware costs, assuring low reagent consumption and
high-speed analysis, while allowing huge parallelism.

In a microfluidic system, mixing of different transported passive species is a crucial
issue for the optimization of chemical and biochemical reactions involved in the process of
medical diagnostics, drug discovery, chemistry production and proteomics (Suh and Kang
(2010)). However, at the microscale, mixing is often difficult to be achieved in common
practice, since microfluidics is characterized mainly by very low Reynolds numbers (rang-
ing from less than unity up to a few hundreds), and cannot take advantage of turbulence to
improve mixing efficiency. Under laminar flow, mixing is mainly a diffusion-driven phe-
nomenon characterized by long time scales and high diffusive lengths, which can become
prohibitive in view of a numerical modeling.

To overcome these limitations, great efforts have been made to develop new techniques
in order to achieve rapid and efficient laminar flow mixing in microsystems (Hardt et al.
(2005)). In particular, chaotic advection can be exploited to enhance the diffusive process
in microfluidics. Chaotic advection is obtained by stretching and folding the interface
between miscible streams, thus reducing the diffusive length, and improving the mixing
efficiency, also at very low Reynolds numbers. In passive micromixers, chaotic advection is
usually achieved by properly designing the three-dimensional geometry of microchannels
(Liu et al. (2000); Lin et al. (2007)). It is well known that in a curved channel the flow
undergoes a centrifugal displacement of the maximal axial velocity (Dean (1928)), leading
to the onset of secondary flows, which in turn enhance mixing. Thus, several micromixer
designs are based on curved microchannels, such as spiral microchannels (Sudarsan and
Ugaz (2006)), U-shaped microchannels (Gigras and Pushpavanam (2008)), or clothoid-
based geometries (Pennella et al. (2012)).

Following this principle, in this study an S-shaped microchannel with fixed curvature
is considered, in the simplest case of a single passive species. In such a way, we recover the
conventional setting to apply a Hierarchical Model (HiMod) reduction. As a matter of fact,
HiMod proved to be an effective tool (Guzzetti et al. (2018); Brandes Costa Barbosa and
Perotto (2020)) to model phenomena exhibiting a main dynamics (here represented by the
advection of the passive scalar along the microchannel), in the presence of local secondary
dynamics evolving along the transverse sections (in the case of interest, represented by the
mixing effects induced by the geometry). Analogously to other model reduction proce-
dures (we refer, e.g., to Chinesta et al. (2014); González et al. (2010) and to Perotto et al.
(2020) for a comparison between HiMod and another well-established model reduction
technique), a HiMod reduction exploits a standard separation of variables and describes
the mainstream and the secondary dynamics with different approximation schemes. In the
first proposal, the mainstream is discretized by one-dimensional finite elements, while the
transverse dynamics are modeled by a modal expansion (Ern et al. (2008); Perotto et al.
(2010); Perotto and Zilio (2013); Perotto (2014)). For the specific context at hand, we re-
sort to the variant of the original approach which employs an isogeometric discretization
along the leading direction, in order to deal with generic geometries (Perotto et al. (2017);
Brandes Costa Barbosa and Perotto (2020)).

Independently of the selected discretizations, HiMod reduction considerably contains

2



the computational effort, in particular when compared with full three-dimensional models,
without quitting accuracy. Indeed, a HiMod expansion leads to commute the full model
into a system of coupled one-dimensional problems solved along the leading direction,
whose coefficients include the effect of the transverse dynamics. This ensures several
computational simplifications, especially in the presence of complex geometries, primarily
the computational domain we have to discretize which is a one-dimensional instead of a
three-dimensional one. In terms of accuracy, the HiMod approximation can be arbitrarily
enriched by properly increasing the number of modal functions used to describe the sec-
ondary transverse dynamics (Perotto et al. (2010); Perotto and Veneziani (2014); Perotto
and Zilio (2015); Aletti et al. (2018)).

The paper is organized as follows. Section 2 introduces the partial differential equation
model used to describe the transport of the tracked species inside the S-shaped microchan-
nel. Section 3 is devoted to set up the isogeometric HiMod reduction, by addressing (i) the
geometric characterization of the computational domain, which distinguishes between the
mainstream and the secondary directions; (ii) the definition of thefp discrete HiMod space;
(iii) the HiMod algebraic formulation. Numerical results are discussed in Section 4, both
in terms of accuracy and computational saving. Finally, Section 5 summarizes conclusions
and possible future perspectives.

2 Advection-diffusion problems in a microchannel

The problem we consider models the transport of a passive scalar in the S-shaped mi-
crochannel with two fixed curvatures, Ω⊂R3, sketched in Figure 1. To this aim, we resort
to a standard advection-diffusion (AD) equation, that is formulated as1

−∇ · (ν∇u(z))+∇ · (b(z)u(z)) = f (z) in Ω

u(z) = uin on Γin

u(z) = 0 on Γw

ν
∂u
∂n

(z) = 0 on Γout ,

(1)

where u denotes the concentration of the passive scalar, the convective field b ∈ [L∞(Ω)]3,
with ∇ ·b ∈ L2(Ω), corresponds to the velocity of the fluid in the microchannel, f ∈ L2(Ω)
models the action of an external force, ν ∈R+ is the diffusion coefficient of the transported
species, uin ∈H1/2(Γin) is the concentration at the inlet Γin, with z the vector collecting the
spatial coordinates in Ω, n the outer unit normal to the boundary ∂Ω, Γin, Γout the inlet and
the outlet sections, Γw the lateral boundary, so that ∂Ω = Γin∪Γw∪Γout .
We observe that, since the dynamics in a microchannel is usually characterized by a very
small Reynolds number, we can assume that the fluid is incompressible, namely ∇ ·b(z)= 0
in Ω, and that the fluid flow is laminar, so that, in practice, we can compute b by solving a
steady Navier-Stokes problem (see Section 4).

1Throughout the paper, standard notation are adopted for the function spaces (Ern and Guermond (2004)).
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Figure 1: Geometry of the S-shaped microchannel with two fixed curvatures, Ω: Γin: inlet
section; Γw: lateral boundary; Γout : outlet section.

In view of the application of the Hierarchical Model (HiMod) reduction technique, we
introduce the weak formulation of problem (1). To this end, we introduced the Sobolev
spaces H1(Ω) = {v ∈ L2(Ω) : ∇v ∈ [L2(Ω)]3} and H1

0,ΓD
(Ω) = {v ∈ H1(Ω) : v|ΓD = 0},

with ΓD = Γin∪Γw. Thus, the weak formulation of the reference AD problem reads: Find
u ∈V , with V = H1

0,ΓD
(Ω), such that

a(u,v) = F(v) ∀v ∈V, (2)

where a : V ×V −→ R and F : V −→ R are the bilinear and the linear forms associated
with model (1), namely

a(u,v) =
∫

Ω

ν ∇u(z) ·∇v(z)dz +
∫

Ω

b(z) ·∇u(z)v(z)dz (3)

F(v) =
∫

Ω

f (z)v(z)dz − a(Ruin ,v), (4)

with Ruin a suitable lifting of the boundary data uin on Γin.
Thanks to the assumptions introduced on the problem data, we can guarantee the well-
posedness of the weak problem (2) by applying the Lax-Milgram lemma (Ern and Guer-
mond (2004)).

Hereafter, we will refer to (2) as to the full problem, the HiMod reduction will be
applied to.

3 Numerical modelling using HiMod Reduction

In this section, we apply the HiMod reduction to the full problem (2), by discussing the
three main steps typical of a HiMod formulation: (i) the geometric characterization of the
computational domain that distinguishes between a leading and a transverse direction (Sec-
tion 3.1); (ii) the definition of the function spaces associated with either directions and their
combination in the setting of the HiMod discrete space (Section 3.2); (iii) the resulting al-
gebraic formulation, which reduces to a system of one-dimensional (1D) coupled problems

4



(Section 3.3). For further details, we refer the reader, e.g., to Ern et al. (2008); Perotto et al.
(2010); Perotto (2014).

3.1 Geometric characterization of the computational domain

The main idea behind a HiMod reduction is to distinguish in the physical domain Ω a
leading direction, associated with a 1D supporting fiber Ω1D = [xin,xout ], and a set of
secondary orthogonal transverse directions, parallel to the 2-dimensional (2D) transverse
fibers γx ⊂ R2, at the generic point x along Ω1D. In other words, we are assuming to per-
form the reduction in a three-dimensional (3D) fiber bundle, so that Ω = ∪x∈Ω1D{x}× γx.
With reference to the specific application to the microchannel in Figure 1, the leading direc-
tion Ω1D coincides with the centerline of the microchannel Ω, x is the curvilinear abscissa
along Ω1D, and fibers γx are the circular trasverse sections of the channel, orthogonal to the
centerline.

In view of Section 3.2, we introduce a smooth map that changes the physical domain,
Ω, into a reference domain, Ω̂, where computations are easier and are performed once
and for all. Thus, we define the invertible maps Ψ : Ω→ Ω̂ and Φ : Ω̂→ Ω, such that
Φ(·) = Ψ−1(·). Without loss of generality, we identify the reference domain with a unit
cube. The same directional decomposition as for the physical domain is applied to the
reference domain, so that Ω̂ = ∪x̂∈Ω̂1D

{x̂}× γ̂ , where Ω̂1D = [x̂in, x̂out ]⊂ R is a unit length
segment, while γ̂ coincides with the unit square (0,1)2. In particular, in Section 4, fol-
lowing an IsoGeometric Analysis (IGA) approach (Cottrell et al. (2009)), we will employ
Non-Uniform Rational B-Splines (NURBS) functions to define the map Ψ characterizing
the microchannel geometry in Figure 1.

Finally, suppose that z = (x,y) and ẑ = (x̂, ŷ) denote the generic point in Ω and Ω̂,
respectively such that Ψ(z) = (ψ1(z),ψ2(z)) = ẑ (i.e., x̂ = ψ1(z), ŷ = ψ2(z)) and Φ(ẑ) =
(ϕ1(ẑ),ϕ2(ẑ)) = z (i.e., x = ϕ1(ẑ), y = ϕ2(ẑ)). We assume maps Ψ and Φ to be differen-
tiable with respect to z and ẑ, respectively and we define the Jacobian of such transforma-
tions, namely,

JΨ(z) =
∂Ψ

∂z
(z) =

[
∂xψ1(z) ∇yψ1(z)

∂xψ2(z) ∇yψ2(z)

]
, JΦ(ẑ) =

∂Φ

∂ ẑ
(ẑ) =

[
∂x̂ϕ1(ẑ) ∇ŷϕ1(ẑ)

∂x̂ϕ2(ẑ) ∇ŷϕ2(ẑ)

]

in R3×3, where ∇y and ∇ŷ stand for the gradient with respect to y and ŷ, respectively. Due
to the smoothness assumptions on Φ and Ψ, it holds JΨ(z) = J −1

Φ
(ẑ).

In view of Section 3.3, all the integrals in Ω in (3)-(4) will be traced back to integrals
on the reference domain Ω̂ by applying the change of variable formula∫

Ω

g(z)dz =
∫

Ω

g(x,y)dz =
∫

Ω̂

g(ϕ1(ẑ),ϕ2(ẑ)) |det(JΦ)|dẑ, (5)

with g ∈ L2(Ω).
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3.2 The discrete HiMod space

The fiber structure introduced on Ω is instrumental in the definition of the following func-
tion spaces:

• the 1D space V̂1D, spanned by functions defined on the reference supporting fiber
Ω̂1D, so that V̂1D ⊆ H1(Ω̂1D). For consistency reasons, functions in V̂1D must be
compatible with the boundary conditions enforced on Γin and Γout ; for instance, if
a homogeneous Dirichlet boundary condition is assigned on Γin, functions in V̂1D

must vanish at x̂in. In particular, to provide the discrete HiMod formulation, we
identify space V̂1D with a finite dimensional discrete space. In early works (see,
e.g., Ern et al. (2008); Perotto et al. (2010)), the supporting fiber is assumed to be
a segment, and a finite element (FE) basis is employed to define V̂1D. Since in the
microchanel application the centerline is curved, we rely on an IGA discretization,
following Brandes Costa Barbosa and Perotto (2020);

• the 2D space Vm,γ̂ , spanned by functions defined on the reference fiber γ̂ . In par-
ticular, we define a modal basis of functions {φk}k∈N+ ⊂ H1(γ̂), orthonormal with
respect to the L2(γ̂)-scalar product, i.e., such that∫

γ̂

φk(ŷ)φl(ŷ)dŷ = δkl ∀k, l ∈ N+, (6)

with δkl the Kronecker symbol. With this modal basis, we associate the space
V∞,γ̂ = span({φk}), as well as the truncated function space Vm,γ̂ = span({φk}m

k=1).
Consistently with the definition of space V̂1D, we enforce the boundary conditions
assigned on Γw to the modal functions. Since, in the microchannel configuration, we
set homogeneous Dirichlet boundary conditions on Γw, the modal basis coinsists of
sinusoidal functions, vanishing on ∂ γ̂ . In Remark 3.1, we provide some comments
about a practical way to select the modal functions in order to fulfill generic bound-
ary data.
Moreover, we notice that relation (6), and thus space Vm,γ̂ , does not actually depend
on x̂, being γ̂ the unit square, independently of x̂. This means that we are allowed
to pre-compute all the integrals involving the modal functions, independently of the
specific case study at hand.

Remark 3.1 In Aletti et al. (2018) the authors propose a practical method to build a modal
basis of functions which include, in an essential way, any kind (Dirichlet, Neumann, Robin,
mixed) of boundary data on Γw. The idea is to solve an auxiliary Sturm-Liouville Eigen-
value (SLE) problem, characterized by the differential operator LSLE , on the reference
fiber γ̂ , by imposing on ∂ γ̂ the same boundary condition as on Γw. Concerning the choice
of LSLE , it is expected to be a symmetric operator. For instance, with reference to the AD
problem in (1), it turns out that LSLE reduces to the diffusive operator −∇ · (ν∇), due
to the incompressibility assumption on the fluid. The eigenfunctions of the SLE problem
constitute the modal basis {φk}, which is named educated, since it automatically takes into
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account features of the solution to be reduced. For more details about computational as-
pects of this approach as well as for a modeling convergence analysis, we refer the reader
to the original paper.

Now, by exploiting a separation of variable principle, we define the hierarchically re-
duced function space, Vm, obtained by combining spaces V̂1D and Vm,γ̂ , as

Vm =
{

vm(z) =
m

∑
k=1

ṽk(ψ1(z))φk(ψ2(z)) : ṽk ∈ V̂1D, z ∈Ω

}
, (7)

where m∈N+ denotes the modal index, here set a priori (we refer to Perotto and Veneziani
(2014); Perotto and Zilio (2015) for an automatic selection strategy of the modal index).
Notice that, thanks to the orthonormality condition (6), coefficient ṽk in (7) can be inter-
preted as the frequency associated with the k-th modal basis function, being

ṽk(ψ1(z)) =
∫

γ̂

um(ψ1(z),ψ2(z))φk(ψ2(z))dŷ. (8)

Once space Vm is defined, the hierarchically reduced problem reads as follows: Fixed
m ∈ N+, find um ∈Vm such that

a(um,vm) = F(vm) ∀vm ∈Vm, (9)

or likewise, after picking in (9) the test function as vm(z) = θl(ψ1(z))φk(ψ2(z)) and by

exploiting the modal representation um(z) =
m

∑
j=1

ũ j(ψ1(z))φ j(ψ2(z)) for the trial function,

find ũ j ∈ V̂1D, for any j ∈ {1, . . . ,m}, such that

m

∑
j=1

a
(
ũ j(ψ1(z))φ j(ψ2(z)),θl(ψ1(z))φk(ψ2(z))

)
= F

(
θl(ψ1(z))φk(ψ2(z))

)
, (10)

for any k ∈ {1, ...,m} and with {θl}Nh
l=1 the set of the basis functions for space V̂1D, with

Nh = dim(V̂1D) the associated dimension.
The practical effect of a HiMod approximation is to commute the full 3D model (2) into the
system (10) of m coupled 1D problems, defined along the centerline Ω̂1D of the reference
domain Ω̂.

Finally, following Perotto et al. (2010), we endow space Vm both with a conformity
(Vm ⊂ V , for any m ∈ N+) and with a spectral approximability (limm→+∞ infvm∈Vm ‖v−
vm‖V = 0, for any v ∈ V ) hypotheses, in order to ensure the well-posedness of the HiMod
formulation (9) as well as the convergence of the HiMod approximation um to the weak
solution u in (2), for m→+∞. This means that the accuracy of the reduced model can be
arbitrarily set by suitably tuning the modal index m in the reduced formulation (9).
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3.3 The HiMod algebraic formulation

In this section we derive the algebraic counterpart of the HiMod formulation in (9), taking,
for simplicity, uin = 0 in (1) so that the lifting term in (4) is null.
With a view to the numerical verification in Section 4, we identify the basis {θl}Nh

l=1 for
V̂1D used in (10) with the set {Rl}Nh

l=1 of the NURBS functions defined in the interval [0,1]
(Cottrell et al. (2009)). Thus, the HiMod reduced solution and the test function can be
expressed as

um(z) =
m

∑
j=1

Nh

∑
i=1

ui jRi(ψ1(z))φ j(ψ2(z)), vm(z) = Rl(ψ1(z))φk(ψ2(z)) (11)

for k ∈ {1, . . . ,m}, l ∈ {1, . . . ,Nh}, so that the actual unknowns of the HiMod reduced
formulation are the mNh coefficients ui j ∈ R, with j ∈ {1, . . . ,m}, i ∈ {1, . . . ,Nh}.
The HiMod algebraic system can be derived by exploiting expansions (11) in the definition
of the bilinear and linear forms (3) and (4), combined with the pull-back transformation
from Ω to Ω̂. To this end, we move from the gradient expansion

∇(w(ψ1(z))φs(ψ2(z))) = φs(ψ2(z))w′(ψ1(z))

[
∂xψ1(z)

∇yψ1(z)

]

+ w(ψ1(z))φ ′s(ψ2(z))

[
∂xψ2(z)

∇yψ2(z)

]
,

(12)

with w′(ψ1(z)) = dw(ψ1(z))/dψ1(z), φ ′s(ψ2(z)) = dφs(ψ2(z))/dψ2(z), for s∈ {1, . . . ,m},
which turns out to be instrumental to write the HiMod counterpart of both the diffusive and
advective contributions in (3). Let us deal with these two terms, separately. Concerning
the diffusion part, we can expand it as∫

Ω

ν(z) ∇um(z) ·∇vm(z)dz

=
m

∑
j=1

Nh

∑
i=1

ui j

∫
Ω

ν(z)
{[(

[∂xψ1(z)]2 + |∇yψ1(z)|2
)
φ jφk

]
R ′iR

′
l

+
[(

∂xψ1(z)∂xψ2(z)+∇yψ1(z) ·∇yψ2(z)
)
φ jφ

′
k

]
R ′iRl

+
[(

∂xψ1(z)∂xψ2(z)+∇yψ1(z) ·∇yψ2(z)
)
φ ′jφk

]
RiR ′l

+
[(
[∂xψ2(z)]2 + |∇yψ2(z)|2

)
φ ′jφ

′
k

]
RiRl

}
dz,

(13)

where the dependence of Ri and Rl on ψ1(z) as well as of φ j and φk on ψ2(z) is understood.
In a similar way, the convective term in (3) becomes∫

Ω

b(z) ·∇um(z)vm(z)dz

=
m

∑
j=1

Nh

∑
i=1

ui j

∫
Ω

{[(
b1(z)∂xψ1(z)+b2(z) ·∇yψ1(z)

)
φ jφk

]
R ′iRl

+
[(

b1(z)∂xψ2(z)+b2(z) ·∇yψ2(z)
)
φ ′jφk

]
RiRl

}
dz,

(14)
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where the advective field b is decomposed according to the separation of variables sup-
porting the HiMod reduction, i.e., as b(z) = (b1(z),b2(z))T . Now, by collecting the cor-
responding terms in (13) and (14) and by exploiting the separation of variables underlying
a HiMod reduction together with the map linking the physical with the reference domain,
we can rewrite the bilinear form a(um,vm) in (9) in a compact way as

m

∑
j=1

Nh

∑
i=1

A jk(Ri,Rl)ui j, (15)

for k ∈ {1, . . . ,m}, l ∈ {1, . . . ,Nh}, where

A jk(Ri,Rl) =
∫

Ω̂1D

[
Q̂11

jk (x̂)R
′
i(x̂)R

′
l(x̂)+ Q̂10

jk (x̂)R
′
i(x̂)Rl(x̂)

+ Q̂01
jk (x̂)Ri(x̂)R ′l(x̂)+ Q̂00

jk (x̂)Ri(x̂)Rl(x̂)
]

dx̂,
(16)

with
Q̂st

jk(x̂) =
∫

γ̂

Qst
jk(ẑ)|det(JΦ)|dŷ s, t = 0,1, (17)

Q11
jk (ẑ) = ν(Ψ−1(ẑ))

(
[Dx

1(ẑ)]
2 + |Dy

1 (ẑ)|2
)
φ j(ŷ)φk(ŷ);

Q10
jk (ẑ) = ν(Ψ−1(ẑ))

(
Dx

1(ẑ)D
x
2(ẑ)+Dy

1 (ẑ) ·D
y
2 (ẑ)

)
φ j(ŷ)φ ′k(ŷ)

+
(
b1(Ψ

−1(ẑ))Dx
1(ẑ)+b2(Ψ

−1(ẑ)) ·Dy
1 (ẑ)

)
φ j(ŷ)φk(ŷ);

Q01
jk (ẑ) = ν(Ψ−1(ẑ))

(
Dx

1(ẑ)D
x
2(ẑ)+Dy

1 (ẑ) ·D
y
2 (ẑ)

)
φ ′j(ŷ)φk(ŷ);

Q00
jk (ẑ) = ν(Ψ−1(ẑ))

(
[Dx

2(ẑ)]
2 + |Dy

2 (ẑ)|2
)
φ ′j(ŷ)φ ′k(ŷ)

+
(
b1(Ψ

−1(ẑ))Dx
2(ẑ)+b2(Ψ

−1(ẑ)) ·Dy
2 (ẑ)

)
φ ′j(ŷ)φk(ŷ),

(18)

and where we have introduced the deformation indices

Dx
1(ẑ) = ∂xψ1(z)

∣∣
z=Ψ−1(ẑ), Dy

1 (ẑ) = ∇yψ1(z)
∣∣
z=Ψ−1(ẑ),

Dx
2(ẑ) = ∂xψ2(z)

∣∣
z=Ψ−1(ẑ), Dy

2 (ẑ) = ∇yψ2(z)
∣∣
z=Ψ−1(ẑ)

coinciding with the components of the Jacobian JΨ(z) evaluated at z = Ψ−1(ẑ). Coeffi-
cients Q̂st

jk synthesize the dynamics transverse to the centerline. They explicitly depend on
the problem data, on the geometry of the domain Ω (through the deformation indices) and
on the selected modal basis.

Concerning the linear form F(vm) on the right-hand side in (9), we apply the same
steps used to manipulate the bilinear form a(um,vm), to obtain∫

Ω̂1D

M̂k(x̂)Rl(x̂)dx̂ (19)

for k ∈ {1, . . . ,m}, l ∈ {1, . . . ,Nh}, with

M̂k(x̂) =
∫

γ̂

Mk(ẑ)|det(JΦ)|dŷ and Mk(ẑ) = f (Ψ−1(ẑ))φk(ŷ).
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Moving from (15) and (19) and by varying indices k and l in {1, . . . ,m} and {1, . . . ,Nh},
respectively we commute the HiMod formulation (9) into a system of linear equations of
order mNh, with unknowns the mNh coefficients {ui j}. We refer to Perotto et al. (2010) for
more details about the blockwise structure of the stiffness matrix associated with (15).

Remark 3.2 The term associated with the lifting in (4) modifies the HiMod right-hand side
in (19) with an additional contribution. In particular, the better way to proceed leads us to
expand the lifting Ruin in terms of the NURBS functions and of the modal basis according
to (11), so that

Ruin(z) =
m

∑
j=1

Nh

∑
i=1

ri jRi(ψ1(z))φ j(ψ2(z)).

For this choice, the HiMod counterpart of the bilinear form −a(Ruin ,v) in (4) simplifies to

m

∑
j=1

Nh

∑
i=1

A jk(Ri,Rl)ri j,

with k ∈ {1, . . . ,m}, l ∈ {1, . . . ,Nh}.

4 Numerical results and discussion

In this section we apply the HiMod discretization to model the transport of a passive scalar
in an S-shaped microchannel, by hierarchically reducing problem (1) in the computational
domain Ω displayed in Figure 1.

The geometry of the microchannel is characterized by a length L of 1410 µm, with a
circular section of diameter D = 100 µm, a first radius of curvature R1 equal to 455 µm
and a second radius of curvature R2 equal to 204 µm.

Concerning the problem data, we assume that the external force f in (1) is null, while
the convective field b is obtained by solving the steady-state Navier-Stokes equations in
Ω. To this aim, we use the general purpose CFD code Fluent (ANSYS Inc., Canonsburg,
PA, www.ansys.com), based on a finite volume discretization. The Navier-Stokes simu-
lation is completed with the following boundary data: we prescribe a constant velocity of
2 m/s at the inlet section Γin; a traction-free condition at the outlet section Γout ; a no-slip
condition on Γw, thus assuming the microchannel wall to be rigid. The dynamic viscosity
of the fluid is set to µ = 10−3 kg/ms, while the density is ρ = 998 kg/m3. Therefore, the
resulting regime for the fluid flow is laminar, as the Reynolds number at the inlet section is
approximately equal to 200.

The diffusion coefficient of the transported species in (1) is ν = 10−6 m2/s, so that the
Péclet number at the inlet section corresponds to Pe = 200. Finally, as for the boundary
conditions of the AD equation, the scalar distribution uin corresponds to a parabolic profile
on the inlet section Γin, while we assign a homogeneous Dirichlet boundary condition on
the microchannel wall Γw, and a homogeneous Neumann data on the outlet section Γout .

Concerning the geometric characterization of the computational domain in view of a
HiMod reduction, the leading direction is aligned to the centerline of the microchannel (i.e.,

10



Figure 2: Correspondence between boundary portions of the generic transverse fiber and
of the reference unit square.

to the direction the convective field flows along), while the transverse sections coincide
with the uniform circular cross-sections of the channel.
The NURBS description of volume Ω is built as follows. For each point P = (xp,yp) along
the centerline (i.e., such that xp ∈Ω1D), we provide the function p : [0,2π]→ R3 such that
the curve

p(θ) =
D
2

sin(θ)B+
D
2

cos(θ)N+P (20)

identifies the boundary of the transverse fiber, γxP , of Ω centered at P, where vectors B
and N correspond to the binormal and to the normal unit vectors of the Frenet frame at P,
respectively. Such vectors can be easily computed by using, e.g., vmtk (www.vmtk.org).
Now, we focus on maps Φ and Ψ, relating the physical with the reference domain. First,
we introduce a NURBS map between each side of the reference transverse fiber γ̂ = (0,1)2

and a portion of the wall of the generic circular cross section. To this aim, the curve defined
by (20) is built by varying angle θ in the four disjoint intervals [−π/4,π/4), [π/4,3/4π),
[3/4π,5/4π), [5/4π,7/4π). Successively, each of the four resulting curves is mapped
to one side of the unit square γ̂ , according to the correspondence highlighted in Figure 2.
Afterwards, a NURBS parameterization of the internal part of the transverse fiber is carried
out by means of a bilinearly blended Coons patch (i.e., via a suitable bilinear interpolation
of the four arcs in Figure 2, see, e.g., Farin and Hansford (1999)), as implemented in the
Matlab NURBS toolbox. Finally, maps Φ and Ψ are obtained by repeating the procedure
above for each point P along the centerline, as sketched in Figure 3.

To identify the discrete HiMod space in (7), we resort to a modal basis consisting of
64 functions which describe the dynamics parallel to the transverse direction, while we
discretize the flow aligned with the centerline of the microchannel by means of quadratic
NURBS basis functions, characterized by a C1 inter-element smoothness, after introducing
202 uniformly-spaced knots along the reference supporting fiber Ω̂1D. Panel (b) in Figure 4
shows the HiMod solution. Four cross sections of interest are highlighted: the inlet (#1),
a section halfway through the first straight part of the microchannel (#2), a section at the
beginning of the region with curvature R1 (#3), and finally a section halfway through the
region with curvature R1 (#4). Furthermore, a cut in the plane which contains the centerline
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Figure 3: Sketch of the maps Φ and Ψ between the S-shaped microchannel and the refer-
ence unite cube.

is also shown.
For comparison purposes, we run a simulation of the same AD problem with Fluent

on a uniform unstructured computational grid of Ω consisting of 1.384.925 tetrahedral
elements and 273.421 vertices. In particular, Fluent solves the Navier-Stokes and the AD
equations concurrently. We adopt a second-order discretization scheme for the pressure,
and a second-order upwind method to approximate both the velocity and the passive scalar
concentration. The resulting solution is considered as the high fidelity reference solution,
and is employed to establish the accuracy of the HiMod approximation.

A qualitative comparison between the HiMod and the reference solution is displayed
in Figure 4. We observe a good qualitative agreement between the two solutions. We
highlight that the data assigned at the inlet of the HiMod reduced model does not exactly
coincide with the parabolic profile uin used in the reference context. Indeed, as discussed
in Remark 3.2, the lifting Ruin in (4) is built upon the expansion of the Dirichlet data uin in
terms of the modal and of the NURBS bases. This justifies the minor discrepancy in the
concentration on the inlet section (#1). Such a slight mismatch is unavoidably propagated
along the channel and explains the small error present on the downstream sections. In
particular, the HiMod solution slightly overestimates the high fidelity concentration on
section #2, while underestimation occurs on sections #3 and #4.

A more quantitative comparison is performed in Figure 5, which displays the pointwise
distribution of the relative modeling error between the high fidelity and the reduced solution
with respect to the L2(Ω)-norm, in correspondence with the plane and the four sections
considered in Figure 4. We can infer that a small relative error (less than 1%) is achieved,
which is often acceptable for the type of engineering applications analyzed in this chapter.
Finally, from a computational viewpoint, the gain provided by the HiMod approximation is
confirmed by the number of the degrees of freedom (dofs) characterizing the two solutions,
namely 1.384.925 dofs for the high fidelity model to be compared with 12.928 dofs for the
reduced model.
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Figure 4: Qualitative comparison between the high fidelity solution and the HiMod ap-
proximation in correspondence of the microchannel’s portion which is highlighted on the
left: cut-view of the colourplot of the passive scalar concentration in the plane containing
the centerline and at four different sections of interest.

Figure 5: Quantitative comparison between the high fidelity solution and the HiMod ap-
proximation in correspondence of the microchannel’s portion which is highlighted on the
left: pointwise distribution of the L2(Ω)-norm of the relative modeling error between the
two models.
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5 Conclusions and perspectives

An S-shaped microchannel used to enhance mixing by yielding chaotic advection in pas-
sive micromixers provides the ideal environment where to verify the computational per-
formances of a HiMod reduction procedure, both in terms of reliability and computational
efficiency. Indeed, it is common to distinguish in the microchannel geometry a leading di-
rection, aligned with the channel centerline, and an orthogonal transverse direction, parallel
to the cross section, coherently with the separation of variables exploited in the definition
of the HiMod reduced space.
The intrinsic capability of Himod reduction to decouple the dominant dynamic from the
secondary one through a differentiated discretization of the two directions leads to the res-
olution of a system characterized by a considerably lower number of unknowns, without
quitting the accuracy of the reduced solution. In particular, for a 99.07% reduction in
the number of dofs with respect to a high fidelity finite volume simulation, a very good
accuracy is exhibited by the HiMod solution, with a less than 1% relative modeling error.

In a future perspective, the proposed approach may be extended to more complex prob-
lems in the microfluidics field, such as the study of AD problems under unsteady conditions
or in the presence of more complex 3D geometries. Moreover, a model reduction approach
could speed up the microchannel design phase, especially when different scenarios have to
be investigated in order to optimize the mixing efficiency of the microsystem. The para-
metric version of the HiMod reduction could be instrumental for such a goal (Baroli et al.
(2017); Zancanaro et al. (2021); Lupo Pasini and Perotto (2022)).
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